JP2015087076A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2015087076A
JP2015087076A JP2013227668A JP2013227668A JP2015087076A JP 2015087076 A JP2015087076 A JP 2015087076A JP 2013227668 A JP2013227668 A JP 2013227668A JP 2013227668 A JP2013227668 A JP 2013227668A JP 2015087076 A JP2015087076 A JP 2015087076A
Authority
JP
Japan
Prior art keywords
air conditioner
heat exchanger
unit
compressor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013227668A
Other languages
Japanese (ja)
Inventor
理恵 三浦
Rie Miura
理恵 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2013227668A priority Critical patent/JP2015087076A/en
Publication of JP2015087076A publication Critical patent/JP2015087076A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which increases rotational frequency of a compressor and shortens defrosting operation time by boosting a DC current during a defrosting operation.SOLUTION: An air conditioner includes: an indoor unit having an indoor heat exchanger and an indoor fan; a compressor; and an outdoor unit having an outdoor heat exchanger and an outdoor fan. In the air conditioner, the compressor, a four-way valve, the outdoor heat exchanger and the indoor heat exchanger are connected by a refrigerant pipe, and the air conditioner can switch a cooling operation, a heating operation and a defrosting operation by the switching of the four-way valve. The outdoor unit has a driving control device 18 including: a rectifying circuit 2 for converting an input AC power into a DC voltage; a booster 3 for boosting the DC voltage; an inverter 4 for driving the compressor by converting the DC voltage from the booster 3 into the AC power; and a control unit 13 for controlling the booster 3 and the inverter 4. The control unit 13 boosts the DC voltage irrespective of the size of a load of the air conditioner at the starting time of the defrosting operation.

Description

本発明は、室外熱交換器に着霜した霜を除霜運転によって除霜する空気調和機に関する。   The present invention relates to an air conditioner that defrosts frost formed on an outdoor heat exchanger by a defrosting operation.

従来の空気調和機は、外気温が低い状態で暖房運転を継続して室外機の室外熱交換器に霜が着く(着霜)と、熱交換器の熱交換能力が低下し、暖房能力を低下させるため、冷凍サイクルを暖房運転から冷房運転に切り換えて除霜運転(リバース除霜)を行うことで室外熱交換器に着霜した霜を溶かしている。一般に除霜運転時は、除霜効果を上げるために室外機のファンを停止させると共に、室内機側は冷房運転となるために寒さを感じさせないよう室内機のファンも停止させ室内温度の低下を防いでいる。しかし、除霜運転が長くなると、その分冷房運転の時間が長くなって室温が低下し、快適性が損なわれてしまうことがあった。   When a conventional air conditioner continues heating operation in a state where the outside air temperature is low and frost forms on the outdoor heat exchanger of the outdoor unit (frost formation), the heat exchange capacity of the heat exchanger decreases and the heating capacity is reduced. In order to lower the temperature, the frost that has formed on the outdoor heat exchanger is melted by switching the refrigeration cycle from the heating operation to the cooling operation and performing the defrosting operation (reverse defrosting). In general, during the defrosting operation, the fan of the outdoor unit is stopped in order to increase the defrosting effect, and the indoor unit side is also in the cooling operation, so the fan of the indoor unit is also stopped so as not to feel cold, and the indoor temperature is lowered. It is preventing. However, when the defrosting operation becomes longer, the cooling operation time becomes longer, the room temperature decreases, and the comfort may be impaired.

そこで、従来の空気調和機では、除霜運転時に、圧縮機の回転数を高めて除霜運転時間を短縮するために圧縮機への印加電圧を上げることが従来から行われている。例えば、特許文献1には、交流電源電圧をコンバータで整流して得られる直流電圧をインバータで所定の周波数と電圧の交流電力に変換して圧縮機モータを駆動する空気調和機において、除霜運転時にインバータから圧縮機モータへ供給する駆動電圧を通常より高い電圧にすることで圧縮機の能力(回転数)を高め、除霜運転時間を短縮することが開示されている。   Therefore, in the conventional air conditioner, during the defrosting operation, it has been conventionally performed to increase the voltage applied to the compressor in order to increase the rotation speed of the compressor and shorten the defrosting operation time. For example, Patent Document 1 discloses a defrosting operation in an air conditioner that drives a compressor motor by converting a DC voltage obtained by rectifying an AC power supply voltage using a converter into AC power having a predetermined frequency and voltage using an inverter. It has been disclosed that sometimes the drive voltage supplied from the inverter to the compressor motor is made higher than usual so as to increase the capacity (rotation speed) of the compressor and shorten the defrosting operation time.

特開昭62−29869号公報Japanese Patent Laid-Open No. 62-29869

しかしながら、特許文献1の空気調和機は、インバータが圧縮機モータへ供給する駆動電圧を通常より高い電圧にするものであるが、インバータに供給される直流電圧以上に駆動電圧を高めることができないため、圧縮機の回転数を上げるには限界があった。   However, although the air conditioner of Patent Document 1 sets the drive voltage supplied to the compressor motor by the inverter to a higher voltage than usual, the drive voltage cannot be increased beyond the DC voltage supplied to the inverter. There was a limit to increasing the rotation speed of the compressor.

そこで、圧縮機を高回転数で駆動するために、インバータに供給する直流電圧を高める方式として、コンバータに昇圧チョッパを設け、交流電源電圧を整流して得られた直流電圧を昇圧チョッパのスイッチングにより昇圧してインバータに供給するものがある。例えば、圧縮機の運転効率を上げるため、圧縮機モータの巻線を増やすことが行われているが、巻線を増やすと圧縮機モータを回転させたときに発生する逆起電力が大きくなり、圧縮機を高回転で駆動するためにインバータから圧縮機モータに供給される駆動電圧を高める必要があり、このような場合には、昇圧チョッパを用いたコンバータが有効である。   Therefore, in order to drive the compressor at a high rotational speed, as a method for increasing the DC voltage supplied to the inverter, a boost chopper is provided in the converter, and the DC voltage obtained by rectifying the AC power supply voltage is converted by switching the boost chopper. There is one that boosts and supplies it to the inverter. For example, in order to increase the operating efficiency of the compressor, the winding of the compressor motor is increased, but if the winding is increased, the counter electromotive force generated when the compressor motor is rotated increases. In order to drive the compressor at a high speed, it is necessary to increase the drive voltage supplied from the inverter to the compressor motor. In such a case, a converter using a boost chopper is effective.

このような昇圧チョッパを用いた空気調和機の通常の運転では、昇圧チョッパのスイッグロスよる効率の低下や高調波ノイズの発生を考えると、昇圧チョッパのスイッチングは極力行わない方が望ましい。このため空気調和機が低負荷で高い直流電圧が必要ない場合は昇圧チョッパによる直流電圧の昇圧は行わないようにしている。空気調和機の負荷の大きさは、空気調和機の入力電流を監視することで検出し、それが所定の値(例えば3A)を超えたとき負荷が高くなったと判断して昇圧チョッパのスイッチングを開始して直流電圧を昇圧する。   In a normal operation of an air conditioner using such a boost chopper, it is desirable that switching of the boost chopper is not performed as much as possible in view of a reduction in efficiency due to swivel loss of the boost chopper and generation of harmonic noise. For this reason, when the air conditioner has a low load and a high DC voltage is not required, the DC voltage is not boosted by the boost chopper. The magnitude of the load of the air conditioner is detected by monitoring the input current of the air conditioner, and when it exceeds a predetermined value (for example, 3A), it is determined that the load has increased, and the boost chopper is switched. Start and boost DC voltage.

一方、除霜運転を開始するため冷凍サイクルを暖房運転から冷房運転に切り換えた直後の空気調和機は、負荷がほぼゼロとなる。これは冷凍サイクルを切り換えるとき、冷凍サイクルに含まれる四方弁にかかる高圧側と低圧側の圧力差をほぼゼロにしてから四方弁を切り換えるためで、冷凍サイクルの切り換え直後は圧縮機の吸入側と吐出側の圧力差がほぼゼロとなり、結果として圧縮機の負荷がほぼゼロとなるからである。従って、負荷の大きさによって昇圧チョッパのスイッチングの動作/非動作を決定する従来の空気調和機では、負荷が小さい除霜運転開始時に圧縮機モータを高回転で駆動するため直流電圧を昇圧しようとしても、昇圧チョッパが動作しないため必要な回転数が得られず、除霜時間が長くかかるという問題があった。   On the other hand, the load of the air conditioner immediately after switching the refrigeration cycle from the heating operation to the cooling operation to start the defrosting operation is almost zero. This is because when switching the refrigeration cycle, the pressure difference between the high-pressure side and the low-pressure side applied to the four-way valve included in the refrigeration cycle is switched to zero after switching the four-way valve. This is because the pressure difference on the discharge side becomes almost zero, and as a result, the load on the compressor becomes almost zero. Therefore, in the conventional air conditioner that determines the switching operation / non-operation of the boosting chopper according to the size of the load, it tries to boost the DC voltage in order to drive the compressor motor at a high speed at the start of the defrosting operation with a small load. However, since the step-up chopper does not operate, a necessary rotational speed cannot be obtained, and there is a problem that it takes a long time to defrost.

本発明は、上記課題に鑑みてなされたものであり、除霜運転時に空気調和機の負荷の大きさに関わらず、昇圧チョッパにより直流電圧の昇圧を行うことで圧縮機の回転数を高め、除霜運転時間を短縮する空気調和機を提供することを目的とする。   The present invention has been made in view of the above problems, and regardless of the load of the air conditioner during defrosting operation, the DC voltage is boosted by a boost chopper to increase the rotational speed of the compressor. It aims at providing the air conditioner which shortens defrost operation time.

上記した課題を解決して、本発明の目的を達成するために、本発明は、室内熱交換器と室内ファンを有する室内機と、圧縮機と、室外熱交換器と、室外ファンとを有する室外機とを備え、前記圧縮機、四方弁、前記室外熱交換器、前記室内熱交換器が冷媒管によって接続され、前記四方弁の切り換えによって冷房運転、暖房運転、除霜運転の切り換えが可能な空気調和機であって、前記室外機には、入力交流電源を直流電圧に変換する整流部と、前記空気調和機の負荷を検出する負荷検出手段と、前記直流電圧を昇圧する昇圧部と、前記昇圧部からの直流電圧を交流電力に変換して前記圧縮機を駆動させるインバータと、前記昇圧部と前記インバータとを制御する制御部とを有する駆動制御装置を備え、前記制御部は、前記除霜運転開始時に、前記空気調和機の負荷の大きさに関わらず前記直流電圧を昇圧することを特徴とする。   In order to solve the above problems and achieve the object of the present invention, the present invention includes an indoor unit having an indoor heat exchanger and an indoor fan, a compressor, an outdoor heat exchanger, and an outdoor fan. An outdoor unit, and the compressor, the four-way valve, the outdoor heat exchanger, and the indoor heat exchanger are connected by a refrigerant pipe, and switching between the cooling operation, the heating operation, and the defrosting operation is possible by switching the four-way valve. In the outdoor unit, the outdoor unit includes a rectifying unit that converts an input AC power source into a DC voltage, a load detection unit that detects a load of the air conditioner, and a boosting unit that boosts the DC voltage. A drive control device comprising: an inverter that converts the DC voltage from the booster unit into AC power to drive the compressor; and a control unit that controls the booster unit and the inverter. At the start of the defrosting operation Characterized by boosting the DC voltage regardless of the magnitude of the load of the air conditioner.

本発明によれば、除霜運転時に負荷の大きさにかかわらず昇圧部で直流電圧を昇圧してインバータに供給するので、除霜運転開始時に圧縮機の回転数を上げることで、除霜運転時間を短縮することができるという効果を奏する。   According to the present invention, since the DC voltage is boosted and supplied to the inverter at the boosting unit regardless of the load size during the defrosting operation, the defrosting operation is performed by increasing the rotation speed of the compressor at the start of the defrosting operation. There is an effect that the time can be shortened.

図1は、本発明の一実施例に係る空気調和機の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an air conditioner according to an embodiment of the present invention. 図2は、図1の室外機における駆動制御装置のブロック図である。FIG. 2 is a block diagram of a drive control device in the outdoor unit of FIG. 図3は、本発明の実施例に係る空気調和機の動作を説明するフローチャートである。FIG. 3 is a flowchart for explaining the operation of the air conditioner according to the embodiment of the present invention. 図4は、図2の昇圧部の他の実施例に係る構成例を示すブロック図である。FIG. 4 is a block diagram showing a configuration example according to another embodiment of the boosting unit in FIG.

以下に、本発明にかかる空気調和機の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of an air conditioner according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

[空気調和機の構成]
図1は、本発明の一実施例に係る空気調和機の概略構成を示すブロック図である。本実施例にかかる空気調和機の室内機、室外機、およびリモコンは、図1に示すように構成されている。リモコン50は、ユーザーが電源のオン、オフや運転モードの切り換えなどの操作を行うものである。室内機40内には、室内熱交換器42および室内ファン42aが組み込まれている。室内ファン42aは、ここではクロスフローファンが用いられ、これが回転することによって気流を生成する。室内機40には、室内ファン42aの働きにより室内空気が吸い込まれ、吸い込まれた室内空気は室内熱交換器42を通過することで冷媒と熱交換され、冷気または暖気が生成される。この室内熱交換器42を通り抜けた後の冷気または暖気の気流は、不図示の吹出口から室内に吹き出される。
[Configuration of air conditioner]
FIG. 1 is a block diagram showing a schematic configuration of an air conditioner according to an embodiment of the present invention. The indoor unit, the outdoor unit, and the remote controller of the air conditioner according to the present embodiment are configured as shown in FIG. The remote controller 50 is used by the user to perform operations such as turning the power on and off and switching the operation mode. In the indoor unit 40, an indoor heat exchanger 42 and an indoor fan 42a are incorporated. Here, a cross flow fan is used as the indoor fan 42a, and this rotates to generate an air flow. Indoor air is sucked into the indoor unit 40 by the action of the indoor fan 42a, and the sucked indoor air passes through the indoor heat exchanger 42 to exchange heat with the refrigerant, thereby generating cold air or warm air. The cold or warm air flow after passing through the indoor heat exchanger 42 is blown out into the room from a blower outlet (not shown).

室外機30は、図1に示すように、四方弁34、圧縮機32、室外熱交換器36、室外ファン36a、および膨張弁38などが組み込まれ、四方弁34、圧縮機32、室外熱交換器36、および膨張弁38、室内熱交換器42が冷媒管60で順次接続され冷凍サイクル39を構成している。冷媒管60の中を流れる冷媒は、圧縮機32によって圧縮された後、四方弁34の切り換えによって室外熱交換器36あるいは、室内熱交換器42に流入し熱交換することにより、空気調和機20を冷房運転あるいは暖房運転することができる。   As shown in FIG. 1, the outdoor unit 30 includes a four-way valve 34, a compressor 32, an outdoor heat exchanger 36, an outdoor fan 36a, an expansion valve 38, and the like, and the four-way valve 34, the compressor 32, and the outdoor heat exchange. 36, an expansion valve 38, and an indoor heat exchanger 42 are sequentially connected by a refrigerant pipe 60 to constitute a refrigeration cycle 39. The refrigerant flowing in the refrigerant pipe 60 is compressed by the compressor 32, and then flows into the outdoor heat exchanger 36 or the indoor heat exchanger 42 by the switching of the four-way valve 34 to exchange heat, whereby the air conditioner 20 Can be cooled or heated.

空気調和機20が暖房運転に設定されると、四方弁34が実線で接続されるように切り換えられ、圧縮機32によって生成された高温高圧の冷媒が圧縮機32の吐出管32aから室内熱交換器42に供給される。冷媒は、室内熱交換器42、膨張弁38および室外熱交換器36を順番に流通する。室内熱交換器42では、冷媒の熱エネルギーが周囲の空気に放出され、暖気が生成される。暖気は、室内ファン42aの働きで室内空間に吹き出される。冷媒は、膨張弁38で低圧まで減圧され、室外熱交換器36において室外の空気から吸熱する。その後、冷媒は、四方弁34を介して圧縮機32の吸入管32bから圧縮機32に戻される。この暖房運転中に外気の温度が下がると室外熱交換器に霜が付きやすくなり、霜が付くと熱交換効率(暖房効率)が著しく低下するため除霜する必要がある。   When the air conditioner 20 is set to the heating operation, the four-way valve 34 is switched so as to be connected by a solid line, and the high-temperature and high-pressure refrigerant generated by the compressor 32 is exchanged with the indoor heat from the discharge pipe 32a of the compressor 32. Is supplied to the vessel 42. The refrigerant flows through the indoor heat exchanger 42, the expansion valve 38, and the outdoor heat exchanger 36 in order. In the indoor heat exchanger 42, the heat energy of the refrigerant is released to the surrounding air, and warm air is generated. The warm air is blown into the indoor space by the function of the indoor fan 42a. The refrigerant is decompressed to a low pressure by the expansion valve 38 and absorbs heat from the outdoor air in the outdoor heat exchanger 36. Thereafter, the refrigerant is returned from the suction pipe 32 b of the compressor 32 to the compressor 32 via the four-way valve 34. If the temperature of the outside air decreases during the heating operation, frost tends to be formed on the outdoor heat exchanger, and if frost is formed, the heat exchange efficiency (heating efficiency) is remarkably reduced, so it is necessary to defrost.

また、冷凍サイクル39が冷房運転に設定されると、四方弁34が図1の点線の如く切換わることにより、圧縮機32によって生成された高温高圧の冷媒が圧縮機32の吐出管32aから室外熱交換器36に供給される。冷媒は、室外熱交換器36、膨張弁38および室内熱交換器42を順番に流通する。室外熱交換器36では、高温の冷媒によって温められる。冷媒は、膨張弁38で低圧まで減圧され、室内熱交換器42において周囲の空気から吸熱する。これにより生成された冷気は、室内ファン42aの働きで室内空間に吹き出される。室内熱交換器42で吸熱した冷媒は、四方弁34を介して圧縮機32の吸入管32bから圧縮機32に戻される。この冷媒の流れは、本実施例の除霜運転時と同様である。つまり、暖房運転における冷媒の流れを逆にすることで、高温の冷媒によって室外交換器36を温めることで室外熱交換器36に着霜した霜を溶かすことができる。   When the refrigeration cycle 39 is set to the cooling operation, the four-way valve 34 is switched as shown by the dotted line in FIG. 1, whereby the high-temperature and high-pressure refrigerant generated by the compressor 32 is discharged from the discharge pipe 32a of the compressor 32 to the outdoor. It is supplied to the heat exchanger 36. The refrigerant flows through the outdoor heat exchanger 36, the expansion valve 38, and the indoor heat exchanger 42 in order. In the outdoor heat exchanger 36, it is heated by a high-temperature refrigerant. The refrigerant is decompressed to a low pressure by the expansion valve 38 and absorbs heat from the surrounding air in the indoor heat exchanger 42. The cold air thus generated is blown into the indoor space by the function of the indoor fan 42a. The refrigerant that has absorbed heat by the indoor heat exchanger 42 is returned to the compressor 32 from the suction pipe 32b of the compressor 32 via the four-way valve 34. The flow of this refrigerant is the same as that during the defrosting operation of this embodiment. That is, by reversing the flow of the refrigerant in the heating operation, the frost formed on the outdoor heat exchanger 36 can be melted by warming the outdoor exchanger 36 with a high-temperature refrigerant.

[駆動制御装置の構成]
図2は、図1の室外機における駆動制御装置のブロック図である。本実施例に係る駆動制御装置18は、図2に示すように、交流電源1と、交流電源1から供給される交流を整流する整流回路2と、リアクタ3aと逆阻止ダイオード3bとスイッチング素子3cと平滑用コンデンサ3dからなる昇圧チョッパ回路を有する昇圧部3と、直流を交流に変換しDCブラシレスモータMを駆動するインバータ4と、圧縮機32を駆動するDCブラシレスモータMと、交流電源1のゼロクロスを検出するゼロクロス検出部5と、昇圧部3の入力電流Iiを検出するための検出部である電流センサ(例えば電流検出用トランス)6と、昇圧部3の入力電流Iiを電流センサ6からの検出信号により検出する入力電流検出部10と、昇圧部3の入力電圧Viを検出するための入力電圧検出部11と、昇圧部3の出力電圧(母線電圧)Voを検出するための出力電圧検出部12と、直流を交流に変換してDCブラシレスモータMを駆動するインバータ4を制御するインバータ駆動部14と、室外熱交換器36の温度を検出する室外熱交換器温度センサ15と、外気温度を検出する外気温度センサ16と、各運転モードにおける電流指令値を事前に記憶している記憶部17とを備えている。空気調和機20の負荷を検出する負荷検出手段は、電流センサ6と入力電流検出部10とで構成し、入力電流値の大きさで負荷の大きさを判断する。さらに、駆動制御装置18は、除霜運転を開始する判断をするために室外熱交換器温度センサ15や外気温度センサ16が検出した室外熱交換器36の温度および外気温度等に基づいて室外熱交換器36が着霜したか否かを判断したり、また、昇圧部3のスイッチング素子3cをオン、オフする信号を出力する制御や、所定の駆動信号をインバータ駆動部14を介してインバータ4のスイッチング素子BU、BV、BW、BX、BY、BZに出力してインバータ4を制御するマイクロコンピュータなどからなる制御部13とを備えている。
[Configuration of drive control device]
FIG. 2 is a block diagram of a drive control device in the outdoor unit of FIG. As shown in FIG. 2, the drive control device 18 according to the present embodiment includes an AC power source 1, a rectifier circuit 2 that rectifies AC supplied from the AC power source 1, a reactor 3a, a reverse blocking diode 3b, and a switching element 3c. And a step-up chopper circuit composed of a smoothing capacitor 3d, an inverter 4 that converts direct current into alternating current and drives a DC brushless motor M, a DC brushless motor M that drives a compressor 32, and an AC power source 1 A zero cross detection unit 5 that detects a zero cross, a current sensor (for example, a current detection transformer) 6 that is a detection unit for detecting an input current Ii of the boost unit 3, and an input current Ii of the boost unit 3 from the current sensor 6. Input current detection unit 10 that detects the input voltage Vi of the boosting unit 3, an input voltage detection unit 11 for detecting the input voltage Vi of the boosting unit 3, and the output voltage ( Output voltage detection unit 12 for detecting line voltage (Vo), inverter drive unit 14 for controlling inverter 4 for driving DC brushless motor M by converting direct current to alternating current, and detecting the temperature of outdoor heat exchanger 36 An outdoor heat exchanger temperature sensor 15 that detects the outside air temperature, and a storage unit 17 that stores a current command value in each operation mode in advance. The load detection means for detecting the load of the air conditioner 20 includes the current sensor 6 and the input current detection unit 10, and determines the size of the load based on the size of the input current value. Furthermore, the drive control device 18 determines outdoor heat based on the temperature of the outdoor heat exchanger 36 and the outdoor air temperature detected by the outdoor heat exchanger temperature sensor 15 and the outdoor air temperature sensor 16 in order to determine to start the defrosting operation. It is determined whether or not the exchanger 36 has been frosted, control for outputting a signal for turning on / off the switching element 3c of the boosting unit 3, and a predetermined drive signal via the inverter drive unit 14 to the inverter 4 And a control unit 13 including a microcomputer for controlling the inverter 4 by outputting to the switching elements BU, BV, BW, BX, BY, BZ.

昇圧部3は、整流回路2の正端子(P)側に直列に接続したリアクタ3aと、リアクタ3aに直列に接続した逆阻止ダイオード3bと、このリアクタ3aと逆阻止ダイオード3bの間と整流回路2の負端子(N)側に接続したスイッチング素子(例えばIGBT;絶縁ゲート形トランジスタ)3cと、逆阻止ダイオード3bの出力(カソード)側と整流回路2の負端子(N)側に接続した平滑コンデンサ3dとを備えている。   The boosting unit 3 includes a reactor 3a connected in series to the positive terminal (P) side of the rectifier circuit 2, a reverse blocking diode 3b connected in series to the reactor 3a, and between the reactor 3a and the reverse blocking diode 3b. 2 is connected to the negative terminal (N) side of the switching element (for example, IGBT; insulated gate transistor) 3c, the smoothing connected to the output (cathode) side of the reverse blocking diode 3b and the negative terminal (N) side of the rectifier circuit 2. And a capacitor 3d.

この昇圧部3は、スイッチング素子3cのオン/オフにより、整流回路2の出力電圧を昇圧してインバータ4に供給する。なお、昇圧部3は電源の力率を改善する力率改善回路(PFC)としても動作する。   The booster 3 boosts the output voltage of the rectifier circuit 2 and supplies it to the inverter 4 by turning on / off the switching element 3c. The booster 3 also operates as a power factor correction circuit (PFC) that improves the power factor of the power source.

[昇圧部の別構成例]
なお、図4は、図2の昇圧部3の他の実施例に係る構成例を示すブロック図である。図2では、昇圧チョッパ回路で構成された昇圧部3の例をあげて説明したが、これに限定されず、図4示すようなインターリーブ型の昇圧部70を用いて構成しても良い。インターリーブ型の昇圧部70は、整流回路2の正端子(P)側に、直列に接続されたリアクタ70a1および逆阻止ダイオード70b1と、直列に接続されたリアクタ70a2および逆阻止ダイオード70b2とが並列に接続され、リアクタ70a1と逆阻止ダイオード70b1との間と整流回路2の負端子(N)側とにスイッチング素子(例えばIGBT;絶縁ゲート形トランジスタ)70c1が接続され、リアクタ70a2と逆阻止ダイオード70b2との間と整流回路2の負端子(N)側とにスイッチング素子(IGBT;絶縁ゲート形トランジスタ)70c2が接続されていて、出力側と負端子(N)側に接続した平滑コンデンサ70dを備えて構成されている。
[Another configuration example of booster]
FIG. 4 is a block diagram showing a configuration example according to another embodiment of the booster 3 in FIG. In FIG. 2, an example of the booster 3 configured by the boost chopper circuit has been described. However, the present invention is not limited to this, and an interleaved booster 70 as illustrated in FIG. 4 may be used. The interleave type boosting unit 70 includes a reactor 70a1 and a reverse blocking diode 70b1 connected in series, and a reactor 70a2 and a reverse blocking diode 70b2 connected in series on the positive terminal (P) side of the rectifier circuit 2. A switching element (eg, IGBT; insulated gate transistor) 70c1 is connected between the reactor 70a1 and the reverse blocking diode 70b1 and on the negative terminal (N) side of the rectifier circuit 2, and the reactor 70a2 and the reverse blocking diode 70b2 And a negative terminal (N) side of the rectifier circuit 2 is connected to a switching element (IGBT; insulated gate transistor) 70c2, and a smoothing capacitor 70d connected to the output side and the negative terminal (N) side is provided. It is configured.

このインターリーブ型の昇圧部70は、リアクタ70a1と逆阻止ダイオード70b1、および、リアクタ70a2と逆阻止ダイオード70b2を、スイッチング素子70c1とスイッチング素子70c2とで交互にオンとオフを切り換えることで、電流値と損失とを半減させることができる。   The interleave type boosting unit 70 switches the reactor 70a1 and the reverse blocking diode 70b1, and the reactor 70a2 and the reverse blocking diode 70b2 by alternately switching on and off between the switching element 70c1 and the switching element 70c2. Loss can be halved.

[除霜運転の開始・終了の条件]
制御部13において、室外熱交換器36が着霜が発生している虞があると判断し、除霜運転を開始する除霜運転開始条件は、例えば、暖房運転時間(空気調和機20を暖房運転で起動した時点、あるいは、除霜運転から暖房運転に復帰した時点から暖房運転を継続している時間)が30分経過したのち、室外熱交換器温度センサ15で検出した冷媒温度が外気温度センサ16で検出した外気温度よりも5℃以上低い状態が10分以上継続した場合、または、前回の除霜運転が終了してから所定時間(例:180分)が経過した場合、等であり、その除霜運転開始条件が記憶部17に予め記憶されている。
[Conditions for starting / ending defrosting operation]
In the control unit 13, the outdoor heat exchanger 36 determines that there is a possibility that frost formation has occurred, and the defrosting operation start condition for starting the defrosting operation is, for example, the heating operation time (heating the air conditioner 20). The refrigerant temperature detected by the outdoor heat exchanger temperature sensor 15 is the outside air temperature after 30 minutes have elapsed since the time when the operation was started or when the heating operation was continued from the defrosting operation to the heating operation. When a state 5 ° C. or more lower than the outside air temperature detected by the sensor 16 continues for 10 minutes or more, or when a predetermined time (eg, 180 minutes) has elapsed since the last defrosting operation was completed, etc. The defrosting operation start condition is stored in the storage unit 17 in advance.

空気調和機20が除霜運転を行っているときに、制御部13において室外熱交換器36で発生した霜が融解したと判断し、除霜運転を終了する除霜運転終了条件は、例えば、室外熱交換器温度センサ15で検出した温度が5℃以上となったか否か、または、除霜運転を開始してから所定時間(例:10分)が経過したか否か、等があり、その除霜運転終了条件が記憶部17に予め記憶されている。   When the air conditioner 20 is performing the defrosting operation, the controller 13 determines that the frost generated in the outdoor heat exchanger 36 has melted, and the defrosting operation end condition for ending the defrosting operation is, for example, Whether the temperature detected by the outdoor heat exchanger temperature sensor 15 is 5 ° C. or higher, or whether a predetermined time (eg 10 minutes) has elapsed since the start of the defrosting operation, etc. The defrosting operation end condition is stored in the storage unit 17 in advance.

[空気調和機の動作]
図3は、本発明の実施例に係る空気調和機の動作を説明するフローチャートである。まず、空気調和機20は、暖房運転または冷房運転で運転を行なっている(スタート)。次に駆動制御装置18の制御部13は、空気調和機20を暖房運転で運転しているか否かを判断し(ステップS100)、暖房運転でなければ冷房運転と判断する(ステップS100でNo)とステップS111の処理に進み、暖房運転で運転していると判断する(ステップS100でYes)と、ステップS101に進んで上記の除霜運転開始条件が成立しているか否かを判断する。除霜運転開始条件が成立したと判断する(ステップS101でYes)と、ステップ102で除霜運転を開始させる。また、除霜運転開始条件が成立していないと判断する(ステップS101でNo)と、ステップS100に戻って暖房運転を継続する。
[Air conditioner operation]
FIG. 3 is a flowchart for explaining the operation of the air conditioner according to the embodiment of the present invention. First, the air conditioner 20 is operated by heating operation or cooling operation (start). Next, the control unit 13 of the drive control device 18 determines whether or not the air conditioner 20 is operated in the heating operation (step S100), and determines that the cooling operation is not performed in the heating operation (No in step S100). If it progresses to the process of step S111 and it judges that it is drive | operating by heating operation (it is Yes at step S100), it will progress to step S101 and it will be judged whether said defrost operation start conditions are satisfied. If it is determined that the defrosting operation start condition is satisfied (Yes in step S101), the defrosting operation is started in step 102. If it is determined that the defrosting operation start condition is not satisfied (No in step S101), the process returns to step S100 and the heating operation is continued.

ステップS102で除霜運転を開始すると、冷凍サイクル39を暖房運転から冷房運転モードに切り換えるために四方弁34が切り換えられ、圧縮機32の吐出管32aから高温高圧の冷媒が室外熱交換器36に供給される。冷媒は、室外熱交換器36、膨張弁38および室内熱交換器42を順番に流通する。室外熱交換器36では、高温の冷媒によって温められる。冷媒は、膨張弁38で低圧まで減圧され、室内熱交換器42において周囲の空気から吸熱する。室内熱交換器42で吸熱した冷媒は、四方弁34を介して圧縮機32に戻される。このように除霜運転では、暖房運転における冷媒の流れを逆にすることで、高温の冷媒によって室外交換器36が温められ、室外熱交換器36に着霜した霜を溶かすことができる。なお、除霜運転中は、室内ファン42aおよび室外ファン36aを停止させる。   When the defrosting operation is started in step S102, the four-way valve 34 is switched to switch the refrigeration cycle 39 from the heating operation to the cooling operation mode, and high-temperature and high-pressure refrigerant is discharged from the discharge pipe 32a of the compressor 32 to the outdoor heat exchanger 36. Supplied. The refrigerant flows through the outdoor heat exchanger 36, the expansion valve 38, and the indoor heat exchanger 42 in order. In the outdoor heat exchanger 36, it is heated by a high-temperature refrigerant. The refrigerant is decompressed to a low pressure by the expansion valve 38 and absorbs heat from the surrounding air in the indoor heat exchanger 42. The refrigerant that has absorbed heat by the indoor heat exchanger 42 is returned to the compressor 32 via the four-way valve 34. Thus, in the defrosting operation, by reversing the refrigerant flow in the heating operation, the outdoor exchanger 36 is warmed by the high-temperature refrigerant, and the frost that has formed on the outdoor heat exchanger 36 can be melted. During the defrosting operation, the indoor fan 42a and the outdoor fan 36a are stopped.

制御部13は、ステップS102で除霜運転を開始させると、昇圧部3を動作させて整流回路2で交流電源から変換された直流電圧を昇圧する(ステップS103)。このように、本実施例の空気調和機は、除霜運転開始直後の負荷の小さい状況下でも、負荷の大きさにかかわらず昇圧部で直流電圧を昇圧し、インバータに供給するため、従来のようにインバータのみで圧縮機モータに供給する電圧を高める場合に比べて圧縮機の回転数を高めることができ、除霜運転時間を短縮することができる。   When starting the defrosting operation in step S102, the control unit 13 operates the boosting unit 3 to boost the DC voltage converted from the AC power supply by the rectifier circuit 2 (step S103). As described above, the air conditioner of the present embodiment boosts the DC voltage at the boosting unit and supplies it to the inverter regardless of the size of the load even under a small load immediately after the start of the defrosting operation. Thus, compared with the case where the voltage supplied to a compressor motor only with an inverter is raised, the rotation speed of a compressor can be raised and defrost operation time can be shortened.

制御部13は、ステップS104で上記の除霜運転終了条件が成立しているか否かを判断する。除霜運転終了条件が成立していないと判断する(ステップS104でNo)と除霜運転が継続され、除霜運転終了条件が成立したと判断する(ステップS104でYes)と、昇圧部3の動作を終了させる(ステップS105)。   The controller 13 determines whether or not the defrosting operation end condition is satisfied in step S104. When it is determined that the defrosting operation end condition is not satisfied (No in step S104), the defrosting operation is continued, and when it is determined that the defrosting operation end condition is satisfied (Yes in step S104), the boosting unit 3 The operation is terminated (step S105).

制御部13は、ステップS105で昇圧部3の動作を終了させると、除霜運転から暖房運転に切り換え(ステップS106)、その後、制御部13の処理はステップS100に戻る。   When the control unit 13 ends the operation of the pressure increasing unit 3 in step S105, the control unit 13 switches from the defrosting operation to the heating operation (step S106), and then the processing of the control unit 13 returns to step S100.

また、制御部13の処理は、ステップS100において、暖房運転でなければ(ステップS100でNo)、冷房運転が継続される。冷房運転中に暖房の運転モードに切り換わった場合(ステップS111でYes)、ステップS100に戻る。また、ステップS111において、運転モードの切り換えが無ければ(ステップS111でNo)、冷房運転が継続される。そして、運転終了の指示がなければ(ステップS112でNo)、ステップS111に戻って冷房運転が継続されるが、運転終了の指示があれば、空気調和機20の運転を停止させる(ステップS112でYes)。   Moreover, if the process of the control part 13 is not heating operation in step S100 (No in step S100), the cooling operation is continued. When switching to the heating operation mode during the cooling operation (Yes in step S111), the process returns to step S100. If the operation mode is not switched in step S111 (No in step S111), the cooling operation is continued. If there is no instruction to end the operation (No in step S112), the process returns to step S111 and the cooling operation is continued. However, if there is an instruction to end the operation, the operation of the air conditioner 20 is stopped (in step S112). Yes).

以上説明したように、本実施例にかかる空気調和機は、除霜運転開始直後の負荷の小さい状況下でも、負荷の大きさにかかわらず昇圧部で直流電圧を昇圧し、インバータに供給するため、従来のようにインバータのみで圧縮機モータに供給する電圧を高める場合に比べて圧縮機の回転数を高めることができ、除霜運転時間を短縮することができる。そのため、除霜運転中の冷気で室温が低下する前に除霜運転を解除して、暖房運転に復帰させることが可能となり、快適性が損なわれることを防ぐことができる。   As described above, the air conditioner according to the present embodiment boosts the DC voltage at the boosting unit and supplies it to the inverter regardless of the size of the load even under a small load immediately after the start of the defrosting operation. The number of revolutions of the compressor can be increased and the defrosting operation time can be shortened as compared with the conventional case where the voltage supplied to the compressor motor is increased only by the inverter. Therefore, it is possible to cancel the defrosting operation before the room temperature is lowered by the cold air during the defrosting operation and to return to the heating operation, and it is possible to prevent the comfort from being impaired.

1 交流電源(入力交流電源)
2 整流回路
3 昇圧部
3a リアクタ(チョークコイル)
3b 逆阻止ダイオード
3c スイッチング素子
3d 平滑コンデンサ
4 インバータ
5 ゼロクロス検出部
6 電流センサ
10 入力電流検出部
11 入力電圧検出部
12 出力電圧検出部
13 制御部
14 インバータ駆動部
15 室外熱交換器温度センサ
16 外気温度センサ
17 記憶部
18 駆動制御装置
20 空気調和機
30 室外機
32 圧縮機
32a 吐出管
32b 吸入管
34 四方弁
36 室外熱交換器
36a 室外ファン
38 膨張弁
39 冷凍サイクル
40 室内機
42 室内熱交換器
42a 室内ファン
50 リモコン
60 冷媒管
70 昇圧部
70a1,70a2 リアクタ(昇圧チョークコイル)
70b1,70b2 逆阻止ダイオード
70c1,70c2 スイッチング素子
70d 平滑コンデンサ
M DCブラシレスモータ
1 AC power supply (input AC power supply)
2 Rectifier circuit 3 Booster 3a Reactor (choke coil)
3b Reverse blocking diode 3c Switching element 3d Smoothing capacitor 4 Inverter 5 Zero cross detection unit 6 Current sensor 10 Input current detection unit 11 Input voltage detection unit 12 Output voltage detection unit 13 Control unit 14 Inverter drive unit 15 Outdoor heat exchanger temperature sensor 16 Outdoor air Temperature sensor 17 Storage unit 18 Drive control device 20 Air conditioner 30 Outdoor unit 32 Compressor 32a Discharge pipe 32b Intake pipe 34 Four-way valve 36 Outdoor heat exchanger 36a Outdoor fan 38 Expansion valve 39 Refrigerating cycle 40 Indoor unit 42 Indoor heat exchanger 42a Indoor fan 50 Remote control 60 Refrigerant pipe 70 Boosting unit 70a1, 70a2 Reactor (boosting choke coil)
70b1, 70b2 Reverse blocking diode 70c1, 70c2 Switching element 70d Smoothing capacitor M DC brushless motor

Claims (1)

室内熱交換器と室内ファンを有する室内機と、圧縮機と、室外熱交換器と、室外ファンとを有する室外機とを備え、前記圧縮機、四方弁、前記室外熱交換器、前記室内熱交換器が冷媒管によって接続され、前記四方弁の切り換えによって冷房運転、暖房運転、除霜運転の切り換えが可能な空気調和機であって、
前記室外機には、入力交流電源を直流電圧に変換する整流部と、前記空気調和機の負荷を検出する負荷検出手段と、前記直流電圧を昇圧する昇圧部と、前記昇圧部からの直流電圧を交流電力に変換して前記圧縮機を駆動させるインバータと、前記昇圧部と前記インバータとを制御する制御部とを有する駆動制御装置を備え、
前記制御部は、前記除霜運転開始時に、前記空気調和機の負荷の大きさに関わらず前記直流電圧を昇圧することを特徴とする空気調和機。


An indoor unit having an indoor heat exchanger and an indoor fan, a compressor, an outdoor heat exchanger, and an outdoor unit having an outdoor fan, the compressor, the four-way valve, the outdoor heat exchanger, and the indoor heat An exchanger is connected by a refrigerant pipe, and is an air conditioner capable of switching between cooling operation, heating operation, and defrosting operation by switching the four-way valve,
The outdoor unit includes a rectifying unit that converts an input AC power source into a DC voltage, a load detection unit that detects a load of the air conditioner, a boosting unit that boosts the DC voltage, and a DC voltage from the boosting unit. A drive control device having an inverter that converts AC power into AC power to drive the compressor, and a controller that controls the booster and the inverter,
The control unit boosts the DC voltage at the start of the defrosting operation regardless of the load of the air conditioner.


JP2013227668A 2013-10-31 2013-10-31 Air conditioner Pending JP2015087076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013227668A JP2015087076A (en) 2013-10-31 2013-10-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013227668A JP2015087076A (en) 2013-10-31 2013-10-31 Air conditioner

Publications (1)

Publication Number Publication Date
JP2015087076A true JP2015087076A (en) 2015-05-07

Family

ID=53050042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013227668A Pending JP2015087076A (en) 2013-10-31 2013-10-31 Air conditioner

Country Status (1)

Country Link
JP (1) JP2015087076A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105258270A (en) * 2015-09-28 2016-01-20 深圳麦克维尔空调有限公司 Constant-frequency fresh air system and defrosting control method thereof
JP2017040401A (en) * 2015-08-18 2017-02-23 ダイキン工業株式会社 Air conditioner
CN112963942A (en) * 2021-03-22 2021-06-15 宁波奥克斯电气股份有限公司 Defrosting control method and device, air conditioner and storage medium
CN115371200A (en) * 2022-08-09 2022-11-22 珠海格力电器股份有限公司 Air conditioner discharging method and device, storage medium and air conditioner
JP7380257B2 (en) 2020-01-28 2023-11-15 株式会社富士通ゼネラル air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164053A (en) * 1977-12-23 1979-12-27 Matsushita Electric Ind Co Ltd Heat source
JP2000130825A (en) * 1998-10-26 2000-05-12 Toshiba Kyaria Kk Outdoor machine drive control unit of air conditioner
JP2000337682A (en) * 1999-05-25 2000-12-08 Sharp Corp Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164053A (en) * 1977-12-23 1979-12-27 Matsushita Electric Ind Co Ltd Heat source
JP2000130825A (en) * 1998-10-26 2000-05-12 Toshiba Kyaria Kk Outdoor machine drive control unit of air conditioner
JP2000337682A (en) * 1999-05-25 2000-12-08 Sharp Corp Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017040401A (en) * 2015-08-18 2017-02-23 ダイキン工業株式会社 Air conditioner
CN105258270A (en) * 2015-09-28 2016-01-20 深圳麦克维尔空调有限公司 Constant-frequency fresh air system and defrosting control method thereof
JP7380257B2 (en) 2020-01-28 2023-11-15 株式会社富士通ゼネラル air conditioner
CN112963942A (en) * 2021-03-22 2021-06-15 宁波奥克斯电气股份有限公司 Defrosting control method and device, air conditioner and storage medium
CN112963942B (en) * 2021-03-22 2022-03-29 宁波奥克斯电气股份有限公司 Defrosting control method and device, air conditioner and storage medium
CN115371200A (en) * 2022-08-09 2022-11-22 珠海格力电器股份有限公司 Air conditioner discharging method and device, storage medium and air conditioner

Similar Documents

Publication Publication Date Title
US8234879B2 (en) Method for controlling motor of air conditioner and motor controller of the same
US9543884B2 (en) Motor control device of air conditioner using distributed power supply
US8182245B2 (en) Inverter driven compressor operation method and compressor drive device
JP5959500B2 (en) Air conditioner and control method of air conditioner
JP2015087076A (en) Air conditioner
JP4529540B2 (en) Air conditioning apparatus and compressor preheating method
JP2008283769A (en) Power factor improvement circuit, motor driving device, and air conditioner
JP3609286B2 (en) Air conditioning equipment
JPH0136040Y2 (en)
JP6692696B2 (en) Air conditioner
JP3920440B2 (en) Compressor control system for air conditioner
WO2019186631A1 (en) Motor drive device and refrigeration cycle device
JP5902521B2 (en) Control device for compressor motor and air conditioner equipped with the same
WO2019208117A1 (en) Motor driving device and refrigeration cycle device
JP2000308353A (en) Power unit
JP4436651B2 (en) Refrigeration cycle equipment
KR101591884B1 (en) Motor controller, method and Air conditioner comprising the same
JP6775548B2 (en) Motor control device and air conditioner
JP6939094B2 (en) Power converter control device and refrigeration device
JP2010112585A (en) Heat pump device
JP5068576B2 (en) Heat pump unit, heat pump water heater
JP7471505B2 (en) AC/DC converters, motor drives and refrigeration cycle equipment
JP6324612B2 (en) Refrigeration cycle equipment
JP7153697B2 (en) Motor controller and air conditioner
JP4379239B2 (en) Control device for heat pump hot water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180227