JP2024091859A - Laminate and packaging material comprising said laminate - Google Patents

Laminate and packaging material comprising said laminate Download PDF

Info

Publication number
JP2024091859A
JP2024091859A JP2024069346A JP2024069346A JP2024091859A JP 2024091859 A JP2024091859 A JP 2024091859A JP 2024069346 A JP2024069346 A JP 2024069346A JP 2024069346 A JP2024069346 A JP 2024069346A JP 2024091859 A JP2024091859 A JP 2024091859A
Authority
JP
Japan
Prior art keywords
density polyethylene
layer
substrate
group
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024069346A
Other languages
Japanese (ja)
Inventor
憲一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Publication of JP2024091859A publication Critical patent/JP2024091859A/en
Pending legal-status Critical Current

Links

Abstract

【課題】高いリサイクル適性、印刷適性、強度およびガスバリア性を有する、積層体の提供。
【解決手段】本発明の包装材料用積層体は、基材と、ヒートシール性ポリエチレン層ヒートシール層とを少なくとも備え、基材と、ヒートシール層とが同一の材料により構成され、基材は延伸処理が施されており、延伸ポリエチレンフィルム基材が、その少なくとも一方の面に蒸着膜を備え、同一材料が、ポリエチレンであることを特徴とする。
【選択図】図1

The present invention provides a laminate having high recyclability, printability, strength and gas barrier properties.
[Solution] The laminate for packaging materials of the present invention comprises at least a substrate and a heat-sealable polyethylene layer, the substrate and the heat-seal layer being made of the same material, the substrate being subjected to a stretching treatment, the stretched polyethylene film substrate having a vapor-deposited film on at least one surface thereof, and the same material being polyethylene.
[Selected Figure] Figure 1

Description

本発明は、積層体および該積層体からなる包装材料に関する。 The present invention relates to a laminate and a packaging material comprising the laminate.

ポリエチレンフィルムは、適度な柔軟性をもち、透明性、防湿性、耐薬品性等に優れるとともに、安価であることから、各種の包装材料に使用されている。特に、ポリエチレンの融点は、種類によっても多少異なるが概ね100~140℃程度であるため、包装材料分野ではヒートシール性フィルムとして使用されるのが一般的である。 Polyethylene film is used in a variety of packaging materials because it has moderate flexibility, excellent transparency, moisture resistance, chemical resistance, etc., and is inexpensive. In particular, the melting point of polyethylene varies slightly depending on the type, but is generally around 100 to 140°C, so it is commonly used as a heat-sealable film in the packaging material field.

一方、他の熱可塑性樹脂フィルムと比較して、ポリエチレンフィルムは、剛性が劣るため、印刷適性が低く、その表面に鮮明な画像を形成することができなかった。また、ポリエチレンフィルムは、高い強度を有しておらず、包装材料の外装として要求される耐久性を満たすことができていなかった。そのため、ポリエステルフィルムやナイロンフィルム等の剛性および強度に優れる樹脂フィルムと、ポリエチレンフィルムとをラミネートすることで積層体とし、この積層体のポリエチレンフィルム側が内側となるように、積層体端部をヒートシールすることにより包装材料を作製することが行われている(例えば、特開2005-104525号公報)。 On the other hand, compared to other thermoplastic resin films, polyethylene film has poor rigidity, making it less suitable for printing, and it is not possible to form clear images on its surface. In addition, polyethylene film does not have high strength and does not meet the durability required for the exterior of packaging materials. For this reason, packaging materials are produced by laminating a resin film with excellent rigidity and strength, such as a polyester film or a nylon film, with a polyethylene film to form a laminate, and then heat-sealing the ends of the laminate so that the polyethylene film side of the laminate is on the inside (for example, JP 2005-104525 A).

ところで、近年、循環型社会の構築を求める声の高まりとともに、包装材料をリサイクルして使用することが試みられている。しかしながら、上記のような異種の樹脂フィルムを貼り合わせた場合、樹脂フィルム同士を分離することが難しく、リサイクルに適しておらず、より環境負荷の少ない包装材料を使用したいという要求もあった。 Incidentally, in recent years, with the growing demand for the creation of a recycling-oriented society, attempts have been made to recycle and reuse packaging materials. However, when different types of resin films are laminated together as described above, it is difficult to separate the resin films from each other, making them unsuitable for recycling, and there has also been a demand for using packaging materials that place less of a burden on the environment.

また、内包する内容物の種類によっては、包装材料には高いガスバリア性を有していることが要求される。 Depending on the type of contents, packaging materials may also be required to have high gas barrier properties.

特開2005-104525号公報JP 2005-104525 A

本発明は、上記問題を解決するためになされたものであり、高いリサイクル適性、印刷適性、強度およびガスバリア性を有する、積層体を提供することをその解決しようとする課題とするものである。 The present invention has been made to solve the above problems, and the problem it aims to solve is to provide a laminate that has high recyclability, printability, strength, and gas barrier properties.

第1の態様において、本発明の積層体は、基材と、ヒートシール性ポリエチレン層ヒートシール層とを少なくとも備え、基材と、ヒートシール層とが同一の材料により構成され、基材は延伸処理が施されており、延伸ポリエチレンフィルム基材が、その少なくとも一方の面に蒸着膜を備え、同一材料が、ポリエチレンであることを特徴とする。 In a first aspect, the laminate of the present invention comprises at least a substrate and a heat-sealable polyethylene layer, the substrate and the heat-seal layer being made of the same material, the substrate being stretched, the stretched polyethylene film substrate having a vapor deposition film on at least one surface thereof, and the same material being polyethylene.

一実施形態において、基材が備える蒸着膜は、酸化アルミニウムを含む。 In one embodiment, the deposited film on the substrate includes aluminum oxide.

一実施形態において、積層体は、基材と、ヒートシール層との間に、ポリエチレンにより構成される、少なくとも一方の面に蒸着膜を備える中間層をさらに備える。 In one embodiment, the laminate further comprises an intermediate layer between the substrate and the heat seal layer, the intermediate layer being made of polyethylene and having a vapor deposition film on at least one surface.

一実施形態において、蒸着膜を備える中間層は、延伸されたポリエチレンフィルムおよび蒸着膜からなる。 In one embodiment, the intermediate layer with the vapor deposition film consists of a stretched polyethylene film and a vapor deposition film.

一実施形態において、基材は、高密度ポリエチレン(HDPE)および中密度ポリエチレン(MDPE)のうち少なくとも1つを含む。 In one embodiment, the substrate comprises at least one of high density polyethylene (HDPE) and medium density polyethylene (MDPE).

一実施形態において、基材の長手方向(MD)の延伸倍率は、2倍以上、10倍以下である。 In one embodiment, the stretch ratio in the longitudinal direction (MD) of the substrate is 2 times or more and 10 times or less.

一実施形態において、基材の厚さは、9μm以上、50μm以下である。 In one embodiment, the thickness of the substrate is 9 μm or more and 50 μm or less.

一実施形態において、基材は、高密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレン層とからなる構成を有する。 In one embodiment, the substrate is composed of a high density polyethylene layer, a medium density polyethylene layer, and a high density polyethylene layer.

一実施形態において、基材は、高密度ポリエチレン層と、中密度ポリエチレン層と、低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレン層からなる五層共押フィルムである。 In one embodiment, the substrate is a five-layer co-extruded film consisting of a high-density polyethylene layer, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer or a very low-density polyethylene layer, a medium-density polyethylene layer, and a high-density polyethylene layer.

一実施形態において、基材は、高密度ポリエチレン層と、高密度ポリエチレンおよび中密度ポリエチレンのブレンド樹脂層と、中密度ポリエチレン層と、低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレンおよび中密度ポリエチレンのブレンド樹脂層と、高密度ポリエチレン層とからなる七層共押フィルムである。 In one embodiment, the substrate is a seven-layer co-extruded film consisting of a high-density polyethylene layer, a blend resin layer of high-density polyethylene and medium-density polyethylene, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer, a medium-density polyethylene layer, a blend resin layer of high-density polyethylene and medium-density polyethylene, and a high-density polyethylene layer.

一実施形態において、ヒートシール層は、低密度ポリエチレン(LDPE)および直鎖状低密度ポリエチレン(LLDPE)のうち少なくとも1つを含む。 In one embodiment, the heat seal layer comprises at least one of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE).

第2の態様において、本発明の積層体は、基材と、少なくとも一方の面に蒸着膜を備えるポリエチレン中間層と、ヒートシール性ポリエチレン層ヒートシール層とを備え、記基材、中間層およびヒートシール層が同一の材料により構成され、中間層が、少なくとも一方の面に蒸着膜を備え、基材は延伸処理が施されており、同一材料がポリエチレンであることを特徴とする。 In a second aspect, the laminate of the present invention comprises a substrate, a polyethylene intermediate layer having a vapor deposition film on at least one surface thereof, and a heat-sealable polyethylene heat-seal layer, the substrate, intermediate layer and heat-seal layer being made of the same material, the intermediate layer having a vapor deposition film on at least one surface thereof, the substrate being stretched, and the same material being polyethylene.

一実施形態において、蒸着膜を備える中間層が備える蒸着膜は、アルミニウムを含む。 In one embodiment, the vapor-deposited film of the intermediate layer includes aluminum.

一実施形態において、蒸着膜を備える中間層は、延伸されたポリエチレンフィルムおよび蒸着膜からなる。 In one embodiment, the intermediate layer with the vapor deposition film consists of a stretched polyethylene film and a vapor deposition film.

一実施形態において、基材は、高密度ポリエチレン(HDPE)および中密度ポリエチレン(MDPE)のうち少なくとも1つを含む。 In one embodiment, the substrate comprises at least one of high density polyethylene (HDPE) and medium density polyethylene (MDPE).

一実施形態において、基材の長手方向(MD)の延伸倍率は、2倍以上、10倍以下である。 In one embodiment, the stretch ratio in the longitudinal direction (MD) of the substrate is 2 times or more and 10 times or less.

一実施形態において、基材の厚さは、9μm以上、50μm以下である。 In one embodiment, the thickness of the substrate is 9 μm or more and 50 μm or less.

一実施形態において、基材は、高密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレン層とからなる構成を有する。 In one embodiment, the substrate is composed of a high density polyethylene layer, a medium density polyethylene layer, and a high density polyethylene layer.

一実施形態において、基材は、高密度ポリエチレン層と、中密度ポリエチレン層と、低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレン層からなる五層共押フィルムである。 In one embodiment, the substrate is a five-layer co-extruded film consisting of a high-density polyethylene layer, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer or a very low-density polyethylene layer, a medium-density polyethylene layer, and a high-density polyethylene layer.

一実施形態において、基材は、高密度ポリエチレン層と、高密度ポリエチレンおよび中密度ポリエチレンのブレンド樹脂層と、中密度ポリエチレン層と、低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレンおよび中密度ポリエチレンのブレンド樹脂層と、高密度ポリエチレン層とからなる七層共押フィルムである。 In one embodiment, the substrate is a seven-layer co-extruded film consisting of a high-density polyethylene layer, a blend resin layer of high-density polyethylene and medium-density polyethylene, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer, a medium-density polyethylene layer, a blend resin layer of high-density polyethylene and medium-density polyethylene, and a high-density polyethylene layer.

一実施形態において、ヒートシール層は、低密度ポリエチレン(LDPE)および直鎖状低密度ポリエチレン(LLDPE)のうち少なくとも1つを含む。 In one embodiment, the heat seal layer comprises at least one of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE).

本発明の包装材料は、上記積層体から構成されることを特徴とする。 The packaging material of the present invention is characterized by being composed of the above laminate.

本発明によれば、高いリサイクル適性、印刷適性、強度およびガスバリア性を有する積層体を提供することができる。 The present invention provides a laminate that has high recyclability, printability, strength and gas barrier properties.

第1の態様による積層体の一実施形態を示す断面概略図である。1 is a cross-sectional schematic diagram showing one embodiment of a laminate according to a first aspect. 第1の態様による積層体の一実施形態を示す断面概略図である。1 is a cross-sectional schematic diagram showing one embodiment of a laminate according to a first aspect. 第2の態様による積層体の一実施形態を示す断面概略図である。FIG. 2 is a cross-sectional schematic diagram showing one embodiment of a laminate according to a second aspect.

<第1の態様の積層体>
本発明による積層体を図面を参照しながら説明する。
図1に示すように、第1の態様の積層体10は、基材20と、ヒートシール層30とを少なくとも備え、基材20の少なくとも一方の面に蒸着膜40を備える。
また、第1の態様の積層体10は、図2に示すように、基材20と、ヒートシール層30との間に、少なくとも一方の面に蒸着膜40を備える中間層50を備えていてもよい。
以下、積層体が備える各層について説明する。
<Laminate of First Aspect>
The laminate according to the present invention will now be described with reference to the drawings.
As shown in FIG. 1, the laminate 10 of the first embodiment includes at least a substrate 20 and a heat seal layer 30 , and includes a vapor-deposited film 40 on at least one surface of the substrate 20 .
Furthermore, the laminate 10 of the first embodiment may have an intermediate layer 50 between the substrate 20 and the heat seal layer 30, the intermediate layer 50 having a vapor deposition film 40 on at least one surface thereof, as shown in FIG.
Each layer of the laminate will now be described.

<基材>
基材は、延伸処理が施されたものであり、一軸延伸されたものであっても、二軸延伸されたものであってもよいが、強度という観点からは、二軸延伸されたものが好ましい。
<Substrate>
The substrate is one that has been subjected to a stretching treatment, and may be one that has been uniaxially stretched or one that has been biaxially stretched. From the viewpoint of strength, however, one that has been biaxially stretched is preferred.

基材長手方向(MD)の延伸倍率は、2倍以上、10倍以下であることが好ましく、3倍以上、7倍以下であることが好ましい。これにより、積層体の印刷適性および強度をより向上することができる。また、これにより、基材の透明性を向上することができる。
また、横手方向(TD)の延伸倍率は、2倍以上、10倍以下であることが好ましく、3倍以上、7倍以下であることが好ましい。これにより、積層体の印刷適性および強度をより向上することができると共に、その透明性を向上することができる。
The stretching ratio in the longitudinal direction (MD) of the substrate is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less. This can further improve the printability and strength of the laminate. In addition, this can improve the transparency of the substrate.
The stretching ratio in the transverse direction (TD) is preferably 2 to 10 times, and more preferably 3 to 7 times, which can improve the printability and strength of the laminate and can also improve its transparency.

基材は、ポリエチレンにより構成され、ポリエチレンとしては、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)および直鎖状低密度ポリエチレン(LLDPE)が挙げられる。また、基材は、これらを2種以上含むことができる。
これらの中でも、積層体の印刷適性、強度および耐熱性という観点から、高密度ポリエチレン(HDPE)および中密度ポリエチレン(MDPE)が好ましく、延伸適正という観点から、中密度ポリエチレンがより好ましい。
なお、本発明において、高密度ポリエチレンは密度が0.945g/cm以上のものを、中密度ポリエチレンは密度が0.925~0.944g/cmのものを、低密度ポリエチレンは密度が0.900g/cm以上0.925g/cm未満のもの、超低密度ポリエチレンは密度が0.900g/cm未満のものをいう。
The substrate is made of polyethylene, and examples of polyethylene include high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), and linear low density polyethylene (LLDPE). The substrate may contain two or more of these.
Among these, high density polyethylene (HDPE) and medium density polyethylene (MDPE) are preferred from the viewpoints of printability, strength and heat resistance of the laminate, and medium density polyethylene is more preferred from the viewpoint of suitability for stretching.
In the present invention, high-density polyethylene refers to polyethylene having a density of 0.945 g/cm3 or more , medium-density polyethylene refers to polyethylene having a density of 0.925 to 0.944 g/ cm3 , low-density polyethylene refers to polyethylene having a density of 0.900 g/ cm3 or more and less than 0.925 g/ cm3 , and very-low-density polyethylene refers to polyethylene having a density less than 0.900 g/ cm3 .

上記したような密度や分岐の違うポリエチレンは、重合方法を適宜選択することによって得ることができる。例えば、重合触媒として、チーグラー・ナッタ触媒等のマルチサイト触媒や、メタロセン系触媒等のシングルサイト触媒を用いて、気相重合、スラリー重合、溶液重合、および高圧イオン重合のいずれかの方法により、1段または2段以上の多段で行うことが好ましい。 The polyethylenes with different densities and branches as described above can be obtained by appropriately selecting the polymerization method. For example, it is preferable to use a multi-site catalyst such as a Ziegler-Natta catalyst or a single-site catalyst such as a metallocene catalyst as the polymerization catalyst, and to carry out the polymerization in one stage or in two or more stages by any of the methods of gas phase polymerization, slurry polymerization, solution polymerization, and high pressure ionic polymerization.

上記のシングルサイト触媒とは、均一な活性種を形成しうる触媒であり、通常、メタロセン系遷移金属化合物や非メタロセン系遷移金属化合物と活性化用助触媒とを接触させることにより、調整される。シングルサイト触媒は、マルチサイト触媒に比べて、活性点構造が均一であるため、高分子量かつ均一度の高い構造の重合体を重合することができるため好ましい。シングルサイト触媒としては、特に、メタロセン系触媒を用いることが好ましい。メタロセン系触媒は、シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物と、助触媒と、必要により有機金属化合物と、担体の各触媒成分とを含む触媒である。 The single-site catalyst is a catalyst capable of forming a uniform active species, and is usually prepared by contacting a metallocene transition metal compound or a nonmetallocene transition metal compound with an activating cocatalyst. Compared to multi-site catalysts, single-site catalysts have a uniform active site structure, and are therefore preferred because they can polymerize polymers with high molecular weights and highly uniform structures. As a single-site catalyst, it is particularly preferred to use a metallocene catalyst. A metallocene catalyst is a catalyst that contains each of the catalytic components of a transition metal compound of Group IV of the periodic table that contains a ligand having a cyclopentadienyl skeleton, a cocatalyst, and if necessary, an organometallic compound and a carrier.

上記のシクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物において、そのシクロペンタジエニル骨格とは、シクロペンタジエニル基、置換シクロペンタジエニル基等である。置換シクロペンタジエニル基としては、炭素数1~30の炭化水素基、シリル基、シリル置換アルキル基、シリル置換アリール基、シアノ基、シアノアルキル基、シアノアリール基、ハロゲン基、ハロアルキル基、ハロシリル基等から選ばれた少なくとも一種の置換基を有するものである。その置換シクロペンタジエニル基の置換基は2個以上有していてもよく、また置換基同士が互いに結合して環を形成し、インデニル環、フルオレニル環、アズレニル環、その水添体等を形成してもよい。置換基同士が互いに結合し形成された環がさらに互いに置換基を有していてもよい。 In the above-mentioned transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton, the cyclopentadienyl skeleton is a cyclopentadienyl group, a substituted cyclopentadienyl group, or the like. The substituted cyclopentadienyl group has at least one substituent selected from a hydrocarbon group having 1 to 30 carbon atoms, a silyl group, a silyl-substituted alkyl group, a silyl-substituted aryl group, a cyano group, a cyanoalkyl group, a cyanoaryl group, a halogen group, a haloalkyl group, a halosilyl group, or the like. The substituted cyclopentadienyl group may have two or more substituents, and the substituents may be bonded to each other to form a ring, such as an indenyl ring, a fluorenyl ring, an azulenyl ring, or a hydrogenated product thereof. The rings formed by bonding the substituents to each other may further have substituents.

シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物において、その遷移金属としては、ジルコニウム、チタン、ハフニウム等が挙げられ、特にジルコニウム、ハフニウムが好ましい。該遷移金属化合物は、シクロペンタジエニル骨格を有する配位子としては通常2個を有し、各々のシクロペンタジエニル骨格を有する配位子は架橋基により互いに結合しているものが好ましい。なお、架橋基としては炭素数1~4のアルキレン基、シリレン基、ジアルキルシリレン基、ジアリールシリレン基等の置換シリレン基、ジアルキルゲルミレン基、ジアリールゲルミレン基等の置換ゲルミレン基等が挙げられる。好ましくは、置換シリレン基である。上記のシクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物は、一種または二種以上の混合物を触媒成分とすることができる。 In the transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton, the transition metal can be zirconium, titanium, hafnium, etc., and zirconium and hafnium are particularly preferred. The transition metal compound usually has two ligands having a cyclopentadienyl skeleton, and it is preferable that the ligands having the cyclopentadienyl skeleton are bonded to each other by a bridging group. Examples of the bridging group include alkylene groups having 1 to 4 carbon atoms, silylene groups, substituted silylene groups such as dialkylsilylene groups and diarylsilylene groups, and substituted germylene groups such as dialkylgermylene groups and diarylgermylene groups. The substituted silylene group is preferred. The above transition metal compounds of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton can be used as a catalyst component, either alone or in a mixture of two or more types.

助触媒としては、上記の周期律表第IV族の遷移金属化合物を重合触媒として有効になしうる、または触媒的に活性化された状態のイオン性電荷を均衝させうるものをいう。助触媒としては、有機アルミニウムオキシ化合物のベンゼン可溶のアルミノキサンやベンゼン不溶の有機アルミニウムオキシ化合物、イオン交換性層状珪酸塩、ホウ素化合物、活性水素基含有あるいは非含有のカチオンと非配位性アニオンからなるイオン性化合物、酸化ランタン等のランタノイド塩、酸化スズ、フルオロ基を含有するフェノキシ化合物等が挙げられる。 The co-catalyst refers to a catalyst that can effectively use the above-mentioned transition metal compound of Group IV of the periodic table as a polymerization catalyst, or can balance the ionic charge in a catalytically activated state. Examples of the co-catalyst include benzene-soluble aluminoxanes of organoaluminum oxy compounds and benzene-insoluble organoaluminum oxy compounds, ion-exchangeable layered silicates, boron compounds, ionic compounds consisting of cations with or without active hydrogen groups and non-coordinating anions, lanthanoid salts such as lanthanum oxide, tin oxide, and phenoxy compounds containing fluoro groups.

シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物は、無機または有機化合物の担体に担持して使用されてもよい。該担体としては無機または有機化合物の多孔質酸化物が好ましく、具体的には、モンモリロナイト等のイオン交換性層状珪酸塩、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThO等またはこれらの混合物が挙げられる。また更に必要により使用される有機金属化合物としては、有機アルミニウム化合物、有機マグネシウム化合物、有機亜鉛化合物等が例示される。このうち有機アルミニウムが好適に使用される。 The transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton may be used by being supported on an inorganic or organic carrier. The carrier is preferably an inorganic or organic porous oxide, and specifically includes ion-exchange layered silicate such as montmorillonite, SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 , etc., or a mixture thereof. Furthermore, examples of the organometallic compound that is used as necessary include organoaluminum compounds, organomagnesium compounds, and organozinc compounds. Of these, organoaluminum compounds are preferably used.

また、本発明の特性を損なわない範囲において、エチレンと他のモノマーとの共重合体を使用することもできる。エチレン共重合体としては、エチレンと炭素数3~20のα-オレフィンとからなる共重合体が挙げられ、炭素数3~20のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、3ーメチルー1-ブテン、4-メチル-1-ペンテン、6-メチル-1-ヘプテンなどが挙げられる。また、本発明の目的を損なわない範囲であれば、酢酸ビニル、アクリル酸エステル等との共重合体であってもよい。 In addition, copolymers of ethylene and other monomers can also be used as long as they do not impair the characteristics of the present invention. Examples of ethylene copolymers include copolymers of ethylene and α-olefins having 3 to 20 carbon atoms, and examples of α-olefins having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 3-methyl-1-butene, 4-methyl-1-pentene, and 6-methyl-1-heptene. In addition, copolymers with vinyl acetate, acrylic esters, and the like can also be used as long as they do not impair the object of the present invention.

また、本発明においては、上記高密度ポリエチレン等を得るための原料として、化石燃料から得られるエチレンに代えて、バイオマス由来のエチレンを用いてもよい。このようなバイオマス由来のポリエチレンはカーボニュートラルな材料であるため、より一層、環境負荷の少ない包装材料とすることができる。このようなバイオマス由来のポリエチレンは、例えば、特開2013-177531号公報に記載されているような方法にて製造することができる。また、市販されているバイオマス由来のポリエチレン(例えば。ブラスケム社から市販されているグリーンPE等)を使用してもよい。 In addition, in the present invention, biomass-derived ethylene may be used as a raw material for obtaining the above-mentioned high-density polyethylene, instead of ethylene obtained from fossil fuels. Since such biomass-derived polyethylene is a carbon-neutral material, it can be used as a packaging material with even less environmental impact. Such biomass-derived polyethylene can be produced, for example, by a method such as that described in JP 2013-177531 A. In addition, commercially available biomass-derived polyethylene (for example, Green PE commercially available from Braskem) may also be used.

基材におけるポリエチレンの含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。 The polyethylene content in the substrate is preferably 50% by mass or more, and more preferably 70% by mass or more.

基材は、本発明の特性を損なわない範囲において、添加剤を含むことができ、例えば、架橋剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料、改質用樹脂等が挙げられる。 The substrate may contain additives within the range that does not impair the characteristics of the present invention, such as crosslinking agents, antioxidants, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments, modifying resins, etc.

一実施形態において、基材は、多層構造を有する。
一実施形態において、基材として、高密度ポリエチレンから構成される層(以下、高密度ポリエチレン層という)および中密度ポリエチレンから構成される層(以下、中密度ポリエチレン層という)を備える構成のものを使用することができる。
基材の外側に高密度ポリエチレン層を備えることにより、本発明の積層体の強度および耐熱性をより向上することができる。また、中密度ポリエチレン層を備えることにより、基材の延伸適性をより向上することができる。
In one embodiment, the substrate has a multi-layer structure.
In one embodiment, the substrate may have a structure including a layer made of high density polyethylene (hereinafter referred to as high density polyethylene layer) and a layer made of medium density polyethylene (hereinafter referred to as medium density polyethylene layer).
By providing a high density polyethylene layer on the outer side of the substrate, the strength and heat resistance of the laminate of the present invention can be further improved, and by providing a medium density polyethylene layer, the stretchability of the substrate can be further improved.

例えば、外側から、高密度ポリエチレン層と中密度ポリエチレン層との共押フィルムからなる構成を有する。
このような構成とすることにより、基材の延伸適性を向上することができる。また、本発明の積層体の強度および耐熱性を向上することができる。
このとき、高密度ポリエチレン層の厚さは、中密度ポリエチレン層の厚さよりも薄いことが好ましい。
高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比は、1/10以上1/1以下であることが好ましく、1/5以上1/2以下であることがより好ましい。
高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/10以上とすることにより、本発明の積層体の強度および耐熱性をより向上することができる。また、高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/1以下とすることにより、基材の延伸適性をより向上することができる。
For example, it has a structure consisting of a co-extruded film of a high density polyethylene layer and a medium density polyethylene layer from the outside.
By adopting such a constitution, the stretchability of the substrate can be improved, and the strength and heat resistance of the laminate of the present invention can be improved.
In this case, the thickness of the high density polyethylene layer is preferably thinner than the thickness of the medium density polyethylene layer.
The ratio of the thickness of the high density polyethylene layer to the thickness of the medium density polyethylene layer is preferably 1/10 or more and 1/1 or less, and more preferably 1/5 or more and 1/2 or less.
By setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to be 1/10 or more, the strength and heat resistance of the laminate of the present invention can be further improved. Also, by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to be 1/1 or less, the stretchability of the substrate can be further improved.

また、例えば、外側から、高密度ポリエチレン層と中密度ポリエチレン層と高密度ポリエチレン層との三層共押フィルムからなる構成とすることもできる。
このような構成とすることにより、基材の延伸適性をより向上することができる。また、本発明の積層体の強度および耐熱性をより向上することができる。さらに、基材におけるカールの発生を防止することができる。
このとき、高密度ポリエチレン層の厚さは、中密度ポリエチレン層の厚さよりも薄いことが好ましい。
高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比は、1/10以上1/1以下であることが好ましく、1/5以上1/2以下であることがより好ましい。
高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/10以上とすることにより、本発明の積層体の強度および耐熱性をより向上することができる。また、高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/1以下とすることにより、基材の延伸適性をより向上することができる。
Also, for example, it may be configured to have a three-layer co-extruded film consisting of a high density polyethylene layer, a medium density polyethylene layer and a high density polyethylene layer from the outside.
By adopting such a constitution, the stretchability of the substrate can be further improved, the strength and heat resistance of the laminate of the present invention can be further improved, and the occurrence of curling in the substrate can be prevented.
In this case, the thickness of the high density polyethylene layer is preferably thinner than the thickness of the medium density polyethylene layer.
The ratio of the thickness of the high density polyethylene layer to the thickness of the medium density polyethylene layer is preferably 1/10 or more and 1/1 or less, and more preferably 1/5 or more and 1/2 or less.
By setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to be 1/10 or more, the strength and heat resistance of the laminate of the present invention can be further improved. Also, by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to be 1/1 or less, the stretchability of the substrate can be further improved.

また、例えば、外側から、高密度ポリエチレン層と中密度ポリエチレン層と低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層(該段落においては、記載簡略化のため、まとめて低密度ポリエチレン層と記載する。)と中密度ポリエチレン層と高密度ポリエチレン層からなる五層共押フィルムの構成とすることもできる。
このような構成とすることにより、基材の延伸適性を向上することができる。また、本発明の積層体の強度および耐熱性を向上することができる。また、基材におけるカールの発生を防止することができる。
さらに、下記するように基材の生産効率を向上することができる。
このとき、高密度ポリエチレン層の厚さは、中密度ポリエチレン層の厚さよりも薄いことが好ましい。
高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比は、1/10以上1/1以下であることが好ましく、1/5以上1/2以下であることがより好ましい。
高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/10以上とすることにより、本発明の積層体の強度および耐熱性を向上することができる。また、高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/1以下とすることにより、基材の延伸適性を向上することができる。
また、高密度ポリエチレン層の厚さは、低密度ポリエチレン層の厚さと同じまたは低密度ポリエチレンの厚さよりも厚いことが好ましい。
高密度ポリエチレン層の厚さと、低密度ポリエチレン層の厚さとの比は、1/0.25以上1/2以下であることが好ましく、1/0.5以上1/1以下であることがより好ましい。
高密度ポリエチレン層の厚さと、低密度ポリエチレン層の厚さとの比を1/0.25以上とすることにより、耐熱性を向上することができる。また、高密度ポリエチレン層の厚さと、低密度ポリエチレン層の厚さとの比を1/1以下とすることにより、中密度ポリエチレン層間の密着性を向上することができる。
各高密度ポリエチレン層の厚さは、1μm以上、20μm以下であることが好ましく、2μm以上、10μm以下であることがより好ましい。高密度ポリエチレン層の厚さを、1μm以上とすることにより、本発明の積層体の強度および耐熱性をより向上することができる。また、高密度ポリエチレン層の厚さを、20μm以下とすることにより、本発明の積層体の加工適性をより向上することができる。
中密度ポリエチレン層の厚さは、1μm以上、30μm以下であることが好ましく、5μm以上、20μm以下であることがより好ましい。中密度ポリエチレン層の厚さを、1μm以上とすることにより、基材の延伸適性をより向上することができる。また、中密度ポリエチレン層の厚さを、30μm以下とすることにより、本発明の積層体の加工適性をより向上することができる。
低密度ポリエチレン層の厚さは、1μm以上、10μm以下であることが好ましく、2μm以上、5μm以下であることがより好ましい。
低密度ポリエチレン層の厚さを、1μm以上とすることにより、高密度ポリエチレン層と中密度ポリエチレン層との密着性をより向上することができる。また低密度ポリエチレン層の厚さを、5μm以下とすることにより、本発明の積層体の加工適性をより向上することができる。
一実施形態において、このような構成の基材は、例えば、インフレーション法により作製することができる。
具体的には、外側から、高密度ポリエチレンと、中密度ポリエチレン層と、および低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層とをチューブ状に共押出し、次いで、対向する低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層同士を、これをゴムロールなどにより、圧着することによって作製することができる。
このような方法により作製することにより、製造における欠陥品数を顕著に低減することができ、最終的には、生産効率を向上することができる。
また、インフレーション製膜機において、延伸も合わせて行うことができ、これにより、生産効率をより向上することができる。
Also, for example, it may be configured as a five-layer co-extruded film consisting of, from the outside, a high-density polyethylene layer, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer (in this paragraph, for simplicity, they are collectively referred to as a low-density polyethylene layer), a medium-density polyethylene layer and a high-density polyethylene layer.
By adopting such a constitution, it is possible to improve the stretchability of the substrate, to improve the strength and heat resistance of the laminate of the present invention, and to prevent the substrate from curling.
Furthermore, the production efficiency of the substrate can be improved as described below.
In this case, the thickness of the high density polyethylene layer is preferably thinner than the thickness of the medium density polyethylene layer.
The ratio of the thickness of the high density polyethylene layer to the thickness of the medium density polyethylene layer is preferably 1/10 or more and 1/1 or less, and more preferably 1/5 or more and 1/2 or less.
By setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to be 1/10 or more, the strength and heat resistance of the laminate of the present invention can be improved. Also, by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to be 1/1 or less, the stretchability of the substrate can be improved.
In addition, the thickness of the high density polyethylene layer is preferably the same as or greater than the thickness of the low density polyethylene layer.
The ratio of the thickness of the high density polyethylene layer to the thickness of the low density polyethylene layer is preferably 1/0.25 or more and 1/2 or less, and more preferably 1/0.5 or more and 1/1 or less.
By setting the ratio of the thickness of the high density polyethylene layer to the thickness of the low density polyethylene layer to be 1/0.25 or more, the heat resistance can be improved. Also, by setting the ratio of the thickness of the high density polyethylene layer to the thickness of the low density polyethylene layer to be 1/1 or less, the adhesion between the medium density polyethylene layers can be improved.
The thickness of each high-density polyethylene layer is preferably 1 μm or more and 20 μm or less, and more preferably 2 μm or more and 10 μm or less. By making the thickness of the high-density polyethylene layer 1 μm or more, the strength and heat resistance of the laminate of the present invention can be further improved. In addition, by making the thickness of the high-density polyethylene layer 20 μm or less, the processability of the laminate of the present invention can be further improved.
The thickness of the medium-density polyethylene layer is preferably 1 μm or more and 30 μm or less, and more preferably 5 μm or more and 20 μm or less. By making the thickness of the medium-density polyethylene layer 1 μm or more, the stretchability of the substrate can be further improved. In addition, by making the thickness of the medium-density polyethylene layer 30 μm or less, the processability of the laminate of the present invention can be further improved.
The thickness of the low-density polyethylene layer is preferably 1 μm or more and 10 μm or less, and more preferably 2 μm or more and 5 μm or less.
By making the thickness of the low-density polyethylene layer 1 μm or more, the adhesion between the high-density polyethylene layer and the medium-density polyethylene layer can be further improved, and by making the thickness of the low-density polyethylene layer 5 μm or less, the processability of the laminate of the present invention can be further improved.
In one embodiment, a substrate having such a configuration can be produced by, for example, an inflation method.
Specifically, the film can be produced by co-extruding, from the outside, a high-density polyethylene layer, a medium-density polyethylene layer, and a low-density polyethylene layer, a linear low-density polyethylene layer, or an ultra-low-density polyethylene layer into a tubular shape, and then pressing the opposing low-density polyethylene layers, linear low-density polyethylene layers, or ultra-low-density polyethylene layers together using a rubber roll or the like.
By using such a method, the number of defective products during manufacturing can be significantly reduced, and ultimately, production efficiency can be improved.
In addition, the stretching can also be carried out in the inflation film forming machine, which can further improve the production efficiency.

一実施形態において、外側から、高密度ポリエチレン層と、高密度ポリエチレンおよび中密度ポリエチレンのブレンド樹脂層と、中密度ポリエチレン層と、低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層(該段落においては、記載簡略化のため、まとめて低密度ポリエチレン層と記載する。)と、中密度ポリエチレン層と、高密度ポリエチレンおよび中密度ポリエチレンのブレンド樹脂層と、高密度ポリエチレン層からなる七層共押フィルムの構成とすることもできる。
このような構成とすることにより、高密度ポリエチレン層と中密度ポリエチレン層との密着性を向上することができる。また、本発明の積層体の加工適性を向上することができる。
各高密度ポリエチレン層の厚さは、1μm以上、20μm以下であることが好ましく、2μm以上、10μm以下であることがより好ましい。高密度ポリエチレン層の厚さを、1μm以上とすることにより、本発明の積層体の強度および耐熱性をより向上することができる。また、高密度ポリエチレン層の厚さを、20μm以下とすることにより、本発明の積層体の加工適性をより向上することができる。
各高密度ポリエチレンおよび中密度ポリエチレンのブレンド樹脂層の厚さは、1μm以上、20μm以下であることが好ましく、2μm以上、10μm以下であることがより好ましい。これにより、高密度ポリエチレン層と中密度ポリエチレン層との密着が向上することができる。また、本発明の積層体の加工適性を向上することができる。
ブレンド樹脂層における高密度ポリエチレンと、中密度ポリエチレンの配合比は、質量基準で、1:9~9:1であることが好ましく、3:7~7:3であることがより好ましい。これにより、高密度ポリエチレン層と中密度ポリエチレン層との密着が向上することができる。また、本発明の積層体の加工適性を向上することができる。
中密度ポリエチレン層の厚さは、1μm以上、30μm以下であることが好ましく、5μm以上、20μm以下であることがより好ましい。中密度ポリエチレン層の厚さを、1μm以上とすることにより、基材の延伸適性をより向上することができる。また、中密度ポリエチレン層の厚さを、30μm以下とすることにより、本発明の積層体の加工適性をより向上することができる。
低密度ポリエチレン層の厚さは、1μm以上、10μm以下であることが好ましく、2μm以上、5μm以下であることがより好ましい。
低密度ポリエチレン層の厚さを、1μm以上とすることにより、高密度ポリエチレン層と中密度ポリエチレン層との密着性をより向上することができる。また低密度ポリエチレン層の厚さを、5μm以下とすることにより、本発明の積層体の加工適性をより向上することができる。
一実施形態において、このような構成の基材は、上記したインフレーション法により作製することができる。
このような方法により作製することにより、製造における欠陥品数を顕著に低減することができ、最終的には、生産効率を向上することができる。
また、インフレーション製膜機において、延伸も合わせて行うことができ、これにより、生産効率をより向上することができる。
In one embodiment, the seven-layer co-extruded film may be configured to include, from the outside, a high-density polyethylene layer, a blend resin layer of high-density polyethylene and medium-density polyethylene, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer (in this paragraph, for the sake of simplicity, these are collectively referred to as low-density polyethylene layers), a medium-density polyethylene layer, a blend resin layer of high-density polyethylene and medium-density polyethylene, and a high-density polyethylene layer.
By adopting such a structure, it is possible to improve the adhesion between the high density polyethylene layer and the medium density polyethylene layer, and also to improve the processability of the laminate of the present invention.
The thickness of each high-density polyethylene layer is preferably 1 μm or more and 20 μm or less, and more preferably 2 μm or more and 10 μm or less. By making the thickness of the high-density polyethylene layer 1 μm or more, the strength and heat resistance of the laminate of the present invention can be further improved. In addition, by making the thickness of the high-density polyethylene layer 20 μm or less, the processability of the laminate of the present invention can be further improved.
The thickness of each blend resin layer of high density polyethylene and medium density polyethylene is preferably 1 μm or more and 20 μm or less, more preferably 2 μm or more and 10 μm or less. This can improve the adhesion between the high density polyethylene layer and the medium density polyethylene layer. In addition, the processability of the laminate of the present invention can be improved.
The blending ratio of the high density polyethylene to the medium density polyethylene in the blend resin layer is preferably 1:9 to 9:1, and more preferably 3:7 to 7:3, on a mass basis. This can improve the adhesion between the high density polyethylene layer and the medium density polyethylene layer. In addition, the processability of the laminate of the present invention can be improved.
The thickness of the medium-density polyethylene layer is preferably 1 μm or more and 30 μm or less, and more preferably 5 μm or more and 20 μm or less. By making the thickness of the medium-density polyethylene layer 1 μm or more, the stretchability of the substrate can be further improved. In addition, by making the thickness of the medium-density polyethylene layer 30 μm or less, the processability of the laminate of the present invention can be further improved.
The thickness of the low-density polyethylene layer is preferably 1 μm or more and 10 μm or less, and more preferably 2 μm or more and 5 μm or less.
By making the thickness of the low-density polyethylene layer 1 μm or more, the adhesion between the high-density polyethylene layer and the medium-density polyethylene layer can be further improved, and by making the thickness of the low-density polyethylene layer 5 μm or less, the processability of the laminate of the present invention can be further improved.
In one embodiment, a substrate having such a configuration can be produced by the inflation method described above.
By using such a method, the number of defective products during manufacturing can be significantly reduced, and ultimately, production efficiency can be improved.
In addition, the stretching can also be carried out in the inflation film forming machine, which can further improve the production efficiency.

基材の厚さは、9μm以上、50μm以下であることが好ましく、12μm以上、30μm以下であることがより好ましい。基材の厚さを上記数値範囲内とすることにより、積層体の印刷適性、強度および耐熱性をより向上することができる。 The thickness of the substrate is preferably 9 μm or more and 50 μm or less, and more preferably 12 μm or more and 30 μm or less. By setting the thickness of the substrate within the above numerical range, the printability, strength, and heat resistance of the laminate can be further improved.

第1の態様において、基材は、少なくともその一方の面に、蒸着膜を備える。ヒートシール層との密着性の観点からは、基材のヒートシール層が設けられた側とは反対の側に蒸着膜を備えていることが好ましい。 In the first embodiment, the substrate has a vapor-deposited film on at least one surface. From the viewpoint of adhesion with the heat seal layer, it is preferable that the substrate has a vapor-deposited film on the side opposite to the side on which the heat seal layer is provided.

蒸着膜を構成する材料としては、例えば、アルミニウム等の金属や酸化アルミニウム、並びに酸化ケイ素、酸化マグシウム、酸化カルシウム、酸化ジルコニウム、酸化チタン、酸化ホウ素、酸化ハフニウムおよび酸化バリウム等の無機酸化物等が挙げられる。
上記した中でも、透明性が高く、基材に形成される画像の視認性を低下させることがなく、ガスバリア性にも優れるため、酸化アルミニウムにより蒸着膜を形成することが好ましい。
Examples of materials constituting the vapor-deposited film include metals such as aluminum, aluminum oxide, and inorganic oxides such as silicon oxide, magnesium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, hafnium oxide, and barium oxide.
Among the above, it is preferable to form a vapor deposition film from aluminum oxide, since it has high transparency, does not reduce the visibility of an image formed on the substrate, and has excellent gas barrier properties.

また、蒸着膜の膜厚は、0.002μm以上、0.4μm以下であることが好ましく、0.005μm以上、0.1μm以下であることがより好ましい。蒸着膜の厚みを上記数値範囲内とすることにより、ガスバリア性を維持しつつ、蒸着膜におけるクラックなどの発生を防止することができる。 The thickness of the vapor-deposited film is preferably 0.002 μm or more and 0.4 μm or less, and more preferably 0.005 μm or more and 0.1 μm or less. By keeping the thickness of the vapor-deposited film within the above numerical range, it is possible to prevent the occurrence of cracks in the vapor-deposited film while maintaining the gas barrier properties.

基材は、その表面に、文字、柄、記号等の画像が形成されていてもよい。画像の経時的な劣化を防止することができるため、基材のヒートシール層を積層する側に画像を形成することが好ましい。
画像の形成方法は、特に限定されるものではなく、グラビア印刷法、オフセット印刷法、フレキソ印刷法等の従来公知の印刷法を挙げることができる。これらの中でも、環境負荷の観点から、フレキソ印刷法が好ましい。
The substrate may have an image such as a letter, a pattern, a symbol, etc. formed on its surface. In order to prevent deterioration of the image over time, it is preferable to form the image on the side of the substrate where the heat seal layer is laminated.
The method for forming the image is not particularly limited, and examples of the method include conventionally known printing methods such as gravure printing, offset printing, flexographic printing, etc. Among these, flexographic printing is preferred from the viewpoint of environmental load.

基材は、ポリエチレンを含む樹脂材料を溶融し、これをインフレーション成形法またはT-ダイ成形法等の溶融押出成形法によって製膜した後、延伸することによって得ることができる。延伸処理をより容易に行うことができるため、インフレーション成形法により作製することが好ましい。多層構造を有する基材は、複数の樹脂材料を溶融共押出することにより作製することができる。 The substrate can be obtained by melting a resin material containing polyethylene, forming it into a film by a melt extrusion molding method such as inflation molding or T-die molding, and then stretching it. It is preferable to produce it by the inflation molding method because the stretching process can be performed more easily. A substrate with a multilayer structure can be produced by melt co-extruding multiple resin materials.

樹脂材料のメルトフローレート(MFR)は、0.5g/10分以上、20g/10分以下であることが好ましく、0.8g/10分以上、5g/10分以下であることがより好ましい。樹脂材料のMFRを上記数値範囲内とすることにより、延伸処理をより容易に行うことができる。 The melt flow rate (MFR) of the resin material is preferably 0.5 g/10 min or more and 20 g/10 min or less, and more preferably 0.8 g/10 min or more and 5 g/10 min or less. By setting the MFR of the resin material within the above numerical range, the stretching process can be performed more easily.

蒸着膜を形成する方法としては、従来公知の方法を採用でき、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等の物理気相成長法(Physical Vapor Deposition法、PVD法)、あるいは、プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等を挙げることができる。 Methods for forming the vapor-deposited film can be any conventional method, including physical vapor deposition (PVD) methods such as vacuum deposition, sputtering, and ion plating, or chemical vapor deposition (CVD) methods such as plasma chemical vapor deposition, thermal chemical vapor deposition, and photochemical vapor deposition.

また、例えば、物理気相成長法と化学気相成長法の両者を併用して異種の無機酸化物の蒸着膜の2層以上からなる複合膜を形成して使用することもできる。蒸着チャンバーの真空度としては、酸素導入前においては、10-2~10-8mbar程度、特に、10-3~10-7mbar程度が好ましく、酸素導入後においては、10-1~10-6mbar程度、特に10-2~10-5mbar程度が好ましい。なお、酸素導入量等は、蒸着機の大きさ等によって異なる。導入する酸素には、キャリヤーガスとしてアルゴンガス、ヘリウムガス、窒素ガス等の不活性ガスを支障のない範囲で使用してもよい。フィルムの搬送速度としては、10~800m/分程度、特に50~600m/分程度が好ましい。 For example, a composite film consisting of two or more layers of vapor-deposited films of different inorganic oxides can be formed and used by combining both physical vapor deposition and chemical vapor deposition. The degree of vacuum in the vapor deposition chamber is preferably about 10-2 to 10-8 mbar, particularly about 10-3 to 10-7 mbar, before oxygen is introduced, and is preferably about 10-1 to 10-6 mbar, particularly about 10-2 to 10-5 mbar, after oxygen is introduced. The amount of oxygen introduced varies depending on the size of the vapor deposition machine. For the oxygen introduced, an inert gas such as argon gas, helium gas, or nitrogen gas may be used as a carrier gas to the extent that no problems occur. The film transport speed is preferably about 10 to 800 m/min, particularly about 50 to 600 m/min.

一実施形態において、基材は、バリアコート層を備えることができ、これにより、酸素バリア性および水蒸気バリア性を向上することができる。
基材が、蒸着膜を備える場合、該バリアコート層は、上記蒸着膜上に設けられていても、蒸着膜下に設けられていてもよい。
In one embodiment, the substrate may include a barrier coat layer, which may improve the oxygen and water vapor barrier properties.
When the substrate has a vapor-deposited film, the barrier coat layer may be provided on or under the vapor-deposited film.

一実施形態において、バリアコート層は、エチレン-ビニルアルコール共重合体(EVOH)、ポリビニルアルコール、ポリアクリロニトリル、ナイロン6、ナイロン6,6およびポリメタキシリレンアジパミド(MXD6)などのポリアミド、ポリエステル、ポリウレタン、並びに(メタ)アクリル樹脂などのガスバリア性樹脂を含む。これらの中でも、酸素バリア性および水蒸気バリア性という観点から、ポリビニルアルコールが好ましい。
また、基材が、無機酸化物から構成される蒸着膜を備える場合、バリアコート層にポリビニルアルコールを含有させることにより、蒸着膜におけるクラックの発生を効果的に防止することができる。
In one embodiment, the barrier coat layer contains a gas barrier resin such as an ethylene-vinyl alcohol copolymer (EVOH), polyvinyl alcohol, polyacrylonitrile, polyamides such as nylon 6, nylon 6,6, and polymetaxylylene adipamide (MXD6), polyester, polyurethane, and (meth)acrylic resin. Among these, polyvinyl alcohol is preferred from the viewpoints of oxygen barrier property and water vapor barrier property.
Furthermore, when the substrate has a vapor-deposited film made of an inorganic oxide, the occurrence of cracks in the vapor-deposited film can be effectively prevented by including polyvinyl alcohol in the barrier coat layer.

バリアコート層におけるガスバリア性樹脂の含有量は、50質量%以上95質量%以下であることが好ましく、75質量%以上90質量%以下であることがより好ましい。バリアコート層におけるガスバリア性樹脂の含有量を50質量%以上とすることにより、酸素バリア性および水蒸気バリア性をより向上することができる。 The content of the gas barrier resin in the barrier coat layer is preferably 50% by mass or more and 95% by mass or less, and more preferably 75% by mass or more and 90% by mass or less. By making the content of the gas barrier resin in the barrier coat layer 50% by mass or more, the oxygen barrier property and water vapor barrier property can be further improved.

バリアコート層は、本発明の特性を損なわない範囲において、添加剤を含むことができる。 The barrier coat layer may contain additives as long as they do not impair the properties of the present invention.

バリアコート層の厚さは、0.01μm以上10μm以下であることが好ましく、0.1μm以上5μm以下であることがより好ましい。
バリアコート層の厚さを0.01μm以上とすることにより、酸素バリア性および水蒸気バリア性をより向上することができる。バリアコート層の厚さを10μm以下とすることにより、リサイクル性を維持することができる。
The thickness of the barrier coat layer is preferably 0.01 μm or more and 10 μm or less, and more preferably 0.1 μm or more and 5 μm or less.
By making the thickness of the barrier coat layer 0.01 μm or more, the oxygen barrier property and the water vapor barrier property can be further improved, and by making the thickness of the barrier coat layer 10 μm or less, the recyclability can be maintained.

バリアコート層は、上記材料を水または適当な溶剤に、溶解または分散させ、塗布、乾燥することにより形成することができる。また、市販されるバリアコート剤を塗布、乾燥することによってもバリアコート層を形成することができる。 The barrier coat layer can be formed by dissolving or dispersing the above-mentioned materials in water or a suitable solvent, applying the solution, and drying the solution. The barrier coat layer can also be formed by applying a commercially available barrier coat agent and drying the solution.

また、他の実施形態において、バリアコート層は、金属アルコキシドと水溶性高分子との混合物を、ゾルゲル法触媒、水および有機溶剤などの存在下で、ゾルゲル法によって重縮合して得られる金属アルコキシドの加水分解物または金属アルコキシドの加水分解縮合物などの樹脂組成物を少なくとも1種含むガスバリア性塗布膜である。
基材が、無機酸化物から構成される蒸着膜を備える場合、該形態のバリアコート層を、蒸着膜と隣接するように設けることにより、蒸着膜におけるクラックの発生を効果的に防止することができる。
In another embodiment, the barrier coat layer is a gas barrier coating film containing at least one resin composition such as a hydrolysate of a metal alkoxide or a hydrolysis condensate of a metal alkoxide obtained by polycondensing a mixture of a metal alkoxide and a water-soluble polymer by a sol-gel method in the presence of a sol-gel catalyst, water, an organic solvent, etc.
When the substrate has a vapor-deposited film made of an inorganic oxide, by providing the barrier coat layer in this form so as to be adjacent to the vapor-deposited film, it is possible to effectively prevent the occurrence of cracks in the vapor-deposited film.

一実施形態において、金属アルコキシドは、下記一般式で表される。
M(OR
(ただし、式中、R、Rは、それぞれ、炭素数1~8の有機基を表し、Mは金属原子を表し、nは0以上の整数を表し、mは1以上の整数を表し、n+mはMの原子価を表す。)
In one embodiment, the metal alkoxide is represented by the following general formula:
R 1 n M (OR 2 ) m
(In the formula, R 1 and R 2 each represent an organic group having 1 to 8 carbon atoms, M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n+m represents the atomic valence of M.)

金属原子Mとしては、例えば、珪素、ジルコニウム、チタンおよびアルミニウムなどを使用することができる。
また、RおよびRで表される有機基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基およびi-ブチル基などのアルキル基を挙げることができる。
As the metal atom M, for example, silicon, zirconium, titanium, aluminum, etc. can be used.
Examples of the organic group represented by R 1 and R 2 include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and an i-butyl group.

上記一般式を満たす金属アルコキシドとしては、例えば、テトラメトキシシラン(Si(OCH)、テトラエトキシシラン(質量%)Si(OC)、テトラプロポキシシラン(Si(OC)、テトラブトキシシラン(Si(OC)などが挙げられる。 Examples of metal alkoxides satisfying the above general formula include tetramethoxysilane (Si( OCH3 ) 4 ) , tetraethoxysilane (mass %) Si( OC2H5 ) 4 ), tetrapropoxysilane (Si( OC3H7 ) 4 ), and tetrabutoxysilane (Si( OC4H9 ) 4 ).

また、上記金属アルコキシドと共に、シランカップリング剤が使用されることが好ましい。
シランカップリング剤としては、既知の有機反応性基含有オルガノアルコキシシランを用いることができるが、特に、エポキシ基を有するオルガノアルコキシシランが好ましい。エポキシ基を有するオルガノアルコキシシランとしては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシランおよびβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどが挙げられる。
It is also preferable to use a silane coupling agent together with the metal alkoxide.
As the silane coupling agent, a known organoalkoxysilane containing an organic reactive group can be used, and in particular, an organoalkoxysilane having an epoxy group is preferred. Examples of organoalkoxysilane having an epoxy group include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane.

上記のようなシランカップリング剤は、2種以上を使用してもよく、シランカップリング剤は、上記アルコキシドの合計量100質量部に対して、1~20質量部程度の範囲内で使用することが好ましい。 Two or more of the above silane coupling agents may be used, and it is preferable to use the silane coupling agent in an amount within the range of about 1 to 20 parts by mass per 100 parts by mass of the total amount of the alkoxide.

水溶性高分子としては、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体が好ましく、酸素バリア性、水蒸気バリア性、耐水性および耐候性という観点からは、これらを併用することが好ましい。 As water-soluble polymers, polyvinyl alcohol and ethylene-vinyl alcohol copolymers are preferred, and from the viewpoints of oxygen barrier properties, water vapor barrier properties, water resistance, and weather resistance, it is preferable to use these in combination.

ガスバリア性塗布膜における水溶性高分子の含有量は、金属アルコキシド100質量部に対して5質量部以上500質量部以下であることが好ましい。
ガスバリア性塗布膜における水溶性高分子の含有量を、金属アルコキシド100質量部に対して5質量部以上とすることにより、基材の酸素バリア性および水蒸気バリア性をより向上することができる。また、ガスバリア性塗布膜における水溶性高分子の含有量を、金属アルコキシド100質量部に対して500質量部以下とすることにより、ガスバリア性塗布膜の製膜性を向上することができる。
The content of the water-soluble polymer in the gas barrier coating film is preferably 5 parts by mass or more and 500 parts by mass or less per 100 parts by mass of the metal alkoxide.
By setting the content of the water-soluble polymer in the gas barrier coating film to 5 parts by mass or more per 100 parts by mass of the metal alkoxide, the oxygen barrier property and water vapor barrier property of the substrate can be further improved. Also, by setting the content of the water-soluble polymer in the gas barrier coating film to 500 parts by mass or less per 100 parts by mass of the metal alkoxide, the film formability of the gas barrier coating film can be improved.

ガスバリア性塗布膜の厚さは、0.01μm以上100μm以下であることが好ましく、0.1μm以上50μm以下であることがより好ましい。これにより、リサイクル性を維持しつつ、酸素バリア性および水蒸気バリア性をより向上することができる。
ガスバリア性塗布膜の厚さを0.01μm以上とすることにより、基材の酸素バリア性および水蒸気バリア性を向上することができる。また、無機酸化物から構成される蒸着膜と隣接するように設けた場合に、蒸着膜におけるクラックの発生を防止することができる。
The thickness of the gas barrier coating film is preferably 0.01 μm or more and 100 μm or less, and more preferably 0.1 μm or more and 50 μm or less, which can further improve the oxygen barrier property and water vapor barrier property while maintaining recyclability.
By making the thickness of the gas barrier coating film 0.01 μm or more, the oxygen barrier property and water vapor barrier property of the substrate can be improved. Furthermore, when the gas barrier coating film is provided adjacent to a vapor deposition film made of an inorganic oxide, the occurrence of cracks in the vapor deposition film can be prevented.

ガスバリア性塗布膜は、上記材料を含む組成物を、グラビアロールコーターなどのロールコート、スプレーコート、スピンコート、ディッピング、刷毛、バーコード、アプリケータなどの従来公知の手段により、塗布し、その組成物をゾルゲル法により重縮合することにより形成させることができる。
ゾルゲル法触媒としては、酸またはアミン系化合物が好適である。アミン系化合物としては、水に実質的に不溶であり、且つ有機溶媒に可溶な第3級アミンが好適であり、例えば、N,N-ジメチルベンジルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミンなどが挙げられる。これらの中でも、N,N-ジメチルべンジルアミンが好ましい。
ゾルゲル法触媒は、金属アルコキシド100質量部当り、0.01質量部以上1.0質量部以下の範囲で使用することが好ましく、0.03質量部以上0.3質量部以下の範囲で使用することがより好ましい。
ゾルゲル法触媒の使用量を金属アルコキシド100質量部当り、0.01質量部以上とすることにより、その触媒効果を向上することができる。また、ゾルゲル法触媒の使用量を金属アルコキシド100質量部当り、1.0質量部以下とすることにより、形成されるガスバリア性塗布膜の厚さを均一にすることができる。
The gas barrier coating film can be formed by applying a composition containing the above-mentioned materials by a conventionally known means such as roll coating using a gravure roll coater or the like, spray coating, spin coating, dipping, brushing, bar coding, or an applicator, and then polycondensing the composition by a sol-gel method.
The sol-gel catalyst is preferably an acid or an amine compound. As the amine compound, a tertiary amine that is substantially insoluble in water and soluble in an organic solvent is preferable, and examples thereof include N,N-dimethylbenzylamine, tripropylamine, tributylamine, and tripentylamine. Among these, N,N-dimethylbenzylamine is preferable.
The sol-gel catalyst is preferably used in the range of 0.01 to 1.0 part by mass, and more preferably 0.03 to 0.3 part by mass, per 100 parts by mass of the metal alkoxide.
By using a sol-gel catalyst in an amount of 0.01 part by mass or more per 100 parts by mass of the metal alkoxide, the catalytic effect can be improved, and by using a sol-gel catalyst in an amount of 1.0 part by mass or less per 100 parts by mass of the metal alkoxide, the thickness of the gas barrier coating film formed can be made uniform.

上記組成物は、さらに酸を含んでいてもよい。酸は、ゾル-ゲル法の触媒、主としてアルコキシドやシランカップリング剤などの加水分解のための触媒として用いられる。
酸としては、硫酸、塩酸、硝酸などの鉱酸、ならびに酢酸、酒石酸などの有機酸が用いられる。酸の使用量は、アルコキシドおよびシランカップリング剤のアルコキシド分(例えばシリケート部分)の総モル量に対して、0.001モル以上0.05モル以下であることが好ましい。
酸の使用量をアルコキシドおよびシランカップリング剤のアルコキシド分(例えばシリケート部分)の総モル量に対して、0.001モル以上とすることにより、触媒効果を向上することができる。また、アルコキシドおよびシランカップリング剤のアルコキシド分(例えばシリケート部分)の総モル量に対して、0.05モル以下とすることにより、形成されるガスバリア性塗布膜の厚さを均一にすることができる。
The composition may further contain an acid, which is used as a catalyst in the sol-gel process, mainly for the hydrolysis of alkoxides, silane coupling agents, etc.
The acid may be a mineral acid such as sulfuric acid, hydrochloric acid, or nitric acid, or an organic acid such as acetic acid, tartaric acid, etc. The amount of the acid used is preferably 0.001 mol or more and 0.05 mol or less based on the total molar amount of the alkoxide and the alkoxide portion (e.g., silicate portion) of the silane coupling agent.
The amount of acid used is 0.001 mole or more relative to the total molar amount of the alkoxide and the alkoxide portion (e.g., silicate portion) of the silane coupling agent, thereby improving the catalytic effect. Also, the amount of acid used is 0.05 mole or less relative to the total molar amount of the alkoxide and the alkoxide portion (e.g., silicate portion) of the silane coupling agent, thereby making the thickness of the gas barrier coating film formed uniform.

また、上記組成物は、アルコキシドの合計モル量1モルに対して、好ましくは0.1モル以上100モル以下、より好ましくは0.8モル以上2モル以下の割合の水を含んでなることが好ましい。
水の含有量をアルコキシドの合計モル量1モルに対して、0.1モル以上とすることにより、酸素バリア性および水蒸気バリア性を向上することができる。また、水の含有量をアルコキシドの合計モル量1モルに対して、100モル以上とすることにより、加水分解反応を速やかに行うことができる。
The composition preferably contains water in an amount of 0.1 to 100 moles, more preferably 0.8 to 2 moles, per mole of the total amount of alkoxides.
By controlling the water content to 0.1 mole or more per mole of the total molar amount of the alkoxides, the oxygen barrier property and the water vapor barrier property can be improved, and by controlling the water content to 100 moles or more per mole of the total molar amount of the alkoxides, the hydrolysis reaction can be carried out quickly.

また、上記組成物は、有機溶剤を含んでいてもよい。有機溶剤としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノールなどを用いることができる。 The composition may also contain an organic solvent. Examples of the organic solvent that can be used include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, and n-butanol.

以下、ガスバリア性塗布膜の形成方法の一実施形態について以下に説明する。
まず、金属アルコキシド、水溶性高分子、ゾルゲル法触媒、水、有機溶媒および必要に応じてシランカップリング剤などを混合し、組成物を調製する。該組成物中では次第に重縮合反応が進行する。
次いで、上記従来公知の方法により、該組成物を塗布、乾燥する。この乾燥により、アルコキシドおよび水溶性高分子(組成物が、シランカップリング剤を含む場合は、シランカップリング剤も)の重縮合反応がさらに進行し、複合ポリマーの層が形成される。
最後に、該組成物を20~250℃、好ましくは50~220℃の温度で、1秒~10分間加熱することにより、ガスバリア性塗布膜を形成することができる。
Hereinafter, one embodiment of the method for forming a gas barrier coating film will be described.
First, a composition is prepared by mixing a metal alkoxide, a water-soluble polymer, a sol-gel catalyst, water, an organic solvent, and optionally a silane coupling agent, etc. In the composition, a polycondensation reaction gradually proceeds.
The composition is then coated and dried by the above-mentioned conventional method, which causes the polycondensation reaction between the alkoxide and the water-soluble polymer (and the silane coupling agent, if the composition contains one) to proceed further, forming a composite polymer layer.
Finally, the composition is heated at a temperature of 20 to 250° C., preferably 50 to 220° C., for 1 second to 10 minutes to form a gas barrier coating film.

バリアコート層は、その表面に画像が形成されていてもよい。画像の形成方法などについては上記した通りである。 The barrier coat layer may have an image formed on its surface. The method of forming the image is as described above.

<ヒートシール層>
ヒートシール層は、基材と同一の材料、すなわち、ポリエチレンにより構成されている。このような構成とすることにより、積層体のリサイクル性を向上できる。
ヒートシール層は、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)およびエチレンとその他のモノマーとの共重合体の少なくとも1つを含む。これらの中でも、ヒートシール性という観点からは、低密度ポリエチレン(LDPE)および直鎖状低密度ポリエチレン(LLDPE)が好ましい。環境負荷の観点からは、これらポリエチレンは、バイオマス由来のものであることが好ましい。
<Heat seal layer>
The heat seal layer is made of the same material as the base material, i.e., polyethylene, which can improve the recyclability of the laminate.
The heat seal layer contains at least one of high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and a copolymer of ethylene and other monomers. Among these, low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) are preferred from the viewpoint of heat sealability. From the viewpoint of environmental load, these polyethylenes are preferably derived from biomass.

ヒートシール層におけるポリエチレンの含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。 The polyethylene content in the heat seal layer is preferably 50% by mass or more, and more preferably 70% by mass or more.

ヒートシール層は、本発明の特性を損なわない範囲において、添加剤を含むことができ、例えば、架橋剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料、改質用樹脂等が挙げられる。 The heat seal layer may contain additives within the range that does not impair the characteristics of the present invention, such as crosslinking agents, antioxidants, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments, modifying resins, etc.

ヒートシール層の厚さは、20μm以上、200μm以下であることが好ましく、30μm以上、150μm以下であることがより好ましい。ヒートシール層の厚さを上記数値範囲内とすることにより、そのヒートシール性を向上することができる。 The thickness of the heat seal layer is preferably 20 μm or more and 200 μm or less, and more preferably 30 μm or more and 150 μm or less. By setting the thickness of the heat seal layer within the above numerical range, the heat sealability can be improved.

ヒートシール層は、ポリエチレンを含む樹脂材料を、インフレーション成形またはT-ダイ成形等の溶融押出成形法によって製膜することによりポリエチレンフィルムを作製し、これを接着層を介して、基材または蒸着膜を備えるポリエチレン層上に積層することにより、形成することができる。
接着層は、接着剤を含み、この接着剤は、
接着剤としては、1液硬化型若しくは2液硬化型、または非硬化型のいずれも接着剤であってもよい。また、接着剤は、無溶剤型の接着剤であっても、溶剤型の接着剤であってもよいが、環境負荷の観点からは、無溶剤型の接着剤が好ましく使用できる。
無溶剤型接着剤としては、例えば、ポリエーテル系接着剤、ポリエステル系接着剤、シリコーン系接着剤、エポキシ系接着剤およびウレタン系接着剤などが挙げられ、これらのなかでも2液硬化型のウレタン系接着剤を好ましく使用することができる。
溶剤型接着剤としては、例えば、ゴム系接着剤、ビニル系接着剤、シリコーン系接着剤、エポキシ系接着剤、フェノール系接着剤およびオレフィン系接着剤などが挙げられる。
The heat seal layer can be formed by producing a polyethylene film by forming a resin material containing polyethylene into a film by a melt extrusion molding method such as inflation molding or T-die molding, and laminating this on a polyethylene layer provided with a substrate or a vapor deposition film via an adhesive layer.
The adhesive layer includes an adhesive, the adhesive comprising:
The adhesive may be a one-component curing type, a two-component curing type, or a non-curing type. The adhesive may be a solvent-free adhesive or a solvent-based adhesive, but from the viewpoint of environmental load, a solvent-free adhesive is preferably used.
Examples of solvent-free adhesives include polyether adhesives, polyester adhesives, silicone adhesives, epoxy adhesives, and urethane adhesives. Among these, two-component curing urethane adhesives can be preferably used.
Examples of the solvent-based adhesive include rubber-based adhesives, vinyl-based adhesives, silicone-based adhesives, epoxy-based adhesives, phenol-based adhesives, and olefin-based adhesives.

また、基材が、アルミニウム蒸着膜を備え、これ蒸着膜と隣接するように接着層を設ける場合には、接着層を、ポリエステルポリオールとイソシアネート化合物とリン酸変性化合物を含む樹脂組成物の硬化物により構成することが好ましい。
蒸着膜を備えた積層体を包装材料に適用する際には、成形機などにより積層体に屈曲負荷がかかるため、アルミニウム蒸着膜に亀裂などが生じる恐れがある。上記したような特定の接着剤を使用することで、アルミニウム蒸着膜に亀裂が生じた場合であっても、酸素バリア性および水蒸気バリア性の低下を抑制することができる。
In addition, when the substrate has an aluminum vapor deposition film and an adhesive layer is provided adjacent to the vapor deposition film, it is preferable that the adhesive layer is composed of a cured product of a resin composition containing a polyester polyol, an isocyanate compound, and a phosphoric acid-modified compound.
When a laminate having a vapor-deposited film is applied to a packaging material, a bending load is applied to the laminate by a molding machine, etc., which may cause cracks in the aluminum vapor-deposited film. By using the specific adhesive as described above, it is possible to suppress a decrease in the oxygen barrier property and water vapor barrier property even if cracks occur in the aluminum vapor-deposited film.

ポリエステルポリオールは、官能基として1分子中に水酸基を2個以上有する。また、イソシアネート化合物は、官能基として1分子中にイソシアネート基を2個以上有する。ポリエステルポリオールは、主骨格として、例えばポリエステル構造、またはポリエステルポリウレタン構造を有する。 Polyester polyols have two or more hydroxyl groups as functional groups in one molecule. Also, isocyanate compounds have two or more isocyanate groups as functional groups in one molecule. Polyester polyols have, for example, a polyester structure or a polyester polyurethane structure as the main skeleton.

ポリエステルポリオール、イソシアネート化合物およびリン酸変性化合物を含有する樹脂組成物の具体例としては、DIC株式会社から販売されている、パスリム(PASLIM)のシリーズが使用できる。 Specific examples of resin compositions containing polyester polyol, an isocyanate compound, and a phosphoric acid-modified compound include the PASLIM series sold by DIC Corporation.

該樹脂組成物は、板状無機化合物、カップリング剤、シクロデキストリンおよび/またはその誘導体などをさらに含んでいてもよい。 The resin composition may further contain a plate-like inorganic compound, a coupling agent, cyclodextrin and/or its derivatives, etc.

官能基として1分子中に水酸基を2個以上有するポリエステルポリオールとしては、例えば下記の〔第1例〕~〔第3例〕を用いることができる。
〔第1例〕オルト配向多価カルボン酸またはその無水物と、多価アルコールとを重縮合して得られるポリエステルポリオール
〔第2例〕グリセロール骨格を有するポリエステルポリオール
〔第3例〕イソシアヌル環を有するポリエステルポリオール
以下、各ポリエステルポリオールについて説明する。
As the polyester polyol having two or more hydroxyl groups in one molecule as a functional group, for example, the following [First Example] to [Third Example] can be used.
[Example 1] Polyester polyol obtained by polycondensation of an ortho-oriented polycarboxylic acid or its anhydride with a polyhydric alcohol. [Example 2] Polyester polyol having a glycerol skeleton. [Example 3] Polyester polyol having an isocyanuric ring. Each polyester polyol will be explained below.

第1例に係るポリエステルポリオールは、オルトフタル酸およびその無水物を少なくとも1種以上含む多価カルボン酸成分と、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、およびシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を含む多価アルコール成分とを重縮合して得られる重縮合体である。
特に、オルトフタル酸およびその無水物の、多価カルボン酸全成分に対する含有率が70~100質量%であるポリエステルポリオールが好ましい。
The polyester polyol according to the first example is a polycondensate obtained by polycondensing a polycarboxylic acid component containing at least one or more types of orthophthalic acid and its anhydride, and a polyhydric alcohol component containing at least one type selected from the group consisting of ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedimethanol.
In particular, polyester polyols in which the content of orthophthalic acid or its anhydride relative to the total amount of polyvalent carboxylic acids is 70 to 100% by mass are preferred.

第1例に係るポリエステルポリオールは、多価カルボン酸成分としてオルトフタル酸およびその無水物を必須とするが、本実施の形態の効果を損なわない範囲において、他の多価カルボン酸成分を共重合させてもよい。
具体的には、コハク酸、アジピン酸、アゼライン酸、セバシン酸およびドデカンジカルボン酸など脂肪族多価カルボン酸、無水マレイン酸、マレイン酸およびフマル酸などの不飽和結合含有多価カルボン酸、1,3-シクロペンタンジカルボン酸および1,4-シクロヘキサンジカルボン酸などの脂環族多価カルボン酸、テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、これらジカルボン酸の無水物およびこれらジカルボン酸のエステル形成性誘導体などの芳香族多価カルボン酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸およびこれらのジヒドロキシカルボン酸のエステル形成性誘導体などの多塩基酸などが挙げられる。これらの中でも、コハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸が好ましい。
なお、上記その他の多価カルボン酸を2種以上使用してもよい。
The polyester polyol according to the first example essentially contains orthophthalic acid and its anhydride as the polycarboxylic acid component, but may be copolymerized with other polycarboxylic acid components as long as the effect of the present embodiment is not impaired.
Specifically, aliphatic polycarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, and dodecane dicarboxylic acid, unsaturated bond-containing polycarboxylic acids such as maleic anhydride, maleic acid, and fumaric acid, alicyclic polycarboxylic acids such as 1,3-cyclopentane dicarboxylic acid and 1,4-cyclohexane dicarboxylic acid, aromatic polycarboxylic acids such as terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyl dicarboxylic acid, 1,2-bis(phenoxy)ethane-p,p'-dicarboxylic acid, anhydrides of these dicarboxylic acids, and ester-forming derivatives of these dicarboxylic acids, polybasic acids such as p-hydroxybenzoic acid, p-(2-hydroxyethoxy)benzoic acid, and ester-forming derivatives of these dihydroxycarboxylic acids, etc. are exemplified. Among these, succinic acid, 1,3-cyclopentane dicarboxylic acid, and isophthalic acid are preferred.
Two or more of the above other polyvalent carboxylic acids may be used.

第2例に係るポリエステルポリオールとして、一般式(1)で表されるグリセロール骨格を有するポリエステルポリオールを挙げることができる。
一般式(1)において、R1、R2、R3は、各々独立に、H(水素原子)または下記の一般式(2)で表される基である。
As a polyester polyol according to the second example, a polyester polyol having a glycerol skeleton represented by the general formula (1) can be mentioned.
In general formula (1), R1, R2, and R3 each independently represent H (hydrogen atom) or a group represented by the following general formula (2).

式(2)において、nは1~5の整数を表し、Xは、置換基を有してもよい1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、および2,3-アントラセンジイル基から成る群から選ばれるアリーレン基を表し、Yは炭素原子数2~6のアルキレン基を表す)で表される基を表す。
但し、R1、R2、R3のうち少なくとも一つは、一般式(2)で表される基を表す。
In formula (2), n represents an integer of 1 to 5, X represents an arylene group selected from the group consisting of a 1,2-phenylene group, a 1,2-naphthylene group, a 2,3-naphthylene group, a 2,3-anthraquinonediyl group, and a 2,3-anthracenediyl group, which may have a substituent, and Y represents an alkylene group having 2 to 6 carbon atoms.
However, at least one of R1, R2, and R3 represents a group represented by general formula (2).

一般式(1)において、R1、R2、R3の少なくとも1つは一般式(2)で表される基である必要がある。中でも、R1、R2、R3全てが一般式(2)で表される基であることが好ましい。 In general formula (1), at least one of R1, R2, and R3 must be a group represented by general formula (2). In particular, it is preferable that all of R1, R2, and R3 are groups represented by general formula (2).

また、R1、R2、R3のいずれか1つが一般式(2)で表される基である化合物と、R1、R2、R3のいずれか2つが一般式(2)で表される基である化合物と、R1、R2、R3の全てが一般式(2)で表される基である化合物の、いずれか2つ以上の化合物が混合物となっていてもよい。 The compound may be a mixture of two or more of the following: a compound in which any one of R1, R2, and R3 is a group represented by general formula (2); a compound in which any two of R1, R2, and R3 are groups represented by general formula (2); and a compound in which all of R1, R2, and R3 are groups represented by general formula (2).

Xは、1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基および2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表す。
Xが置換基によって置換されている場合、1または複数の置換基で置換されていてもよく、該置換基は、X上の、遊離基とは異なる任意の炭素原子に結合している。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基およびナフチル基などが挙げられる。
X represents an optionally substituted arylene group selected from the group consisting of a 1,2-phenylene group, a 1,2-naphthylene group, a 2,3-naphthylene group, a 2,3-anthraquinonediyl group, and a 2,3-anthracenediyl group.
When X is substituted with a substituent, it may be substituted with one or more substituents, and the substituent is bonded to any carbon atom on X that is different from the free radical. The substituents include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group, an amino group, a phthalimido group, a carboxyl group, a carbamoyl group, a N-ethylcarbamoyl group, a phenyl group, and a naphthyl group.

一般式(2)において、Yは、エチレン基、プロピレン基、ブチレン基、ネオペンチレン基、1,5-ペンチレン基、3-メチル-1,5-ペンチレン基、1,6-ヘキシレン基、メチルペンチレン基およびジメチルブチレン基などの炭素原子数2~6のアルキレン基を表す。Yは、中でも、プロピレン基およびエチレン基が好ましくエチレン基が最も好ましい。 In general formula (2), Y represents an alkylene group having 2 to 6 carbon atoms, such as an ethylene group, a propylene group, a butylene group, a neopentylene group, a 1,5-pentylene group, a 3-methyl-1,5-pentylene group, a 1,6-hexylene group, a methylpentylene group, or a dimethylbutylene group. Of these, a propylene group or an ethylene group is preferable, and an ethylene group is most preferable.

一般式(1)で表されるグリセロール骨格を有するポリエステル樹脂化合物は、グリセロールと、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物と、多価アルコール成分とを必須成分として反応させることにより合成することができる。 The polyester resin compound having a glycerol skeleton represented by general formula (1) can be synthesized by reacting glycerol, an aromatic polycarboxylic acid or its anhydride in which a carboxylic acid is substituted at the ortho position, and a polyhydric alcohol component as essential components.

カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物としては、オルトフタル酸またはその無水物、ナフタレン2,3-ジカルボン酸またはその無水物、ナフタレン1,2-ジカルボン酸またはその無水物、アントラキノン2,3-ジカルボン酸またはその無水物、および2,3-アントラセンカルボン酸またはその無水物などが挙げられる。
これらの化合物は、芳香環の任意の炭素原子に置換基を有していても良い。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基およびナフチル基などが挙げられる。
Examples of aromatic polycarboxylic acids or anhydrides in which a carboxylic acid is substituted at the ortho position include orthophthalic acid or anhydride, naphthalene 2,3-dicarboxylic acid or anhydride, naphthalene 1,2-dicarboxylic acid or anhydride, anthraquinone 2,3-dicarboxylic acid or anhydride, and 2,3-anthracene carboxylic acid or anhydride.
These compounds may have a substituent at any carbon atom of the aromatic ring, such as a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group, an amino group, a phthalimido group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group, or a naphthyl group.

また、多価アルコール成分としては炭素原子数2~6のアルキレンジオールが挙げられる。例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオールおよびジメチルブタンジオールなどのジオールを例示することができる。 The polyhydric alcohol component may be an alkylene diol having 2 to 6 carbon atoms. Examples of such diols include ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, and dimethylbutanediol.

第3例に係るポリエステルポリオールは、下記一般式(3)で表されるイソシアヌル環を有するポリエステルポリオールである。
一般式(3)において、R1、R2、R3は、各々独立に、「-(CH2)n1-OH(但しn1は2~4の整数を表す)」、または、一般式(4)の構造を表す。
The polyester polyol according to the third example is a polyester polyol having an isocyanuric ring represented by the following general formula (3).
In the general formula (3), R1, R2, and R3 each independently represent "-(CH2)n1-OH (wherein n1 represents an integer of 2 to 4)" or a structure represented by the general formula (4).

一般式(4)中、n2は2~4の整数を表し、n3は1~5の整数を表し、Xは1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基および2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表し、Yは炭素原子数2~6のアルキレン基を表す)で表される基を表す。但しR1、R2、R3の少なくとも1つは一般式(4)で表される基である。 In the general formula (4), n2 represents an integer of 2 to 4, n3 represents an integer of 1 to 5, X represents an arylene group selected from the group consisting of 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, 2,3-anthraquinonediyl group, and 2,3-anthracenediyl group, which may have a substituent, and Y represents an alkylene group having 2 to 6 carbon atoms. However, at least one of R1, R2, and R3 is a group represented by the general formula (4).

一般式(3)において、-(CH2)n1-で表されるアルキレン基は、直鎖状であっても分岐状でもよい。n1は、中でも2または3が好ましく、2が最も好ましい。 In general formula (3), the alkylene group represented by -(CH2)n1- may be linear or branched. n1 is preferably 2 or 3, and most preferably 2.

一般式(4)において、n2は2~4の整数を表し、n3は1~5の整数を表す。
Xは1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、および2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表す。
In formula (4), n2 represents an integer of 2 to 4, and n3 represents an integer of 1 to 5.
X represents an optionally substituted arylene group selected from the group consisting of a 1,2-phenylene group, a 1,2-naphthylene group, a 2,3-naphthylene group, a 2,3-anthraquinonediyl group, and a 2,3-anthracenediyl group.

Xが置換基によって置換されている場合、1または複数の置換基で置換されていてもよく、該置換基は、X上の、遊離基とは異なる任意の炭素原子に結合している。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基およびナフチル基などが挙げられる。
Xの置換基は、中でもヒドロキシル基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルバモイル基、N-エチルカルバモイル基およびフェニル基が好ましくヒドロキシル基、フェノキシ基、シアノ基、ニトロ基、フタルイミド基およびフェニル基が最も好ましい。
When X is substituted with a substituent, it may be substituted with one or more substituents, and the substituent is bonded to any carbon atom on X that is different from the free radical. The substituents include a chloro group, a bromo group, a methyl group, an ethyl group, an i-propyl group, a hydroxyl group, a methoxy group, an ethoxy group, a phenoxy group, a methylthio group, a phenylthio group, a cyano group, a nitro group, an amino group, a phthalimido group, a carboxyl group, a carbamoyl group, a N-ethylcarbamoyl group, a phenyl group, and a naphthyl group.
The substituent for X is preferably a hydroxyl group, a cyano group, a nitro group, an amino group, a phthalimido group, a carbamoyl group, an N-ethylcarbamoyl group, or a phenyl group, and most preferably a hydroxyl group, a phenoxy group, a cyano group, a nitro group, a phthalimido group, or a phenyl group.

一般式(4)において、Yは、エチレン基、プロピレン基、ブチレン基、ネオペンチレン基、1,5-ペンチレン基、3-メチル-1,5-ペンチレン基、1,6-ヘキシレン基、メチルペンチレン基およびジメチルブチレン基などの炭素原子数2~6のアルキレン基を表す。Yは、中でも、プロピレン基およびエチレン基が好ましくエチレン基が最も好ましい。 In general formula (4), Y represents an alkylene group having 2 to 6 carbon atoms, such as an ethylene group, a propylene group, a butylene group, a neopentylene group, a 1,5-pentylene group, a 3-methyl-1,5-pentylene group, a 1,6-hexylene group, a methylpentylene group, or a dimethylbutylene group. Of these, a propylene group or an ethylene group is preferable, and an ethylene group is most preferable.

一般式(3)において、R1、R2、R3の少なくとも1つは一般式(4)で表される基である。中でも、R1、R2、R3全てが一般式(4)で表される基であることが好ましい。 In general formula (3), at least one of R1, R2, and R3 is a group represented by general formula (4). Of these, it is preferable that all of R1, R2, and R3 are groups represented by general formula (4).

また、R1、R2、R3のいずれか1つが一般式(4)で表される基である化合物と、R1、R2、R3のいずれか2つが一般式(4)で表される基である化合物と、R1、R2、R3の全てが一般式(4)で表される基である化合物の、いずれか2つ以上の化合物が混合物となっていてもよい。 The compound may be a mixture of two or more of the following: a compound in which any one of R1, R2, and R3 is a group represented by general formula (4); a compound in which any two of R1, R2, and R3 are groups represented by general formula (4); and a compound in which all of R1, R2, and R3 are groups represented by general formula (4).

一般式(3)で表されるイソシアヌル環を有するポリエステルポリオールは、イソシアヌル環を有するトリオールと、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物と、多価アルコール成分とを必須成分として反応させることにより合成することができる The polyester polyol having an isocyanuric ring represented by the general formula (3) can be synthesized by reacting a triol having an isocyanuric ring, an aromatic polycarboxylic acid or its anhydride in which a carboxylic acid is substituted at the ortho position, and a polyhydric alcohol component as essential components.

イソシアヌル環を有するトリオールとしては、例えば、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸および1,3,5-トリス(2-ヒドロキシプロピル)イソシアヌル酸などのイソシアヌル酸のアルキレンオキサイド付加物などが挙げられる。 Examples of triols having an isocyanuric ring include alkylene oxide adducts of isocyanuric acid, such as 1,3,5-tris(2-hydroxyethyl)isocyanuric acid and 1,3,5-tris(2-hydroxypropyl)isocyanuric acid.

また、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物としては、オルトフタル酸またはその無水物、ナフタレン2,3-ジカルボン酸またはその無水物、ナフタレン1,2-ジカルボン酸またはその無水物、アントラキノン2,3-ジカルボン酸またはその無水物、および2,3-アントラセンカルボン酸またはその無水物などが挙げられる。これらの化合物は、芳香環の任意の炭素原子に置換基を有していても良い。 Examples of aromatic polycarboxylic acids or anhydrides in which the carboxylic acid is substituted at the ortho position include orthophthalic acid or anhydride, naphthalene 2,3-dicarboxylic acid or anhydride, naphthalene 1,2-dicarboxylic acid or anhydride, anthraquinone 2,3-dicarboxylic acid or anhydride, and 2,3-anthracene carboxylic acid or anhydride. These compounds may have a substituent on any carbon atom of the aromatic ring.

該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基およびナフチル基などが挙げられる。 Such substituents include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino, phthalimido, carboxyl, carbamoyl, N-ethylcarbamoyl, phenyl, and naphthyl groups.

また、多価アルコール成分としては炭素原子数2~6のアルキレンジオールが挙げられる。例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオールおよびジメチルブタンジオールなどのジオールが挙げられる。
中でも、イソシアヌル環を有するトリオール化合物として1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸、または1,3,5-トリス(2-ヒドロキシプロピル)イソシアヌル酸を使用し、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物としてオルトフタル酸無水物を使用し、多価アルコールとしてエチレングリコールを使用したイソシアヌル環を有するポリエステルポリオール化合物が、酸素バリア性や接着性に特に優れ好ましい。
The polyhydric alcohol component may be an alkylene diol having 2 to 6 carbon atoms, such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, and dimethylbutanediol.
Among these, polyester polyol compounds having an isocyanuric ring, which use 1,3,5-tris(2-hydroxyethyl)isocyanuric acid or 1,3,5-tris(2-hydroxypropyl)isocyanuric acid as the triol compound having an isocyanuric ring, orthophthalic anhydride as the aromatic polycarboxylic acid or its anhydride in which the carboxylic acid is substituted at the ortho position, and ethylene glycol as the polyhydric alcohol, are particularly excellent in oxygen barrier properties and adhesive properties and are therefore preferred.

イソシアヌル環は高極性であり且つ3官能であり、系全体の極性を高めることができ、且つ、架橋密度を高めることができる。このような観点からイソシアヌル環を接着剤樹脂全固形分に対し5質量%以上含有することが好ましい。 Isocyanuric rings are highly polar and trifunctional, and can increase the polarity of the entire system and increase the crosslinking density. From this perspective, it is preferable for the adhesive resin to contain 5% by mass or more of isocyanuric rings relative to the total solid content.

イソシアネート化合物は、分子内にイソシアネート基を2個以上有する。
また、イソシアネート化合物は、芳香族であっても、脂肪族であってもよく、低分子化合物であっても、高分子化合物であってもよい。
さらに、イソシアネート化合物は、公知のイソシアネートブロック化剤を用いて公知慣用の適宜の方法より付加反応させて得られたブロック化イソシアネート化合物であってもよい。
中でも、接着性や耐レトルト性の観点から、イソシアネート基を3個以上有するポリイソシアネート化合物が好ましく、酸素バリア性および水蒸気バリア性の観点からは、芳香族であることが好ましい。
The isocyanate compound has two or more isocyanate groups in the molecule.
The isocyanate compound may be either aromatic or aliphatic, and may be either a low molecular weight compound or a high molecular weight compound.
Furthermore, the isocyanate compound may be a blocked isocyanate compound obtained by subjecting a known isocyanate blocking agent to an addition reaction by a known, conventional appropriate method.
Among these, from the viewpoints of adhesiveness and retort resistance, polyisocyanate compounds having three or more isocyanate groups are preferred, and from the viewpoints of oxygen barrier property and water vapor barrier property, aromatic compounds are preferred.

イソシアネート化合物の具体的な化合物としては、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、水素化ジフェニルメタンジイソシアネート、メタキシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネート、およびこれらのイソシアネート化合物の3量体、並びにこれらのイソシアネート化合物と、低分子活性水素化合物若しくはそのアルキレンオキシド付加物、または高分子活性水素化合物とを反応させて得られるアダクト体、ビュレット体およびアロファネート体などが挙げられる。
低分子活性水素化合物としては、例えば、エチレングリコール、プロピレングリコール、メタキシリレンアルコール、1,3-ビスヒドロキシエチルベンゼン、1,4-ビスヒドロキシエチルベンゼン、トリメチロールプロパン、グリセロール、ペンタエリスリトール、エリスリトール、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンおよびメタキシリレンジアミンなどが挙げられ、分子活性水素化合物としては、各種ポリエステル樹脂、ポリエーテルポリオールおよびポリアミドの高分子活性水素化合物などが挙げられる。
Specific examples of the isocyanate compound include tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, metaxylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, and trimers of these isocyanate compounds, as well as adducts, biurets, and allophanates obtained by reacting these isocyanate compounds with low-molecular-weight active hydrogen compounds or their alkylene oxide adducts, or high-molecular-weight active hydrogen compounds.
Examples of low molecular weight active hydrogen compounds include ethylene glycol, propylene glycol, metaxylylene alcohol, 1,3-bishydroxyethylbenzene, 1,4-bishydroxyethylbenzene, trimethylolpropane, glycerol, pentaerythritol, erythritol, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, and metaxylylenediamine. Examples of molecular weight active hydrogen compounds include polymeric active hydrogen compounds such as various polyester resins, polyether polyols, and polyamides.

リン酸変性化合物は、例えば下記の一般式(5)または(6)で表される化合物である。
一般式(5)において、R1、R2、R3は、水素原子、炭素数1~30のアルキル基、(メタ)アクリロイル基、置換基を有してもよいフェニル基および(メタ)アクリロイルオキシ基を有する炭素数1~4のアルキル基から選ばれる基であるが、少なくとも一つは水素原子であり、nは、1~4の整数を表す。
式中、R4、R5は、水素原子、炭素数1~30のアルキル基、(メタ)アクリロイル基、置換基を有してもよいフェニル基および(メタ)アクリロイルオキシ基を有する炭素数1~4のアルキル基から選ばれる基であり、nは1~4の整数、xは0~30の整数、yは0~30の整数を表すが、xとyが共に0である場合を除く。
The phosphoric acid-modified compound is, for example, a compound represented by the following general formula (5) or (6).
In general formula (5), R1, R2, and R3 are groups selected from a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a (meth)acryloyl group, a phenyl group which may have a substituent, and an alkyl group having 1 to 4 carbon atoms which has a (meth)acryloyloxy group, at least one of which is a hydrogen atom, and n is an integer of 1 to 4.
In the formula, R4 and R5 are groups selected from a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a (meth)acryloyl group, a phenyl group which may have a substituent, and an alkyl group having 1 to 4 carbon atoms which has a (meth)acryloyloxy group; n is an integer of 1 to 4, x is an integer of 0 to 30, and y is an integer of 0 to 30, except for the case where both x and y are 0.

より具体的には、リン酸、ピロリン酸、トリリン酸、メチルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、ジブチルホスフェート、2-エチルヘキシルアシッドホスフェート、ビス(2-エチルヘキシル)ホスフェート、イソドデシルアシッドホスフェート、ブトキシエチルアシッドホスフェート、オレイルアシッドホスフェート、テトラコシルアシッドホスフェート、2-ヒドロキシエチルメタクリレートアシッドホスフェートおよびポリオキシエチレンアルキルエーテルリン酸などが挙げられ、これらの1種または2種以上を用いることができる。 More specifically, examples of such acids include phosphoric acid, pyrophosphoric acid, triphosphoric acid, methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, dibutyl phosphate, 2-ethylhexyl acid phosphate, bis(2-ethylhexyl) phosphate, isododecyl acid phosphate, butoxyethyl acid phosphate, oleyl acid phosphate, tetracosyl acid phosphate, 2-hydroxyethyl methacrylate acid phosphate, and polyoxyethylene alkyl ether phosphate, and one or more of these can be used.

樹脂組成物におけるリン酸変性化合物の含有量は、0.005質量%以上10質量%以下が好ましく、0.01質量%以上1質量%以下であることがより好ましい。
リン酸変性化合物の含有量を0.005質量%以上とすることにより、本発明の積層体の酸素バリア性および水蒸気バリア性を向上することができる。また、リン酸変性化合物の含有量を10質量%以下とすることにより、接着層の接着性を向上することができる。
The content of the phosphoric acid-modified compound in the resin composition is preferably from 0.005% by mass to 10% by mass, and more preferably from 0.01% by mass to 1% by mass.
By adjusting the content of the phosphoric acid-modified compound to 0.005% by mass or more, the oxygen barrier property and water vapor barrier property of the laminate of the present invention can be improved, and by adjusting the content of the phosphoric acid-modified compound to 10% by mass or less, the adhesiveness of the adhesive layer can be improved.

ポリエステルポリオール、イソシアネート化合物およびリン酸変性化合物を含有する樹脂組成物は、板状無機化合物を含んでいてもよく、これにより、接着層の接着性を向上することができる。また、本発明の積層体の耐屈曲負荷性を向上させることができる。
板状無機化合物としては、例えば、カオリナイト-蛇紋族粘土鉱物(ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライト、アンチゴライト、クリソタイルなど)およびパイロフィライト-タルク族(パイロフィライト、タルク、ケロライなど)などが挙げられる。
The resin composition containing the polyester polyol, the isocyanate compound and the phosphoric acid-modified compound may contain a plate-like inorganic compound, which can improve the adhesiveness of the adhesive layer and the bending load resistance of the laminate of the present invention.
Examples of the plate-like inorganic compounds include kaolinite-serpentine group clay minerals (such as halloysite, kaolinite, endelite, dickite, nacrite, antigorite, and chrysotile) and pyrophyllite-talc group (such as pyrophyllite, talc, and keroli).

カップリング剤としては、例えば、下記一般式(7)であらわされるシラン系カップリング剤、チタン系カップリング剤およびアルミニウム系カップリング剤などが挙げられる。なお、これらのカップリング剤は、単独でも、2種類以上組み合わせてもよい。
Examples of the coupling agent include a silane-based coupling agent, a titanium-based coupling agent, and an aluminum-based coupling agent, which are represented by the following general formula (7). These coupling agents may be used alone or in combination of two or more kinds.

シラン系カップリング剤としては、例えば、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メタクリロキシトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシランおよび3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)などが挙げられる。 Examples of silane coupling agents include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-methacryloxytrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane, N-β(a Examples of such silanes include N-(aminoethyl) gamma-aminopropyl methyldimethoxysilane, N-β(aminoethyl) gamma-aminopropyl trimethoxysilane, N-β(aminoethyl) gamma-aminopropyl triethoxysilane, gamma-aminopropyl trimethoxysilane, gamma-aminopropyl triethoxysilane, N-phenyl-gamma-aminopropyl trimethoxysilane, gamma-chloropropyl trimethoxysilane, gamma-mercaptopropyl trimethoxysilane, 3-isocyanatopropyl triethoxysilane, 3-acryloxypropyl trimethoxysilane, and 3-triethoxysilyl-N-(1,3-dimethyl-butylidene).

また、チタン系カップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジドデシルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタイノルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、ジイソステアロイルエチレンチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネートおよびジクミルフェニルオキシアセテートチタネートなどが挙げられる。 Examples of titanium-based coupling agents include isopropyl triisostearoyl titanate, isopropyl tri(N-aminoethyl-aminoethyl) titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris(dioctyl pyrophosphate) titanate, tetraoctyl bis(didodecyl phosphite) titanate, tetraoctyl bis(ditridecyl phosphite) titanate, bis(dioctyl pyrophosphate)oxy Examples include bis(dioctyl pyrophosphate)ethylene titanate, isopropyl trioctanoyl titanate, isopropyl dimethacryl isostearoyl titanate, isopropyl isostearoyl diacryl titanate, diisostearoyl ethylene titanate, isopropyl tri(dioctyl phosphate) titanate, isopropyl tricumyl phenyl titanate, and dicumyl phenyloxyacetate titanate.

また、アルミニウム系カップリング剤の具体例としては、例えば、アセトアルコキシアルミニウムジイソプロピレート、ジイソプロポキシアルミニウムエチルアセトアセテート、ジイソプロポキシアルミニウムモノメタクリレート、イソプロポキシアルミニウムアルキルアセトアセテートモノ(ジオクチルホスフェート)、アルミニウム-2-エチルヘキサノエートオキサイドトリマー、アルミニウムステアレートオキサイドトリマーおよびアルキルアセトアセテートアルミニウムオキサイドトリマーなどが挙げられる。 Specific examples of aluminum-based coupling agents include acetoalkoxyaluminum diisopropylate, diisopropoxyaluminum ethyl acetoacetate, diisopropoxyaluminum monomethacrylate, isopropoxyaluminum alkyl acetoacetate mono(dioctyl phosphate), aluminum 2-ethylhexanoate oxide trimer, aluminum stearate oxide trimer, and alkyl acetoacetate aluminum oxide trimer.

樹脂組成物は、シクロデキストリンおよび/またはその誘導体を含むことができ、これにより、接着層の接着性を向上することができる。また、本発明の積層体の耐屈曲負荷性をより向上できる。
具体的には、例えば、シクロデキストリン、アルキル化シクロデキストリン、アセチル化シクロデキストリンおよびヒドロキシアルキル化シクロデキストリンなどのシクロデキストリンのグルコース単位の水酸基の水素原子を他の官能基で置換したものなどを用いることができる。また、分岐環状デキストリンも用いることができる。
また、シクロデキストリンおよびシクロデキストリン誘導体におけるシクロデキストリン骨格は、6個のグルコース単位からなるα-シクロデキストリン、7個のグルコース単位からなるβ-シクロデキストリン、8個のグルコース単位からなるγ-シクロデキストリンのいずれであってもよい。
これらの化合物は単独で用いても2種以上を併用してもよい。また、これらシクロデキストリンおよび/またはその誘導体を以降、デキストリン化合物と総称する場合がある。
The resin composition may contain cyclodextrin and/or a derivative thereof, which can improve the adhesiveness of the adhesive layer and the bending load resistance of the laminate of the present invention.
Specifically, for example, cyclodextrin, alkylated cyclodextrin, acetylated cyclodextrin, hydroxyalkylated cyclodextrin, and other cyclodextrins in which the hydrogen atoms of the hydroxyl groups of the glucose units of cyclodextrin are substituted with other functional groups can be used. Branched cyclic dextrins can also be used.
Furthermore, the cyclodextrin skeleton in cyclodextrin and cyclodextrin derivatives may be any of α-cyclodextrin consisting of six glucose units, β-cyclodextrin consisting of seven glucose units, and γ-cyclodextrin consisting of eight glucose units.
These compounds may be used alone or in combination of two or more. Hereinafter, these cyclodextrins and/or their derivatives may be collectively referred to as dextrin compounds.

樹脂組成物への相溶性および分散性の観点から、シクロデキストリン化合物としては、シクロデキストリン誘導体を用いることが好ましい。 From the viewpoint of compatibility and dispersibility in the resin composition, it is preferable to use a cyclodextrin derivative as the cyclodextrin compound.

アルキル化シクロデキストリンとしては、例えば、メチル-α-シクロデキストリン、メチル-β-シクロデキストリンおよびメチル-γ-シクロデキストリンなどが挙げられる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of alkylated cyclodextrins include methyl-α-cyclodextrin, methyl-β-cyclodextrin, and methyl-γ-cyclodextrin. These compounds may be used alone or in combination of two or more.

アセチル化シクロデキストリンとしては、例えば、モノアセチル-α-シクロデキストリン、モノアセチル-β-シクロデキストリンおよびモノアセチル-γ-シクロデキストリンなどが挙げられる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of acetylated cyclodextrins include monoacetyl-α-cyclodextrin, monoacetyl-β-cyclodextrin, and monoacetyl-γ-cyclodextrin. These compounds may be used alone or in combination of two or more.

ヒドロキシアルキル化シクロデキストリンとしては、例えば、ヒドロキシプロピル-α-シクロデキストリン、ヒドロキシプロピル-β-シクロデキストリンおよびヒドロキシプロピル-γ-シクロデキストリンなどが挙げられる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of hydroxyalkylated cyclodextrins include hydroxypropyl-α-cyclodextrin, hydroxypropyl-β-cyclodextrin, and hydroxypropyl-γ-cyclodextrin. These compounds may be used alone or in combination of two or more.

接着層の厚さは、0.5μm以上6μm以下であることが好ましく、0.8μm以上5μm以下であることがより好ましく、1μm以上4.5μm以下であることがさらに好ましい。
接着層の厚さを0.5μm以上とすることにより、接着層の接着性を向上することができる。また、ポリエステルポリオールとイソシアネート化合物とリン酸変性化合物を含む樹脂組成物の硬化物からなる接着層を、アルミニウム蒸着膜と隣接するように設けた場合には、積層体の耐屈曲負荷性を向上することができる。
接着層の厚さを6μm以下とすることにより、積層体の加工適性を向上することができる。
The thickness of the adhesive layer is preferably 0.5 μm or more and 6 μm or less, more preferably 0.8 μm or more and 5 μm or less, and even more preferably 1 μm or more and 4.5 μm or less.
By making the thickness of the adhesive layer 0.5 μm or more, the adhesiveness of the adhesive layer can be improved. In addition, when an adhesive layer made of a cured product of a resin composition containing a polyester polyol, an isocyanate compound, and a phosphoric acid-modified compound is provided adjacent to an aluminum vapor deposition film, the bending load resistance of the laminate can be improved.
By setting the thickness of the adhesive layer to 6 μm or less, the processability of the laminate can be improved.

また、ポリエチレンを含む樹脂材料を基材または蒸着膜を備える中間層上に押出し、これを乾燥させることによっても、ヒートシール層を形成することができる。 The heat seal layer can also be formed by extruding a resin material containing polyethylene onto a substrate or an intermediate layer having a vapor deposition film, and then drying it.

<蒸着膜を備える中間層>
第1の態様において、積層体は、基材と、ヒートシール層との間に、少なくとも一方の面に蒸着膜を備える中間層を備えることができる。中間層は、基材およびヒートシール層と同様にポリエチレンにより構成されており、これにより、積層体のリサイクル性を向上することができる。また、これにより、本発明による積層体のガスバリア性をさらに向上することができる。
<Intermediate layer with vapor deposition film>
In the first embodiment, the laminate can have an intermediate layer between the substrate and the heat seal layer, the intermediate layer having a vapor deposition film on at least one side. The intermediate layer is made of polyethylene, like the substrate and the heat seal layer, and this can improve the recyclability of the laminate. This can also further improve the gas barrier properties of the laminate according to the present invention.

蒸着膜を備える中間層は、延伸フィルムから構成されるものであっても、未延伸フィルムから構成されるものであってもよいが、積層体の印刷適性、強度および耐熱性という観点からは延伸されたものであることが好ましい。また、一軸延伸されたものであっても、二軸延伸されたものであってもよいが、強度という観点からは、二軸延伸されたものが好ましい。 The intermediate layer having the vapor-deposited film may be made of a stretched film or an unstretched film, but from the viewpoint of printability, strength, and heat resistance of the laminate, it is preferable that it is stretched. It may also be uniaxially stretched or biaxially stretched, but from the viewpoint of strength, it is preferable that it is biaxially stretched.

蒸着膜を備える中間層は、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)およびエチレンとその他のモノマーとの共重合体の少なくとも1つを含む。これらの中でも、印刷適性、強度および耐熱性という観点から、高密度ポリエチレン(HDPE)および中密度ポリエチレン(MDPE)が好ましく、高密度ポリエチレン(HDPE)がより好ましい。環境負荷の観点からは、これらポリエチレンは、バイオマス由来のものであることが好ましい。 The intermediate layer having a vapor deposition film contains at least one of high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and a copolymer of ethylene and other monomers. Among these, from the viewpoints of printability, strength, and heat resistance, high density polyethylene (HDPE) and medium density polyethylene (MDPE) are preferred, and high density polyethylene (HDPE) is more preferred. From the viewpoint of environmental load, it is preferable that these polyethylenes are derived from biomass.

蒸着膜を備える中間層におけるポリエチレンの含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。 The polyethylene content in the intermediate layer having a vapor deposition film is preferably 50% by mass or more, and more preferably 70% by mass or more.

蒸着膜を備える中間層は、本発明の特性を損なわない範囲において、添加剤を含むことができ、例えば、架橋剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料、改質用樹脂等が挙げられる。 The intermediate layer comprising the vapor deposition film can contain additives within the range that does not impair the characteristics of the present invention, such as crosslinking agents, antioxidants, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments, modifying resins, etc.

蒸着膜を構成する材料としては、上記した金属や金属酸化物を使用することができるが、ガスバリア性およびコストの観点から、アルミニウムにより蒸着膜を形成することが好ましい。また、アルミニウムを使用することにより、光沢を与えることができ、意匠性を向上することもできる。 The above-mentioned metals and metal oxides can be used as materials for forming the vapor-deposited film, but from the viewpoints of gas barrier properties and cost, it is preferable to form the vapor-deposited film from aluminum. Furthermore, the use of aluminum can impart gloss and improve the design.

蒸着膜を備える中間層の厚さは、生産性および経済性の観点からは、9μm以上、50μm以下であることが好ましく、12μm以上、30μm以下であることがより好ましい。
また、蒸着膜の厚さは、0.002μm以上、0.4μm以下であることが好ましく、0.005μm以上、0.1μm以下であることがより好ましい。蒸着膜の厚みを上記数値範囲内とすることにより、ガスバリア性を維持しつつ、蒸着膜におけるクラックなどの発生を防止することができる。
From the viewpoints of productivity and economy, the thickness of the intermediate layer including the vapor-deposited film is preferably 9 μm or more and 50 μm or less, and more preferably 12 μm or more and 30 μm or less.
The thickness of the vapor-deposited film is preferably 0.002 μm or more and 0.4 μm or less, and more preferably 0.005 μm or more and 0.1 μm or less. By setting the thickness of the vapor-deposited film within the above numerical range, it is possible to prevent the occurrence of cracks in the vapor-deposited film while maintaining the gas barrier properties.

蒸着膜を備える中間層は、その表面に画像が形成されていてもよい。画像形成方法については上記した通りである。 An image may be formed on the surface of the intermediate layer having a vapor-deposited film. The image forming method is as described above.

蒸着膜を備える中間層は、ポリエチレンを含む樹脂材料を、インフレーション成形またはT-ダイ成形等の溶融押出成形法によって製膜することによりポリエチレンフィルムを作製し、該ポリエチレンフィルムの少なくとも一方の面に上記した方法により、蒸着膜を形成させた後、接着剤を介して、基材上に積層することにより、形成することができる。この場合、蒸着前、積層前に、ポリエチレンフィルムに対し、延伸処理を施してもよい。
また、ポリエチレンを含む樹脂材料を基材上に押出し、これを乾燥させた後、蒸着膜を形成させることによっても、蒸着膜を備える中間層を形成することができる。
The intermediate layer having a vapor-deposited film can be formed by producing a polyethylene film by forming a resin material containing polyethylene by a melt extrusion molding method such as inflation molding or T-die molding, forming a vapor-deposited film on at least one surface of the polyethylene film by the above-mentioned method, and then laminating the film on a substrate via an adhesive. In this case, the polyethylene film may be subjected to a stretching treatment before vapor deposition or lamination.
Alternatively, an intermediate layer having a vapor-deposited film can be formed by extruding a resin material containing polyethylene onto a substrate, drying the extruded resin material, and then forming a vapor-deposited film.

<第2の態様の積層体>
図3に示すように、第2の態様の積層体10は、基材20と、少なくとも一方の面に蒸着膜40を備える中間層50と、ヒートシール層30とを備える。
以下、積層体が備える各層について説明する。
<Laminate of Second Aspect>
As shown in FIG. 3, the laminate 10 of the second embodiment comprises a substrate 20 , an intermediate layer 50 having a vapor-deposited film 40 on at least one surface thereof, and a heat seal layer 30 .
Each layer of the laminate will now be described.

<基材>
基材は、延伸処理が施されており、一軸延伸されたものであっても、二軸延伸されたものであってもよいが、強度という観点からは、二軸延伸されたものが好ましい。長手方向および横手方向の好ましい延伸倍率については、第1の態様と同様である。
<Substrate>
The substrate is stretched, and may be uniaxially or biaxially stretched, but is preferably biaxially stretched from the viewpoint of strength. The preferred stretch ratios in the longitudinal and transverse directions are the same as those in the first embodiment.

基材は、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)およびエチレンとその他のモノマーとの共重合体の少なくとも1つを含む。これらの中でも、印刷適性、強度および耐熱性という観点から、高密度ポリエチレン(HDPE)および中密度ポリエチレン(MDPE)が好ましく、延伸適正という観点から、中密度ポリエチレンがより好ましい。環境負荷の観点からは、これらポリエチレンは、バイオマス由来のものであることが好ましい。 The substrate contains at least one of high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and copolymers of ethylene and other monomers. Among these, high density polyethylene (HDPE) and medium density polyethylene (MDPE) are preferred from the viewpoints of printability, strength, and heat resistance, and medium density polyethylene is more preferred from the viewpoint of suitability for stretching. From the viewpoint of environmental impact, it is preferable that these polyethylenes are derived from biomass.

基材におけるポリエチレンの含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。 The polyethylene content in the substrate is preferably 50% by mass or more, and more preferably 70% by mass or more.

基材は、本発明の特性を損なわない範囲において、添加剤を含むことができ、例えば、架橋剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料、改質用樹脂等が挙げられる。 The substrate may contain additives within the range that does not impair the characteristics of the present invention, such as crosslinking agents, antioxidants, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments, modifying resins, etc.

一実施形態において、基材は、多層構造を有する。多層構造の詳細については上記した通りである。 In one embodiment, the substrate has a multi-layer structure. Details of the multi-layer structure are as described above.

基材の厚さは、9μm以上、50μm以下であることが好ましく、12μm以上、30μm以下であることがより好ましい。基材の厚さを上記数値範囲内とすることにより、積層体の印刷適性、強度および耐熱性をより向上することができる。 The thickness of the substrate is preferably 9 μm or more and 50 μm or less, and more preferably 12 μm or more and 30 μm or less. By setting the thickness of the substrate within the above numerical range, the printability, strength, and heat resistance of the laminate can be further improved.

基材は、その表面に画像が形成されていてもよい。画像の経時的な劣化を防止することができるため、基材のヒートシール層を積層する側に画像を形成することが好ましい。
画像の形成方法は、第1の態様において記載した通りであり、環境負荷の観点から、フレキソ印刷法が好ましい。
The substrate may have an image formed on its surface. It is preferable to form the image on the side of the substrate on which the heat seal layer is laminated, since this can prevent deterioration of the image over time.
The method for forming the image is as described in the first embodiment, and from the viewpoint of environmental load, flexographic printing is preferred.

基材作製方法は、第1の態様において記載した通りである。 The method for preparing the substrate is as described in the first embodiment.

<蒸着膜を備える中間層>
第2の態様において、積層体は、基材と、ヒートシール層との間に、少なくとも一方の面に蒸着膜を備える中間層を備える。
この中間層は、基材およびヒートシール層と同様に、ポリエチレンにより構成され、これにより積層体のリサイクル性を向上することができる。
<Intermediate layer with vapor deposition film>
In a second embodiment, the laminate comprises an intermediate layer between the substrate and the heat seal layer, the intermediate layer having a vapor deposition film on at least one surface thereof.
This intermediate layer, like the substrate and the heat seal layer, is made of polyethylene, which can improve the recyclability of the laminate.

蒸着膜を備える中間層層は、延伸フィルムから構成されるものであっても、未延伸フィルムから構成されるものであってもよいが、積層体の印刷適性、強度および耐熱性という観点からは延伸されたものであることが好ましい。また、一軸延伸されたものであっても、二軸延伸されたものであってもよいが、強度という観点からは、二軸延伸されたものが好ましい。 The intermediate layer having the vapor-deposited film may be made of a stretched film or an unstretched film, but from the viewpoint of printability, strength, and heat resistance of the laminate, it is preferable that it is stretched. In addition, it may be uniaxially stretched or biaxially stretched, but from the viewpoint of strength, it is preferable that it is biaxially stretched.

蒸着膜を備える中間層は、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)およびエチレンとその他のモノマーとの共重合体の少なくとも1つを含む。これらの中でも、印刷適性、強度および耐熱性という観点から、高密度ポリエチレン(HDPE)および中密度ポリエチレン(MDPE)が好ましく、延伸適正という観点から、中密度ポリエチレンがより好ましい。環境負荷の観点からは、これらポリエチレンは、バイオマス由来のものであることが好ましい。 The intermediate layer having a vapor-deposited film contains at least one of high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and a copolymer of ethylene and other monomers. Among these, high density polyethylene (HDPE) and medium density polyethylene (MDPE) are preferred from the viewpoints of printability, strength, and heat resistance, and medium density polyethylene is more preferred from the viewpoint of suitability for stretching. From the viewpoint of environmental impact, it is preferable that these polyethylenes are derived from biomass.

蒸着膜を備える中間層におけるポリエチレンの含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。 The polyethylene content in the intermediate layer having a vapor deposition film is preferably 50% by mass or more, and more preferably 70% by mass or more.

蒸着膜を備える中間層は、本発明の特性を損なわない範囲において、添加剤を含むことができ、例えば、架橋剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料、改質用樹脂等が挙げられる。 The intermediate layer comprising the vapor deposition film may contain additives within the range that does not impair the characteristics of the present invention, such as crosslinking agents, antioxidants, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments, modifying resins, etc.

蒸着膜を構成する材料としては、上記したものを使用することができるが、ガスバリア性という観点から、アルミニウムにより蒸着膜を形成することが好ましい。 The materials that make up the vapor-deposited film can be those mentioned above, but from the standpoint of gas barrier properties, it is preferable to form the vapor-deposited film from aluminum.

蒸着膜を備える中間層の厚さは、生産性および経済性の観点からは、9μm以上、50μm以下であることが好ましく、12μm以上、30μm以下であることがより好ましい。
また、蒸着膜の厚さは、0.002μm以上、0.4μm以下であることが好ましく、0.005μm以上、0.1μm以下であることがより好ましい。蒸着膜の厚みを上記数値範囲内とすることにより、ガスバリア性を維持しつつ、蒸着膜におけるクラックなどの発生を防止することができる。
From the viewpoints of productivity and economy, the thickness of the intermediate layer including the vapor-deposited film is preferably 9 μm or more and 50 μm or less, and more preferably 12 μm or more and 30 μm or less.
The thickness of the vapor-deposited film is preferably 0.002 μm or more and 0.4 μm or less, and more preferably 0.005 μm or more and 0.1 μm or less. By setting the thickness of the vapor-deposited film within the above numerical range, it is possible to prevent the occurrence of cracks in the vapor-deposited film while maintaining the gas barrier properties.

蒸着膜を備える中間層は、その表面に画像が形成されていてもよい。画像形成方法については、第1の態様において記載した通りである。 The intermediate layer having a vapor-deposited film may have an image formed on its surface. The image forming method is as described in the first embodiment.

蒸着膜を備える中間層の作製方法については、第1の態様において記載した通りである。 The method for producing the intermediate layer having a vapor deposition film is as described in the first embodiment.

<ヒートシール層>
ヒートシール層は、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)直鎖状低密度ポリエチレン(LLDPE)およびエチレンとその他のモノマーとの共重合体の少なくとも1つを含む。これらの中でも、ヒートシール性という観点からは、低密度ポリエチレン(LDPE)および直鎖状低密度ポリエチレン(LLDPE)が好ましい。環境負荷の観点からは、これらポリエチレンは、バイオマス由来のものであることが好ましい。
<Heat seal layer>
The heat seal layer contains at least one of high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and a copolymer of ethylene and other monomers. Among these, low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) are preferred from the viewpoint of heat sealability. From the viewpoint of environmental load, these polyethylenes are preferably derived from biomass.

ヒートシール層におけるポリエチレンの含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。 The polyethylene content in the heat seal layer is preferably 50% by mass or more, and more preferably 70% by mass or more.

ヒートシール層は、本発明の特性を損なわない範囲において、添加剤を含むことができ、例えば、架橋剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料、改質用樹脂等が挙げられる。 The heat seal layer may contain additives within the range that does not impair the characteristics of the present invention, such as crosslinking agents, antioxidants, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments, modifying resins, etc.

ヒートシール層の厚さは、20μm以上、200μm以下であることが好ましく、30μm以上、150μm以下であることがより好ましい。ヒートシール層の厚さを上記数値範囲内とすることにより、そのヒートシール性を向上することができる。 The thickness of the heat seal layer is preferably 20 μm or more and 200 μm or less, and more preferably 30 μm or more and 150 μm or less. By setting the thickness of the heat seal layer within the above numerical range, the heat sealability can be improved.

ヒートシール層の作製方法は、第1の態様において記載した通りである。 The method for preparing the heat seal layer is as described in the first embodiment.

<包装材料>
一実施形態において、本発明による包装材料は、上記積層体のヒートシール層が内側となるように、二つ折にして重ね合わせて、その端部をヒートシールすることにより製造することができる。
また、2枚の積層体を、ヒートシール層が向かい合うように重ね合わせ、その端部をヒートシールすることにより製造することができる。
シール方法により、例えば、側面シール型、二方シール型、三方シール型、四方シール型、封筒貼りシール型、合掌貼りシール型(ピローシール型)、ひだ付シール型、平底シール型、角底シール型、ガゼット型、その他等のヒートシール形態によりヒートシールして、種々の形態の包装材料を製造することができる。
その他、例えば、自立性包装用袋(スタンデイングパウチ)等も可能である。ヒートシールの方法としては、例えば、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シール、超音波シール等の公知の方法で行うことができる。
<Packaging materials>
In one embodiment, the packaging material according to the present invention can be produced by folding the laminate in half, overlapping it so that the heat seal layer of the laminate is on the inside, and heat sealing the ends.
Alternatively, the laminate can be produced by overlapping two sheets of the laminate with their heat seal layers facing each other and heat sealing the ends thereof.
Depending on the sealing method, for example, a side seal type, a two-sided seal type, a three-sided seal type, a four-sided seal type, an envelope seal type, a grooving seal type (pillow seal type), a pleated seal type, a flat bottom seal type, a square bottom seal type, a gusset type, and other heat seal forms can be used to produce packaging materials in various forms.
In addition, for example, a self-supporting packaging bag (standing pouch) can also be used. Heat sealing can be performed by a known method such as bar sealing, rotary roll sealing, belt sealing, impulse sealing, high frequency sealing, ultrasonic sealing, etc.

本発明による積層体は、一種の樹脂(すなわちポリエチレン)のみからなる積層体であっても、基材が包装材料の外側フィルムとして要求される強度や印刷適性を満たし、ヒートシール層が包装化を可能とする。そのため、リサイクル性が求められる包装材料を構成する材料として極めて適している。 Even though the laminate of the present invention is made of only one type of resin (i.e., polyethylene), the base material meets the strength and printability required for an outer film of a packaging material, and the heat seal layer makes it possible to make packaging. Therefore, it is extremely suitable as a material for constituting packaging materials that require recyclability.

本発明について実施例を挙げてさらに具体的に説明するが、本発明がこれら実施例によって限定されるものではない。 The present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples.

<実施例1>
中密度ポリエチレン(密度:0.941g/cm、融点129℃、MFR:1.3g/10分、Dowchemical社製、商品名:Elite5538G)をインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの基材を得た。
Example 1
Medium density polyethylene (density: 0.941 g/cm 3 , melting point: 129° C., MFR: 1.3 g/10 min, manufactured by Dow Chemical, trade name: Elite 5538G) was formed into a film by inflation molding to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the machine direction (MD) at a stretching ratio of 5 times to obtain a substrate having a thickness of 20 μm.

基材の一方の面に、真空蒸着法により、厚さ0.1μmの酸化アルミニウムからなる蒸着膜を形成させた。 A vapor-deposited film of aluminum oxide with a thickness of 0.1 μm was formed on one side of the substrate by vacuum deposition.

基材の蒸着面に、厚さ40μmの、未延伸直鎖状低密度ポリエチレン(LLDPE)フィルム(東洋紡(株)製、商品名:L6100)を、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して積層し、積層体を得た。 A 40 μm-thick unstretched linear low-density polyethylene (LLDPE) film (product name: L6100, manufactured by Toyobo Co., Ltd.) was laminated onto the vapor-deposited surface of the substrate using a two-component curing urethane adhesive (product name: RU-77T/H-7, manufactured by Rock Paint Co., Ltd.) to obtain a laminate.

<実施例2>
高密度ポリエチレン(密度:0.961g/cm、融点135℃、MFR:0.7g/10分、ExxonMobil社製、商品名:HTA108)および中密度ポリエチレン(密度:0.941g/cm、融点129℃、MFR:1.3g/10分、Dowchemical社製、商品名:Elite5538G)を、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの基材を得た。
Example 2
High density polyethylene (density: 0.961 g/cm 3 , melting point: 135° C., MFR: 0.7 g/10 min, ExxonMobil, product name: HTA108) and medium density polyethylene (density: 0.941 g/cm 3 , melting point: 129° C., MFR: 1.3 g/10 min, Dowchemical, product name: Elite5538G) were formed into a film by inflation molding to prepare a polyethylene film consisting of a high density polyethylene layer/medium density polyethylene layer/high density polyethylene layer. The high density polyethylene layer had a thickness of 20 μm, and the medium density polyethylene layer had a thickness of 60 μm.
This polyethylene film was stretched in the machine direction (MD) at a stretching ratio of 5 times to obtain a substrate having a thickness of 20 μm.

基材の一方の面に、真空蒸着法により、厚さ0.1μmの酸化アルミニウムからなる蒸着膜を形成させた。 A vapor-deposited film of aluminum oxide with a thickness of 0.1 μm was formed on one side of the substrate by vacuum deposition.

基材の非蒸着面に、厚さ40μmの、未延伸直鎖状低密度ポリエチレン(LLDPE)フィルム(東洋紡(株)製、商品名:L6100)とを、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して積層し、積層体を得た。 A 40 μm-thick unstretched linear low-density polyethylene (LLDPE) film (manufactured by Toyobo Co., Ltd., product name: L6100) was laminated onto the non-vapor-deposited surface of the substrate via a two-component curing urethane adhesive (manufactured by Rock Paint Co., Ltd., product name: RU-77T/H-7) to obtain a laminate.

<実施例3>
中密度ポリエチレン(密度:0.941g/cm、融点129℃、MFR:1.3g/10分、Dowchemical社製、商品名:Elite5538G)をインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを2枚得た。
2枚のポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの延伸ポリエチレンフィルムを得た。
Example 3
Medium density polyethylene (density: 0.941 g/cm 3 , melting point: 129° C., MFR: 1.3 g/10 min, product name: Elite 5538G, manufactured by Dow Chemical) was formed into films by inflation molding to obtain two polyethylene films having a thickness of 100 μm.
Two polyethylene films were stretched in the machine direction (MD) at a stretching ratio of 5 times to obtain a stretched polyethylene film having a thickness of 20 μm.

1枚の延伸ポリエチレンフィルムの一方の面に、真空蒸着法により、厚さ0.1μmのアルミニウムからなる蒸着膜を形成させた。 A 0.1 μm thick aluminum film was formed on one side of a sheet of stretched polyethylene film by vacuum deposition.

次いで、この蒸着膜を備える延伸ポリエチレンフィルムの蒸着面に、もう1枚の延伸ポリエチレンフィルムを、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して積層した。 Next, another stretched polyethylene film was laminated onto the vapor-deposited surface of the stretched polyethylene film with the vapor-deposited film, using a two-component curing urethane adhesive (manufactured by Rock Paint Co., Ltd., product name: RU-77T/H-7).

蒸着膜を備える延伸ポリエチレンフィルムの非蒸着面に、厚さ40μmの、未延伸直鎖状低密度ポリエチレン(LLDPE)フィルム(東洋紡(株)製、商品名:L6100)を、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して積層し、積層体を得た。 A 40 μm-thick unstretched linear low-density polyethylene (LLDPE) film (manufactured by Toyobo Co., Ltd., product name: L6100) was laminated onto the non-vapor-deposited surface of the stretched polyethylene film with the vapor-deposited layer via a two-component curing urethane adhesive (manufactured by Rock Paint Co., Ltd., product name: RU-77T/H-7) to obtain a laminate.

<実施例4>
中密度ポリエチレン(密度:0.941g/cm3、融点129℃、MFR:1.3g/10分、Dowchemical社製、商品名:Elite5538G)をインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
このポリエチレンフィルムを長手方向(MD)に、2.24倍の延伸倍率で延伸し、幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmの基材を得た。
Example 4
Medium density polyethylene (density: 0.941 g/cm3, melting point: 129°C, MFR: 1.3 g/10 min, Dow Chemical, product name: Elite 5538G) was formed into a film by inflation molding to obtain a polyethylene film having a thickness of 100 µm.
This polyethylene film was stretched in the machine direction (MD) at a stretching ratio of 2.24 times and in the transverse direction (TD) at a stretching ratio of 2.24 times to obtain a substrate having a thickness of 20 μm.

基材の一方の面に、真空蒸着法により、厚さ0.1μmの酸化アルミニウムからなる蒸着膜を形成させた。 A vapor-deposited film of aluminum oxide with a thickness of 0.1 μm was formed on one side of the substrate by vacuum deposition.

基材の蒸着面に、厚さ40μmの、未延伸直鎖状低密度ポリエチレン(LLDPE)フィルム(東洋紡(株)製、商品名:L6100)を、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して積層し、積層体を得た。 A 40 μm-thick unstretched linear low-density polyethylene (LLDPE) film (product name: L6100, manufactured by Toyobo Co., Ltd.) was laminated onto the vapor-deposited surface of the substrate using a two-component curing urethane adhesive (product name: RU-77T/H-7, manufactured by Rock Paint Co., Ltd.) to obtain a laminate.

<実施例5>
高密度ポリエチレン(密度:0.960g/cm、融点130℃、MFR:0.85g/10分、Dowchemical社製、商品名:Elite5960)と、
上記高密度ポリエチレンおよび中密度ポリエチレン(密度:0.940g/cm、融点126℃、MFR:0.85g/10分、Dowchemical社製、商品名Elite5940)のブレンド樹脂(質量比4:6)と、
上記中密度ポリエチレンと、
超低密度ポリエチレン(密度0.870g/cm3、融点55℃、MFR:1.0g/10分、Dowchemical社製、商品名:Affinity EG8100G)と、をインフレーション成形法により、外側から、高密度ポリエチレン層(12.5μm)、高密度ポリエチレンおよび中密度ポリエチレンのブレンド樹脂層(12.5μm)、中密度ポリエチレン層(31.25μm)および超低密度ポリエチレン層(6.25μm)を備えるチューブ状のフィルムとして押し出した後、内側の超低密度ポリエチレン層同士を、ゴムロールにより圧着し、高密度ポリエチレン層(12.5μm)と、ブレンド樹脂層(12.5μm)と、中密度ポリエチレン層(31.25μm)と、超低密度ポリエチレン層(12.5μm)と、中密度ポリエチレン層(31.25μm)と、ブレンド樹脂層(12.5μm)とを備える、厚さ125μmのポリエチレンフィルムを得た。
Example 5
High density polyethylene (density: 0.960 g/cm 3 , melting point: 130° C., MFR: 0.85 g/10 min, manufactured by Dow Chemical, product name: Elite 5960),
a blend resin (mass ratio 4:6) of the high density polyethylene and medium density polyethylene (density: 0.940 g/cm 3 , melting point: 126° C., MFR: 0.85 g/10 min, product name Elite 5940, manufactured by Dow Chemical);
The medium density polyethylene,
Ultra-low density polyethylene (density 0.870 g/cm3, melting point 55°C, MFR: 1.0 g/10 min, manufactured by Dow Chemical, product name: Affinity EG8100G) was extruded by inflation molding into a tubular film having, from the outside, a high-density polyethylene layer (12.5 μm), a blend resin layer of high-density polyethylene and medium-density polyethylene (12.5 μm), a medium-density polyethylene layer (31.25 μm), and an ultra-low-density polyethylene layer (6.25 μm), and then the inner ultra-low-density polyethylene layers were pressed together using a rubber roll to obtain a polyethylene film having a thickness of 125 μm and having a high-density polyethylene layer (12.5 μm), a blend resin layer (12.5 μm), a medium-density polyethylene layer (31.25 μm), an ultra-low-density polyethylene layer (12.5 μm), a medium-density polyethylene layer (31.25 μm), and a blend resin layer (12.5 μm).

このポリエチレンフィルムを長手方向(MD)に5倍の延伸倍率で延伸し、厚さ25μmの基材を得た。
基材の一方の面に、真空蒸着法により、厚さ0.1μmの酸化アルミニウムからなる蒸着膜を形成させた。
This polyethylene film was stretched in the machine direction (MD) at a stretching ratio of 5 times to obtain a substrate having a thickness of 25 μm.
A vapor-deposited film made of aluminum oxide having a thickness of 0.1 μm was formed on one surface of the substrate by vacuum vapor deposition.

基材の蒸着面に、厚さ40μmの、未延伸直鎖状低密度ポリエチレン(LLDPE)フィルム(東洋紡(株)製、商品名:L6100)を、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して積層し、積層体を得た。 A 40 μm-thick unstretched linear low-density polyethylene (LLDPE) film (product name: L6100, manufactured by Toyobo Co., Ltd.) was laminated onto the vapor-deposited surface of the substrate using a two-component curing urethane adhesive (product name: RU-77T/H-7, manufactured by Rock Paint Co., Ltd.) to obtain a laminate.

<実施例6>
高密度ポリエチレン(密度:0.960g/cm3、融点130℃、MFR:0.85g/10分、Dowchemical社製、商品名:Elite5960)と、
中密度ポリエチレン(密度:0.940g/cm3、融点126℃、MFR:0.85g/10分、Dowchemical社製、商品名:Elite5940)と、
超低密度ポリエチレン(密度:0.870g/cm3、融点55℃、MFR:1.0g/10分、Dowchemical社製、商品名:Affinity EG8100G)と、をインフレーション成形法により、外側から、高密度ポリエチレン層(12.5μm)、中密度ポリエチレン層(43.75μm)および超低密度ポリエチレン層(6.25μm)を備えるチューブ状のフィルムとして押し出した後、内側の超低密度ポリエチレン層同士を、ゴムロールにより、圧着し、高密度ポリエチレン層(12.5μm)と、中密度ポリエチレン層(43.75μm)と、超低密度ポリエチレン層(12.5μm)と、中密度ポリエチレン層(43.75μm)と、高密度ポリエチレン層(12.5μm)とを備える、厚さ125μmのポリエチレンフィルムを得た。
このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ25μmの基材を得た。
Example 6
High density polyethylene (density: 0.960 g/cm3, melting point: 130°C, MFR: 0.85 g/10 min, manufactured by Dow Chemical, product name: Elite 5960),
Medium density polyethylene (density: 0.940 g/cm3, melting point: 126°C, MFR: 0.85 g/10 min, manufactured by Dow Chemical, trade name: Elite 5940),
Ultra-low density polyethylene (density: 0.870 g/cm3, melting point: 55°C, MFR: 1.0 g/10 min, manufactured by Dow Chemical, product name: Affinity EG8100G) was extruded by inflation molding into a tubular film having a high density polyethylene layer (12.5 µm), a medium density polyethylene layer (43.75 µm), and an ultra-low density polyethylene layer (6.25 µm) from the outside, and then the inner ultra-low density polyethylene layers were pressed together by a rubber roll to obtain a polyethylene film having a thickness of 125 µm and including a high density polyethylene layer (12.5 µm), a medium density polyethylene layer (43.75 µm), an ultra-low density polyethylene layer (12.5 µm), a medium density polyethylene layer (43.75 µm), and a high density polyethylene layer (12.5 µm).
This polyethylene film was stretched in the machine direction (MD) at a stretching ratio of 5 times to obtain a substrate having a thickness of 25 μm.

基材の一方の面に、真空蒸着法により、厚さ0.1μmの酸化アルミニウムからなる蒸着膜を形成させた。 A vapor-deposited film of aluminum oxide with a thickness of 0.1 μm was formed on one side of the substrate by vacuum deposition.

基材の蒸着面に、厚さ40μmの、未延伸直鎖状低密度ポリエチレン(LLDPE)フィルム(東洋紡(株)製、商品名:L6100)を、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して積層し、積層体を得た。 A 40 μm-thick unstretched linear low-density polyethylene (LLDPE) film (product name: L6100, manufactured by Toyobo Co., Ltd.) was laminated onto the vapor-deposited surface of the substrate using a two-component curing urethane adhesive (product name: RU-77T/H-7, manufactured by Rock Paint Co., Ltd.) to obtain a laminate.

<比較例1>
中密度ポリエチレン(密度:0.941g/cm、融点129℃、MFR:1.3g/10分、Dowchemical社製、商品名:Elite5538G)をインフレーション成形法により製膜し、厚さ20μmのポリエチレンフィルムを得た。
<Comparative Example 1>
Medium density polyethylene (density: 0.941 g/cm 3 , melting point: 129° C., MFR: 1.3 g/10 min, manufactured by Dow Chemical, trade name: Elite 5538G) was formed into a film by inflation molding to obtain a polyethylene film having a thickness of 20 μm.

ポリエチレンフィルムの一方の面に、真空蒸着法により、厚さ0.1μmの酸化アルミニウムからなる蒸着膜を形成させた。 A vapor-deposited film of aluminum oxide with a thickness of 0.1 μm was formed on one side of the polyethylene film by vacuum deposition.

ポリエチレンフィルムの非蒸着面に、厚さ40μmの、未延伸直鎖状低密度ポリエチレン(LLDPE)フィルム(東洋紡(株)製、商品名:L6100)を、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して積層し、積層体を得た。 A 40 μm-thick unstretched linear low-density polyethylene (LLDPE) film (manufactured by Toyobo Co., Ltd., product name: L6100) was laminated onto the non-vapor-deposited surface of the polyethylene film using a two-component curing urethane adhesive (manufactured by Rock Paint Co., Ltd., product name: RU-77T/H-7) to obtain a laminate.

<比較例2>
高密度ポリエチレン(密度:0.961g/cm、融点135℃、MFR:0.7g/10分、ExxonMobil社製、商品名:HTA108)および中密度ポリエチレン(密度:0.941g/cm、融点129℃、MFR:1.3g/10分、Dowchemical社製、商品名:Elite5538G)を、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。
<Comparative Example 2>
High density polyethylene (density: 0.961 g/cm 3 , melting point: 135° C., MFR: 0.7 g/10 min, ExxonMobil, product name: HTA108) and medium density polyethylene (density: 0.941 g/cm 3 , melting point: 129° C., MFR: 1.3 g/10 min, Dowchemical, product name: Elite5538G) were formed into a film by inflation molding to prepare a polyethylene film consisting of a high density polyethylene layer/medium density polyethylene layer/high density polyethylene layer. The high density polyethylene layer had a thickness of 4 μm, and the medium density polyethylene layer had a thickness of 12 μm.

ポリエチレンフィルムの一方の面に、真空蒸着法により、厚さ0.1μmの酸化アルミニウムからなる蒸着膜を形成させた。 A vapor-deposited film of aluminum oxide with a thickness of 0.1 μm was formed on one side of the polyethylene film by vacuum deposition.

ポリエチレンフィルムの非蒸着面に、厚さ40μmの、未延伸直鎖状低密度ポリエチレン(LLDPE)フィルム(東洋紡(株)製、商品名:L6100)とを、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して積層し、積層体を得た。 A 40 μm-thick unstretched linear low-density polyethylene (LLDPE) film (manufactured by Toyobo Co., Ltd., product name: L6100) was laminated onto the non-vapor-deposited surface of the polyethylene film using a two-component curing urethane adhesive (manufactured by Rock Paint Co., Ltd., product name: RU-77T/H-7) to obtain a laminate.

<比較例3>
中密度ポリエチレン(密度:0.941g/cm、融点129℃、MFR:1.3g/10分、Dowchemical社製、商品名:Elite5538G)をインフレーション成形法により製膜し、厚さ20μmのポリエチレンフィルムを2枚得た。
<Comparative Example 3>
Medium density polyethylene (density: 0.941 g/cm 3 , melting point: 129° C., MFR: 1.3 g/10 min, product name: Elite 5538G, manufactured by Dow Chemical) was formed into films by inflation molding to obtain two polyethylene films having a thickness of 20 μm.

1枚のポリエチレンフィルムの一方の面に、真空蒸着法により、厚さ0.1μmのアルミニウムからなる蒸着膜を形成させた。 A 0.1 μm thick aluminum film was formed on one side of a polyethylene film by vacuum deposition.

次いで、この蒸着膜を備えるポリエチレンフィルムの蒸着面に、もう1枚のポリエチレンフィルムを、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して積層した。 Next, another polyethylene film was laminated onto the vapor-deposited surface of the polyethylene film with the vapor-deposited film via a two-component curing urethane adhesive (manufactured by Rock Paint Co., Ltd., product name: RU-77T/H-7).

蒸着膜を備えるポリエチレンフィルムの非蒸着面に、厚さ40μmの、未延伸直鎖状低密度ポリエチレン(LLDPE)フィルム(東洋紡(株)製、商品名:L6100)を、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して積層し、積層体を得た。 A 40 μm-thick unstretched linear low-density polyethylene (LLDPE) film (manufactured by Toyobo Co., Ltd., product name: L6100) was laminated onto the non-vapor-deposited surface of the polyethylene film with the vapor-deposited layer via a two-component curing urethane adhesive (manufactured by Rock Paint Co., Ltd., product name: RU-77T/H-7) to obtain a laminate.

<比較例4>
高密度ポリエチレン(密度:0.960g/cm3、融点130℃、MFR:0.85g/10分、Dowchemical社製、商品名:Elite5960)と、
中密度ポリエチレン(密度:0.940g/cm3、融点126℃、MFR:0.85g/10分、Dowchemical社製、商品名:Elite5940)と、
超低密度ポリエチレン(密度:0.870g/cm3、融点55℃、MFR:1.0g/10分、Dowchemical社製、商品名:Affinity EG8100G)をインフレーション成形法により、外側から、高密度ポリエチレン層、中密度ポリエチレン層および超低密度ポリエチレン層を備えるチューブ状のフィルムとして押し出した後、内側の超低密度ポリエチレン層同士を、ゴムロールにより、圧着し、高密度ポリエチレン層(2.5μm)、中密度ポリエチレン層(8.75μm)、超低密度ポリエチレン層(2.5μm)、中密度ポリエチレン層(8.75μm)および高密度ポリエチレン層(2.5μm)を備える、厚さ25μmのポリエチレンフィルムを得た。
<Comparative Example 4>
High density polyethylene (density: 0.960 g/cm3, melting point: 130°C, MFR: 0.85 g/10 min, manufactured by Dow Chemical, product name: Elite 5960),
Medium density polyethylene (density: 0.940 g/cm3, melting point: 126°C, MFR: 0.85 g/10 min, manufactured by Dow Chemical, trade name: Elite 5940),
Very low density polyethylene (density: 0.870 g/cm, melting point: 55° C., MFR: 1.0 g/10 min, manufactured by Dow Chemical, product name: Affinity EG8100G) was extruded by inflation molding into a tubular film having a high density polyethylene layer, a medium density polyethylene layer, and a very low density polyethylene layer from the outside, and then the inner very low density polyethylene layers were pressed together by a rubber roll to obtain a polyethylene film having a thickness of 25 μm and having a high density polyethylene layer (2.5 μm), a medium density polyethylene layer (8.75 μm), a very low density polyethylene layer (2.5 μm), a medium density polyethylene layer (8.75 μm), and a high density polyethylene layer (2.5 μm).

基材を、上記のようにして作製したポリエチレンフィルムに変更した以外は、実施例6と同様にして、積層体を作製した。 A laminate was prepared in the same manner as in Example 6, except that the substrate was changed to the polyethylene film prepared as described above.

<印刷適性評価>
上記実施例および比較例において作製した基材およびポリエチレンフィルムの一方の面に、水性フレキソインキ(東洋インキ(株)製、商品名:アクワリオナ)を用いて、フレキソ印刷法により、画像を形成した。形成した画像を目視により観察し、基材およびポリエチレンフィルムの印刷適性を以下の評価基準に基づいて、評価した。評価結果を表1にまとめた。
(評価基準)
○:印刷時の寸法安定性が良好であり、擦れ、滲み等が生じていない良好な画像を形成することができていた。
×:印刷時にフィルムの伸び縮みが発生し、形成した画像に擦れや滲みが生じていた。
<Printability evaluation>
An image was formed on one surface of each of the substrates and polyethylene films prepared in the above Examples and Comparative Examples by flexographic printing using a water-based flexographic ink (product name: Aquariona, manufactured by Toyo Ink Co., Ltd.). The formed image was visually observed, and the printability of the substrates and polyethylene films was evaluated based on the following evaluation criteria. The evaluation results are summarized in Table 1.
(Evaluation criteria)
A: The dimensional stability during printing was good, and a good image was formed without rubbing, bleeding, or the like.
×: The film expanded and contracted during printing, causing rubbing and bleeding in the formed image.

<剛性評価>
上記実施例および比較例において作製した基材およびポリエチレンフィルムを、15mm幅の試験片とし、ループスティフネス測定試験器(東洋精機製作所製、商品名:ループステフネステスタ)によりその剛性を測定した。なお、ループの長さは、60mmとした。測定結果を表1にまとめた。
<Rigidity evaluation>
The substrates and polyethylene films prepared in the above examples and comparative examples were cut into test pieces with a width of 15 mm, and their stiffness was measured using a loop stiffness measuring tester (manufactured by Toyo Seiki Seisakusho, product name: Loop Stiffness Tester). The length of the loop was 60 mm. The measurement results are summarized in Table 1.

<強度評価>
上記実施例および比較例において作製した基材およびポリエチレンフィルムを、10mm幅のダンベル型試験片とした。この試験片のMD方向の引っ張り強度を、引っ張り試験機(オリエンテック社製、RTC-1310A)により測定した。なお、チャック間距離は、10mm、引っ張り速度は、300mm/分とした。測定結果を表1にまとめた。
<Strength evaluation>
The substrates and polyethylene films prepared in the above Examples and Comparative Examples were used to prepare dumbbell-shaped test pieces having a width of 10 mm. The tensile strength of the test pieces in the MD direction was measured using a tensile tester (ORIENTEC Co., Ltd., RTC-1310A). The chuck distance was 10 mm, and the tensile speed was 300 mm/min. The measurement results are summarized in Table 1.

<ガスバリア性評価>
上記実施例および比較例において作製した積層体の水蒸気透過率(g/m・day)を米国MOCON社製の水蒸気透過率測定装置(PERMATRAN)を使用して測定した。測定結果を表1にまとめた。
<Gas barrier property evaluation>
The water vapor transmission rate (g/ m2 ·day) of the laminates prepared in the above examples and comparative examples was measured using a water vapor transmission rate measuring device (PERMATRAN) manufactured by MOCON Corporation, USA. The measurement results are summarized in Table 1.

10:積層体
20:基材
30:ヒートシール層
40:蒸着膜
50:蒸着膜を備える中間層
10: Laminate 20: Substrate 30: Heat seal layer 40: Vapor deposition film 50: Intermediate layer having a vapor deposition film

Claims (22)

基材と、ヒートシール層とを少なくとも備え、
前記基材と、前記ヒートシール層とが同一の材料により構成され、
前記基材は延伸処理が施されており、
前記基材が、その少なくとも一方の面に蒸着膜を備え、
前記同一材料が、ポリエチレンであることを特徴とする、積層体。
The film includes at least a substrate and a heat seal layer,
The base material and the heat seal layer are made of the same material,
The substrate is subjected to a stretching treatment,
The substrate has a vapor-deposited film on at least one surface thereof,
A laminate, characterized in that the same material is polyethylene.
前記基材が備える蒸着膜が、酸化アルミニウムを含む、請求項1に記載の積層体。 The laminate according to claim 1, wherein the vapor-deposited film on the substrate contains aluminum oxide. 前記基材と、前記ヒートシール層との間に、ポリエチレンにより構成される、少なくとも一方の面に蒸着膜を備える中間層層をさらに備える、請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, further comprising an intermediate layer between the substrate and the heat seal layer, the intermediate layer being made of polyethylene and having a vapor deposition film on at least one surface. 前記蒸着膜を備える中間が、延伸されたポリエチレンフィルムおよび蒸着膜からなる、請求項3に記載の積層体。 The laminate according to claim 3, wherein the intermediate layer having the vapor-deposited film is made of a stretched polyethylene film and a vapor-deposited film. 前記基材が、高密度ポリエチレン(HDPE)および中密度ポリエチレン(MDPE)のうち少なくとも1つを含む、請求項1~4のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the substrate comprises at least one of high density polyethylene (HDPE) and medium density polyethylene (MDPE). 前記基材の長手方向(MD)の延伸倍率が、2倍以上、10倍以下である、請求項1~5のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the stretch ratio of the substrate in the longitudinal direction (MD) is 2 times or more and 10 times or less. 前記基材の厚さが、9μm以上、50μm以下である、請求項1~6のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the thickness of the substrate is 9 μm or more and 50 μm or less. 前記基材が、高密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレン層とからなる構成を有する、請求項1~7のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the substrate is composed of a high-density polyethylene layer, a medium-density polyethylene layer, and a high-density polyethylene layer. 前記基材が、高密度ポリエチレン層と、中密度ポリエチレン層と、低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレン層からなる五層共押フィルムである、請求項1~7のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the substrate is a five-layer co-extruded film consisting of a high-density polyethylene layer, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer, a medium-density polyethylene layer, and a high-density polyethylene layer. 前記基材が、高密度ポリエチレン層と、高密度ポリエチレンおよび中密度ポリエチレンのブレンド樹脂層と、中密度ポリエチレン層と、低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレンおよび中密度ポリエチレンのブレンド樹脂層と、高密度ポリエチレン層とからなる七層共押フィルムである、請求項1~7のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the substrate is a seven-layer co-extruded film consisting of a high-density polyethylene layer, a blend resin layer of high-density polyethylene and medium-density polyethylene, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer, a medium-density polyethylene layer, a blend resin layer of high-density polyethylene and medium-density polyethylene, and a high-density polyethylene layer. 前記ヒートシール層が、低密度ポリエチレン(LDPE)および直鎖状低密度ポリエチレン(LLDPE)のうち少なくとも1つを含む、請求項1~10のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 10, wherein the heat seal layer comprises at least one of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE). 基材と、中間層と、ヒートシール層とを備え、
前記基材、前記中間層および前記ヒートシール層が同一の材料により構成され、
前記中間層が、少なくとも一方の面に蒸着膜を備え、
前記基材は延伸処理が施されており、
前記同一材料がポリエチレンであることを特徴とする、積層体。
A substrate, an intermediate layer, and a heat seal layer,
the substrate, the intermediate layer and the heat seal layer are made of the same material;
the intermediate layer has a vapor-deposited film on at least one surface,
The substrate is subjected to a stretching treatment,
A laminate, characterized in that said homogenous material is polyethylene.
前記蒸着膜を備えるポリエチレン層が備える蒸着膜が、アルミニウムを含む、請求項12に記載の積層体。 The laminate according to claim 12, wherein the vapor-deposited film of the polyethylene layer includes aluminum. 前記蒸着膜を備えるポリエチレン層が、延伸されたポリエチレンフィルムおよび蒸着膜からなる、請求項12または13に記載の積層体。 The laminate according to claim 12 or 13, wherein the polyethylene layer having the vapor-deposited film is made of a stretched polyethylene film and a vapor-deposited film. 前記基材が、高密度ポリエチレン(HDPE)および中密度ポリエチレン(MDPE)のうち少なくとも1つを含む、請求項12~14のいずれか一項に記載の積層体。 The laminate according to any one of claims 12 to 14, wherein the substrate comprises at least one of high density polyethylene (HDPE) and medium density polyethylene (MDPE). 前記基材の長手方向(MD)の延伸倍率が、2倍以上、10倍以下である、請求項12~15のいずれか一項に記載の積層体。 The laminate according to any one of claims 12 to 15, wherein the stretch ratio of the substrate in the longitudinal direction (MD) is 2 times or more and 10 times or less. 前記基材の厚さが、9μm以上、50μm以下である、請求項12~16のいずれか一項に記載の積層体。 The laminate according to any one of claims 12 to 16, wherein the thickness of the substrate is 9 μm or more and 50 μm or less. 前記基材が、高密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレン層とからなる構成を有する、請求項12~17のいずれか一項に記載の積層体。 The laminate according to any one of claims 12 to 17, wherein the substrate is composed of a high-density polyethylene layer, a medium-density polyethylene layer, and a high-density polyethylene layer. 前記基材が、高密度ポリエチレン層と、中密度ポリエチレン層と、低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレン層からなる五層共押フィルムである、請求項12~17のいずれか一項に記載の積層体。 The laminate according to any one of claims 12 to 17, wherein the substrate is a five-layer co-extruded film consisting of a high-density polyethylene layer, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer, a medium-density polyethylene layer, and a high-density polyethylene layer. 前記基材が、高密度ポリエチレン層と、高密度ポリエチレンおよび中密度ポリエチレンのブレンド樹脂層と、中密度ポリエチレン層と、低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレンおよび中密度ポリエチレンのブレンド樹脂層と、高密度ポリエチレン層とからなる七層共押フィルムである、請求項12~17のいずれか一項に記載の積層体。 The laminate according to any one of claims 12 to 17, wherein the substrate is a seven-layer co-extruded film consisting of a high-density polyethylene layer, a blend resin layer of high-density polyethylene and medium-density polyethylene, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer, a medium-density polyethylene layer, a blend resin layer of high-density polyethylene and medium-density polyethylene, and a high-density polyethylene layer. 前記ヒートシール層が、低密度ポリエチレン(LDPE)および直鎖状低密度ポリエチレン(LLDPE)のうち少なくとも1つを含む、請求項12~20のいずれか一項に記載の積層体。 The laminate according to any one of claims 12 to 20, wherein the heat seal layer comprises at least one of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE). 請求項1~21のいずれか一項に記載の積層体から構成される包装材料。 A packaging material comprising the laminate according to any one of claims 1 to 21.
JP2024069346A 2018-03-26 2024-04-22 Laminate and packaging material comprising said laminate Pending JP2024091859A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018058416 2018-03-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019055546A Division JP2019171861A (en) 2018-03-26 2019-03-22 Laminate and packaging material composed of the laminate

Publications (1)

Publication Number Publication Date
JP2024091859A true JP2024091859A (en) 2024-07-05

Family

ID=

Similar Documents

Publication Publication Date Title
WO2019189092A1 (en) Laminate, and packaging material, packaging bag and stand-up pouch each comprising said laminate, and multi-layer substrate
JP2019171861A (en) Laminate and packaging material composed of the laminate
JP2024061796A (en) Laminate and packaging material comprising said laminate
JP2024040164A (en) Laminate, packaging material, packaging bag and stand pouch
JP7496068B2 (en) Laminate, packaging material, packaging bag and stand-up pouch
JP2023112005A (en) packaging material
WO2020067426A1 (en) Laminate, packaging material, packaging bag, and stand pouch
JP7151342B2 (en) Multi-layer substrates, laminates, packaging materials, packaging bags and stand-up pouches
JP2023071675A (en) Base material, laminate, packaging material, packaging bag and stand pouch
JP2023021240A (en) Laminate, packaging material, packaging bag and stand pouch
JP2020055156A (en) Laminate, packaging material, packaging bag and stand pouch
JP7236046B2 (en) Laminates, packaging materials, packaging bags and standing pouches
JP2024061748A (en) Laminated substrate, laminate for packaging material, and packaging material
JP2024059746A (en) Laminate for packaging material and packaging material
JP2024050658A (en) Laminate for spout-equipped packaging bag and packaging bag
JP2024091859A (en) Laminate and packaging material comprising said laminate
JP7482385B2 (en) Laminate and packaging bag
JP7510622B2 (en) Laminate, packaging material, packaging bag and stand-up pouch
JP7496069B2 (en) Laminate, packaging material, packaging bag and stand-up pouch
JP7496070B2 (en) Laminate, packaging material, packaging bag and stand-up pouch
JP2023121791A (en) Laminate and packaging material composed of the laminate
JP7324413B2 (en) Laminates, packaging materials, packaging bags and standing pouches
JP2023157944A (en) Laminate, packaging material, packaging bag and stand pouch
JP2020158722A (en) Base material, laminate, packaging material, packaging bag and stand pouch
JP2020157730A (en) Laminate, packaging material, packaging bag and stand pouch