JP2024111408A - Storage tank type hot water supply device - Google Patents

Storage tank type hot water supply device Download PDF

Info

Publication number
JP2024111408A
JP2024111408A JP2023015890A JP2023015890A JP2024111408A JP 2024111408 A JP2024111408 A JP 2024111408A JP 2023015890 A JP2023015890 A JP 2023015890A JP 2023015890 A JP2023015890 A JP 2023015890A JP 2024111408 A JP2024111408 A JP 2024111408A
Authority
JP
Japan
Prior art keywords
hot water
heating
water supply
pipe
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023015890A
Other languages
Japanese (ja)
Inventor
晃寛 大平
元泰 佐藤
基 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2023015890A priority Critical patent/JP2024111408A/en
Publication of JP2024111408A publication Critical patent/JP2024111408A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】安価な構成で加熱バイパス管の凍結を防止することができると共に圧力逃がし弁38から比較的低温の湯水を排出することで貯湯式給湯装置内を安全な圧力に保つことができる貯湯式給湯装置を提供する。【解決手段】貯湯式給湯装置は、温水を貯湯する貯湯タンク2と、貯湯タンク2内の湯を加熱する加熱手段16と、温水を貯湯タンク2下部から加熱手段16に送る加熱往き管17と、加熱往き管17途中に設けられた循環ポンプ20と、加熱手段16で加熱した温水を貯湯タンク2の上部に送る加熱戻り管18と、加熱戻り管18から分岐し、給水管4と合流する加熱バイパス経路と、加熱戻り管18から加熱バイパス経路へ温水の流れを切り替える加熱バイパス弁22と、貯湯式給湯装置内の圧力が所定の圧力を超えた場合、圧力を貯湯式給湯装置外に逃す圧力逃がし弁38とを備え、圧力逃がし弁38は、加熱バイパス経路に設けた。【選択図】図3[Problem] To provide a storage type hot water supply device that can prevent freezing of a heating bypass pipe with an inexpensive configuration and can maintain a safe pressure inside the storage type hot water supply device by discharging hot water at a relatively low temperature from a pressure relief valve 38. [Solution] The storage type hot water supply device includes a hot water storage tank 2 that stores hot water, a heating means 16 that heats hot water in the storage tank 2, a heating supply pipe 17 that sends hot water from the lower part of the storage tank 2 to the heating means 16, a circulation pump 20 provided midway along the heating supply pipe 17, a heating return pipe 18 that sends hot water heated by the heating means 16 to the upper part of the hot water storage tank 2, a heating bypass path that branches off from the heating return pipe 18 and merges with a water supply pipe 4, a heating bypass valve 22 that switches the flow of hot water from the heating return pipe 18 to the heating bypass path, and a pressure relief valve 38 that releases pressure outside the storage type hot water supply device when the pressure inside the storage type hot water supply device exceeds a predetermined pressure, and the pressure relief valve 38 is provided in the heating bypass path. [Selected figure] Figure 3

Description

この発明は、加熱手段を有した貯湯式給湯装置に関するものである。 This invention relates to a storage-type hot water supply device with a heating means.

従来よりこの種の貯湯式給湯装置では、貯湯タンクと加熱手段とを備え、貯湯タンク下部から加熱手段に送る加熱往き管と、加熱手段から貯湯タンクに送る加熱戻り管とで貯湯タンクと加熱手段とを連結して加熱循環回路を構成し、前記加熱循環回路中に設けた循環ポンプで貯湯タンクと加熱手段内の湯を循環させて、貯湯タンク内の水を加熱する沸き上げ運転で沸き上げた湯を貯湯タンクに貯湯していき、順次貯湯タンク内の高温水と給水とをミキシングしながら、設定温度の給湯を行い経済的な給湯を実現するものであった。 Conventionally, this type of storage-type hot water supply device has been equipped with a hot water storage tank and a heating means, and a heating circulation circuit has been formed by connecting the hot water storage tank and the heating means with a heating forward pipe that sends water from the bottom of the hot water storage tank to the heating means and a heating return pipe that sends water from the heating means to the hot water storage tank. A circulation pump installed in the heating circulation circuit circulates hot water in the hot water storage tank and the heating means, and the hot water boiled during the boiling operation that heats the water in the hot water storage tank is stored in the hot water storage tank. Hot water is supplied at the set temperature while the high-temperature water in the hot water storage tank is mixed with the supply water in sequence, realizing economical hot water supply.

また、加熱戻り管から分岐した加熱バイパス管は給水管に接続され、加熱バイパス管を通るバイパス循環経路が、給水管の給水経路と一部を共用している貯湯式給湯装置があり、給水管と加熱バイパス管の凍結を防止するために沸き上げ運転時に加熱バイパス管側に湯を循環させ貯湯タンク下部に流入させる凍結防止運転が知られていた(例えば、特許文献1)。 In addition, there is a hot water storage type hot water supply device in which a heating bypass pipe branching off from the heating return pipe is connected to a water supply pipe, and a bypass circulation path passing through the heating bypass pipe shares part of the water supply path of the water supply pipe. In order to prevent freezing of the water supply pipe and the heating bypass pipe, a freeze prevention operation is known in which hot water is circulated to the heating bypass pipe side during boiling operation and flows into the lower part of the hot water storage tank (for example, Patent Document 1).

また、貯湯式給湯装置内の圧力が所定の圧力を超えた時に開弁する圧力逃がし弁を低温の水が流れる位置に配置することで、圧力を貯湯式給湯装置外に排出するとき、低温の水が排出されるため、貯湯タンク内に貯留した高温水が貯湯式給湯装置外に排出されるのを防ぐことが知られていた(例えば、特許文献2)。 It was also known that by locating a pressure relief valve, which opens when the pressure inside the storage type hot water supply device exceeds a predetermined pressure, in a position where low-temperature water flows, low-temperature water is discharged when the pressure is released outside the storage type hot water supply device, thereby preventing high-temperature water stored in the hot water storage tank from being discharged outside the storage type hot water supply device (for example, Patent Document 2).

特開2007-139258号公報JP 2007-139258 A 特開2013-217622号公報JP 2013-217622 A

ところで、特許文献1のように、沸き上げ運転時に凍結防止運転のためにヒートポンプ式加熱手段で沸き上げた高温水を加熱バイパス管側に湯を循環させ貯湯タンク下部に流入させると、貯湯タンク下部に高温水が溜まることで、ヒートポンプ式加熱手段に流入する入水温度が高くなり、沸き上げ効率が低下してしまうという問題があった。 However, as in Patent Document 1, when high-temperature water boiled by the heat pump heating means is circulated to the heating bypass pipe side and flows into the bottom of the hot water storage tank for anti-freezing operation during boiling operation, there is a problem that the high-temperature water accumulates at the bottom of the hot water storage tank, causing the inlet water temperature flowing into the heat pump heating means to rise, reducing the boiling efficiency.

また、特許文献2のように給水管に圧力逃がし弁を配置することで、貯湯タンク内の高温水の排出を防ぐことができるが、加熱バイパス管を備えた貯湯式給湯装置では、沸き上げ運転時に圧力逃がし弁で圧力を逃すとき、加熱バイパス管には湯水の流れが発生せず、特許文献1のような凍結防止運転を行わないと凍結してしまう可能性があるという課題があった。 In addition, by locating a pressure relief valve in the water supply pipe as in Patent Document 2, it is possible to prevent high-temperature water from being discharged from the hot water tank. However, in a hot water storage type hot water supply device equipped with a heating bypass pipe, when pressure is released by the pressure relief valve during boiling operation, no flow of hot water is generated in the heating bypass pipe, and there is a possibility that the pipe may freeze unless anti-freeze operation as in Patent Document 1 is performed.

本発明によれば、貯湯式給湯装置は、温水を貯湯する貯湯タンクと、前記貯湯タンク内の湯を加熱する加熱手段と、前記貯湯タンク上部に接続された出湯管と、前記貯湯タンク下部に接続された給水管と、前記給水管から分岐して、前記出湯管と合流される給水バイパス管と前記出湯管の高温水と前記給水バイパス管の給水を混ぜ合わせて給湯先に給湯水を送出させる給湯管と、前記温水を前記貯湯タンク下部から前記加熱手段に送る加熱往き管と、前記加熱往き管途中に設けられた循環ポンプと、前記加熱手段で加熱した温水を前記貯湯タンクの上部に送る加熱戻り管と、前記加熱戻り管から分岐し、前記給水管と合流する加熱バイパス経路と、前記加熱戻り管から前記加熱バイパス経路へ前記温水の流れを切り替える加熱バイパス弁と、前記貯湯式給湯装置内の圧力が所定の圧力を超えた場合、圧力を前記貯湯式給湯装置外に逃す圧力逃がし弁とを備え、前記圧力逃がし弁は、前記加熱バイパス経路に設けた。 According to the present invention, a hot water storage type hot water supply device includes a hot water storage tank for storing hot water, a heating means for heating the hot water in the hot water storage tank, a hot water outlet pipe connected to the upper part of the hot water storage tank, a water supply pipe connected to the lower part of the hot water storage tank, a water supply bypass pipe branching off from the water supply pipe and joining the hot water outlet pipe, a hot water supply pipe for mixing the high-temperature water in the hot water outlet pipe with the supply water in the water supply bypass pipe and delivering the hot water to a hot water supply destination, a heating supply pipe for delivering the hot water from the lower part of the hot water storage tank to the heating means, and The system includes a circulation pump provided midway through the supply pipe, a heating return pipe that sends hot water heated by the heating means to the top of the hot water storage tank, a heating bypass path that branches off from the heating return pipe and merges with the water supply pipe, a heating bypass valve that switches the flow of the hot water from the heating return pipe to the heating bypass path, and a pressure relief valve that releases pressure outside the storage type hot water supply device when the pressure inside the storage type hot water supply device exceeds a predetermined pressure, and the pressure relief valve is provided in the heating bypass path.

また、前記圧力逃がし弁は、前記加熱バイパス経路が前記給水管へと合流する出口側合流位置よりも前記加熱バイパス経路が前記加熱戻り管から分岐される入口側分岐位置に近い位置に設けた。 The pressure relief valve is located closer to the inlet side branching position where the heating bypass path branches off from the heating return pipe than to the outlet side junction position where the heating bypass path joins the water supply pipe.

この発明によれば、安価な構成で加熱バイパス管の凍結を防止することができると共に圧力逃がし弁から比較的低温の湯水を排出することで貯湯式給湯装置内を安全な圧力に保つことができる。 This invention makes it possible to prevent freezing of the heating bypass pipe with an inexpensive configuration, and by discharging relatively low-temperature hot water from the pressure relief valve, it is possible to maintain a safe pressure inside the hot water storage type hot water supply device.

この発明の実施形態を示す概略構成図。1 is a schematic configuration diagram showing an embodiment of the present invention. この発明の沸き上げ運転の動作を示すフローチャート。4 is a flowchart showing the operation of the heating operation of the present invention. この発明の実施形態の圧力逃がし弁の配置を示す概略構成図。FIG. 2 is a schematic diagram showing the arrangement of a pressure relief valve according to an embodiment of the present invention.

次にこの発明の1実施形態の貯湯式給湯装置を図面に基づいて説明する。
1は貯湯タンクユニットで内方には、湯水を貯湯する貯湯タンク2と、該貯湯タンク2の上部に接続された出湯管3と、貯湯タンク2の下部に接続された給水管4と、出湯管3からの高温水と給水管4から分岐された給水バイパス管5からの低温水とをミキシングする給湯ミキシング弁6と、該給湯ミキシング弁6の下流に接続された給湯管7に設けられた給湯温度センサ8及び給湯流量を検出する給湯フローセンサ9とが備えられている。
Next, a storage type hot water supply device according to one embodiment of the present invention will be described with reference to the drawings.
Reference numeral 1 denotes the hot water storage tank unit, which includes a hot water storage tank 2 for storing hot water, a hot water outlet pipe 3 connected to the upper part of the hot water storage tank 2, a water supply pipe 4 connected to the lower part of the hot water storage tank 2, a hot water mixing valve 6 for mixing high temperature water from the hot water outlet pipe 3 with low temperature water from a water supply bypass pipe 5 branching off from the water supply pipe 4, and a hot water temperature sensor 8 and a hot water flow sensor 9 for detecting the hot water flow rate, which are provided in a hot water pipe 7 connected downstream of the hot water mixing valve 6.

10はヒートポンプユニットで、圧縮機11と凝縮器としての水冷媒熱交換器12と電子式の膨張弁13と室外ファン14を有し空気と熱交換する蒸発器としての空気熱交換器15で構成されたヒートポンプ式の加熱手段16と、前記貯湯タンク2内の湯水を加熱往き管17及び加熱戻り管18から成る加熱循環回路19を介して加熱手段16に循環させる循環ポンプ20と、それらの駆動を制御するヒートポンプ制御部21とを備えており、加熱手段16には冷媒として二酸化炭素が用いられて超臨界ヒートポンプサイクルを構成しているものである。また、冷媒に二酸化炭素を用いているので、低温水を電熱ヒータなしで約90℃の高温まで沸き上げることが可能になっている。 10 is a heat pump unit, which is equipped with a heat pump type heating means 16 consisting of a compressor 11, a water-refrigerant heat exchanger 12 as a condenser, an electronic expansion valve 13, an outdoor fan 14, and an air heat exchanger 15 as an evaporator that exchanges heat with air, a circulation pump 20 that circulates the hot water in the hot water storage tank 2 to the heating means 16 via a heating circulation circuit 19 consisting of a heating forward pipe 17 and a heating return pipe 18, and a heat pump control unit 21 that controls the operation of these, and carbon dioxide is used as a refrigerant in the heating means 16 to form a supercritical heat pump cycle. In addition, because carbon dioxide is used as the refrigerant, it is possible to boil low-temperature water to a high temperature of about 90°C without an electric heater.

ここで、前記水冷媒熱交換器12は冷媒と被加熱水たる貯湯タンク2内の湯水とが対向して流れる対向流方式を採用しており、超臨界ヒートポンプサイクルでは熱交換時において冷媒は超臨界状態のまま凝縮されるため効率良く高温まで被加熱水を加熱することができ、被加熱水の水冷媒熱交換器12入口温度と冷媒の出口温度との温度差が一定になるように前記膨張弁13または圧縮機11を制御することで、被加熱水の水冷媒熱交換器12の入口温度が5~20℃程度の低い温度であるとCOP(エネルギー消費効率)がとても良い状態で被加熱水を加熱することが可能なものである。 The water-refrigerant heat exchanger 12 employs a counterflow system in which the refrigerant and the hot water in the hot water storage tank 2, which is the water to be heated, flow in opposite directions. In a supercritical heat pump cycle, the refrigerant is condensed while remaining in a supercritical state during heat exchange, so the water to be heated can be heated to a high temperature efficiently. By controlling the expansion valve 13 or compressor 11 so that the temperature difference between the inlet temperature of the water-refrigerant heat exchanger 12 for the heated water and the outlet temperature of the refrigerant is constant, it is possible to heat the heated water with a very good COP (coefficient of performance) when the inlet temperature of the water-refrigerant heat exchanger 12 for the heated water is a low temperature of around 5 to 20°C.

また、加熱戻り管18途中には加熱バイパス弁22が備えられ、凍結防止時には加熱バイパス弁22を貯湯タンク2下部の給水管4に接続した加熱バイパス経路である加熱バイパス管23側と連通するように切り替えることで、貯湯タンク2内下部を利用した短絡回路の循環として凍結を防止するものである。この加熱バイパス弁22は前記加熱戻り管18から加熱バイパス管23への分岐位置に配置されている。 A heating bypass valve 22 is provided midway through the heating return pipe 18, and when freezing prevention is required, the heating bypass valve 22 is switched to communicate with the heating bypass pipe 23, which is a heating bypass route connected to the water supply pipe 4 at the bottom of the hot water storage tank 2, to prevent freezing by circulating a short circuit using the bottom of the hot water storage tank 2. This heating bypass valve 22 is located at the branch point from the heating return pipe 18 to the heating bypass pipe 23.

また、加熱手段16の加熱初期に十分に加熱されていない温水を循環させる場合、貯湯タンク2上部に湯水を戻さず、加熱バイパス管23を介したバイパス循環経路で貯湯タンク2下部に湯水を戻しており、その後十分に加熱された湯水を循環させる場合、加熱バイパス弁22を貯湯タンク2上部側に切り替える。 In addition, when circulating hot water that is not sufficiently heated at the beginning of heating by the heating means 16, the hot water is not returned to the top of the hot water storage tank 2, but is returned to the bottom of the hot water storage tank 2 via a bypass circulation path via the heating bypass pipe 23, and when circulating hot water that is sufficiently heated thereafter, the heating bypass valve 22 is switched to the top side of the hot water storage tank 2.

24はマイコン等から成る制御装置で、ヒートポンプ制御部21を制御して加熱循環回路19による貯湯タンク2の沸き上げ運転や沸き増し運転等、給湯の温度制御、風呂の湯張りや追い焚き、保温等の運転制御を行う。 24 is a control device consisting of a microcomputer, etc., which controls the heat pump control unit 21 to perform operations such as heating and reheating the hot water storage tank 2 using the heating circulation circuit 19, controlling the hot water temperature, filling the bathtub with water, reheating the bathtub, and keeping the bathtub warm.

また、制御装置24には、加熱バイパス弁22の開度を制御する加熱バイパス弁制御手段25を備えており、具体的に加熱バイパス弁制御手段25は、加熱バイパス弁22を加熱バイパス管23側にし、貯湯タンク2下部の給水管4に連通するように切り替える第1の状態と、加熱バイパス弁22を貯湯タンク2の上部側に連通させる第2の状態とに切り替えている。 The control device 24 also includes a heating bypass valve control means 25 that controls the opening degree of the heating bypass valve 22. Specifically, the heating bypass valve control means 25 switches between a first state in which the heating bypass valve 22 is switched to the heating bypass pipe 23 side and communicates with the water supply pipe 4 at the bottom of the hot water storage tank 2, and a second state in which the heating bypass valve 22 communicates with the upper side of the hot water storage tank 2.

また、制御装置24には、前記循環ポンプの回転数を制御する回転数制御手段26と、後述する沸き上げ運転の制御を行う沸き上げ運転制御手段27とが備えられている。 The control device 24 also includes a rotation speed control means 26 that controls the rotation speed of the circulation pump, and a boiling operation control means 27 that controls the boiling operation described below.

この沸き上げ運転の開始時、加熱手段16内の冷媒が十分に加熱されておらず、加熱往き管17から流入した貯湯タンク2下部の水を沸き上げ目標温度に沸き上げることはできないので、回転数制御手段26は、循環ポンプ20の回転数を所定の回転数未満(この所定の回転数未満は低回転状態のことを言い、後述する文章中では低回転状態と記す)にして、沸き上げ運転制御手段27は循環ポンプ20を駆動させて沸き上げ運転を行い、前記低回転状態の終了条件である沸き上げ運転開始からの経過時間が所定時間以上、もしくは、加熱戻り管18途中の出口温度センサ35で所定温度以上になると、回転数制御手段26は、循環ポンプ20の回転数を所定沸上回転数にして、沸き上げ運転を行う。また、ここの所定の回転数とは、前記低回転状態時よりも高く前記所定沸上回転数よりも低いと共に、少なくとも給湯による給水圧の影響で沸き上げ運転の循環が停止しない回転数である。 At the start of this boiling operation, the refrigerant in the heating means 16 is not heated sufficiently, and the water in the lower part of the hot water storage tank 2 flowing in from the heating forward pipe 17 cannot be boiled to the boiling target temperature, so the rotation speed control means 26 sets the rotation speed of the circulation pump 20 to less than a predetermined rotation speed (this rotation speed less than the predetermined rotation speed refers to a low rotation speed state, and will be referred to as the low rotation speed state in the text below), and the boiling operation control means 27 drives the circulation pump 20 to perform the boiling operation, and when the elapsed time from the start of the boiling operation, which is the end condition of the low rotation speed state, is more than a predetermined time, or the outlet temperature sensor 35 in the heating return pipe 18 reaches a predetermined temperature or more, the rotation speed control means 26 sets the rotation speed of the circulation pump 20 to a predetermined boiling rotation speed and performs the boiling operation. The predetermined rotation speed here is higher than the low rotation speed state and lower than the predetermined boiling rotation speed, and is at least a rotation speed at which the circulation of the boiling operation does not stop due to the influence of the water supply pressure due to the hot water supply.

また、上記同様に、沸き上げ運転開始時、加熱手段16内の冷媒が十分に加熱されておらず、加熱往き管17から流入した貯湯タンク2下部の水を沸き上げ目標温度に沸き上げることはできないので、加熱バイパス弁制御手段25は、加熱バイパス弁22を第1の状態にしてから沸き上げを行なって沸き上げた湯を貯湯タンク2の下部に戻し、その後前記低回転状態の前記終了条件に達すると、加熱バイパス弁22を第2の状態にして沸き上げ運転を行う。 As described above, when the boiling operation starts, the refrigerant in the heating means 16 is not sufficiently heated, and the water in the lower part of the hot water storage tank 2 that flows in from the heating supply pipe 17 cannot be boiled up to the target temperature. Therefore, the heating bypass valve control means 25 sets the heating bypass valve 22 to the first state, performs boiling, and returns the boiled water to the lower part of the hot water storage tank 2. Then, when the end condition of the low rotation state is reached, the heating bypass valve 22 is set to the second state and boiling operation is performed.

更にリモコン28には、給湯設定温度を設定する温度設定スイッチ29、風呂への湯張りを指示する湯張りスイッチ30、湯張り量を設定する31を有し、更にドットマトリクス型の蛍光表示管よりなる表示部32と、この表示部32を制御すると共に制御装置24との通信を行うマイコンで構成されたリモコン制御部33が備えられている。 The remote control 28 also has a temperature setting switch 29 for setting the hot water supply temperature, a water filling switch 30 for instructing the bath to be filled with water, and a water filling amount setting switch 31. It also has a display unit 32 consisting of a dot matrix fluorescent display tube, and a remote control control unit 33 consisting of a microcomputer that controls the display unit 32 and communicates with the control device 24.

また、前記加熱循環回路19の水冷媒熱交換器12の入水側には入水温度センサ34が備えられ入水温度を検知するものであり、出口側には出口温度センサ35が備えられて、加熱後の湯水温度を検知するものであり、貯湯タンク2に備えられた該貯湯タンク2内の貯湯温度を検知する複数の貯湯温度センサ36で、下部の貯湯温度センサ36が沸き上げ目標温度を継続して検知することで沸き上げ運転を終了させるものである。また、実施形態では貯湯温度センサ36が継続して沸き上げ目標温度を検知したら沸き上げ運転を終了しているが、貯湯温度センサ36で検出した貯湯温度から貯湯量を算出し、沸き上げ運転で目標貯湯量に達したら沸き上げ運転を終了しても良い。 In addition, the water-refrigerant heat exchanger 12 of the heating circulation circuit 19 is provided with an inlet water temperature sensor 34 on the water inlet side to detect the inlet water temperature, and an outlet temperature sensor 35 on the outlet side to detect the hot water temperature after heating. The hot water storage tank 2 is provided with a plurality of hot water temperature sensors 36 for detecting the hot water temperature in the hot water storage tank 2, and the lower hot water storage temperature sensor 36 terminates the boiling operation by continuously detecting the boiling target temperature. In addition, in the embodiment, the boiling operation is terminated when the hot water storage temperature sensor 36 continuously detects the boiling target temperature, but the amount of hot water storage may be calculated from the hot water temperature detected by the hot water storage temperature sensor 36, and the boiling operation may be terminated when the target hot water storage amount is reached during the boiling operation.

37は給水管4に備えられた減圧弁である。 37 is a pressure reducing valve installed in the water supply pipe 4.

38は加熱バイパス管23に設けられた、貯湯タンク2や加熱循環回路19内の圧力を逃す圧力逃がし弁である。 38 is a pressure relief valve installed in the heating bypass pipe 23 to release pressure within the hot water storage tank 2 and the heating circulation circuit 19.

この圧力逃がし弁38は、沸き上げ運転により貯湯タンク2内や加熱循環回路19内の湯水が高温となり、貯湯式給湯装置内の圧力が上昇し、所定の圧力を超えると弁が開弁し、圧力と共に湯水が貯湯式給湯装置外に排出されるものである。 This pressure relief valve 38 opens when the hot water in the hot water storage tank 2 and the heating circulation circuit 19 becomes hot during heating operation, causing the pressure in the hot water storage type hot water supply system to rise and exceed a certain pressure, allowing the hot water and pressure to be discharged outside the hot water storage type hot water supply system.

また、39は湯張り管40を浴槽と連通させて、浴槽に湯を供給させる湯張り弁、41は風呂に供給される風呂温度を検出する風呂温度センサ、42は湯張り管40を通過した流量を検出する風呂フローセンサである 39 is a bath filling valve that connects the bathtub filling pipe 40 to the bathtub and supplies hot water to the bathtub, 41 is a bath temperature sensor that detects the bath temperature supplied to the bath, and 42 is a bath flow sensor that detects the flow rate passing through the bathtub filling pipe 40.

次に、沸き上げ運転について説明する。
貯湯熱量の低下や深夜の時間帯の沸き上げ要求があると、加熱バイパス弁制御手段25は加熱バイパス弁22を貯湯タンク1の下部側に連通させる第1の状態にし、制御装置24は、貯湯タンク2と加熱手段16を繋ぐ配管の途中にある循環ポンプ20を駆動して、貯湯タンク2内下部から水をくみ上げ、加熱手段16で温めて貯湯タンク32下部に戻し、その後前記低回転状態の前記終了条件に達すると、貯湯タンク2の上部側に連通させる第2の状態にし、貯湯タンク2上部に戻す動作を続ける事により徐々に貯湯タンク2内の水が高温水へと沸き上げる。
Next, the boiling operation will be described.
When there is a decrease in the heat energy of the stored hot water or a request for heating during the middle of the night, the heating bypass valve control means 25 switches the heating bypass valve 22 to a first state in which it connects to the lower side of the hot water storage tank 1, and the control device 24 drives the circulation pump 20 located in the middle of the piping connecting the hot water storage tank 2 and the heating means 16 to draw water from the lower part of the hot water storage tank 2, heat it in the heating means 16, and return it to the lower part of the hot water storage tank 32, and then, when the end condition of the low rotation state is reached, it switches to a second state in which it connects to the upper side of the hot water storage tank 2, and by continuing the operation of returning the water to the upper part of the hot water storage tank 2, the water in the hot water storage tank 2 is gradually boiled into high-temperature water.

次に沸き上げ運転中に給湯運転が行われた場合の実施形態の動作を図2のフローチャートに基づいて詳しく説明する。
貯湯熱量の低下や深夜の時間帯の沸き上げ要求があり、沸き上げ運転制御手段27が沸き上げ運転開始すると(S1がYes)、加熱バイパス弁制御手段25は加熱バイパス弁22を加熱バイパス管23側に連通させる第1の状態にし(S2)、回転数制御手段26は循環ポンプ20の回転数を前記低回転状態(所定の回転数未満)にして(S3)、沸き上げ運転制御手段27は循環ポンプ20を駆動する。
Next, the operation of the embodiment when hot water supply operation is performed during boiling operation will be described in detail with reference to the flow chart of FIG.
When there is a decrease in the heat energy of the stored hot water or a request for heating during the middle of the night and the heating operation control means 27 starts heating operation (S1 is Yes), the heating bypass valve control means 25 sets the heating bypass valve 22 to the first state in which it connects to the heating bypass pipe 23 side (S2), the rotation speed control means 26 sets the rotation speed of the circulation pump 20 to the low rotation speed state (less than a specified rotation speed) (S3), and the heating operation control means 27 drives the circulation pump 20.

そして、前記低回転状態の前記終了条件を満たした場合(S4がYes)、加熱バイパス弁制御手段25は加熱バイパス弁22を貯湯タンク2の上部側に連通させる第2の状態にし(S5)、回転数制御手段26は循環ポンプ20の回転数を所定沸上回転数にし(S6)、沸き上げ運転制御手段27は、沸き上げ運転を継続させる。 When the end condition for the low rotation state is met (Yes in S4), the heating bypass valve control means 25 sets the heating bypass valve 22 to a second state in which it is connected to the upper side of the hot water storage tank 2 (S5), the rotation speed control means 26 sets the rotation speed of the circulation pump 20 to a predetermined boiling rotation speed (S6), and the boiling operation control means 27 continues the boiling operation.

その後、下部の貯湯温度センサ36が沸き上げ目標温度を継続して検知することで(S7がYes)、沸き上げ運転を完了させる(S8)。 After that, the lower hot water storage temperature sensor 36 continues to detect the target boiling temperature (S7: Yes), and the boiling operation is completed (S8).

沸き上げ運転を行うことで、貯湯式給湯装置内の水が高温となり、貯湯式給湯装置内の圧力が上昇するので、沸き上げ運転中は、圧力逃がし弁38から圧力と共に湯水が貯湯式給湯装置外に排出される。 By performing the boiling operation, the water in the storage type hot water supply device becomes hot and the pressure inside the storage type hot water supply device rises, so during boiling operation, hot water and pressure are discharged outside the storage type hot water supply device through the pressure relief valve 38.

次に、給湯動作ついて説明する。
給湯栓が開かれると給水管4から給水され、貯湯タンク2下部に流入すると共に給水バイパス管5を通り、貯湯タンク2上部から押し出された高温水と給水バイパス管5の給水が給湯ミキシング弁6で混ぜ合わされ、給湯設定温度と給湯温度センサ8で検出された温度が同じなるように調整された湯水が給湯栓から給湯される。
Next, the hot water supply operation will be described.
When the hot water tap is opened, water is supplied from the water supply pipe 4, flows into the lower part of the hot water storage tank 2 and passes through the water supply bypass pipe 5. The high-temperature water pushed out from the upper part of the hot water storage tank 2 and the water supply from the water supply bypass pipe 5 are mixed in the hot water mixing valve 6, and hot water adjusted so that the hot water setting temperature and the temperature detected by the hot water temperature sensor 8 are the same is supplied from the hot water tap.

また、湯張り動作について説明する。
リモコン28の湯張りスイッチ30が押されると制御装置24は湯張り弁39を開弁し、給水管4から給水を供給し、貯湯タンク2下部に流入すると共に給水バイパス管5を通り、貯湯タンク2上部から押し出された高温水と給水バイパス管5の給水が給湯ミキシング弁6で混ぜ合わされ、風呂設定温度と風呂温度センサ41で検出された温度が同じになるように調整された湯水が浴槽に流入されることで湯張りが開始される。そして、風呂フローセンサ42で流れた流量を検出して、流れた流量の合計積算値が湯張り設定量分流れたら制御装置24が湯張り弁39を閉状態にすることで湯張りを完了する。
The filling operation will also be described.
When the filling switch 30 on the remote control 28 is pressed, the control device 24 opens the filling valve 39, supplies water from the water supply pipe 4, and the water flows into the bottom of the hot water storage tank 2 and passes through the water supply bypass pipe 5. The high-temperature water pushed out from the top of the hot water storage tank 2 and the water supply from the water supply bypass pipe 5 are mixed in the hot water supply mixing valve 6, and filling of the bath begins when the hot water is adjusted so that the bath set temperature and the temperature detected by the bath temperature sensor 41 are the same and flow into the bathtub. The bath flow sensor 42 detects the flow rate, and when the total accumulated value of the flow rate reaches the set filling amount, the control device 24 closes the filling valve 39, completing filling of the bath.

次に圧力逃がし弁38の詳しい配置について図1と図3に基づいて説明する。
加熱戻り管18に設けられた加熱バイパス弁22から加熱バイパス管23に分岐する位置を入口側分岐位置aとし、加熱バイパス管23から給水管4に合流する位置を出口側合流位置bとする。
Next, the detailed arrangement of the pressure relief valve 38 will be described with reference to FIGS.
The position where the heating bypass valve 22 provided in the heating return pipe 18 branches off to the heating bypass pipe 23 is referred to as the inlet side branching position a, and the position where the heating bypass pipe 23 joins the water supply pipe 4 is referred to as the outlet side joining position b.

入口側分岐位置aを上流側とし、出口側合流位置bを下流側とした加熱バイパス管23の途中に圧力逃がし弁38を配置している。 A pressure relief valve 38 is placed in the middle of the heating bypass pipe 23, with the inlet branch position a on the upstream side and the outlet junction position b on the downstream side.

加熱バイパス管23に圧力逃がし弁38が配置されている場合の湯水の流れを説明する。
貯湯式給湯装置内の圧力が上昇し、圧力逃がし弁38が開弁されると、加熱バイパス弁22が第2の状態の場合、入口側分岐位置aと圧力逃がし弁38との間の湯水の流れは発生しないが、圧力逃がし弁38と出口側合流位置bとの間の湯水は圧力と共に貯湯式給湯装置外に排出される。
The flow of hot and cold water when a pressure relief valve 38 is arranged in the heating bypass pipe 23 will be described.
When the pressure inside the storage type water heater rises and the pressure relief valve 38 is opened, if the heating bypass valve 22 is in the second state, no flow of hot water occurs between the inlet side branch position a and the pressure relief valve 38, but the hot water between the pressure relief valve 38 and the outlet side junction position b is discharged outside the storage type water heater together with the pressure.

そして、圧力逃がし弁38と出口側合流位置bとの間の湯水が排出されたことで、まず出口側合流位置b付近の給水管4から水が供給される。このとき、貯湯式給湯装置内の圧力が所定の圧力を超えている場合、給水管4から供給された水は圧力と共に貯湯式給湯装置外に排出される。この給水管4からの水の供給は貯湯式給湯装置内の圧力が所定の圧力を下回るまで行われ、貯湯式給湯装置内の圧力上昇を防ぐと共に加熱バイパス管23内の湯水の流れが発生する。 Then, as the hot water between the pressure relief valve 38 and the outlet-side junction position b is discharged, water is first supplied from the water supply pipe 4 near the outlet-side junction position b. At this time, if the pressure inside the storage-type hot water supply device exceeds a predetermined pressure, the water supplied from the water supply pipe 4 is discharged outside the storage-type hot water supply device together with the pressure. This supply of water from the water supply pipe 4 continues until the pressure inside the storage-type hot water supply device falls below the predetermined pressure, preventing a pressure rise inside the storage-type hot water supply device and generating a flow of hot water in the heating bypass pipe 23.

また、圧力逃がし弁38と出口側合流位置bとの間の湯水が排出され、出口側合流位置b付近の給水管4から水が供給されると、貯湯タンク2内が高温になったことで、膨張した貯湯タンク2内の湯水も給水管4を介して圧力と共に貯湯式給湯装置外に排出される。この貯湯タンク2内の湯水の供給は、貯湯タンク2内の圧力が所定の圧力を下回るまで行なわれ、貯湯タンク2の破損を防ぐと共に加熱バイパス管23内の湯水の流れが発生する。 When the hot water between the pressure relief valve 38 and the outlet-side junction position b is discharged and water is supplied from the water supply pipe 4 near the outlet-side junction position b, the hot water in the hot water storage tank 2 expands due to the high temperature inside the hot water storage tank 2, and is discharged outside the hot water storage type hot water supply device together with the pressure through the water supply pipe 4. This supply of hot water from the hot water storage tank 2 continues until the pressure inside the hot water storage tank 2 falls below a predetermined pressure, preventing damage to the hot water storage tank 2 and generating a flow of hot water in the heating bypass pipe 23.

このように、圧力逃がし弁38を加熱バイパス管23の途中に配置しているので、貯湯タンク2を含む貯湯式給湯装置内の圧力が所定の圧力を超えた場合、圧力は加熱バイパス管23内の湯水や給水管4内の水の比較的低温の湯水と共に圧力逃がし弁38から貯湯式給湯装置外に排出されることになるため、高温水が排出されて熱を消費してしまうことがなく、安全で低コストな貯湯式給湯装置を提供することができる。 In this way, since the pressure relief valve 38 is located midway through the heating bypass pipe 23, if the pressure in the storage type hot water supply system including the hot water storage tank 2 exceeds a predetermined pressure, the pressure is discharged from the pressure relief valve 38 to the outside of the storage type hot water supply system together with the hot water in the heating bypass pipe 23 and the relatively low-temperature hot water in the water supply pipe 4. This prevents high-temperature water from being discharged and consuming heat, and provides a safe, low-cost storage type hot water supply system.

また、沸き上げ運転中は出口温度センサ35で検出した温度が上がっていくため、加熱バイパス弁22は貯湯タンク2下部に流入させる加熱バイパス管23側には切り替えないので、加熱バイパス管23内の湯水が動かず、加熱バイパス管23内の凍結する可能性がある。しかし、沸き上げ運転により貯湯式給湯装置内の圧力も上昇するため、圧力逃がし弁38が開弁されることで、加熱バイパス管23内に湯水の流れが発生し、凍結を防止することができる。 In addition, during boiling operation, the temperature detected by the outlet temperature sensor 35 rises, so the heating bypass valve 22 does not switch to the heating bypass pipe 23 side that flows into the lower part of the hot water storage tank 2, and so the hot water in the heating bypass pipe 23 does not move, and there is a possibility that the heating bypass pipe 23 will freeze. However, since the boiling operation also increases the pressure in the storage-type hot water supply device, opening the pressure relief valve 38 creates a flow of hot water in the heating bypass pipe 23, preventing freezing.

また、沸き上げ運転時の圧力上昇に伴って加熱バイパス管23に湯水の流れを発生させるため、貯湯タンク2下部に湯水を循環させたり、電熱ヒーター等を用いて加熱バイパス管23を温めずに、安価な構成で加熱バイパス管23の凍結を防止することができる。 In addition, since a flow of hot water is generated in the heating bypass pipe 23 as the pressure rises during the boiling operation, it is possible to prevent freezing of the heating bypass pipe 23 with an inexpensive configuration without circulating hot water in the lower part of the hot water storage tank 2 or using an electric heater or the like to heat the heating bypass pipe 23.

また、加熱バイパス弁22の途中に圧力逃がし弁38を設けることで、沸き上げ運転中に加熱バイパス弁22を加熱バイパス管23側に切り替える動作が不要となるため、貯湯タンク2下部の温度を上げずに済み、沸き上げ効率の低下を抑えることができる。 In addition, by providing a pressure relief valve 38 in the middle of the heating bypass valve 22, it is not necessary to switch the heating bypass valve 22 to the heating bypass pipe 23 side during boiling operation, so there is no need to raise the temperature at the bottom of the hot water storage tank 2, and the decrease in boiling efficiency can be suppressed.

次に、入口側分岐位置aを上流側とし、出口側合流位置bを下流側とした加熱バイパス管23において、圧力逃がし弁38は出口側合流位置bよりも入口側分岐位置aに近い位置に配置した場合について説明する。好ましくは、入口側分岐位置aに近いほど良い。 Next, we will explain the case where the pressure relief valve 38 is placed closer to the inlet branch position a than to the outlet junction position b in the heating bypass pipe 23, where the inlet branch position a is on the upstream side and the outlet junction position b is on the downstream side. Preferably, the closer to the inlet branch position a, the better.

このように、圧力逃がし弁38は、入口側分岐位置aに近いほど加熱バイパス管23内の出口側合流位置bと圧力逃がし弁38との長さが長くなるので、湯水の動きの長さが長くなり、湯水の流れを多く発生させ、圧力逃がし弁38から出口側合流位置bまでの凍結を防止することができる。 In this way, the closer the pressure relief valve 38 is to the inlet branch position a, the longer the length between the outlet junction position b in the heating bypass pipe 23 and the pressure relief valve 38, so the length of hot water movement is longer, generating a large flow of hot water and preventing freezing from the pressure relief valve 38 to the outlet junction position b.

また、入口側分岐位置aと圧力逃がし弁38との距離が短いと、沸き上げ運転で高温水が加熱バイパス弁22を経由することで温められ、その放熱で入口側分岐位置a付近の凍結を防止することができる。 In addition, if the distance between the inlet branch position a and the pressure relief valve 38 is short, the high-temperature water is heated by passing through the heating bypass valve 22 during boiling operation, and the heat released can prevent freezing near the inlet branch position a.

なお、本発明は実施形態に限定されるものではなく、要旨を変更しない範囲で改変する事を妨げるものではなく、例えば、実施形態では加熱バイパス管23に圧力逃がし弁38を設けているが、加熱バイパス弁22と給水管4の間に加熱バイパス管23を設けずに直接圧力逃がし弁38を設けるようにしてもよい。 The present invention is not limited to the embodiments, and modifications may be made without changing the gist of the invention. For example, in the embodiments, a pressure relief valve 38 is provided in the heating bypass pipe 23, but the pressure relief valve 38 may be provided directly between the heating bypass valve 22 and the water supply pipe 4 without providing a heating bypass pipe 23.

2 貯湯タンク
3 出湯管
4 給水管
5 給水バイパス管
6 給湯ミキシング弁
7 給湯管
16 加熱手段
19 加熱循環回路
20 循環ポンプ
22 加熱バイパス弁
23 加熱バイパス管(加熱バイパス経路)
24 制御装置
25 加熱バイパス弁制御手段
26 回転数制御手段
27 沸き上げ運転制御手段
38 圧力逃がし弁
a 入口側分岐位置
b 出口側合流位置
2 hot water storage tank 3 hot water outlet pipe 4 water supply pipe 5 water supply bypass pipe 6 hot water supply mixing valve 7 hot water supply pipe 16 heating means 19 heating circulation circuit 20 circulation pump 22 heating bypass valve 23 heating bypass pipe (heating bypass path)
24 Control device 25 Heating bypass valve control means 26 Rotation speed control means 27 Boiling operation control means 38 Pressure relief valve a Inlet side branching position b Outlet side joining position

Claims (2)

貯湯式給湯装置は、
温水を貯湯する貯湯タンクと、
前記貯湯タンク内の湯を加熱する加熱手段と、
前記貯湯タンク上部に接続された出湯管と、
前記貯湯タンク下部に接続された給水管と、
前記給水管から分岐して、前記出湯管と合流される給水バイパス管と
前記出湯管の高温水と前記給水バイパス管の給水を混ぜ合わせて給湯先に給湯水を送出させる給湯管と、
前記温水を前記貯湯タンク下部から前記加熱手段に送る加熱往き管と、
前記加熱往き管途中に設けられた循環ポンプと、
前記加熱手段で加熱した温水を前記貯湯タンクの上部に送る加熱戻り管と、
前記加熱戻り管から分岐し、前記給水管と合流する加熱バイパス経路と、
前記加熱戻り管から前記加熱バイパス経路へ前記温水の流れを切り替える加熱バイパス弁と、
前記貯湯式給湯装置内の圧力が所定の圧力を超えた場合、圧力を前記貯湯式給湯装置外に逃す圧力逃がし弁とを備え、
前記圧力逃がし弁は、前記加熱バイパス経路に設けたことを特徴とする貯湯式給湯装置。
Storage type hot water heaters are
A hot water storage tank for storing hot water;
A heating means for heating the hot water in the hot water storage tank;
A hot water outlet pipe connected to an upper portion of the hot water storage tank;
A water supply pipe connected to a lower portion of the hot water storage tank;
A water supply bypass pipe that branches off from the water supply pipe and joins the hot water outlet pipe; a hot water supply pipe that mixes the high-temperature water from the hot water outlet pipe with the supply water from the water supply bypass pipe and delivers the hot water to a hot water supply destination;
A heating pipe that sends the hot water from a lower part of the hot water storage tank to the heating means;
A circulation pump provided in the heating supply pipe;
A heating return pipe that sends the hot water heated by the heating means to an upper portion of the hot water storage tank;
A heating bypass path that branches off from the heating return pipe and merges with the water supply pipe;
a heating bypass valve for switching the flow of the hot water from the heating return pipe to the heating bypass path;
a pressure relief valve that releases pressure to the outside of the storage type hot water supply device when the pressure in the storage type hot water supply device exceeds a predetermined pressure;
The storage type hot water supply device is characterized in that the pressure relief valve is provided in the heating bypass path.
前記圧力逃がし弁は、前記加熱バイパス経路が前記給水管へと合流する出口側合流位置よりも前記加熱バイパス経路が前記加熱戻り管から分岐される入口側分岐位置に近い位置に設けたことを特徴とする請求項1記載の貯湯式給湯装置。 The hot water storage type hot water supply device according to claim 1, characterized in that the pressure relief valve is provided at a position closer to an inlet side branching position where the heating bypass path branches off from the heating return pipe than to an outlet side junction position where the heating bypass path joins the water supply pipe.
JP2023015890A 2023-02-06 2023-02-06 Storage tank type hot water supply device Pending JP2024111408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023015890A JP2024111408A (en) 2023-02-06 2023-02-06 Storage tank type hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023015890A JP2024111408A (en) 2023-02-06 2023-02-06 Storage tank type hot water supply device

Publications (1)

Publication Number Publication Date
JP2024111408A true JP2024111408A (en) 2024-08-19

Family

ID=92423784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023015890A Pending JP2024111408A (en) 2023-02-06 2023-02-06 Storage tank type hot water supply device

Country Status (1)

Country Link
JP (1) JP2024111408A (en)

Similar Documents

Publication Publication Date Title
JP6226073B2 (en) Hot water system
US9010281B2 (en) Hot water supply system
JP5087484B2 (en) Hot water storage hot water heater
JP5185091B2 (en) Heat pump hot water supply system
JP2014156987A (en) Heat pump system
JP2008096044A (en) Hot water reservoir type hot-water supply device
JP2003139405A (en) Storage-type hot water supply system
KR101436241B1 (en) Heat pump heat source system
JP5964230B2 (en) Hot water storage water heater
JP5176474B2 (en) Heat pump water heater
JP2009264617A (en) Heat pump water heater
JP4368846B2 (en) Hot water storage water heater
JP2007198637A (en) Heat pump type water heater
JP7227090B2 (en) Storage hot water heater
JP2024111408A (en) Storage tank type hot water supply device
JP2011094922A (en) Heat pump type water heater
JP6969223B2 (en) Heat pump heat source machine
JP7135369B2 (en) Hot water storage water heater
JP2011141069A (en) Bath device
JP4223468B2 (en) Hot water storage hot water heater
JP2007147153A (en) Hot-water storage type hot-water supply device
JP7295725B2 (en) Storage hot water heater
JP4515883B2 (en) Hot water storage water heater
JP2006308123A (en) Storage water heater
JP2007198691A (en) Heat pump water heater