JPS5899635A - Controlling circuit for air conditioner - Google Patents

Controlling circuit for air conditioner

Info

Publication number
JPS5899635A
JPS5899635A JP56199526A JP19952681A JPS5899635A JP S5899635 A JPS5899635 A JP S5899635A JP 56199526 A JP56199526 A JP 56199526A JP 19952681 A JP19952681 A JP 19952681A JP S5899635 A JPS5899635 A JP S5899635A
Authority
JP
Japan
Prior art keywords
compressor
time
stopping
air conditioner
stopped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56199526A
Other languages
Japanese (ja)
Other versions
JPS624618B2 (en
Inventor
Yoshiyuki Noda
芳行 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP56199526A priority Critical patent/JPS5899635A/en
Publication of JPS5899635A publication Critical patent/JPS5899635A/en
Publication of JPS624618B2 publication Critical patent/JPS624618B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To relieve the user of anxiety , by a method wherein a motor compressor is stopped with a predetermined lag of time from the operation of an operating/stopping switch, and the rotating speed of the compressor at the time of stopping is lowered to a value approximate to the minimum rotating speed. CONSTITUTION:A refrigerant-compressing cycle is provided by sequentially conconnecting the motor compressor 1, a condenser 3, a decompressor 4 and an evaporator 5; and an inverter controlling part 14 for controlling the frequency and voltage of a power source for the compressor 1 is provided. In a controlling circuit for the air conditioner, the compressor 1 is stopped with the predetermined lag of time from the operation of the operating/stopping switch 16, and the rotating speed of the compressor 1 at the time of stopping is lowered to a value approximate to the minimum rotating speed. Accordingly, the controlling part 14 will not be adversely affected by a counter electromotive force generated in the compressor 1 at the time of stopping, and the user can be relieved of the uneasiness due to the irregularity of the period of time required for stopping.

Description

【発明の詳細な説明】 本発明は、冷媒圧縮サイクルを有する空気調和機の制御
回路、特にインバータ制御による能力可変形の空気調和
機の制御回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control circuit for an air conditioner having a refrigerant compression cycle, and particularly to a control circuit for a variable capacity air conditioner controlled by an inverter.

−電動圧縮機、凝縮器、減圧器、蒸発器を順次接続した
冷媒圧縮サイクルを備えると共に、その凝縮器、蒸発器
に送風機を備えた空気調和機において、その電動圧縮機
への電源の周波数及び電圧を制御するインバータ制御方
式があり、これは回転数を無段階に制御でき、室温の変
動幅を小さく抑える上で非常に効果的である。処で、こ
の種のものでは、空気調和機の運転を停止する場合、通
電オフ時に圧縮機に逆起電圧が発生してインバータ部に
悪影響を及ぼすことがある。即ち、通電オフ時の圧縮f
i)二発生する逆起電圧の大きさは、はぼ通電周波数、
即ちオフ時の回転数に比例することになり、高い周波数
でいきなりオフすることは、インバータ部のトランジス
タに悪影響を及ぼすことになり、あまり望ましいことで
はない。
- In an air conditioner equipped with a refrigerant compression cycle in which an electric compressor, a condenser, a pressure reducer, and an evaporator are connected in sequence, and a blower is installed in the condenser and evaporator, the frequency and frequency of the power supply to the electric compressor are There is an inverter control method that controls the voltage, and this allows stepless control of the rotation speed, which is very effective in keeping room temperature fluctuations small. However, in this type of air conditioner, when the operation of the air conditioner is stopped, a back electromotive voltage may be generated in the compressor when electricity is turned off, which may adversely affect the inverter section. That is, the compression f when the current is turned off
i) The magnitude of the back electromotive force generated is determined by the energizing frequency,
That is, it is proportional to the rotational speed when turned off, and turning off suddenly at a high frequency will have a negative effect on the transistors in the inverter section, which is not very desirable.

そこで、従来は第4図のタイムチャートに示す如く、A
点で停止操作を行なえば、その時点の圧縮機の回転数か
ら一定比率で順次低下させ、最小回転数に達してから圧
縮機を停止させると云う方法を採っていた。しかし、こ
の場合、例えば最大回転数で運転していた時にはT2時
間後に0点で、65%の回転数で運転していた時にはT
1時間後にB点で夫々停止し、最小の30%で運転して
いた時にはA点で停止するので、運転停止時の運転状態
により、停止のスイッチ操作から圧縮機の停止までの時
間がまちまちであり、使用者に対して不安感を抱かせる
と云う欠点があった。
Therefore, conventionally, as shown in the time chart of Fig. 4,
If a stop operation is performed at a point, the rotational speed of the compressor at that point is sequentially decreased at a fixed rate, and the compressor is stopped after reaching the minimum rotational speed. However, in this case, for example, when operating at maximum rotation speed, the point is 0 after T2 hours, and when operating at 65% rotation speed, T
They each stop at point B after one hour, and when operating at the minimum 30%, they stop at point A, so the time from pressing the stop switch to stopping the compressor varies depending on the operating condition at the time of stopping. This has the drawback of making the user feel uneasy.

本発明は、このような問題点を解消するために、運転停
止操作に一定時間だけ遅延させて電動圧縮機を停止させ
得る制御回路の提供を目的としてなされたものである。
In order to solve these problems, the present invention has been made with the object of providing a control circuit that can stop an electric compressor by delaying the operation stop operation by a certain period of time.

以下、図示の実施例について本発明を詳述すると、第1
図において、1は圧縮機、2はこの圧縮8!1を駆動す
る圧縮機モータで、これらにより電動圧縮機が構成され
る。3は凝縮器、4はキャピラリチューブ等の減圧器、
5は蒸発器であり、これらは圧縮機1と閉回路状に接続
されて冷媒圧縮サイクルを構成する。6は凝縮器3に対
応して設けられた室外送風機、7は蒸発器5に対応して
設けられた室内送風機である。
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
In the figure, 1 is a compressor, 2 is a compressor motor that drives this compressor 8!1, and these constitute an electric compressor. 3 is a condenser, 4 is a pressure reducer such as a capillary tube,
5 is an evaporator, which is connected to the compressor 1 in a closed circuit to form a refrigerant compression cycle. 6 is an outdoor blower provided corresponding to the condenser 3, and 7 is an indoor blower provided corresponding to the evaporator 5.

8は一般的なワンチップマイクロコンピュータ(以下マ
イフンと称する)で、入力端子INI〜IN3及び出力
端子0UTI〜0UT5を有すると共に、内部にプログ
ラムROM、データRAM、ALUを有し、基準クロッ
ク発振部9により駆動されて−る。
Reference numeral 8 denotes a general one-chip microcomputer (hereinafter referred to as "Maifun"), which has input terminals INI to IN3 and output terminals 0UTI to 0UT5, and also has a program ROM, data RAM, and ALU inside, and a reference clock oscillation section 9. It is driven by.

10は室温検出用のサーミスタ、11はA/D変換器で
、サーミスタ10で検出された室温をデジタル値に変換
してマイコン8の入力端子IN1へ入力する。12は室
温設定用の可変抵抗、13はA/D変換器で、可変抵抗
12で設定された室温をデジタル値に変換してマイコン
8の入力端子IN2に入力する。、14はインバータ部
で、電源端子15.15’から入力された交流電源をダ
イオードD1〜D、で整流し、コンデンサC1oで平滑
した後、トランジスタTri、Trl’でW相、トラン
ジスタTr2.Tr2’でV相、トランジスタTr3.
Tr3′でU相の三相を夫々位相制御して三相交流番発
生し、三相の圧縮機モータ2を運転する。16は運転/
停止スイッチで、マイコン8の入力端子IN3に接続さ
れる。マイコン8は入力端子INIから室温、入力端子
IN2から室温設定値を夫々読込み、その値によりイン
バータ部14を介して圧縮機モータ2に通電する三相電
圧U、V、Wの周波数、電圧を制御する信号を出力端子
0UTI〜0UT3から出力し、これによって圧縮機モ
ータ2の回転数を制御し冷房能力を可変とするものであ
る。マイコン8及びインバータ部14により、いわゆる
パルス幅変調方式のインバータ制御部が構成されている
。なお、インバータ部14のコンデンサc、、c、’〜
Cs −C3’は、トランジスタTrl、Tri’−T
r3.Tr3’がノイズにより誤動作するのを防止する
ためのものである。また抵抗R3とコンデンサC,,R
4とC,、R2とC9,R5とC,、R3とC6,R,
とC9とから成る各RC直列回路は、圧縮機モータ2へ
の通電オフ後の逆起電圧によるトランジスタTri、T
ri’ −Tr3.Tr3’の損傷を防ぐための放電回
路である。マイコンの出力端子0UT4,0UT5には
夫々室外送風機6、室内送風機7の制御出力が発生する
10 is a thermistor for detecting room temperature, and 11 is an A/D converter, which converts the room temperature detected by the thermistor 10 into a digital value and inputs it to the input terminal IN1 of the microcomputer 8. 12 is a variable resistor for setting the room temperature, and 13 is an A/D converter, which converts the room temperature set by the variable resistor 12 into a digital value and inputs it to the input terminal IN2 of the microcomputer 8. , 14 is an inverter section, in which AC power input from power terminals 15, 15' is rectified by diodes D1 to D, and smoothed by a capacitor C1o. Tr2' is V phase, transistor Tr3.
The three phases of the U phase are each controlled by the Tr 3' to generate a three-phase alternating current cycle, and the three-phase compressor motor 2 is operated. 16 is driving/
A stop switch is connected to the input terminal IN3 of the microcomputer 8. The microcomputer 8 reads the room temperature from the input terminal INI and the room temperature set value from the input terminal IN2, and controls the frequency and voltage of the three-phase voltages U, V, and W that supply electricity to the compressor motor 2 via the inverter section 14 based on these values. A signal is output from the output terminals 0UTI to 0UT3, thereby controlling the rotation speed of the compressor motor 2 and making the cooling capacity variable. The microcomputer 8 and the inverter section 14 constitute a so-called pulse width modulation type inverter control section. Note that the capacitors c,,c,'~ of the inverter section 14
Cs-C3' is a transistor Trl, Tri'-T
r3. This is to prevent Tr3' from malfunctioning due to noise. Also, resistor R3 and capacitor C,,R
4 and C,, R2 and C9, R5 and C,, R3 and C6, R,
and C9 are connected to transistors Tri and T by the back electromotive voltage after the compressor motor 2 is turned off.
ri'-Tr3. This is a discharge circuit for preventing damage to Tr3'. Control outputs for the outdoor blower 6 and the indoor blower 7 are generated at output terminals 0UT4 and 0UT5 of the microcomputer, respectively.

上記構成において、冷房運転時には、圧縮機モータ2で
圧縮機1を駆動する。すると圧縮tで圧縮された冷媒は
、凝縮器3で室外送風機6の送風で冷却されて凝縮した
後、減圧器4で減圧され、蒸発器5で蒸発して冷却作用
を行ない、室内送風機7が送風して室内を冷房する。一
方、この運転中は、マイコン8、インバータ部14を介
して圧縮機モータ2の回転数を室温等に応じて制御し、
冷房能力を可変する。つまり、室温が上がれば、マイコ
ン8がそれを判断し、インバータ部14からの出力によ
って圧縮機モータ2に通電する三相電圧の周波数、電圧
を大にする。従って、圧縮機モータ2の回転数が犬とな
り、冷房能力が上昇して室温を設定温度まで下ける。ま
た室温が低下しすぎれば逆に圧縮機モータ2の回転数が
低下する。
In the above configuration, the compressor 1 is driven by the compressor motor 2 during cooling operation. Then, the refrigerant compressed by the compression t is cooled and condensed by the air from the outdoor blower 6 in the condenser 3, then reduced in pressure by the pressure reducer 4, evaporated in the evaporator 5 to perform a cooling effect, and the indoor blower 7 Blows air to cool the room. Meanwhile, during this operation, the rotation speed of the compressor motor 2 is controlled via the microcomputer 8 and the inverter section 14 according to the room temperature, etc.
Variable cooling capacity. That is, if the room temperature rises, the microcomputer 8 determines this and increases the frequency and voltage of the three-phase voltage energized to the compressor motor 2 by the output from the inverter section 14. Therefore, the rotation speed of the compressor motor 2 increases, the cooling capacity increases, and the room temperature is lowered to the set temperature. On the other hand, if the room temperature drops too much, the rotation speed of the compressor motor 2 will decrease.

冷房運転を停止する際には、運転/停止スイッチ16を
オフに操作すれば良い。処で、例えば容量可変幅=周波
数可変幅をMAXlooHz、MIN30Hzとした場
合、運転停止時に圧縮機モータ2から発生する逆起電圧
の大きさは、冒頭に述べたようにほぼ通電周波数、すな
わちオフ時の回転数に比例することになり、従ってあま
り高い周波数でいきなリオフすることは、インバータ部
14のトランジスタTri、Trl’−Tr3.Tr3
’に悪影響を及ぼすことになり、好ましいものではない
。そこで圧縮磯モータ2の回転数を低下させてからオフ
するのであるが、単に低下させるだけでは停止時間にバ
ラツキが生じ、使用者に不安感を抱かせるため、この場
合には、次のように動作させる。つまり、第2図のタイ
ムチャートに示す如く、運転/停止スイッチ16の停止
操作Aから完全停止Eまでの時間を一定にし、圧縮機モ
ータ2を最大回転数から最小回転数まで低下させる時開
をTとして、例えば65%で運転していた場合には、1
5時間で最小回転数まで低下させた後、そのままの最小
回転数でEまで運転してから圧縮機モータ2を完全に停
止する。また30%で運転していた場合には、そのまま
Eまで運転してから停止させる。すなわち、最小回転数
に達したがと、T時間に達したがとのAND条件を取り
、これによって圧縮機モータ2を停止させる。このよう
に運転停止スイッチ16の停止操作から圧縮機モータ2
を最小回転数まで下げて停止させるまでの時間を一定化
することにより、インバータ部14への逆起電圧の悪影
響を防止できると同時に、使用者の不安感を除くことが
できるものである。
To stop the cooling operation, the operation/stop switch 16 may be turned off. For example, if the capacity variable width = frequency variable width is set to MAX loo Hz and MIN 30 Hz, the magnitude of the back electromotive force generated from the compressor motor 2 when the operation is stopped is approximately the same as the energizing frequency, that is, when off, as stated at the beginning. Therefore, a sudden re-off at too high a frequency will cause the transistors Tri, Trl'-Tr3 . Tr3
', which is not desirable. Therefore, the rotation speed of the compression rock motor 2 is lowered and then turned off. However, simply lowering the rotation speed causes variations in the stop time, which makes the user feel uneasy. make it work. In other words, as shown in the time chart of FIG. 2, the time from stop operation A of the run/stop switch 16 to complete stop E is kept constant, and the time opening is made to reduce the compressor motor 2 from the maximum rotation speed to the minimum rotation speed. For example, if you are driving at 65%, then 1
After reducing the rotation speed to the minimum rotation speed for 5 hours, the compressor motor 2 is operated at the same minimum rotation speed up to E, and then the compressor motor 2 is completely stopped. Also, if it is running at 30%, it will continue to run to E and then stop. That is, the AND condition of reaching the minimum rotation speed and reaching time T is taken, and thereby the compressor motor 2 is stopped. In this way, from the stop operation of the operation stop switch 16, the compressor motor 2
By lowering the rotation speed to the minimum rotation speed and making the time constant until it stops, it is possible to prevent the adverse effect of the back electromotive force on the inverter section 14, and at the same time, it is possible to eliminate the user's anxiety.

第3図は本発明の他の実施例を示している。これは、停
止のスイッチ操作時の回転数に応した低下率で圧縮機モ
ータ2の回転数を低下させ、それが最小回転数に達する
までの時間Tを一定化するようにしたものである。
FIG. 3 shows another embodiment of the invention. This is to reduce the rotation speed of the compressor motor 2 at a rate of decrease corresponding to the rotation speed when the stop switch is operated, and to keep the time T until the rotation speed reaches the minimum rotation speed constant.

なお圧縮機モータ2の停止時の回転数は、必ずしも最小
回転数でなくとも良く、はぼそれに近い所でも十分可能
である。室外送風機6、室内送風機7は圧縮機モータ2
の停止と同時に停止させても良いし、またそれ以前に停
止させても良い。
Note that the rotational speed of the compressor motor 2 when it is stopped does not necessarily have to be the minimum rotational speed, and can be sufficiently close to the minimum rotational speed. The outdoor blower 6 and the indoor blower 7 are the compressor motor 2
It may be stopped at the same time as the stop of , or it may be stopped before that.

以上の説明からも明らかな通り、本発明は、電動圧縮機
の停止時の回転数を略最小回転数に近い所まで低下させ
るようにしているので、停止時に電動圧縮機に発生する
逆起電圧によってインバータ部に悪影響を及ぼすことが
なく、また停止スイッチの停止操作時の電動圧縮機の回
転数に拘らず、一定の遅延時間だけ遅延させて停止させ
るようにしているので、停止までの時間のバラツキによ
る使用者の不安感も解消できる。
As is clear from the above explanation, the present invention reduces the rotational speed of the electric compressor when it is stopped to a point close to the minimum rotational speed, so that the back electromotive force generated in the electric compressor when it is stopped is reduced. This does not have a negative effect on the inverter, and regardless of the rotational speed of the electric compressor when the stop switch is operated to stop, it is delayed by a certain delay time and then stopped, so the time to stop is reduced. It also eliminates the user's anxiety due to variations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す制御回路図、第2図及
び第3図はその停止動作を示すタイムチャート、第4図
は従来例を示すタイムチャートである。 1:圧縮機、2:圧縮機モータ、3:凝縮器、4:減圧
器、5:蒸発器、6:室外送風機、7二室内送風機、8
:マイクロコンピュータ、14:インバータ部、16二
運転/停止スイツチ。 出 願 人  シャープ株式会社 代理人 中村恒久
FIG. 1 is a control circuit diagram showing one embodiment of the present invention, FIGS. 2 and 3 are time charts showing its stopping operation, and FIG. 4 is a time chart showing a conventional example. 1: Compressor, 2: Compressor motor, 3: Condenser, 4: Pressure reducer, 5: Evaporator, 6: Outdoor blower, 7 Two indoor blowers, 8
: Microcomputer, 14: Inverter section, 162 Run/stop switch. Applicant Sharp Corporation Agent Tsunehisa Nakamura

Claims (1)

【特許請求の範囲】[Claims] 電動圧縮機、凝縮器、減圧器、蒸発器を順次接続した冷
媒圧縮サイクルを備えると共に、電動圧縮機への電源の
周波数及び電圧を制御するインバータ制御部を設けた空
気調和機の制御回路において、停止スイッチの操作から
一定の遅延時間だけ遅延させて電動圧縮機を停止させる
と共に、該電動圧縮機の停止時の回転数を略最小回転数
に近い所まで低下させるようにしたことを特徴とする空
気調和機の制御回路。
In an air conditioner control circuit that includes a refrigerant compression cycle in which an electric compressor, a condenser, a pressure reducer, and an evaporator are sequentially connected, and an inverter control unit that controls the frequency and voltage of the power supply to the electric compressor, The electric compressor is stopped by a certain delay time after the operation of the stop switch, and the rotational speed of the electric compressor at the time of stopping is reduced to a point close to the minimum rotational speed. Air conditioner control circuit.
JP56199526A 1981-12-10 1981-12-10 Controlling circuit for air conditioner Granted JPS5899635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56199526A JPS5899635A (en) 1981-12-10 1981-12-10 Controlling circuit for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56199526A JPS5899635A (en) 1981-12-10 1981-12-10 Controlling circuit for air conditioner

Publications (2)

Publication Number Publication Date
JPS5899635A true JPS5899635A (en) 1983-06-14
JPS624618B2 JPS624618B2 (en) 1987-01-31

Family

ID=16409291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56199526A Granted JPS5899635A (en) 1981-12-10 1981-12-10 Controlling circuit for air conditioner

Country Status (1)

Country Link
JP (1) JPS5899635A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069446A (en) * 1983-09-27 1985-04-20 Toshiba Corp Method for controlling operation of compressor
JP2010196975A (en) * 2009-02-25 2010-09-09 Denso Corp Refrigerating cycle apparatus
WO2010143343A1 (en) 2009-06-12 2010-12-16 パナソニック株式会社 Refrigeration cycle device
JP2013155678A (en) * 2012-01-30 2013-08-15 Hitachi Koki Co Ltd Air compressor and stopping method thereof
CN108351132A (en) * 2015-11-06 2018-07-31 Bsh家用电器有限公司 Domestic refrigerator with refrigerant circuit and the method for running the Domestic refrigerator with refrigerant circuit
CN111033041A (en) * 2017-09-07 2020-04-17 三菱重工制冷空调系统株式会社 Control device for electric compressor, air conditioning device for mobile body, and control method for electric compressor
CN113251641A (en) * 2021-04-30 2021-08-13 青岛海尔空调器有限总公司 Compressor control method, compressor control device, compressor control apparatus, storage medium, and program product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713293A (en) * 1980-06-27 1982-01-23 Matsushita Electric Ind Co Ltd Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713293A (en) * 1980-06-27 1982-01-23 Matsushita Electric Ind Co Ltd Air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069446A (en) * 1983-09-27 1985-04-20 Toshiba Corp Method for controlling operation of compressor
JP2010196975A (en) * 2009-02-25 2010-09-09 Denso Corp Refrigerating cycle apparatus
WO2010143343A1 (en) 2009-06-12 2010-12-16 パナソニック株式会社 Refrigeration cycle device
JP2013155678A (en) * 2012-01-30 2013-08-15 Hitachi Koki Co Ltd Air compressor and stopping method thereof
CN108351132A (en) * 2015-11-06 2018-07-31 Bsh家用电器有限公司 Domestic refrigerator with refrigerant circuit and the method for running the Domestic refrigerator with refrigerant circuit
CN108351132B (en) * 2015-11-06 2020-06-12 Bsh家用电器有限公司 Domestic refrigeration device having a refrigerant circuit and method for operating a domestic refrigeration device having a refrigerant circuit
CN111033041A (en) * 2017-09-07 2020-04-17 三菱重工制冷空调系统株式会社 Control device for electric compressor, air conditioning device for mobile body, and control method for electric compressor
CN111033041B (en) * 2017-09-07 2021-08-03 三菱重工制冷空调系统株式会社 Control device for electric compressor, air conditioning device for mobile body, and control method for electric compressor
US11466677B2 (en) 2017-09-07 2022-10-11 Mitsubishi Heavy Industries Thermal Systems, Ltd. Control device for electric compressor, electric compressor, air conditioning device for moving object, and method for controlling electric compressor
CN113251641A (en) * 2021-04-30 2021-08-13 青岛海尔空调器有限总公司 Compressor control method, compressor control device, compressor control apparatus, storage medium, and program product

Also Published As

Publication number Publication date
JPS624618B2 (en) 1987-01-31

Similar Documents

Publication Publication Date Title
JPS5934935B2 (en) heat source device
JPS5899635A (en) Controlling circuit for air conditioner
JPS58101281A (en) Control circuit for refrigerator
JP2000308353A (en) Power unit
JPS59221546A (en) Air conditioner
JPS5899634A (en) Control circuit for air conditioner
JPS6121343B2 (en)
JPH06294542A (en) Control method of airconditioning apparatus
JPS6151220B2 (en)
JPS5899636A (en) Controlling circuit for air conditioner
JPS6213951A (en) Air conditioner
JPH04106356A (en) Operation control of air conditioner
JPS6220461B2 (en)
JPH0623879Y2 (en) Air conditioner
JPS6179943A (en) Air conditioner
JPH0228353Y2 (en)
JPH0710198B2 (en) Air conditioner
JPH07167480A (en) Air conditioner
JP2500527B2 (en) Defrost control method for air conditioner
JPH06100386B2 (en) Compressor control method
JPS6138365A (en) Method of controlling heat pump type air conditioner
JPS6240091A (en) Air conditioner
JPS6315718Y2 (en)
JPS58115236A (en) Control circuit of air conditioner
JP3079152B2 (en) Air conditioner