JP2024521841A - 投影露光装置及び投影露光装置のコンポーネントを設計する方法 - Google Patents
投影露光装置及び投影露光装置のコンポーネントを設計する方法 Download PDFInfo
- Publication number
- JP2024521841A JP2024521841A JP2023573306A JP2023573306A JP2024521841A JP 2024521841 A JP2024521841 A JP 2024521841A JP 2023573306 A JP2023573306 A JP 2023573306A JP 2023573306 A JP2023573306 A JP 2023573306A JP 2024521841 A JP2024521841 A JP 2024521841A
- Authority
- JP
- Japan
- Prior art keywords
- actuator
- exposure apparatus
- projection exposure
- optical element
- parasitic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000003287 optical effect Effects 0.000 claims abstract description 95
- 230000003071 parasitic effect Effects 0.000 claims abstract description 50
- 238000003384 imaging method Methods 0.000 claims abstract description 31
- 230000004075 alteration Effects 0.000 claims abstract description 27
- 230000000694 effects Effects 0.000 claims abstract description 19
- 239000011159 matrix material Substances 0.000 claims description 34
- 230000002093 peripheral effect Effects 0.000 claims description 17
- 230000033001 locomotion Effects 0.000 claims description 10
- 230000001186 cumulative effect Effects 0.000 claims description 7
- 238000004088 simulation Methods 0.000 claims description 4
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 claims 1
- 238000001459 lithography Methods 0.000 abstract description 10
- 239000004065 semiconductor Substances 0.000 abstract description 5
- 238000005286 illumination Methods 0.000 description 48
- 230000005855 radiation Effects 0.000 description 31
- 210000001747 pupil Anatomy 0.000 description 28
- 238000006073 displacement reaction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000000576 coating method Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000009304 pastoral farming Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000001393 microlithography Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70258—Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
- G03F7/70266—Adaptive optics, e.g. deformable optical elements for wavefront control, e.g. for aberration adjustment or correction
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0825—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a flexible sheet or membrane, e.g. for varying the focus
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0891—Ultraviolet [UV] mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/09—Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
本発明は、半導体リソグラフィ用の投影露光装置(1、101)のコンポーネント(30)であって、コンポーネント(30)は、光学素子(31)及びアクチュエータ(32、35、39.x、43、50)を含み、光学素子(31)及びアクチュエータ(32、35、39.x、43、50)は、相互に摩擦力により接続され、アクチュエータ(32、35、39.x、43、50)は、光学素子(31)を少なくとも局所的に変形させるよう構成される、コンポーネント(30)に関する。本発明によれば、アクチュエータ(32、35、39.x、43、50)は、アクチュエータ(32、35、39.x、43、50)を画定する周囲における剛性損失が結像品質に及ぼす影響を最小化するように具現される。本発明はさらに、光学素子(31)及びアクチュエータ(32、35、39.x、43、50)を有する投影露光装置(1、101)の結像品質に、アクチュエータ(32、35、39.x、43、50)により光学素子(31)の変形が生じた場合の寄生変形が及ぼす効果を最小化するための、投影露光装置(1、101)のコンポーネント(30)を設計する方法であって、アクチュエータ(32、35、39.x、43、50)を設計するステップと、作動により又は光学素子(31)及びアクチュエータ(32、35、39.x、43、50)の熱膨張係数の差により生じる光学素子(31)の寄生変形を求めるステップと、投影露光装置(1、101)で用いられる走査露光の総和効果を考慮して、寄生変形に基づき寄生収差を求めるステップと、求められた寄生収差に基づきアクチュエータ(32、35、39.x、43、50)を最適化するステップと、寄生収差の値が所定の値を下回るまで前のプロセスステップ(61、62、63、64)の少なくともいくつかを繰り返すステップとを含む方法に関する。
Description
本願は、2021年5月27日の独国特許出願第10 2021 205 368.8号の優先権を主張し、その内容を参照により完全に本明細書に援用する。
本発明は、特にアクチュエータにより生じる寄生変形が投影露光装置の結像品質に及ぼす悪影響を最小化するための、半導体リソグラフィ用の投影露光装置のコンポーネント及び当該コンポーネントを設計する方法に関する。
半導体リソグラフィ用の投影露光装置では、レンズ素子及び/又はミラー等の光学素子を用いて、レチクルとしても知られるリソグラフィマスク、例えば位相マスクがウェハとしても知られる半導体基板に結像される。
特にリソグラフィ光学ユニットの高分解能を達成するために、365nm、248nm、又は193nmの典型的な波長を有する従来システムに比べて、例えば1nm~120nmの、特に13.5nmの領域の波長を有するEUV光もここ数年用いられている。
その場合に用いられる光学素子には、結像品質の改善及び動作中に起こる外乱の補正のために特に機械的に操作されるものがあり、光学素子の純粋なシフトと光学素子の変形とを区別しなければならない。
デフォーマブルミラーの場合、例えばアクチュエータマトリクスの形態のアクチュエータがミラーの裏側に接着接続又は接合されて、目標通りの変形のための機械的接続を生み出す。
四角形の板の形態で具現されて複数の相互接続されたアクチュエータパッドを含むアクチュエータマトリクスが、従来技術から知られている。個々のアクチュエータパッドは、通常は、四角形又は三角形であり、アクチュエータパッドの角又は辺に通常配置される孔を含む。これらは、アクチュエータパッドをコントローラに接触させることができる機能を有する。アクチュエータ及び光学素子の組み合わせの物理的な剛性損失が、アクチュエータの全周で、すなわちアクチュエータマトリクスの板の外縁及び孔の周囲で生じ、この損失は、作動中に又は例えば熱膨張係数の差に基づく熱膨張の差に起因して、周囲の領域の寄生変形をもたらす。これは、投影露光装置の結像品質に悪影響を及ぼす。
今日のリソグラフィシステムの走査動作モード、すなわち照明スリット下の位相マスクの移動及び逆方向のウェハの移動により、上記寄生変形により生じた収差が走査方向に沿って累積し得ることで、悪影響がさらにより顕著になる。
本発明の目的は、従来技術の上記欠点をなくすコンポーネントを提供することである。本発明のさらに別の目的は、上記コンポーネントを設計する方法を特定することからなる。
この目的は、独立請求項の特徴を有するコンポーネント及び方法により達成される。従属請求項は、本発明の有利な発展形態及び変形形態に関する。
本発明による半導体リソグラフィ用の投影露光装置のコンポーネントは、光学素子及びアクチュエータを含む。光学素子及びアクチュエータは、相互に摩擦力により接続され、アクチュエータは、光学素子を少なくとも局所的に変形させるよう構成される。本発明によれば、アクチュエータは、アクチュエータを画定する周囲における剛性損失が結像品質に及ぼす影響を最小化するように具現される。アクチュエータとミラー等の光学素子との間の摩擦力による接続は、接着接続若しくは接合により、又はねじ接続等の解除可能な接続により実現することができる。
本発明の第1実施形態において、アクチュエータは、少なくとも2つのアクチュエータパッドを含むアクチュエータマトリクスの形態で具現することができる。アクチュエータマトリクスは、通常は9個~30個のアクチュエータパッドを含む。
特に、投影露光装置で用いられる走査方向と平行な軸上に延びるアクチュエータの周囲部分の累積長さを最小化することができる。投影露光装置で用いられる走査露光法には、この場合、寄生変形等の走査方向に対して垂直に延びる外乱の一部の光学効果が走査動作により平均されて最小化されることにより、有利な効果がある。
さらに、アクチュエータの外周は、走査方向に対して少なくとも部分的に傾斜した向きにされる。結果として、周囲のうち走査方向に延びる部分の走査動作による合計が最小化されるのが有利である。
特に、アクチュエータは、走査方向に対して蛇行する周囲輪郭を含む。当該輪郭は、例えば、アクチュエータパッドが六角形であること、及びアクチュエータパッドをアクチュエータパッドの幅の半分だけシフトさせて行状に配置することにより実現することができ、アクチュエータパッドの突起が隣接するパッドの凹部内に突出する。
さらに、アクチュエータの直線状の周囲構造を走査方向に対して傾斜した向きにすることができる。これには、アクチュエータを画定する周囲に、走査方向に揃った部分がなくなるという利点がある。しかしながら、アクチュエータの傾斜が光学有効面に対するアクチュエータの変形効果に及ぼし得る構造上の影響を考慮する必要がある。
特に、アクチュエータマトリクスに形成されたアクチュエータパッドの接触用の孔は、投影露光装置で用いられる走査方向と平行な軸上に延びる孔の縁部分の累積長さを減らすように設計することができる。
これは、例えば、孔の少なくともいくつかの面積を最小化する結果として全ての孔の縁の累積全長が減ることで達成することができる。孔は、角、辺、アクチュエータパッドの有効面内、又はこれらの部分の組み合わせに形成することができる。孔のサイズは、接触に必要な空間により定められる。
さらに、孔は、走査方向と平行に延びる軸上に配置された孔の数が最小であるように配置することができる。こうして、走査運動により累積する寄生収差が最小限になる。軸上に位置付けられた孔の数は、例えば、上述のようなアクチュエータパッドに対する孔の有利な配置により減らすことができる。
本発明のさらに別の実施形態において、アクチュエータパッドは、三角形、矩形、又は六角形の幾何学的形状を有することができる。アクチュエータパッドの幾何学的形状に加えて、アクチュエータパッドにより形成されたアクチュエータマトリクスの行数及び列数も自由に選択可能なので、例えば3行3列~5行及び5列又はより多くのマトリクスが考えられる。行数及び列数は同一である必要はなく、したがって4行6列のマトリクスを形成することもできる。
本発明のさらに別の実施形態において、アクチュエータは、剛性損失を補正するための別個に制御可能な部分を有することができる。これにより、中間空間の領域で変わるアクチュエータパッド及びミラー材料からなるシステム全体の剛性を、上記部分の制御を対応して変更することにより考慮することが可能となるので、望ましくない運動/変形が抑えられると共に結果として生じ得る像誤差が回避される。
特に、上記部分は、アクチュエータマトリクスの周囲領域に配置されたアクチュエータパッドの周囲アクチュエータパッドとして形成され、部分アクチュエータパッドとして形成されたアクチュエータパッドの第2領域とは独立して制御可能であり、剛性損失により生じる寄生変形を補正するよう構成され得る。周囲アクチュエータパッドにより、分割されていないアクチュエータパッドに比べて周囲での変形効果が高まるので、剛性損失を補償することができる。
光学素子及びアクチュエータを有する投影露光装置の結像品質に、アクチュエータにより光学素子の変形が生じた場合の寄生変形が及ぼす効果を最小化するための、投影露光装置のコンポーネントを設計する本発明による方法は、
アクチュエータを設計するステップと、
作動により又は光学素子及びアクチュエータの熱膨張係数の差により生じる、光学素子の寄生変形を求めるステップと、
投影露光装置で用いられる走査露光の総和効果を考慮して、寄生変形に基づき寄生収差を求めるステップと、
求められた寄生収差に基づきアクチュエータを最適化するステップと、
寄生収差の値が所定の値を下回るまで前のプロセスステップの少なくともいくつかを繰り返すステップと
を含む。
アクチュエータを設計するステップと、
作動により又は光学素子及びアクチュエータの熱膨張係数の差により生じる、光学素子の寄生変形を求めるステップと、
投影露光装置で用いられる走査露光の総和効果を考慮して、寄生変形に基づき寄生収差を求めるステップと、
求められた寄生収差に基づきアクチュエータを最適化するステップと、
寄生収差の値が所定の値を下回るまで前のプロセスステップの少なくともいくつかを繰り返すステップと
を含む。
寄生変形は、例えばFEMシミュレーションにより、又は光学測定技術を用いて光学素子の光学有効面上で求めることができる。寄生収差は、寄生変形に基づくシミュレーションにより、又はコンポーネントレベルで若しくはシステム全体、すなわち投影露光装置での測定により求めることができる。
さらに、アクチュエータの移動量の少なくとも一部を用いて寄生変形を補正することができる。この自己補正には、既知のように、誤差が生じた部位でそれらの誤差を補償できるという利点がある。
さらに、生じる寄生収差を求める際に、投影露光装置に存在する結像品質を最適化するためのさらに他の手段を考慮することができる。
特に、上記手段は、投影露光装置のさらなる光学素子の位置決め又は変形用のマニピュレータの形態で具現することができる。通常、投影露光装置の略全ての光学素子が操作可能であり、したがって多くの追加の補正手段が利用可能である。
さらに、複数の影響パラメータを考慮した結像品質の予測及びそれに必要なマニピュレータの移動量の決定のためのシミュレーションに基づくアルゴリズムの形態で、1つの手段を具現することができる。
本発明の例示的な実施形態及び変形形態を、図面を参照して以下でより詳細に説明する。
マイクロリソグラフィ投影露光装置1の必須構成部品を、最初に図1を参照して例として説明する。投影露光装置1及びその構成部品の基本構造の説明は、ここでは限定的ではないと理解すべきである。
投影露光装置1の照明系2の一実施形態は、放射源3に加えて、物体面6の物体視野5を照明する照明光学ユニット4を有する。代替的な実施形態において、光源3は、照明系の残りの部分とは別個のモジュールとして設けることもできる。この場合、照明系は、光源3を含まない。
物体視野5に配置されたレチクル7が露光される。レチクル7は、レチクルホルダ8により保持される。レチクルホルダ8は、レチクル変位ドライブ9により特に走査方向に変位可能である。
説明のために、直交xyz座標系を図1に示す。x方向は図の平面に対して垂直に延びる。y方向は水平に延び、z方向は鉛直に延びる。図1では、走査方向はy方向に沿って延びる。z方向は物体面6に対して垂直に延びる。
投影露光装置1は、投影光学ユニット10を備える。投影光学ユニット10は、物体視野5を像面12の像視野11に結像する働きをする。像面12は、物体面6と平行に延びる。代替として、物体面6と像面12との間では0°以外の角度も可能である。
レチクル7上の構造が、像面12の像視野11の領域に配置されたウェハ13の感光層に結像される。ウェハ13は、ウェハホルダ14により保持される。ウェハホルダ14は、ウェハ変位ドライブ15により特にy方向に沿って変位可能である。一方ではレチクル変位ドライブ9によるレチクル7の変位と、他方ではウェハ変位ドライブ15によるウェハ13の変位とは、相互に同期するように行われ得る。
放射源3は、EUV放射源である。放射源3は、特に、以下で使用放射線、照明放射線、又は照明光とも称するEUV放射線16を出射する。特に、使用放射線は、5nm~30nmの範囲の波長を有する。放射源3は、プラズマ源、例えばLPP(レーザ生成プラズマ)源又はGDPP(ガス放電プラズマ)源であり得る。これは、シンクロトロンベースの放射源でもあり得る。放射源3は、自由電子レーザ(FEL)であり得る。
放射源3から出る照明放射線16は、コレクタ17により集束される。コレクタ17は、1つ又は複数の楕円反射面及び/又は双曲反射面を有するコレクタであり得る。照明放射線16は、コレクタ17の少なくとも1つの反射面に斜入射(GI)で、すなわち45°よりも大きな入射角で、又は垂直入射(NI)で、すなわち45°よりも小さな入射角で入射し得る。コレクタ17は、第1に使用放射線に対する反射率を最適化するために、第2に外来光を抑制するために構造化且つ/又はコーティングされ得る。
コレクタ17の下流で、照明放射線16は中間焦点面18の中間焦点を伝播する。中間焦点面18は、放射源3及びコレクタ17を有する放射源モジュールと照明光学ユニット4との間の分離を表し得る。
照明光学ユニット4は、偏向ミラー19と、ビーム経路でその下流に配置された第1ファセットミラー20とを備える。偏向ミラー19は、平面偏向ミラー、あるいは純粋な偏向効果を超えたビーム影響効果を有するミラーであり得る。代替として又は追加として、偏向ミラー19は、照明放射線16の使用光波長をそこから逸脱する波長の外来光から分離する分光フィルタの形態であり得る。第1ファセットミラー20が、視野面として物体面6と光学的に共役な照明光学ユニット4の平面に配置される場合、これを視野ファセットミラーとも称する。第1ファセットミラー20は、以下で視野ファセットとも称する複数の個別の第1ファセット21を含む。図1は、当該ファセット21のいくつかのみを例として示す。
第1ファセット21は、巨視的なファセットの形態、特に矩形ファセットの形態、又は弧状の周囲輪郭若しくは部分円の周囲輪郭を有するファセットの形態とすることができる。第1ファセット21は、平面ファセット、あるいは凸状又は凹状に湾曲したファセットの形態であり得る。
例えば独国特許出願公開第10 2008 009 600号から既知のように、第1ファセット21自体も、それぞれ複数の個別ミラー、特に複数のマイクロミラーから構成することができる。第1ファセットミラー20は、特に微小電気機械システム(MEMSシステム)として形成され得る。詳細は独国特許出願公開第10 2008 009 600号を参照されたい。
コレクタ17と偏向ミラー19との間で、照明放射線16は水平に、すなわちy方向に沿って進む。
照明光学ユニット4のビーム経路で、第1ファセットミラー20の下流に第2ファセットミラー22が配置される。第2ファセットミラー22が照明光学ユニット4の瞳面に配置される場合、これを瞳ファセットミラーとも称する。第2ファセットミラー22は、照明光学ユニット4の瞳面から離れて配置することもできる。この場合、第1ファセットミラー20及び第2ファセットミラー22の組み合わせを鏡面反射器とも称する。鏡面反射器は、米国特許出願公開第2006/0132747号、欧州特許第1 614 008号、及び米国特許第6,573,978号から既知である。
第2ファセットミラー22は、複数の第2ファセット23を含む。瞳ファセットミラーの場合、第2ファセット23を瞳ファセットとも称する。
第2ファセッ23も同様に、例えば円形、矩形、又は六角形の周囲を有し得る巨視的なファセット、あるいはマイクロミラーから構成されたファセットであり得る。この点に関して、独国特許出願公開第10 2008 009 600号を同様に参照されたい。
第2ファセット23は、平面反射面、あるいは凸状又は凹状に湾曲した反射面を有し得る。
照明光学ユニット4は、結果として二重ファセットシステムを形成する。この基本原理は、フライアイコンデンサ(フライアイインテグレータ)とも称する。
第2ファセットミラー22を投影光学ユニット10の瞳面と光学的に共役な平面に正確に配置しないことが有利であり得る。特に、独国特許出願公開第10 2017 220 586号に記載のように、瞳ファセットミラー22は、投影光学ユニット10の瞳面に対して傾斜するように配置され得る。
第2ファセットミラー22を用いて、個々の第1ファセット21が物体視野5に結像される。第2ファセットミラー22は、物体視野5の上流のビーム経路で最後のビーム整形ミラー又は実際に照明放射線16に対する最終ミラーである。
照明光学ユニット4のさらに別の実施形態(図示せず)において、特に物体視野5への第1ファセット21の結像に寄与する転写光学ユニットが、第2ファセットミラー22と物体視野5との間のビーム経路に配置され得る。転写光学ユニットは、厳密に1つのミラー、あるいは照明光学ユニット4のビーム経路に前後に並んで配置された2つ以上のミラーを有することができる。転写光学ユニットは、特に、1つ又は2つの垂直入射ミラー(NIミラー)及び/又は1つ又は2つの斜入射ミラー(GIミラー)を含むことができる。
図1に示す実施形態において、照明光学ユニット4は、コレクタ17の下流に厳密に3つのミラー、具体的には偏向ミラー19、視野ファセットミラー20、及び瞳ファセットミラー22を有する。
照明光学ユニッ4のさらに別の実施形態では、偏向ミラー19が不要でもあるので、照明光学ユニット4は、その場合はコレクタ17の下流に厳密に2つのミラー、具体的には第1ファセットミラー20及び第2ファセットミラー22を有することができる。
第2ファセット23による、又は第2ファセット23及び転写光学ユニットを用いた、物体面6への第1ファセット21の結像は、通常は近似的な結像にすぎない。
投影光学ユニット10は、複数のミラーMiを含み、これらには投影露光装置1のビーム経路におけるそれらの配置に従って番号を付す。
図1に示す例において、投影光学ユニット10は、6個のミラーM1~M6を含む。4個、8個、10個、12個、又は任意の他の数のミラーMiでの代替も同様に可能である。最後から2番目のミラーM5及び最終ミラーM6はそれぞれ、照明放射線16用の通過開口を有する。投影光学ユニット10は、二重遮蔽光学ユニットである。投影光学ユニット10は、0.5よりも大きく、0.6よりも大きくてもよく、例えば0.7又は0.75であり得る像側開口数を有する。
ミラーMiの反射面は、回転対称軸のない自由曲面として具現することができる。代替として、ミラーMiの反射面は、反射面形状の回転対称軸が厳密に1つである非球面として設計することができる。照明光学ユニット4のミラーと同様に、ミラーMiは、照明放射線16に対して高反射コーティングを有することができる。これらのコーティングは、特にモリブデン及びシリコンの交互層を有する多層コーティングとして設計することができる。
投影光学ユニット10は、物体視野5の中心のy座標と像視野11の中心のy座標との間にy方向の大きな物体-像オフセットを有する。y方向で、この物体-像オフセットは、物体面6と像面12との間のz距離と略同じサイズであり得る。
特に、投影光学ユニット10は、アナモルフィックな形態を有することができる。特にこれは、x方向及びy方向に異なる結像スケールβx、βyを有する。投影光学ユニット10の2つの結像スケールβx、βyは、好ましくは(βx,βy)=(+/-0.25,+/-0.125)である。正の結像スケールβは、像反転のない結像を意味する。結像スケールβの負の符号は、像反転のある結像を意味する。
投影光学ユニット10は、結果として、x方向に、すなわち走査方向に対して垂直な方向に4:1の比でサイズを縮小させる。
投影光学ユニット10は、y方向に、すなわち走査方向に8:1でサイズを縮小させる。
他の結像スケールも同様に可能である。x方向及びy方向で同じ符号及び同じ絶対値の、例えば0.125又は0.25の絶対値の結像スケールも可能である。
物体視野5と像視野11との間のビーム経路におけるx方向及びy方向の中間像面の数は、同じであってもよく、又は投影光学ユニット10の実施形態に応じて異なっていてもよい。x方向及びy方向のこのような中間像の数が異なる投影光学ユニット10の例は、米国特許出願公開第2018/0074303号から既知である。
瞳ファセット23のそれぞれが、物体視野5を照明する照明チャネルをそれぞれ形成するために視野ファセット21の厳密に1つに割り当てられる。特に、これによりケーラーの原理に従った照明を得ることができる。遠視野は、視野ファセット21を用いて複数の物体視野5に分解される。視野ファセット21は、それぞれに割り当てられた瞳ファセット23に中間焦点の複数の像を生成する。
それぞれ割り当てられた瞳ファセット23により、視野ファセット21は、物体視野5を照明する目的で重なり合ってレチクル7に結像される。物体視野5の照明は、特にできる限り均一である。その均一性誤差は2%未満であることが好ましい。異なる照明チャネルを重ね合わせることにより、視野均一性を得ることができる。
投影光学ユニット10の入射瞳の照明は、瞳ファセットの配置により幾何学的に規定することができる。導光する照明チャネル、特に瞳ファセットのサブセットを選択することにより、投影光学ユニット10の入射瞳における強度分布を設定することができる。この強度分布を照明設定とも称する。
照明光学ユニット4の照明瞳の規定の照明部分の領域における同様に好ましい瞳均一性を、照明チャネルの再分配により達成することができる。
物体視野5の、特に投影光学ユニット10の入射瞳の照明のさらなる態様及び詳細を、以下で説明する。
特に、投影光学ユニット10は共心入射瞳を有し得る。これはアクセス可能とすることができる。これはアクセス不可能とすることもできる。
投影光学ユニット10の入射瞳は、通常は瞳ファセットミラー22を用いて正確に照明することはできない。瞳ファセットミラー22の中心をウェハ13にテレセントリックに結像する投影光学ユニット10の結像の場合、開口光線は一点で交わらないことが多い。しかしながら、開口光線の対で求められた距離が最小になる面を見つけることが可能である。この面は、入射瞳又はそれと共役な実空間面を表す。特に、この面は有限の曲率を有する。
投影光学ユニット10は、タンジェンシャルビーム経路とサジタルビーム経路とで入射瞳の位置が異なる場合がある。この場合、結像素子、特に転写光学ユニットの光学コンポーネント部品を、第2ファセットミラー22とレチクル7との間に設けるべきである。この光学素子を用いて、タンジェンシャル入射瞳及びサジタル入射瞳の位置の相違を考慮することができる。
図1に示す照明光学ユニット4のコンポーネントの配置において、瞳ファセットミラー22は、投影光学ユニット10の入射瞳と共役な面に配置される。視野ファセットミラー20は、物体面6に対して傾斜するように配置される。第1ファセットミラー20は、偏向ミラー19により画定された配置面に対して傾斜するように配置される。
第1ファセットミラー20は、第2ファセットミラー22により画定された配置面に対して傾斜するように配置される。
図2は、本発明を同様に用いることができるDUV投影リソグラフィ用のさらに別の投影露光装置101を子午線断面で概略的示す。
投影露光装置101の構成及び結像の原理は、図1で説明した構成及び手順と同等である。同一のコンポーネント部品は図1よりも100増やした参照符号で示し、すなわち図2の参照符号は101から始まる。
図1で説明したEUV投影露光装置1とは異なり、使用光として用いられるDUV放射線116は、100nm~300nmの範囲の、特に193nmの大きな波長を有するので、屈折、回折、及び/又は反射光学素子117、例えばレンズ素子、ミラー、プリズム、終端板等をDUV投影露光装置101での結像又は照明に用いることができる。投影露光装置101は、この場合、照明系102と、ウェハ113上のその後の構造を決定する構造が設けられたレチクル107を収容し且つ正確に位置決めするレチクルホルダ108と、上記ウェハ113を保持し、移動させ、且つ正確に位置決めするウェハホルダ114と、複数の光学素子117を有する投影レンズ110とを実質的に備えており、光学素子117は、投影レンズ110のレンズハウジング119にマウント118により保持される。
照明系102は、ウェハ113へのレチクル107の結像に必要なDUV放射線116を供給する。レーザ、プラズマ源等をこの放射線116の供給源として用いることができる。放射線116は、レチクル107への入射時にDUV放射線116が直径、偏光、波面形状等に関して所望の特性を有するように、照明系102において光学素子により整形される。
レンズ素子、プリズム、終端板等の屈折光学素子117を追加で用いるほかに、レンズハウジング119を有する下流の投影光学ユニット110の構成は、図1で説明した構成とは原理上異ならず、したがってさらに詳細には説明しない。
図3aは、ミラー31と、アクチュエータマトリクス32の形態の2つのアクチュエータとを含む、従来技術から既知のコンポーネント30を示す。アクチュエータマトリクス32は、ミラー31の光学有効面(図示せず)の反対側に位置付けられたミラー31の裏側に並んで配置される。各アクチュエータマトリクス32は、行列状に配置された複数の正方形のアクチュエータパッド33を有し、その角にアクチュエータパッド33をコントローラ(図示せず)と接触させるための孔を有する。板状のアクチュエータマトリクス32は矩形であり、アクチュエータマトリクス32の四周のうちの2つが、図3aに太矢印で示す走査方向に延びる。アクチュエータパッド33間の孔34は、走査方向と平行に延びる軸(破線で示す)上にそれぞれ前後に並んで位置付けられる。生じる寄生変形は、走査方向に累積して収差を引き起こす。アクチュエータマトリクス32は、原理上は湾曲形状を有することもできる。ミラー31に配置されるアクチュエータマトリクス32の数は、自由に選択可能であり、すなわち3つ、4つ、又はより多くのアクチュエータマトリクス32をミラー31に形成することもできる。同様に、アクチュエータマトリクス32の行数及び列数も自由に選択可能である。したがって、コンポーネント30は、4行3列の2つのアクチュエータマトリクス32を有する図3aで説明した実施形態に加えて、5行5列の3つのアクチュエータマトリクス32、又は4行5列の4つのマトリクス32、又は任意の他の組み合わせをミラー31上に含むこともできる。アクチュエータマトリクス32及び行列の数は、ここでは主にアクチュエータマトリクス32の用途及び生産性に応じて変わる。
図3bは、走査動作で累積する寄生収差の図を示す。これらは、剛性損失に基づくアクチュエータマトリクス32の周縁効果に起因する寄生変形により引き起こされる。図中で用いられる点密度は、ここでは正又は負の方向の波面ずれに対応する。図3bに太矢印で示す走査方向に並んだ収差を、走査方向に延びる同一の点密度の領域の形態で明確に視認できる。
図4aは、ミラー31と、並んで配置されたアクチュエータマトリクス35の形態の2つのアクチュエータとを含む、本発明によるコンポーネント30を示す。各アクチュエータマトリクス35は、六角形のアクチュエータパッド36を有し、これも同様に、アクチュエータパッド36をコントローラ(図示せず)と接触させるための孔38を角に有する。孔38は楕円形であり、孔38の長軸がそれぞれ走査方向に対して垂直に揃えられる。アクチュエータパッド36は、図4aに太矢印で示す走査方向に対して垂直な行37状に配置される。行37はまた、それぞれアクチュエータパッドの幅の半分だけ相互にオフセットして交互に配置されて、走査方向に対して垂直に配置される。これにより、走査方向と平行に位置付けられたアクチュエータマトリクス35の周囲で、走査方向に対して蛇行する周囲輪郭が得られる。したがって、剛性損失により周囲輪郭で引き起こされる寄生変形が走査動作により平均されるのが有利であり、生じる収差はこうして最小化される。走査方向に対する周囲輪郭の適合に加えて、アクチュエータパッド36の接触用の楕円孔38の短軸は、図3aに示す孔の直径よりも小さいので、走査方向と平行に延びる孔38の縁部分の累積長さが減る。さらに、図4aに点破線で示す複数の軸上の孔38は、アクチュエータパッド36が六角形であることにより走査方向と平行に配置されるので、軸毎の寄生的な累積誤差が小さくなる。結果として、収差の振幅が最小化されるのが有利である。隣接するアクチュエータマトリクス35間の距離をできる限り小さく抑えるために、アクチュエータマトリクス35は噛合い状に配置される。したがって、2つの隣接するアクチュエータマトリクス35の当接する縁におけるアクチュエータパッド36の変形効果は、従来技術から既知の図3aで説明したアクチュエータマトリクス32と同等である。図3aに関して既に説明したように、アクチュエータマトリクス32は、原理上は湾曲形状を有することもできる。さらに、ミラー31に配置されるアクチュエータマトリクス32の数は、自由に選択可能であり、すなわち3つ、4つ、又はより多くのアクチュエータマトリクス32をミラー31に形成することもできる。同様に、アクチュエータマトリクス32の行数及び列数も自由に選択可能である。したがって、コンポーネント30は、4行3列の2つのアクチュエータマトリクス32を有する図4aで説明した実施形態に加えて、5行5列の3つのアクチュエータマトリクス32、又は4行5列の4つのマトリクス32、又は任意の他の組み合わせをミラー31上に含むこともできる。アクチュエータマトリクス32及び行列の数は、ここでは主にアクチュエータマトリクス32の用途及び生産性に応じて変わる。
図3bで説明した寄生収差の図に比べて、図4bは、走査動作により累積する寄生収差の有意な減少を示し、これは、第1に点密度の平均絶対値の減少により、第2に同一の点密度の、したがって同一の収差の領域のプロファイルの走査方向からのずれにより認識できる。
図5a~図5fは、アクチュエータパッド40.1、40.2、40.3、40.4、40.5、40.6の幾何学的形状及び接触用の孔41.1、41.2、41.3、41.4、41.5、41.6の配置が異なるアクチュエータマトリクス39.1、39.2、39.3、39.4、39.5、39.6のさらに他の代替的な実施形態を示す。アクチュエータパッド40.1、40.2、40.3、40.4、40.5、40.6の幾何学的形状と、孔41.1、41.2、41.3、41.4、41.5、41.6の形状及び配置との異なる組合せを、以下の表に示す。走査方向は、矢印で図示する。
図6は、ミラー31とアクチュエータマトリクス43とを有するコンポーネント30を示す本発明のさらに別の実施形態を示す。既に上述したように、アクチュエータマトリクス43の周囲領域における剛性損失により引き起こされる寄生変形は、走査方向と平行に揃った軸上にあるアクチュエータマトリクス43の周囲長さを最小化すれば、走査動作により最小化される。図6に示す例示的な実施形態では、アクチュエータマトリクス43を台形にすることにより、全周が走査方向と平行に揃っていないので、周囲領域の寄生変形により生じる寄生収差を略完全に回避できるか、又は走査動作により大幅に平均できるのが有利である。
図7は、ミラー31と、アクチュエータマトリクス50の形態で具現されたアクチュエータの周囲に配置されたアクチュエータパッド51とを有する、コンポーネント30の詳細図を示す。アクチュエータパッド51は、部分アクチュエータパッド52及び周囲アクチュエータパッド53に分割され、これらは各ライン54、55を介して相互に独立して制御可能である。これには、図7に実線で示す周囲アクチュエータパッド53により生じる光学有効面56の変形が、図7に破線で示す分割されていないアクチュエータパッドにより生じる変形よりも周囲領域で大きいという利点がある。アクチュエータマトリクス50の周囲領域における剛性損失により生じる寄生変形は、それにより少なくとも部分的に補償されるので、寄生収差が最小化されるのが有利である。
図8は、光学素子31とアクチュエータ32、35、39.x、43、50とを有する投影露光装置1、101の結像品質に、アクチュエータ32、35、39.x、43、50により光学素子31の変形が生じた場合の寄生変形が及ぼす効果を最小化するための、投影露光装置1、101のコンポーネント30を設計する可能な方法を示す。
第1方法ステップ61において、アクチュエータ32、35、39.x、43、50を設計する。
第2方法ステップ62において、作動により又は光学素子31とアクチュエータ32、35、39.x、43、50との熱膨張係数の差により生じる光学素子31の寄生変形を求める。
第3方法ステップ63において、投影露光装置で用いられる走査露光の総和効果を考慮して、寄生変形に基づき寄生収差を求める。
第4方法ステップ64において、求められた寄生収差に基づきアクチュエータを最適化する。この場合、特に個々のアクチュエータパッド及び孔の形状及び配置を変えることができる。
第5ステップ65において、寄生収差の値が所定の値を下回るまで前のプロセスステップの少なくともいくつかを繰り返す。
1 投影露光装置
2 照明系
3 放射源
4 照明光学ユニット
5 物体視野
6 物体面
7 レチクル
8 レチクルホルダ
9 レチクル変位ドライブ
10 投影光学ユニット
11 像視野
12 像面
13 ウェハ
14 ウェハホルダ
15 ウェハ変位ドライブ
16 EUV放射線
18 中間焦点面
19 デフォーマブルミラー
20 ファセットミラー
21 ファセット
22 ファセットミラー
23 ファセット
30 コンポーネント
31 ミラー
32 アクチュエータマトリクス
33 アクチュエータパッド
34 孔
35 アクチュエータマトリクス
36 アクチュエータパッド
37 行
38 孔
39.1~39.6 アクチュエータマトリクス
40.1~40.6 アクチュエータパッド
41.1~41.6 孔
42 電極
43 アクチュエータマトリクス
50 アクチュエータマトリクス
51 アクチュエータパッド
52 部分アクチュエータパッド
53 周囲アクチュエータパッド
54 ライン
55 ライン
56 光学有効面
61 方法ステップ1
62 方法ステップ2
63 方法ステップ3
64 方法ステップ4
65 方法ステップ5
101 投影露光装置
102 照明系
107 レチクル
108 レチクルホルダ
110 投影光学ユニット
113 ウェハ
114 ウェハホルダ
116 DUV放射線
117 光学素子
118 マウント
119 レンズハウジング
2 照明系
3 放射源
4 照明光学ユニット
5 物体視野
6 物体面
7 レチクル
8 レチクルホルダ
9 レチクル変位ドライブ
10 投影光学ユニット
11 像視野
12 像面
13 ウェハ
14 ウェハホルダ
15 ウェハ変位ドライブ
16 EUV放射線
18 中間焦点面
19 デフォーマブルミラー
20 ファセットミラー
21 ファセット
22 ファセットミラー
23 ファセット
30 コンポーネント
31 ミラー
32 アクチュエータマトリクス
33 アクチュエータパッド
34 孔
35 アクチュエータマトリクス
36 アクチュエータパッド
37 行
38 孔
39.1~39.6 アクチュエータマトリクス
40.1~40.6 アクチュエータパッド
41.1~41.6 孔
42 電極
43 アクチュエータマトリクス
50 アクチュエータマトリクス
51 アクチュエータパッド
52 部分アクチュエータパッド
53 周囲アクチュエータパッド
54 ライン
55 ライン
56 光学有効面
61 方法ステップ1
62 方法ステップ2
63 方法ステップ3
64 方法ステップ4
65 方法ステップ5
101 投影露光装置
102 照明系
107 レチクル
108 レチクルホルダ
110 投影光学ユニット
113 ウェハ
114 ウェハホルダ
116 DUV放射線
117 光学素子
118 マウント
119 レンズハウジング
Claims (17)
- コンポーネント(30)を含む投影対物レンズ(10、110)を備えた投影露光装置(1、101)であって、前記コンポーネント(30)は、光学素子(31)及びアクチュエータ(32、35、39.x、43、50)を含み、前記光学素子(31)及び前記アクチュエータ(32、35、39.x、43、50)は、相互に摩擦力により接続され、前記アクチュエータ(32、35、39.x、43、50)は、前記光学素子(31)を少なくとも局所的に変形させるよう構成される投影露光装置(1、101)において、
前記アクチュエータ(32、35、39.x、43、50)は、該アクチュエータ(32、35、39.x、43、50)を画定する周囲における剛性損失が結像品質に及ぼす影響を最小化するように具現されることを特徴とする投影露光装置。 - 請求項1に記載の投影露光装置(1、101)において、
前記アクチュエータは、少なくとも2つのアクチュエータパッド(33、36、40.x、51)を含むアクチュエータマトリクス(32、35、39.x、43、50)の形態であることを特徴とする投影露光装置。 - 請求項1又は2に記載の投影露光装置(1、101)において、
投影露光装置(1、101)で用いられる走査方向と平行な軸上に延びる前記アクチュエータ(32、35、39.x、43、50)の周囲部分の累積長さが最小化されることを特徴とする投影露光装置。 - 請求項3に記載の投影露光装置(1、101)において、
前記アクチュエータ(35、39.x、43、50)の外周が、前記走査方向に対して少なくとも部分的に傾斜した向きにされることを特徴とする投影露光装置。 - 請求項3又は4に記載の投影露光装置(1、101)において、
前記アクチュエータ(35)は、前記走査方向に対して蛇行する周囲輪郭を含むことを特徴とする投影露光装置。 - 請求項3又は4に記載の投影露光装置(1、101)において、
前記アクチュエータ(43)の直線状の周囲構造が、前記走査方向に対して傾斜した向きにされることを特徴とする投影露光装置。 - 請求項2~6のいずれか1項に記載の投影露光装置(1、101)において、
前記アクチュエータマトリクス(32、35、39.x、43、50)に形成された前記アクチュエータパッド(33、36、40.x、51)の接触用の孔(34、38、41.x)が、投影露光装置(1、101)で用いられる走査方向と平行な軸上に延びる前記孔(34、38、41.x)の縁部分の累積長さを減らすように設計されることを特徴とする投影露光装置。 - 請求項7に記載の投影露光装置(1、101)において、
前記孔(34、38、41.x)の少なくともいくつかの面積が最小化されることを特徴とする投影露光装置。 - 請求項7又は8に記載の投影露光装置(1、101)において、
前記孔(34、38、41.x)は、前記走査方向と平行に延びる軸上に配置された前記孔(34、38、41.x)の数を減らすように配置されることを特徴とする投影露光装置。 - 請求項2~9のいずれか1項に記載の投影露光装置(1、101)において、
前記アクチュエータパッド(33、36、40.x、51)は、三角形、矩形、又は六角形の幾何学的形状を有することを特徴とする投影露光装置。 - 請求項1~10のいずれか1項に記載の投影露光装置(1、101)において、
前記アクチュエータ(50)は、剛性損失を補正するための別個に制御可能な部分(53)を有することを特徴とする投影露光装置。 - 請求項11に記載の投影露光装置(1、101)において、
前記部分は、前記アクチュエータマトリクス(50)の周囲領域に配置された前記アクチュエータパッド(51)の周囲アクチュエータパッド(53)として形成され、部分アクチュエータパッド(54)として形成された前記アクチュエータパッド(51)の第2領域とは独立して制御可能であり、剛性損失により生じた寄生変形を補正するよう構成されることを特徴とする投影露光装置。 - 光学素子(31)及びアクチュエータ(32、35、39.x、43、50)を有する投影露光装置(1、101)の結像品質に、前記アクチュエータ(32、35、39.x、43、50)により前記光学素子(31)の変形が生じた場合の寄生変形が及ぼす効果を最小化するための、投影露光装置(1、101)のコンポーネント(30)を設計する方法であって、
前記アクチュエータ(32、35、39.x、43、50)を設計するステップと、
作動により又は前記光学素子(31)及び前記アクチュエータ(32、35、39.x、43、50)の熱膨張係数の差により生じる前記光学素子(31)の寄生変形を求めるステップと、
前記投影露光装置(1、101)で用いられる走査露光の総和効果を考慮して、寄生変形に基づき寄生収差を求めるステップと、
求められた寄生収差に基づき前記アクチュエータ(32、35、39.x、43、50)を最適化するステップと、
寄生収差の値が所定の値を下回るまで前のプロセスステップ(61、62、63、64)の少なくともいくつかを繰り返すステップと
を含む方法。 - 請求項13に記載の方法において、
前記アクチュエータ(32、35、39.x、43、50)の移動量の少なくとも一部を用いて寄生変形を補正することを特徴とする方法。 - 請求項13又は14のいずれか1項に記載の方法において、
寄生収差を求める際に、前記投影露光装置(1、101)に存在する結像品質を最適化するためのさらに他の手段を考慮することを特徴とする方法。 - 請求項15に記載の方法において、
前記手段は、前記投影露光装置(1、101)のさらなる光学素子の位置決め又は変形用のマニピュレータの形態で具現されることを特徴とする方法。 - 請求項15又は16に記載の方法において、
複数の影響パラメータを考慮した結像品質の予測及びそれに必要なマニピュレータの移動量の決定のためのシミュレーションに基づくアルゴリズムの形態で、1つの手段を具現することを特徴とする方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102021205368.8A DE102021205368A1 (de) | 2021-05-27 | 2021-05-27 | Komponente für eine Projektionsbelichtungsanlage für die Halbleiterlithografie und Verfahren zur Auslegung der Komponente |
DE102021205368.8 | 2021-05-27 | ||
PCT/EP2022/063972 WO2022248433A1 (en) | 2021-05-27 | 2022-05-24 | Projection exposure apparatus and method for designing a component of a projection exposure apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024521841A true JP2024521841A (ja) | 2024-06-04 |
Family
ID=82156495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023573306A Pending JP2024521841A (ja) | 2021-05-27 | 2022-05-24 | 投影露光装置及び投影露光装置のコンポーネントを設計する方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240085800A1 (ja) |
JP (1) | JP2024521841A (ja) |
DE (1) | DE102021205368A1 (ja) |
TW (2) | TW202426992A (ja) |
WO (1) | WO2022248433A1 (ja) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6573978B1 (en) | 1999-01-26 | 2003-06-03 | Mcguire, Jr. James P. | EUV condenser with non-imaging optics |
DE10317667A1 (de) | 2003-04-17 | 2004-11-18 | Carl Zeiss Smt Ag | Optisches Element für ein Beleuchtungssystem |
JP5069232B2 (ja) * | 2005-07-25 | 2012-11-07 | カール・ツァイス・エスエムティー・ゲーエムベーハー | マイクロリソグラフィ投影露光装置の投影対物レンズ |
DE102008009600A1 (de) | 2008-02-15 | 2009-08-20 | Carl Zeiss Smt Ag | Facettenspiegel zum Einsatz in einer Projektionsbelichtungsanlage für die Mikro-Lithographie |
DE102015226531A1 (de) | 2015-04-14 | 2016-10-20 | Carl Zeiss Smt Gmbh | Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen abbildenden Optik |
KR102373722B1 (ko) * | 2015-12-30 | 2022-03-14 | 에이에스엠엘 네델란즈 비.브이. | 직접 기입 마스크리스 리소그래피를 위한 방법 및 장치 |
JP2017129685A (ja) * | 2016-01-19 | 2017-07-27 | キヤノン株式会社 | 光学装置、投影光学系、露光装置およびデバイス製造方法 |
DE102017220586A1 (de) | 2017-11-17 | 2019-05-23 | Carl Zeiss Smt Gmbh | Pupillenfacettenspiegel, Beleuchtungsoptik und optisches System für eine Projek-tionsbelichtungsanlage |
DE102019209610A1 (de) * | 2019-07-01 | 2021-01-07 | Carl Zeiss Smt Gmbh | Verfahren und Vorrichtung zum Herstellen einer Klebeverbindung zwischen einer ersten Komponente und einer zweiten Komponente |
-
2021
- 2021-05-27 DE DE102021205368.8A patent/DE102021205368A1/de not_active Ceased
-
2022
- 2022-05-24 WO PCT/EP2022/063972 patent/WO2022248433A1/en active Application Filing
- 2022-05-24 JP JP2023573306A patent/JP2024521841A/ja active Pending
- 2022-05-26 TW TW113107285A patent/TW202426992A/zh unknown
- 2022-05-26 TW TW111119670A patent/TWI837679B/zh active
-
2023
- 2023-11-13 US US18/507,893 patent/US20240085800A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
DE102021205368A1 (de) | 2022-12-01 |
WO2022248433A1 (en) | 2022-12-01 |
TWI837679B (zh) | 2024-04-01 |
TW202426992A (zh) | 2024-07-01 |
TW202305433A (zh) | 2023-02-01 |
US20240085800A1 (en) | 2024-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107390477B (zh) | 照明系统、曝光装置及制造、图像形成、照明与曝光方法 | |
JP5337304B2 (ja) | マイクロリソグラフィ投影露光装置及びそこに収容される光学面に関連するパラメータを測定する方法 | |
TWI497221B (zh) | 微影投射曝光裝置 | |
US20060072219A1 (en) | Mirror holding mechanism in exposure apparatus, and device manufacturing method | |
JP2001343582A (ja) | 投影光学系、当該投影光学系を備えた露光装置、及び当該露光装置を用いたマイクロデバイスの製造方法 | |
JP2013161992A (ja) | 変形可能な反射光学素子、光学系、及び露光装置 | |
TWI399569B (zh) | 投影光學系統、曝光裝置以及元件製造方法 | |
US20240176249A1 (en) | Optical element, projection optical unit and projection exposure apparatus | |
JP2004029625A (ja) | 投影光学系、露光装置及び露光方法 | |
US20240159988A1 (en) | Support for an optical element | |
WO2024179896A1 (en) | Optical assembly, optical system and projection exposure apparatus | |
US20240012334A1 (en) | Projection exposure apparatus for semiconductor lithography | |
US11092897B2 (en) | Method for producing a mirror as an optical component for an optical system of a projection exposure apparatus for projection lithography | |
JP3708075B2 (ja) | リソグラフィ装置およびデバイス製造方法 | |
JP2004138926A (ja) | 投影光学系および該投影光学系を備えた露光装置 | |
US6995829B2 (en) | Projection optical system, exposure apparatus, and device manufacturing method | |
JP2002250865A (ja) | 投影光学系、露光装置、およびそれらの製造方法 | |
JP2024521841A (ja) | 投影露光装置及び投影露光装置のコンポーネントを設計する方法 | |
CN117546098A (zh) | 用于半导体光刻的投射曝光设备 | |
JP3958122B2 (ja) | 照明装置、およびそれを用いた露光装置、デバイス製造方法 | |
JP3958261B2 (ja) | 光学系の調整方法 | |
JP7284766B2 (ja) | Euvマイクロリソグラフィ用の結像光学ユニット | |
JP6365723B2 (ja) | 反射結像光学系、結像方法、露光装置、露光方法、およびデバイス製造方法 | |
US20230205099A1 (en) | Field facet for a field facet mirror of a projection exposure system | |
TWI851283B (zh) | 用於補償致動器之致動器效應的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231219 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20241018 |