JP2024082068A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2024082068A
JP2024082068A JP2022195784A JP2022195784A JP2024082068A JP 2024082068 A JP2024082068 A JP 2024082068A JP 2022195784 A JP2022195784 A JP 2022195784A JP 2022195784 A JP2022195784 A JP 2022195784A JP 2024082068 A JP2024082068 A JP 2024082068A
Authority
JP
Japan
Prior art keywords
refrigeration
evaporator
suction pipe
compartment
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022195784A
Other languages
Japanese (ja)
Inventor
慎一郎 岡留
義明 藤木
遵自 鈴木
圭介 服部
大 板倉
良二 河井
翔一 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2022195784A priority Critical patent/JP2024082068A/en
Priority to PCT/JP2023/030599 priority patent/WO2024122126A1/en
Publication of JP2024082068A publication Critical patent/JP2024082068A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Figure 2024082068000001

【課題】冷蔵室と冷凍室とを分けて冷却する冷蔵庫において、サクションパイプの熱交換を抑え、省エネルギー性能の高い冷蔵庫を提供する。
【解決手段】断熱箱体と、圧縮機と、放熱器と、三方弁と、冷蔵用蒸発器と、冷凍用蒸発器と、冷蔵用キャピラリチューブと、冷凍用キャピラリチューブと、サクションパイプと、冷蔵用ファンと、冷凍用ファンと、を備え、前記圧縮機、前記放熱器、前記三方弁、前記冷蔵用キャピラリチューブ、前記冷蔵用蒸発器、前記サクションパイプの順に冷媒を流しながら前記冷蔵用ファンを駆動させて冷蔵室を冷却する冷蔵運転と、前記圧縮機、前記放熱器、前記三方弁、前記冷凍用キャピラリチューブ、前記冷凍用蒸発器、前記サクションパイプの順に冷媒を流しながら前記冷凍用ファンを駆動させて冷凍室を冷却する冷凍運転と、を実行する冷蔵庫において、前記サクションパイプを、主に前記冷凍室の背面に蛇行させて設けた。
【選択図】図9A

Figure 2024082068000001

To provide a refrigerator with high energy-saving performance by suppressing heat exchange in a suction pipe in a refrigerator in which a refrigerator compartment and a freezer compartment are cooled separately.
[Solution] The refrigerator comprises an insulated box, a compressor, a radiator, a three-way valve, a refrigeration evaporator, a freezing evaporator, a refrigeration capillary tube, a freezing capillary tube, a suction pipe, a refrigeration fan, and a freezing fan, and performs a refrigeration operation in which a refrigerant flows through the compressor, the radiator, the three-way valve, the refrigeration capillary tube, the refrigeration evaporator, and the suction pipe in that order while driving the refrigeration fan to cool the refrigerator compartment, and a freezing operation in which a refrigerant flows through the compressor, the radiator, the three-way valve, the refrigeration capillary tube, the refrigeration evaporator, and the suction pipe in that order while driving the refrigeration fan to cool the freezing compartment, in which the suction pipe is arranged in a serpentine manner mainly at the rear of the freezing compartment.
[Selected Figure] Figure 9A

Description

本発明は、冷蔵庫に関する。 The present invention relates to a refrigerator.

冷蔵庫の冷凍サイクルの冷媒は、圧縮機、放熱器、キャピラリチューブ、蒸発器、サクションパイプを順次流れた後、圧縮機に戻るように構成されている。ここで、キャピラリチューブは、サクションパイプと熱交換可能としているが、その上流が蒸発器と同等の温度であるため、配置場所によって霜が成長してしまう可能性がある。この課題を解決する技術として、特許文献1が知られている。例えば、特許文献1の請求項2には、「冷蔵温度帯室と冷凍温度帯室を有し、前記冷蔵温度帯室と前記冷凍温度帯室の間は断熱材で仕切られた断熱箱体と、冷媒を吐出する圧縮機と、冷媒の熱を外気に放熱する放熱器と、冷媒を減圧する第一の減圧装置と、前記冷蔵温度帯室内から吸熱する第一の冷却器と、前記第一の減圧装置と熱交換を行うように構成され前記冷蔵温度帯室の背面に埋設した第一のサクションパイプと、を有する第一の冷却機構と、前記圧縮機と、前記放熱器と、冷媒を減圧する第二の減圧装置と、前記冷凍温度帯室内から吸熱する第二の冷却器と、前記第二の減圧装置と熱交換を行うように構成され前記冷蔵温度帯室の背面に埋設した第二のサクションパイプと、を有する第二の冷却機構と、前記第一の冷却器からの冷気を前記冷蔵温度帯室へ送風するファンと、前記冷蔵温度帯室の背面に配置された送風路と、を有する送風機構と、を備えた冷蔵庫において、前記第一のサクションパイプの一部分、あるいは前記第二のサクションパイプの一部分が、前記送風路の後方投影面に配されることを特徴とする冷蔵庫。」と記載されている。 The refrigerant in the refrigeration cycle of a refrigerator is configured to flow through the compressor, radiator, capillary tube, evaporator, and suction pipe in sequence, and then return to the compressor. Here, the capillary tube is capable of exchanging heat with the suction pipe, but since the temperature upstream of the capillary tube is the same as that of the evaporator, there is a possibility that frost may grow depending on the location of the capillary tube. A technology to solve this problem is known in Patent Document 1. For example, claim 2 of Patent Document 1 describes a first cooling mechanism having a "heat-insulated box having a refrigerated temperature zone chamber and a freezer temperature zone chamber, the refrigerated temperature zone chamber and the freezer temperature zone chamber being separated by a heat insulating material, a compressor that discharges the refrigerant, a radiator that radiates heat of the refrigerant to the outside air, a first pressure reducing device that reduces the pressure of the refrigerant, a first cooler that absorbs heat from within the refrigerated temperature zone chamber, and a first suction pipe that is configured to exchange heat with the first pressure reducing device and is embedded in the back of the refrigerated temperature zone chamber, the compressor, the radiator, the second pressure reducing device that reduces the pressure of the refrigerant, and the freezer temperature zone chamber. "The refrigerator is characterized in that a part of the first suction pipe or a part of the second suction pipe is arranged on the rear surface of the refrigerating temperature zone compartment, in which a second cooling mechanism has a second cooler that absorbs heat from the inside of the refrigerating temperature zone compartment, a second suction pipe that is configured to exchange heat with the second pressure reducing device and is embedded in the rear surface of the refrigerating temperature zone compartment, a fan that blows cold air from the first cooler into the refrigerating temperature zone compartment, and an air blowing mechanism that has an air blowing path arranged on the rear surface of the refrigerating temperature zone compartment."

特開2020-133914号公報JP 2020-133914 A

一般的に冷蔵室と冷凍室とを分けて冷却する冷蔵庫では、冷凍室を冷却する運転(以下、冷凍運転)に比べ、冷蔵室を冷却する運転(以下、冷蔵運転)の冷媒の蒸発温度を高くして、冷蔵室の熱負荷の冷却効率を高め、結果的に省エネルギー性能を高めている。 Generally, in refrigerators that cool the refrigerator compartment and freezer compartment separately, the evaporation temperature of the refrigerant is higher when cooling the refrigerator compartment (hereafter referred to as refrigeration operation) than when cooling the freezer compartment (hereafter referred to as freezing operation), which increases the cooling efficiency of the heat load of the refrigerator compartment and ultimately improves energy saving performance.

しかしながら、特許文献1では、以下の理由によりこの効果が低下する。冷蔵室の背面に設けた冷蔵室冷却用送風路の背面にサクションパイプを設けているため、冷蔵室冷却用送風路とサクションパイプで熱交換が生じる。冷凍運転中のサクションパイプの上流側は冷凍室よりも低温の冷媒がサクションパイプ内を流れるため、上流側のサクションパイプと冷蔵室冷却用送風路とで熱交換が生じると、冷蔵室の熱負荷の一部がサクションパイプにより冷却されることになる。そのため、効率の高い冷蔵運転で冷却できたはずの冷蔵室の熱負荷が、効率の低い冷凍運転で冷却されることになり、この効率の差により省エネルギー性能が低下する。 However, in Patent Document 1, this effect is reduced for the following reasons. Because a suction pipe is provided behind the refrigerator compartment cooling air duct provided at the rear of the refrigerator compartment, heat exchange occurs between the refrigerator compartment cooling air duct and the suction pipe. Because a refrigerant with a lower temperature than the freezer compartment flows through the suction pipe upstream of the suction pipe during freezing operation, when heat exchange occurs between the upstream suction pipe and the refrigerator compartment cooling air duct, part of the heat load of the refrigerator compartment is cooled by the suction pipe. As a result, the heat load of the refrigerator compartment that could have been cooled by highly efficient refrigeration operation is instead cooled by less efficient freezing operation, and this difference in efficiency reduces energy-saving performance.

本発明の目的は、冷蔵室と冷凍室とを分けて冷却する冷蔵庫において、サクションパイプの熱交換を抑え、省エネルギー性能の高い冷蔵庫を提供することにある。 The object of the present invention is to provide a refrigerator that has separate cooling compartments for the refrigerator and freezer, suppresses heat exchange in the suction pipe, and has high energy-saving performance.

前記した課題を解決するために、本発明は、内箱と外箱の間に発泡断熱材を充填して形成される断熱箱体と、圧縮機と、冷媒の放熱を行う放熱器と、三方弁と、冷蔵用蒸発器と、冷凍用蒸発器と、前記冷蔵用蒸発器へ流れる冷媒を減圧する冷蔵用キャピラリチューブと、前記冷凍用蒸発器へ流れる冷媒を減圧する冷凍用キャピラリチューブと、前記冷蔵用蒸発器及び前記冷凍用蒸発器から前記圧縮機まで前記冷媒を戻すとともに前記冷蔵用キャピラリチューブ及び前記冷凍用キャピラリチューブと熱交換するサクションパイプと、前記冷蔵用蒸発器で生成された低温空気を冷蔵室に送風する冷蔵用ファンと、前記冷凍用蒸発器で生成された低温空気を冷凍室に送風する冷凍用ファンと、を備え、前記圧縮機、前記放熱器、前記三方弁、前記冷蔵用キャピラリチューブ、前記冷蔵用蒸発器、前記サクションパイプの順に前記冷媒を流しながら前記冷蔵用ファンを駆動させて前記冷蔵室を冷却する冷蔵運転と、前記圧縮機、前記放熱器、前記三方弁、前記冷凍用キャピラリチューブ、前記冷凍用蒸発器、前記サクションパイプの順に前記冷媒を流しながら前記冷凍用ファンを駆動させて前記冷凍室を冷却する冷凍運転と、を実行する冷蔵庫において、前記サクションパイプを、主に前記冷凍室の背面に蛇行させて設けた。 In order to solve the above-mentioned problems, the present invention provides a heat-insulating box body formed by filling a space between an inner box and an outer box with a foam insulation material, a compressor, a radiator that dissipates heat from the refrigerant, a three-way valve, a refrigeration evaporator, a freezing evaporator, a refrigeration capillary tube that reduces the pressure of the refrigerant flowing to the refrigeration evaporator, a freezing capillary tube that reduces the pressure of the refrigerant flowing to the freezing evaporator, a suction pipe that returns the refrigerant from the refrigeration evaporator and the freezing evaporator to the compressor and exchanges heat with the refrigeration capillary tube and the freezing capillary tube, a refrigeration fan that blows low-temperature air generated by the refrigeration evaporator into a refrigerator compartment, and a front and a refrigeration fan that blows the low-temperature air generated by the refrigeration evaporator into the freezing chamber, and performs a refrigeration operation in which the refrigeration fan is driven while the refrigerant flows through the compressor, the radiator, the three-way valve, the refrigeration capillary tube, the refrigeration evaporator, and the suction pipe in this order to cool the refrigeration chamber, and a freezing operation in which the refrigeration fan is driven while the refrigerant flows through the compressor, the radiator, the three-way valve, the refrigeration capillary tube, the refrigeration evaporator, and the suction pipe in this order to cool the refrigeration chamber, in which the suction pipe is provided mainly in a serpentine manner on the rear side of the freezing chamber.

本発明によれば、冷蔵室と冷凍室とを分けて冷却する冷蔵庫において、サクションパイプの熱交換を抑え、省エネルギー性能の高い冷蔵庫を提供できる。 The present invention provides a refrigerator with separate cooling compartments for the refrigerator and freezer, which reduces heat exchange in the suction pipe and provides a refrigerator with high energy-saving performance.

本実施形態に係る冷蔵庫を示す正面図。FIG. 1 is a front view showing a refrigerator according to an embodiment of the present invention. 図1のA-A断面図。2 is a cross-sectional view taken along line AA in FIG. 1 . 図2のB-B断面図。3 is a cross-sectional view taken along the line B-B of FIG. 2 . 本実施形態に係る冷蔵庫の冷凍サイクルを示す構成図。FIG. 2 is a configuration diagram showing a refrigeration cycle of the refrigerator according to the embodiment. 本実施形態に係る冷蔵庫における冷却運転中の温度チャートの一例。13 is an example of a temperature chart during a cooling operation in the refrigerator according to the embodiment. 本実施形態に係る冷蔵庫における冷却運転中の基本制御フローチャート。5 is a basic control flowchart during cooling operation in the refrigerator according to the embodiment. 本実施形態に係る冷蔵庫における除霜運転中の温度チャートの一例。13 is an example of a temperature chart during a defrosting operation in the refrigerator according to the present embodiment. 本実施形態に係る冷蔵庫における除霜運転中の基本制御フローチャート。5 is a basic control flowchart during a defrosting operation in the refrigerator according to the present embodiment. 本実施形態に係る冷蔵庫のサクションパイプの配設位置を示す図2のC-C断面図であり、特に、前面側(貯蔵室側)の部材の位置関係を破線で示した図。3 is a cross-sectional view taken along the line CC in FIG. 2 , showing the position of the suction pipe of the refrigerator according to the embodiment, in particular showing the positional relationship of the members on the front side (storage chamber side) by dashed lines. 本実施形態に係る冷蔵庫のサクションパイプの配設位置を示す図2のC-C断面図であり、特に、背面側の部材の位置関係を破線で示した図。3 is a cross-sectional view taken along the line CC in FIG. 2 , showing the position of the suction pipe of the refrigerator according to the embodiment, in particular showing the positional relationship of the members on the rear side by dashed lines. 図9AのD-D断面図。Cross-sectional view taken along the line D-D of FIG. 9A. 図9AのE-E断面図の右奥拡大図。FIG. 9B is an enlarged view of the right rear of the E-E cross section of FIG. 9A.

以下、本発明を実施するための形態(実施形態)を説明する。ただし、本実施形態は、以下の内容に何ら制限されず、本発明の要旨を損なわない範囲内で任意に変更して実施可能である。 The following describes a form (embodiment) for carrying out the present invention. However, this embodiment is not limited to the following content in any way, and can be modified as desired within the scope that does not detract from the gist of the present invention.

図1は、本実施形態に係る冷蔵庫を示す正面図である。なお、以下の説明では、6ドアの冷蔵庫1を例に挙げて説明するが、6ドアに限定されるものではない。 Figure 1 is a front view showing a refrigerator according to this embodiment. In the following explanation, a six-door refrigerator 1 is used as an example, but the refrigerator is not limited to six doors.

図1に示すように、冷蔵庫1の断熱箱体10は、上方から冷蔵室2、左右に併設された製氷室3と上段冷凍室4、下段冷凍室5、野菜室6の順番で貯蔵室を有している。冷蔵庫1はそれぞれの貯蔵室の開口を開閉するドアを備えている。これらのドアは、冷蔵室2の開口を開閉する、左右に分割された回転式の冷蔵室ドア2a、2bと、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6の開口をそれぞれ開閉する引き出し式の製氷室ドア3a、上段冷凍室ドア4a、下段冷凍室ドア5a、野菜室ドア6aである。冷蔵室ドア2a、2bを冷蔵庫1に固定するために、ドアヒンジ(図示なし)が冷蔵室2上部および下部に設けられており、上部の扉ヒンジはドアヒンジカバー16で覆われている。 As shown in FIG. 1, the insulated box 10 of the refrigerator 1 has storage compartments in the following order from the top: the refrigerator compartment 2, the ice-making compartment 3 on the left and right, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6. The refrigerator 1 is equipped with doors that open and close the openings of each storage compartment. These doors are the left and right divided rotating refrigerator compartment doors 2a and 2b that open and close the opening of the refrigerator compartment 2, and the pull-out ice-making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a that open and close the openings of the ice-making compartment 3, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6, respectively. Door hinges (not shown) are provided at the top and bottom of the refrigerator compartment 2 to secure the refrigerator compartment doors 2a and 2b to the refrigerator 1, and the upper door hinge is covered with a door hinge cover 16.

冷蔵室2と野菜室6は、庫内を基本的に冷蔵温度帯(0℃以上)に制御する冷蔵貯蔵室で、例えば冷蔵室2は約2℃、野菜室6は約6℃に制御されている。製氷室3、上段冷凍室4及び下段冷凍室5は、庫内を冷凍温度帯(0℃未満)の例えば平均的に-20℃程度に制御する冷凍貯蔵室である。なお、以下で冷凍貯蔵室である製氷室3、上段冷凍室4及び下段冷凍室5を冷凍室7と呼ぶ。 Refrigerator compartment 2 and vegetable compartment 6 are refrigerated storage compartments whose interiors are basically controlled to the refrigeration temperature range (above 0°C); for example, refrigerator compartment 2 is controlled to about 2°C, and vegetable compartment 6 to about 6°C. Ice-making compartment 3, upper freezer compartment 4, and lower freezer compartment 5 are freezer storage compartments whose interiors are controlled to the freezing temperature range (below 0°C), for example, on average around -20°C. In the following, the freezer storage compartments ice-making compartment 3, upper freezer compartment 4, and lower freezer compartment 5 will be referred to as freezer compartment 7.

図2は、図1のA-A断面図である。図3は、図2のB-B断面図である。 Figure 2 is a cross-sectional view taken along line A-A in Figure 1. Figure 3 is a cross-sectional view taken along line B-B in Figure 2.

図2に示すように、冷蔵庫1は、外箱10a(鋼板製)と内箱10b(合成樹脂製)との間に発泡断熱材(例えば発泡ウレタン)を充填して形成される断熱箱体10により、庫外と庫内が隔てられる構成となっている。断熱箱体10には、発泡ウレタンフォームなどの発泡断熱材に加えて、発泡断熱材よりも熱伝導率の低い真空断熱材25を外箱10aと内箱10bとの間に実装することで、食品収納容積を低下させることなく断熱性能を高めている。ここで、真空断熱材は、グラスウールやウレタン等の芯材を、外包材で包んで構成される。外包材はガスバリア性を確保するために金属層(例えばアルミニウム)を含む。なお、前記真空断熱材25は、断熱箱体の天井壁,左右壁,背面壁,底面壁に配設し、また比較的大きな冷凍貯蔵室である下段冷凍室5のドア5aにも断熱性能を高めるため真空断熱材25を内挿されている。 As shown in FIG. 2, the refrigerator 1 is configured such that the outside and inside of the refrigerator are separated by an insulated box 10 formed by filling a space between an outer box 10a (made of steel plate) and an inner box 10b (made of synthetic resin) with a foam insulation material (e.g., urethane foam). In addition to a foam insulation material such as urethane foam, vacuum insulation material 25, which has a lower thermal conductivity than the foam insulation material, is installed between the outer box 10a and the inner box 10b of the insulated box 10, thereby improving the insulation performance without reducing the food storage volume. Here, the vacuum insulation material is composed of a core material such as glass wool or urethane wrapped in an outer packaging material. The outer packaging material contains a metal layer (e.g., aluminum) to ensure gas barrier properties. The vacuum insulation material 25 is arranged on the ceiling wall, left and right walls, back wall, and bottom wall of the insulated box, and vacuum insulation material 25 is also inserted into the door 5a of the lower freezer compartment 5, which is a relatively large freezer storage compartment, to improve the insulation performance.

冷蔵室2と、製氷室3および上段冷凍室4とは断熱仕切壁28によって隔てられている。下段冷凍室5と野菜室6とは、断熱仕切壁29によって隔てられている。また、製氷室3、上段冷凍室4、下段冷凍室5間の前面側には、ドア3a、4a、5aの隙間から冷蔵庫1内の空気が庫外へ漏れないよう、また庫外の空気が各貯蔵室に侵入しないよう、断熱仕切壁30が設けられている。なお、本実施形態では、野菜室6が過度に低温にならないよう、断熱仕切壁29の下部に野菜室6を加熱する電気ヒータ(図示なし)を設けている。 The refrigerator compartment 2 is separated from the ice-making compartment 3 and the upper freezer compartment 4 by an insulating partition wall 28. The lower freezer compartment 5 and the vegetable compartment 6 are separated by an insulating partition wall 29. In addition, an insulating partition wall 30 is provided on the front side between the ice-making compartment 3, the upper freezer compartment 4, and the lower freezer compartment 5 to prevent air from inside the refrigerator 1 from leaking outside through the gaps in the doors 3a, 4a, and 5a, and to prevent air from outside from entering each storage compartment. In this embodiment, an electric heater (not shown) is provided below the insulating partition wall 29 to heat the vegetable compartment 6 so that the vegetable compartment 6 does not become too cold.

冷蔵室ドア2a、2bは、庫内側に複数のドアポケット33a、33b、33cを備えている。また、冷蔵室2内は、棚34a、34b、34c、34dによって複数の貯蔵スペースに区画されている。また、冷蔵室2の下部(断熱仕切壁28の上部)には、低温貯蔵空間36が備えられている。庫内貯蔵室35は、内部が-1~+1℃程度と冷蔵室2の中で特に低温に保たれ、また庫内貯蔵室35内に冷気が直接送風されない略密閉空間で、特に低温で乾燥抑制が求まられる食品(例えば肉や魚など)を収納するスペースとなっている。 The refrigerator compartment doors 2a, 2b are provided with multiple door pockets 33a, 33b, 33c on the inside of the compartment. The refrigerator compartment 2 is divided into multiple storage spaces by shelves 34a, 34b, 34c, 34d. A low-temperature storage space 36 is provided in the lower part of the refrigerator compartment 2 (above the insulating partition wall 28). The internal storage compartment 35 is kept at a particularly low temperature of about -1 to +1°C, and is a substantially sealed space where no cold air is blown directly into the internal storage compartment 35, and is used to store foods (such as meat and fish) that require prevention of drying at low temperatures.

製氷室3、上段冷凍室4、下段冷凍室5、野菜室6には、それぞれドア3a、4a、5a、6aと一体に引き出される製氷室容器3b(図示なし)、上段冷凍室容器4b、下段冷凍室容器5b、野菜室容器6bが設けられている。 The ice-making compartment 3, upper freezer compartment 4, lower freezer compartment 5, and vegetable compartment 6 are provided with ice-making compartment container 3b (not shown), upper freezer compartment container 4b, lower freezer compartment container 5b, and vegetable compartment container 6b, which are pulled out together with the doors 3a, 4a, 5a, and 6a, respectively.

冷蔵用蒸発器であるR蒸発器14aは、冷蔵用蒸発器室であるR蒸発器室8a内に収納されている。R蒸発器室8aは冷蔵室2の略背部に備えたR風路構成部材61と内箱10bにより形成されている。R蒸発器14aと熱交換して低温になったR蒸発器室8aの空気は、R蒸発器14aの上方に設けた冷蔵用ファンであるRファン9aにより、冷蔵室風路11を介して、R風路構成部材61に設けられている冷蔵室吐出口11aから冷蔵室2に送風され、冷蔵室2内を冷却する。冷蔵室2に送風された空気は、R風路構成部材61に設けられている冷蔵室戻り口15a及び15b(図3参照)からR蒸発器室8aに戻り、再びR蒸発器14aにより冷却される。 The R evaporator 14a, which is a refrigeration evaporator, is housed in the R evaporator chamber 8a, which is a refrigeration evaporator chamber. The R evaporator chamber 8a is formed by the R air passage component 61 provided at the rear of the refrigerator chamber 2 and the inner box 10b. The air in the R evaporator chamber 8a, which has been cooled by heat exchange with the R evaporator 14a, is blown into the refrigerator chamber 2 from the refrigerator chamber outlet 11a provided in the R air passage component 61 by the R fan 9a, which is a refrigeration fan provided above the R evaporator 14a, through the refrigerator chamber air passage 11, and cools the inside of the refrigerator chamber 2. The air blown into the refrigerator chamber 2 returns to the R evaporator chamber 8a from the refrigerator chamber return ports 15a and 15b (see FIG. 3) provided in the R air passage component 61, and is cooled again by the R evaporator 14a.

冷蔵室吐出口11aは、冷蔵室2の主に上部に設けている。また戻り口15a、15bは冷蔵室2の下部に設けており、戻り口15aは冷蔵室2の最下段(棚34dと断熱仕切壁28の間)で庫内貯蔵室35の略背面に設け、戻り口15bは冷蔵室2の下から2番目の段(棚34cと棚34dの間)に設けている。 The refrigerator compartment discharge port 11a is provided mainly at the upper part of the refrigerator compartment 2. The return ports 15a and 15b are provided at the lower part of the refrigerator compartment 2, with the return port 15a being provided at the bottom of the refrigerator compartment 2 (between shelf 34d and the insulating partition wall 28) and approximately at the rear of the internal storage compartment 35, and the return port 15b being provided at the second lowest level of the refrigerator compartment 2 (between shelves 34c and 34d).

冷凍用蒸発器であるF蒸発器14bは、冷凍用蒸発器室であるF蒸発器室8b内に収納されている。F蒸発器室8bは冷凍室7の略背部に備えたF風路構成部材62と内箱10bにより構成されている。F蒸発器14bと熱交換して低温になったF蒸発器室8bの空気は、F蒸発器14bの上方に設けた冷凍用ファンであるFファン9bにより、冷凍室風路12を介して、F風路構成部材62に設けられている冷凍室吐出口12aから冷凍室7に送風され、冷凍室7内を冷却する。冷凍室7に送風された空気は、F風路構成部材62に設けられている冷凍室戻り口17からF蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。 The F evaporator 14b, which is a freezing evaporator, is housed in the F evaporator chamber 8b, which is a freezing evaporator chamber. The F evaporator chamber 8b is composed of an F air passage component 62 provided at the rear of the freezing chamber 7 and an inner box 10b. The air in the F evaporator chamber 8b, which has been cooled by heat exchange with the F evaporator 14b, is blown into the freezing chamber 7 from the freezing chamber outlet 12a provided in the F air passage component 62 by the F fan 9b, which is a freezing fan provided above the F evaporator 14b, through the freezing chamber air passage 12, and cools the inside of the freezing chamber 7. The air blown into the freezing chamber 7 returns to the F evaporator chamber 8b from the freezing chamber return port 17 provided in the F air passage component 62, and is cooled again by the F evaporator 14b.

本実施形態の冷蔵庫1では、野菜室6もF蒸発器14bで低温にした空気で冷却する。F蒸発器14bで低温になったF蒸発器室8bの空気は、Fファン9bにより野菜室風路(図示なし)、野菜室ダンパ(図示なし)を介して野菜室6に送風し、野菜室6内を冷却する。なお、野菜室6にはF蒸発器14bで生成した低温空気が送風されるが、食品を収納する野菜室容器6bには直接低温空気が入らないようにして野菜の乾燥を抑えている。野菜室6が低温の場合は、野菜室ダンパを閉じることで野菜室6の冷却を抑える。野菜室6に送風された空気は断熱仕切壁29の下部前方に設けた野菜室側の冷気戻り部18aから野菜室冷気戻りダクト18を介してF蒸発器室8bの下部に戻る。 In the refrigerator 1 of this embodiment, the vegetable compartment 6 is also cooled with air cooled by the F evaporator 14b. The air in the F evaporator chamber 8b cooled by the F evaporator 14b is sent to the vegetable compartment 6 by the F fan 9b through the vegetable compartment air duct (not shown) and the vegetable compartment damper (not shown) to cool the inside of the vegetable compartment 6. The low-temperature air generated by the F evaporator 14b is sent to the vegetable compartment 6, but the low-temperature air is prevented from directly entering the vegetable compartment container 6b that stores food, preventing the vegetables from drying out. When the vegetable compartment 6 is at a low temperature, the vegetable compartment damper is closed to prevent the vegetable compartment 6 from being cooled. The air sent to the vegetable compartment 6 returns to the lower part of the F evaporator chamber 8b through the vegetable compartment cold air return duct 18 from the vegetable compartment side cold air return part 18a provided at the lower front of the heat-insulating partition wall 29.

図2及び図3に示すように、F蒸発器室8bの下部には、F蒸発器14bを加熱する除霜ヒータ21を設けている。除霜ヒータ21は、例えば50W~200Wの電気ヒータで、本実施形態では150Wのラジアントヒータとしている。F蒸発器14bの除霜時に発生した除霜水(融解水)はF蒸発器室8bの下部に設けたFトイ23bに落下し、F排水口22b、F排水管27bを介して圧縮機24の上部に設けた蒸発皿32に排出される。 As shown in Figures 2 and 3, a defrost heater 21 for heating the F evaporator 14b is provided at the bottom of the F evaporator chamber 8b. The defrost heater 21 is, for example, a 50W to 200W electric heater, and in this embodiment is a 150W radiant heater. The defrost water (melt water) generated when defrosting the F evaporator 14b falls into the F toy 23b provided at the bottom of the F evaporator chamber 8b, and is discharged into the evaporation dish 32 provided at the top of the compressor 24 via the F drain port 22b and the F drain pipe 27b.

R蒸発器14aの除霜方法については図5から図8を用いて後述するが、R蒸発器14aの除霜時に発生した除霜水は、R蒸発器室8aの下部に設けたRトイ23aに落下し、R排水口(図示なし)、R排水管(図示なし)を介して機械室39に設けた蒸発皿32に排出される。 The method of defrosting the R evaporator 14a will be described later using Figures 5 to 8, but the defrosted water generated when defrosting the R evaporator 14a falls into the R drain 23a located at the bottom of the R evaporator chamber 8a, and is discharged into the evaporation tray 32 located in the machine chamber 39 via the R drain outlet (not shown) and the R drain pipe (not shown).

蒸発皿32に排出された水は、圧縮機24や庫外放熱器50aの放熱等により昇温され、機械室ファン38による送風等で気化して冷蔵庫外に排出される。 The water discharged into the evaporator dish 32 is heated by the compressor 24 and the heat dissipated by the external radiator 50a, and is vaporized by the air blown by the machine room fan 38 and discharged outside the refrigerator.

冷蔵室2、冷凍室7、野菜室6の庫内背面側には、それぞれ冷蔵室温度センサ41、冷凍室温度センサ42、野菜室温度センサ43を設け、R蒸発器14aの上部にはR蒸発器温度センサ40a、F蒸発器14bの上部にはF蒸発器温度センサ40bを設け、これらのセンサにより、冷蔵室2、冷凍室7、野菜室6、R蒸発器14a、及びF蒸発器14bの温度を検知している。また、冷蔵庫1の天井部のドアヒンジカバー16の内部には、外気(庫外空気)の温度を検知する外気温度センサ37aと湿度を検知する外気湿度センサ37bを設けている。その他のセンサとして、ドア2a、2b、3a、4a、5a、6aの開閉状態をそれぞれ検知するドアセンサ(図示なし)等も設けている。 The refrigerator compartment 2, freezer compartment 7, and vegetable compartment 6 are provided with a refrigerator compartment temperature sensor 41, a freezer compartment temperature sensor 42, and a vegetable compartment temperature sensor 43 on the rear side of the interior of the refrigerator compartment 2, the freezer compartment 7, and the vegetable compartment 6, respectively. An R evaporator temperature sensor 40a is provided on the top of the R evaporator 14a, and an F evaporator temperature sensor 40b is provided on the top of the F evaporator 14b. These sensors detect the temperatures of the refrigerator compartment 2, the freezer compartment 7, the vegetable compartment 6, the R evaporator 14a, and the F evaporator 14b. In addition, an outside air temperature sensor 37a that detects the temperature of the outside air (outside the refrigerator compartment air) and an outside air humidity sensor 37b that detects the humidity are provided inside the door hinge cover 16 on the ceiling of the refrigerator 1. Other sensors, such as door sensors (not shown) that detect the open/closed state of the doors 2a, 2b, 3a, 4a, 5a, and 6a, are also provided.

冷蔵庫1の機械室39には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31(制御装置、制御部)が配置されている。制御基板31は、外気温度センサ37a、外気湿度センサ37b、冷蔵室温度センサ41、冷凍室温度センサ42、野菜室温度センサ43、R蒸発器温度センサ40a、F蒸発器温度センサ40b、ドアセンサ等と電気配線(図示なし)で接続されている。 A control board 31 (control device, control unit) is arranged in the machine room 39 of the refrigerator 1. The control board 31 is equipped with a CPU, which is part of the control device, memories such as ROM and RAM, an interface circuit, etc. The control board 31 is connected to an outside air temperature sensor 37a, an outside air humidity sensor 37b, a refrigerator compartment temperature sensor 41, a freezer compartment temperature sensor 42, a vegetable compartment temperature sensor 43, an R evaporator temperature sensor 40a, an F evaporator temperature sensor 40b, a door sensor, etc., by electrical wiring (not shown).

また、制御基板31では、各センサの出力値や操作部26の設定、ROMに予め記録されたプログラム等に基づいて、圧縮機24、Rファン9a、Fファン9b、機械室ファン38や、野菜室ダンパの制御を行っている。なお、操作部26は冷蔵室2内の内箱10bに設けられており(図2参照)、冷蔵室2、冷凍室7、野菜室6の温度調整や、付加機能、例えば冷凍室7の冷却能力を高める急速冷凍機能などの実施指示を行うことができる。 The control board 31 controls the compressor 24, R fan 9a, F fan 9b, machine room fan 38, and vegetable room damper based on the output values of each sensor, the settings of the operation unit 26, and programs pre-recorded in the ROM. The operation unit 26 is provided in the inner box 10b inside the refrigerator compartment 2 (see Figure 2), and can be used to adjust the temperatures of the refrigerator compartment 2, freezer compartment 7, and vegetable compartment 6, and to issue instructions to implement additional functions such as a quick-freezing function that increases the cooling capacity of the freezer compartment 7.

図4は、本実施形態に係る冷蔵庫の冷凍サイクル(冷媒流路)を示す概略図である。本実施形態の冷蔵庫1では、圧縮機24、冷媒の放熱を行う放熱手段である庫外放熱器50aと壁面放熱配管50b、断熱仕切壁28,29,30の前面部への結露を抑制する結露防止配管50c、冷媒を減圧させる減圧手段であるRキャピラリチューブ53a(冷蔵用キャピラリチューブ)とFキャピラリチューブ53b(冷凍用キャピラリチューブ)、冷媒と庫内の空気を熱交換させて、庫内の熱を吸熱するR蒸発器14aとF蒸発器14bを備え、これらにより庫内を冷却している。また、冷凍サイクル中の水分を除去するドライヤ51と、液冷媒が圧縮機24に流入するのを防止する気液分離器54a、54bを備え、さらに冷媒流路を制御する三方弁52、冷媒の逆流を抑制する逆止弁55、冷媒流路を合流させる冷媒合流部56を備えており、これらを冷媒配管により接続することで冷凍サイクルを構成している。 Figure 4 is a schematic diagram showing the refrigeration cycle (refrigerant flow path) of the refrigerator according to this embodiment. The refrigerator 1 according to this embodiment includes a compressor 24, an external radiator 50a and a wall surface heat radiation pipe 50b that are heat radiation means for radiating heat from the refrigerant, a condensation prevention pipe 50c that suppresses condensation on the front parts of the heat-insulating partition walls 28, 29, and 30, an R capillary tube 53a (a capillary tube for refrigeration) and an F capillary tube 53b (a capillary tube for freezing) that are pressure reducing means for reducing the pressure of the refrigerant, and an R evaporator 14a and an F evaporator 14b that exchange heat between the refrigerant and the air inside the refrigerator to absorb heat inside the refrigerator, and these are used to cool the inside of the refrigerator. It also includes a dryer 51 that removes moisture in the refrigeration cycle, gas-liquid separators 54a and 54b that prevent liquid refrigerant from flowing into the compressor 24, a three-way valve 52 that controls the refrigerant flow path, a check valve 55 that prevents the refrigerant from flowing back, and a refrigerant junction 56 that joins the refrigerant flow paths. The refrigeration cycle is formed by connecting these with refrigerant piping.

なお本実施形態の冷蔵庫1は冷媒に可燃性冷媒のイソブタンを用いている。また、本実施形態の圧縮機24はインバータを備えて回転速度を変えることができる。 The refrigerator 1 of this embodiment uses isobutane, a flammable refrigerant, as a refrigerant. The compressor 24 of this embodiment is also equipped with an inverter so that the rotation speed can be changed.

三方弁52は、52a、52bで示す2つの流出口を備え、冷媒が流れる流出口を切換えることができる部材である。また、本実施形態の三方弁52は、流出口52aと流出口52bの何れも冷媒が流れないように全閉状態や、何れの流出口にも冷媒が流れるようにする両開状態にも設定可能である。 The three-way valve 52 has two outlets indicated by 52a and 52b, and is a component capable of switching the outlet through which the refrigerant flows. In addition, the three-way valve 52 of this embodiment can be set to a fully closed state so that no refrigerant flows through either outlet 52a or outlet 52b, or to a double-open state so that the refrigerant flows through both outlets.

本実施形態の冷蔵庫1では、圧縮機24が駆動すると冷媒が圧縮されて、高温高圧になったガス冷媒が、庫外放熱器50a、壁面放熱配管50b、結露防止配管50cを流れる間に放熱し、液冷媒になる。この冷媒は、ドライヤ51を流れて水分が除去された後、三方弁52に至る。三方弁52の流出口52aは冷媒配管を介してRキャピラリチューブ53aと接続され、流出口52bは冷媒配管を介してFキャピラリチューブ53bと接続されている。 In the refrigerator 1 of this embodiment, when the compressor 24 is driven, the refrigerant is compressed, and the high-temperature, high-pressure gas refrigerant dissipates heat while flowing through the external radiator 50a, the wall surface heat dissipation pipe 50b, and the condensation prevention pipe 50c, and becomes liquid refrigerant. This refrigerant flows through the dryer 51 to remove moisture, and then reaches the three-way valve 52. The outlet 52a of the three-way valve 52 is connected to the R capillary tube 53a via the refrigerant pipe, and the outlet 52b is connected to the F capillary tube 53b via the refrigerant pipe.

流出口52a側に冷媒が流れるようにすると、流出口52aから流出した冷媒は、Rキャピラリチューブ53にて減圧され、低温低圧の二相冷媒になってR蒸発器14aの入口に至る。Rファン9aの駆動によって冷蔵室2からR蒸発器室8aも戻った空気は、R蒸発器14aを通過する際にR蒸発器14a内の低温冷媒と熱交換して低温になり、再び冷蔵室2に送風される。このとき、冷媒は庫内の空気から吸熱してエンタルピが上昇し、渇き度が上がり、略飽和ガス冷媒となってR蒸発器14aの出口に至り、R気液分離機54aを通過して冷媒合流部56に至る。 When the refrigerant flows to the outlet 52a side, the refrigerant flowing out from the outlet 52a is decompressed by the R capillary tube 53, and becomes a low-temperature, low-pressure two-phase refrigerant and reaches the inlet of the R evaporator 14a. The air that returns from the refrigerator compartment 2 to the R evaporator compartment 8a by driving the R fan 9a exchanges heat with the low-temperature refrigerant in the R evaporator 14a as it passes through the R evaporator 14a, becoming colder, and is again blown into the refrigerator compartment 2. At this time, the refrigerant absorbs heat from the air inside the compartment, increasing its enthalpy and its dryness, becoming a nearly saturated gas refrigerant, and reaches the outlet of the R evaporator 14a, passing through the R gas-liquid separator 54a and reaching the refrigerant junction 56.

また流出口52b側に冷媒が流れるようにすると、流出口52bから流出した冷媒は、Fキャピラリチューブ53bにて減圧され、低温低圧の二相冷媒になってF蒸発器14bの入口に至る。Rファン9aの駆動によって冷凍室7及び野菜室6からF蒸発器室8bに戻った空気は、F蒸発器14bを通過する際にF蒸発器14b内の低温冷媒と熱交換して低温になり、再び冷凍室7及び野菜室6に送風される。冷媒は庫内の空気から吸熱してエンタルピが上昇し、渇き度が上がり、略飽和ガス冷媒となってF蒸発器14bの出口に至り、F気液分離器54b、逆止弁55を通過して冷媒合流部56に至る。 When the refrigerant flows to the outlet 52b side, the refrigerant flowing out from the outlet 52b is decompressed by the F capillary tube 53b, and becomes a low-temperature, low-pressure two-phase refrigerant and reaches the inlet of the F evaporator 14b. The air returned to the F evaporator chamber 8b from the freezer chamber 7 and the vegetable chamber 6 by the operation of the R fan 9a exchanges heat with the low-temperature refrigerant in the F evaporator 14b as it passes through the F evaporator 14b, becomes cold, and is again blown into the freezer chamber 7 and the vegetable chamber 6. The refrigerant absorbs heat from the air in the chamber, increasing its enthalpy and its dryness, becoming a nearly saturated gas refrigerant and reaching the outlet of the F evaporator 14b, passing through the F gas-liquid separator 54b and the check valve 55 to reach the refrigerant junction 56.

ここで、冷媒配管のうち、R蒸発器14a及びF蒸発器14bから圧縮機24まで冷媒を戻す冷媒戻り配管をサクションパイプ57と呼ぶ。さらに、サクションパイプ57うち、R蒸発器14aから冷媒合流部56まで接続する部分を冷蔵用サクションパイプ57aと呼び、F蒸発器14bから冷媒合流部56まで接続する部分を冷凍用サクションパイプ57bと呼び、冷媒合流部56から圧縮機24まで接続する部分を共用サクションパイプ57cと呼ぶ。 Here, the refrigerant return pipe that returns the refrigerant from the R evaporator 14a and the F evaporator 14b to the compressor 24 is called the suction pipe 57. Furthermore, the part of the suction pipe 57 that connects the R evaporator 14a to the refrigerant junction 56 is called the refrigeration suction pipe 57a, the part that connects the F evaporator 14b to the refrigerant junction 56 is called the freezing suction pipe 57b, and the part that connects the refrigerant junction 56 to the compressor 24 is called the shared suction pipe 57c.

冷媒合流部56を通過した冷媒は、共用サクションパイプ57cを介して圧縮機24に戻るが、共用サクションパイプ57cは、Rキャピラリチューブ53a及びFキャピラリチューブ53bと熱交換するように近接して設けられており、Rキャピラリチューブ53aまたはFキャピラリチューブ53b内の冷媒によって加熱されてエンタルピが上昇して(温度が上がって)、再び圧縮機24に吸い込まれる。 The refrigerant that has passed through the refrigerant junction 56 returns to the compressor 24 via the shared suction pipe 57c, which is located close to the R capillary tube 53a and the F capillary tube 53b so as to exchange heat with them. The refrigerant is heated by the refrigerant in the R capillary tube 53a or the F capillary tube 53b, causing the enthalpy to increase (the temperature to rise), and is sucked back into the compressor 24.

内部熱交換部58を備えることで、圧縮機24に吸い込まれる冷媒の温度が上昇して、機械室39内における共用サクションパイプ57c(後述の図7参照)への結露や着霜が防止できるとともに、熱交換によってR蒸発器14a及びF蒸発器14bに流入する冷媒のエンタルピが低下し、R蒸発器14a及びF蒸発器14bにおける冷却能力が向上する。加えて、この冷却能力の向上と、圧縮機24の圧縮動力の増加の比率の関係で、イソブタン等の冷媒では冷却効率(圧縮機24の入力に対する冷却する熱量の割合)の向上、すなわち省エネルギー性能の向上も期待できる。なお、内部熱交換部58は、Rキャピラリチューブ53a及びFキャピラリチューブ53bと、共用サクションパイプ57cが近接して熱交換できるようになっていればよいが、本実施形態ではRキャピラリチューブ53a及びFキャピラリチューブ53bと、共用サクションパイプ57cをはんだ付けし、金属部材で接続することで熱交換効率を高めている。 By providing the internal heat exchanger 58, the temperature of the refrigerant sucked into the compressor 24 rises, preventing condensation and frost on the shared suction pipe 57c (see FIG. 7 described later) in the machine room 39, and the enthalpy of the refrigerant flowing into the R evaporator 14a and the F evaporator 14b is reduced by the heat exchange, improving the cooling capacity of the R evaporator 14a and the F evaporator 14b. In addition, due to the relationship between the improvement in cooling capacity and the ratio of the increase in the compression power of the compressor 24, it is possible to expect an improvement in the cooling efficiency (the ratio of the amount of heat cooled to the input of the compressor 24) for refrigerants such as isobutane, that is, an improvement in energy saving performance. Note that the internal heat exchanger 58 only needs to be able to exchange heat between the R capillary tube 53a and the F capillary tube 53b and the shared suction pipe 57c in close proximity, but in this embodiment, the R capillary tube 53a and the F capillary tube 53b are soldered to the shared suction pipe 57c and connected with a metal member to improve the heat exchange efficiency.

図5は、本実施形態の冷蔵庫における冷却運転中の温度チャートの一例であり、図6は、本実施形態の冷蔵庫における冷却運転中の基本制御フローチャートである。 Figure 5 is an example of a temperature chart during cooling operation in the refrigerator of this embodiment, and Figure 6 is a basic control flowchart during cooling operation in the refrigerator of this embodiment.

時刻tは冷蔵室2を冷却する冷蔵運転を開始した時刻である。本実施形態では冷凍運転が終了(制御S-1)し、後述する冷蔵運転実施判定(制御S-3~S-5)、冷媒回収運転(制御S-6)を行った後、制御S-7に示す冷蔵運転を開始する。冷蔵運転では、三方弁52を流出口52a側にし、圧縮機24を駆動させてR蒸発器14aに冷媒を流して、R蒸発器14aを低温にする。この状態でRファン9aを運転することで、R蒸発器14aを通過して低温になった空気により冷蔵室2を冷却する。ここで、冷蔵運転中のR蒸発器14aの温度は、後述する冷凍運転中のF蒸発器14bよりも高くしている。一般的に蒸発器の温度が高い方が、冷却効率が高く、省エネルギー性能が高い。従って、蒸発器の温度を低温にする必要がある冷凍室7に比べ、高い蒸発器の温度でも冷却できる冷蔵室2を冷却する際は、蒸発器の温度を高めて省エネルギー性能を高めている。なお、本実施形態の冷蔵庫1では、冷蔵運転中のR蒸発器14a温度が高くなるよう、冷蔵運転中の圧縮機24の回転速度を冷凍運転中よりも低速(L)にしている。 Time t 0 is the time when the refrigeration operation for cooling the refrigerator compartment 2 is started. In this embodiment, the freezing operation is ended (control S-1), and after the refrigeration operation execution determination (controls S-3 to S-5) and the refrigerant recovery operation (control S-6) described later are performed, the refrigeration operation shown in control S-7 is started. In the refrigeration operation, the three-way valve 52 is set to the outlet 52a side, the compressor 24 is driven to flow the refrigerant to the R evaporator 14a, and the R evaporator 14a is cooled to a low temperature. By operating the R fan 9a in this state, the refrigerator compartment 2 is cooled by the air that has passed through the R evaporator 14a and become low temperature. Here, the temperature of the R evaporator 14a during the refrigeration operation is set higher than that of the F evaporator 14b during the freezing operation described later. In general, the higher the evaporator temperature, the higher the cooling efficiency and the higher the energy saving performance. Therefore, when cooling the refrigerator compartment 2, which can be cooled even at a high evaporator temperature, compared to the freezing compartment 7, which needs to have a low evaporator temperature, the evaporator temperature is increased to improve the energy saving performance. In the refrigerator 1 of this embodiment, the rotation speed of the compressor 24 during refrigeration operation is set to a lower speed (L) than during freezing operation so that the temperature of the R evaporator 14a during refrigeration operation is high.

冷蔵運転により冷蔵室2が冷却され、冷蔵室温度センサ41により検知する冷蔵室温度がTRoffまで低下し(制御S-8;時刻t)、冷凍運転実施条件(制御S-9)を満足すると、冷蔵運転から冷媒回収運転(制御S-10)に切換える。冷媒回収運転では三方弁52を全閉状態で圧縮機24を駆動させ、R蒸発器14a内の冷媒を回収する。これにより、次の冷凍運転での冷媒不足を抑制する。 When the refrigerator compartment 2 is cooled by the refrigeration operation, and the refrigerator compartment temperature detected by the refrigerator compartment temperature sensor 41 drops to T Roff (control S-8; time t 1 ), and the freezing operation execution conditions (control S-9) are satisfied, the operation is switched from the refrigeration operation to the refrigerant recovery operation (control S-10). In the refrigerant recovery operation, the compressor 24 is driven with the three-way valve 52 fully closed, and the refrigerant in the R evaporator 14a is recovered. This prevents a refrigerant shortage in the next freezing operation.

冷媒回収運転が終わると(時刻t)、冷凍室7を冷却する冷凍運転に切換える。冷凍運転では、三方弁52を流出口52b側にし、F蒸発器14bに冷媒を流して、F蒸発器14bを低温にする。また、圧縮機24の回転速度を冷蔵運転時よりも高速(H)にする。この状態でFファン9bを運転することで、F蒸発器14bを通過して低温になった空気により冷凍室7を冷却する。この冷凍運転を冷凍室温度センサ42により検出する冷凍室温度がTFoffになる(時刻t)まで行う。また、冷凍運転中に野菜室ダンパ(図示せず)も開け、野菜室温度センサ43により検出する野菜室温度がTRoffになる(時刻t)まで野菜室6を冷却する。 When the refrigerant recovery operation is completed (time t2 ), the operation is switched to the freezing operation for cooling the freezing chamber 7. In the freezing operation, the three-way valve 52 is set to the outlet 52b side, and the refrigerant flows through the F evaporator 14b to lower the temperature of the F evaporator 14b. In addition, the rotation speed of the compressor 24 is set to a higher speed (H) than during the refrigeration operation. By operating the F fan 9b in this state, the freezing chamber 7 is cooled by the air that has passed through the F evaporator 14b and has become cold. This freezing operation is performed until the freezing chamber temperature detected by the freezing chamber temperature sensor 42 becomes T Foff (time t5 ). In addition, the vegetable chamber damper (not shown) is also opened during the freezing operation, and the vegetable chamber 6 is cooled until the vegetable chamber temperature detected by the vegetable chamber temperature sensor 43 becomes T Roff (time t3 ).

さらに、本実施形態の冷蔵庫1では、冷蔵運転終了後、R第一除霜運転実施判定(制御S-14、S-16)を満たすと、この冷媒回収及び冷凍運転中にR蒸発器14aの第一除霜運転(以下、R第一除霜運転、制御S-18~S-20)を行う。R第一除霜運転は、Rファン9aを駆動させ、冷蔵室2の空気とR蒸発器14a間で空気を循環させ、冷蔵運転中に低温になったR蒸発器14a及びR蒸発器14aに付着した霜による冷蔵室2の冷却、及びそれによる省エネルギー性能の向上を狙ったものである。冷媒回収運転及び冷凍運転中は、R蒸発器14aに冷媒が流せないが、R蒸発器14a及びR蒸発器14aに付着した霜の蓄冷熱により冷却することで、冷蔵室2を冷却することができる。特にR蒸発器14aに付着した霜が0℃以下の場合、霜の融解熱を利用して冷蔵室2を冷却することができ、冷蔵室2を低温に維持する(温度上昇を抑制する)ことができる。この運転により冷蔵室2の温度上昇が抑制されることで冷凍運転を比較的長時間かけて実施することができるので、冷凍運転中の圧縮機24の回転速度を比較的低速にでき、省エネルギー性能を向上させることができる。さらに、R蒸発器14aの霜を融解させることで、R蒸発器14aの霜成長を抑え、後述するR第二除霜運転で解かす霜の量を減らしたり、霜によるR蒸発器14aの伝熱効率の低下を抑制したりする効果も得られる。なお、本実施形態では、前回の第一除霜運転からの扉開閉が少ない場合、第一除霜運転を例えば3回に1回のみ実施するようにしている(制御S-14~S-16)。これは、扉開閉が少なく、前回の第一除霜運転からの時間間隔も短いと、着霜量が少なく、前述の霜の蓄冷熱の効果や除霜としての効果が少ないためである。 Furthermore, in the refrigerator 1 of this embodiment, after the refrigeration operation is completed, if the R first defrost operation execution judgment (controls S-14, S-16) is satisfied, the first defrost operation of the R evaporator 14a is performed during this refrigerant recovery and freezing operation (hereinafter, R first defrost operation, controls S-18 to S-20). The R first defrost operation is aimed at cooling the refrigerator compartment 2 by the R evaporator 14a, which has become cold during the refrigeration operation, and the frost that has adhered to the R evaporator 14a, and thereby improving the energy saving performance. During the refrigerant recovery operation and the freezing operation, the refrigerant cannot flow through the R evaporator 14a, but the refrigerator compartment 2 can be cooled by the cold storage heat of the R evaporator 14a and the frost that has adhered to the R evaporator 14a. In particular, when the frost on the R evaporator 14a is below 0°C, the refrigeration chamber 2 can be cooled using the heat of melting of the frost, and the refrigeration chamber 2 can be maintained at a low temperature (temperature rise suppressed). This operation suppresses the temperature rise in the refrigeration chamber 2, allowing the freezing operation to be performed for a relatively long time, so the rotation speed of the compressor 24 during the freezing operation can be made relatively slow, improving energy saving performance. Furthermore, by melting the frost on the R evaporator 14a, it is possible to suppress the growth of frost on the R evaporator 14a, reduce the amount of frost to be melted in the R second defrosting operation described below, and suppress the decrease in the heat transfer efficiency of the R evaporator 14a due to frost. In this embodiment, if the number of door openings since the previous first defrosting operation is small, the first defrosting operation is performed, for example, only once every three times (controls S-14 to S-16). This is because if the number of door openings is small and the time interval from the previous first defrosting operation is short, the amount of frost is small, and the above-mentioned cold storage heat effect of the frost and the defrosting effect are small.

このR第一除霜運転は、R蒸発器温度センサ40aにより検出する冷蔵用蒸発器温度が0℃以上のTDRoffになる(制御S-19;時刻t)と終了(制御S-20)する。 This R first defrosting operation ends (control S-20) when the refrigeration evaporator temperature detected by the R evaporator temperature sensor 40a becomes TDRoff , which is equal to or higher than 0° C. (control S-19; time t 4 ).

R第一除霜運転及び冷凍運転の何れも終了条件を満足すると(時刻t)、再び三方弁52を全閉状態で圧縮機24を駆動させる冷媒回収運転(制御S―6)を行い、F蒸発器14b内の冷媒を回収し、次の冷蔵運転での冷媒不足を抑制する。なお、この際にFファン9bを駆動させており、これによりF蒸発器14b内の残留冷媒を冷凍室7の冷却に活用できるとともに、F蒸発器14b内の冷媒が蒸発して圧縮機24へ到達しやすくなり、比較的短い時間で多くの冷媒を回収できるため、冷却効率を高めることができる。 When the end conditions of both the R first defrosting operation and the freezing operation are satisfied (time t5 ), the three-way valve 52 is again fully closed and the compressor 24 is driven to perform a refrigerant recovery operation (control S-6), recovering the refrigerant in the F evaporator 14b and suppressing a refrigerant shortage in the next refrigeration operation. At this time, the F fan 9b is driven, which allows the residual refrigerant in the F evaporator 14b to be used to cool the freezing chamber 7, and also makes it easier for the refrigerant in the F evaporator 14b to evaporate and reach the compressor 24, allowing a large amount of refrigerant to be recovered in a relatively short time, thereby improving the cooling efficiency.

時刻tになると再び冷蔵運転に戻り、前述した運転を繰り返す。以上が本実施形態の冷蔵庫の基本的な冷却運転及びR蒸発器14aの第一除霜制御である。これらの運転により、冷蔵室2、冷凍室7及び野菜室6を冷却して所定の温度に維持しつつ、R蒸発器14aの霜成長を抑えている。 At time t6 , the refrigerator returns to the refrigeration operation and repeats the above-mentioned operation. The above is the basic cooling operation of the refrigerator of this embodiment and the first defrost control of the R evaporator 14a. These operations cool the refrigerator compartment 2, the freezer compartment 7, and the vegetable compartment 6 to maintain them at predetermined temperatures, while suppressing the growth of frost on the R evaporator 14a.

ここで、冷凍運転から冷蔵運転(正確には冷蔵運転前の冷媒回収)への切換え(時刻t)には、条件を設けている。前述したように、本実施形態では冷蔵運転に移行するが、冷蔵蔵運転開始前に制御S-3~S-5の判定を行う。まずR第一除霜運転、及び図10以降で後述するR第二除霜運転の終了条件が満たされているかを判断する。R第一除霜運転、及びR第二除霜運転が終了する前に冷凍運転が終了した場合はR第一除霜運転及びR第二除霜運転を継続したまま圧縮機24をOFFにする(制御S-3又はS-4 → 制御S-9{冷凍運転終了時のためNO} → 制御S-13)。R第一除霜運転中はR蒸発器14aの温度が比較的低温(TDR<TDRoff)で冷蔵室2を冷却可能なため、圧縮機24を停止して省エネルギー性能を高めている。また後述するR第二除霜運転は、R蒸発器14aに付着した霜を庫外に排出することが目的のため、融解途中の除霜水が再び冷却されて再凍結することを抑えるため、R第二除霜運転中(R第二除霜運転が終了するまで)は、R蒸発器14aに冷媒を流す冷蔵運転は禁止している。これにより、R蒸発器14aの除霜をより確実に行うことができる。 Here, a condition is set for switching (time t 5 ) from freezing operation to refrigeration operation (more precisely, refrigerant recovery before refrigeration operation). As described above, in this embodiment, the operation is switched to refrigeration operation, but before the start of refrigeration operation, judgments of controls S-3 to S-5 are performed. First, it is determined whether the termination conditions of the R-first defrosting operation and the R-second defrosting operation described later in FIG. 10 and subsequent figures are satisfied. If the freezing operation ends before the R-first defrosting operation and the R-second defrosting operation end, the compressor 24 is turned OFF while continuing the R-first defrosting operation and the R-second defrosting operation (control S-3 or S-4 → control S-9 {NO because the freezing operation has ended} → control S-13). During the R-first defrosting operation, the temperature of the R evaporator 14a is relatively low (T DR <T DRoff ) and the refrigerator compartment 2 can be cooled, so the compressor 24 is stopped to improve energy saving performance. In addition, the R second defrosting operation described below is intended to discharge the frost adhering to the R evaporator 14a to the outside of the refrigerator, and therefore in order to prevent the defrosted water in the middle of melting from being cooled again and refreezing, the refrigeration operation in which the refrigerant flows through the R evaporator 14a is prohibited during the R second defrosting operation (until the R second defrosting operation is completed). This makes it possible to more reliably defrost the R evaporator 14a.

また制御S-5に示すように、冷凍運転終了時(図5の時刻t)に冷蔵室温度Tが所定値TR_start(例えばTR_start=TROFF+1℃)よりも低い場合も冷蔵運転を実施せず、圧縮機24をOFFにする。なお、図示はしていないが、同様に冷蔵運転終了時(図5の時刻t)において冷凍室温度が所定値(例えばTFOFF+1℃)よりも低い場合も制御S-9がNoとなり圧縮機24をOFFにする。これにより庫内の過度な冷却を抑えることができる。 Also, as shown in control S-5, if the refrigerator compartment temperature TR is lower than a predetermined value TR_start (for example, TR_start = TROFF +1°C) at the end of freezing operation (time t5 in FIG. 5 ), the refrigerator operation is not performed and the compressor 24 is turned OFF. Although not shown, similarly, if the freezer compartment temperature is lower than a predetermined value (for example, T FOFF +1°C) at the end of freezing operation (time t1 in FIG. 5), the control S-9 becomes No and the compressor 24 is turned OFF. This makes it possible to prevent excessive cooling inside the refrigerator.

なお、冷蔵運転は、冷凍運転終了(制御S-1)時のみでなく、圧縮機24停止中に冷蔵室温度TがTR_start2(≧TR_start)に到達した場合(制御S-2)も開始する。これにより、冷凍室7が十分に冷えている場合に冷蔵室2が高温になることを抑制している。なお、図示はしていないが、同様に冷凍運転の開始も冷蔵運転終了時のみでなく、冷凍室7の温度が所定値以上になった場合にも冷凍運転を開始する。 The refrigeration operation starts not only when the freezing operation ends (control S-1), but also when the refrigerator compartment temperature TR reaches TR_start2 (≧ TR_start ) while the compressor 24 is stopped (control S-2). This prevents the refrigerator compartment 2 from becoming too hot when the freezing compartment 7 is sufficiently cold. Although not shown, the freezing operation also starts not only when the refrigeration operation ends, but also when the temperature of the freezing compartment 7 reaches or exceeds a predetermined value.

次に本冷蔵庫の除霜制御について説明する。図7は、本実施形態の冷蔵庫におけるRF除霜運転中の温度チャートの一例で、図8は、本実施形態の冷蔵庫におけるRF除霜運転中の基本制御フローチャートである。このRF除霜運転とは、R蒸発器14aとF蒸発器14bの両方の除霜を行う運転である。 Next, the defrost control of this refrigerator will be described. Figure 7 is an example of a temperature chart during RF defrost operation in the refrigerator of this embodiment, and Figure 8 is a basic control flowchart during RF defrost operation in the refrigerator of this embodiment. This RF defrost operation is an operation that defrosts both the R evaporator 14a and the F evaporator 14b.

本実施形態の冷蔵庫1では、図5、図6で説明した冷却運転(制御S2-1)中に、例えばドア2a、2b、3a、4a、5a、6aの開閉回数、及び圧縮機24の合計駆動時間等から除霜運転の開始を判断する(制御S2-2)。開始条件を満足する(時刻td0)と、本実施形態の冷蔵庫1では冷凍運転及びR第一除霜運転を行う(制御S2-3)。冷凍運転を行うことで、RF除霜運転中の冷凍室7の温度上昇による冷凍食品や氷等の融解を抑制する。また、この間にR第一除霜運転(Rファン9aをON)を行い、R蒸発器14a及びR蒸発器14aに付着した霜を加熱し、後述するR第二除霜運転が短時間で終わるようにしている。 In the refrigerator 1 of this embodiment, during the cooling operation (control S2-1) described in FIG. 5 and FIG. 6, the start of the defrosting operation is determined based on, for example, the number of opening and closing of the doors 2a, 2b, 3a, 4a, 5a, and 6a, the total driving time of the compressor 24, etc. (control S2-2). When the start condition is satisfied (time t d0 ), the refrigerator 1 of this embodiment performs the freezing operation and the R first defrosting operation (control S2-3). By performing the freezing operation, the melting of frozen foods, ice, etc. due to the temperature rise in the freezer compartment 7 during the RF defrosting operation is suppressed. In addition, during this time, the R first defrosting operation (the R fan 9a is turned ON) is performed to heat the R evaporator 14a and the frost attached to the R evaporator 14a, so that the R second defrosting operation described later is completed in a short time.

この冷凍運転を所定の時間、例えば30分間行った後(時刻td1)、本実施形態の冷蔵庫1は三方弁52を全閉、圧縮機24をOFF、Rファン9aをON、Fファン9bをOFFとし、除霜ヒータ21をONとするRF除霜運転(制御S2-4)に移行する。RF除霜運転では制御S2-5からS2-8に示すF蒸発器14bの除霜運転(以下、F除霜運転)と制御S2-11からS2-14に示すR蒸発器14aの第二除霜運転(以下、R第二除霜運転)を行う。 After performing this freezing operation for a predetermined time, for example, 30 minutes (time t d1 ), the refrigerator 1 of this embodiment transitions to RF defrost operation (control S2-4) in which the three-way valve 52 is fully closed, the compressor 24 is turned OFF, the R fan 9a is turned ON, the F fan 9b is turned OFF, and the defrost heater 21 is turned ON. In the RF defrost operation, a defrost operation of the F evaporator 14b shown in controls S2-5 to S2-8 (hereinafter, F defrost operation) and a second defrost operation of the R evaporator 14a shown in controls S2-11 to S2-14 (hereinafter, R second defrost operation) are performed.

まずF除霜運転に関する制御について説明する。圧縮機24とFファン9bをOFFとし、除霜ヒータ21をONにする(制御S2-4)ことで、F蒸発器14b及びF蒸発器14bに付着した霜は除霜ヒータ21により加熱され、徐々に温度が上昇し、融解温度(0℃)以上になると、F蒸発器14bに付着した霜が融解する。F蒸発器温度センサ40bにより検出する冷凍用蒸発器温度が霜の融解温度よりも十分に高いTDFoff(例えば10℃)になる(制御S2-5;時刻td2)と、F除霜運転を終了し、除霜ヒータ21をOFF(制御S2-6)にする。これにより、F蒸発器14bの除霜を行う。F除霜運転終了後は、排水時間として例えば3分停止(制御S2-7)した後、冷凍運転(制御S2-8)を開始する。 First, the control related to the F defrosting operation will be described. By turning off the compressor 24 and the F fan 9b and turning on the defrosting heater 21 (control S2-4), the F evaporator 14b and the frost adhering to the F evaporator 14b are heated by the defrosting heater 21, and the temperature gradually rises. When the temperature reaches or exceeds the melting temperature (0°C), the frost adhering to the F evaporator 14b melts. When the freezing evaporator temperature detected by the F evaporator temperature sensor 40b becomes T DFoff (for example, 10°C) that is sufficiently higher than the melting temperature of the frost (control S2-5; time t d2 ), the F defrosting operation is terminated and the defrosting heater 21 is turned off (control S2-6). This causes the F evaporator 14b to be defrosted. After the F defrosting operation is terminated, the system is stopped for, for example, 3 minutes (control S2-7) as a drainage time, and then the freezing operation (control S2-8) is started.

次にR第二除霜運転に関する制御について説明する。R第二除霜運転は、R第一除霜運転と同じく、Rファン9aを駆動させ(制御S2-4)、R蒸発器14aよりも温度の高い冷蔵室2との熱交換により、冷蔵室2を冷却しつつR蒸発器14a及びR蒸発器14aに付着した霜を加熱して除霜する運転である。なお、本除霜方式はRファン9aの電力(1W程度)のみで除霜する除霜方式のため、R第二除霜運転は、除霜ヒータ21(例えば150W)で除霜を行うF除霜運転に比べ、省エネルギー性能に優れた除霜方式である。 Next, the control related to the R second defrosting operation will be described. Like the R first defrosting operation, the R second defrosting operation is an operation in which the R fan 9a is driven (control S2-4) and the R evaporator 14a and the frost adhering to the R evaporator 14a are heated and defrosted while cooling the refrigerator compartment 2 through heat exchange with the refrigerator compartment 2, which has a higher temperature than the R evaporator 14a. Note that this defrosting method uses only the power (about 1 W) of the R fan 9a to perform defrosting, so the R second defrosting operation is a defrosting method with superior energy saving performance compared to the F defrosting operation in which defrosting is performed using the defrost heater 21 (e.g., 150 W).

R第二除霜運転を開始すると、まず冷蔵用蒸発器温度がTDROFF以上か否かを判断(制御S2-11)する。冷蔵用蒸発器温度TDRが0℃以上のTDRoff(例えば3℃)以上になる(時刻td7)と、タイマAにより所定時間Δtd1(例えば20分)を計測する(制御S2-12,13)。R第二除霜運転では、R蒸発器14aが0℃以上のTDRoff以上の状態を所定時間Δtd1継続することで、確実にR蒸発器14aの霜の融解・排出が行えるようにしている。また、R蒸発器14aよりも下流側にあるRファン9aや冷蔵室ダクト11等にも0℃以上の空気を少なくともΔtd1以上送風できるため、これらの箇所に着霜が生じていた場合にもその霜を融解することができる。さらに所定時間Δtd1継続は排水時間の確保(F除霜における制御S2-7)としての効果もある。 When the R second defrosting operation is started, first, it is determined whether the refrigeration evaporator temperature is equal to or higher than T DROFF (control S2-11). When the refrigeration evaporator temperature T DR becomes equal to or higher than T DRoff (e.g., 3°C) (time t d7 ), a predetermined time Δt d1 (e.g., 20 minutes) is measured by the timer A (controls S2-12, 13). In the R second defrosting operation, the R evaporator 14a is kept in a state of equal to or higher than T DRoff (0°C) for a predetermined time Δt d1 , so that the frost on the R evaporator 14a can be reliably melted and discharged. In addition, air of 0°C or higher can be blown to the R fan 9a and the refrigerator compartment duct 11, which are downstream of the R evaporator 14a, for at least Δt d1 , so that even if frost has formed on these parts, the frost can be melted. Furthermore, continuing the predetermined time Δt d1 also has the effect of ensuring the drainage time (control S2-7 in F defrost).

冷蔵用蒸発器温度TDRがTDRoff以上となり、タイマAが所定時間Δtd1経過する(時刻td2)と、この第二除霜運転を終了する(制御S2-14)。なお、前述したように冷却運転(冷凍運転;制御S2-8)の再開はF除霜のみによって判断し、またR第二除霜運転が終了していない場合、冷蔵運転は禁止される(図6の制御S-4)。 When the refrigeration evaporator temperature T DR becomes equal to or higher than T DRoff and the timer A counts a predetermined time Δt d1 (time t d2 ), the second defrosting operation is terminated (control S2-14). As described above, the resumption of the cooling operation (freezing operation; control S2-8) is determined only by the F defrosting, and if the R second defrosting operation has not ended, the refrigeration operation is prohibited (control S-4 in FIG. 6 ).

図9Aと図9Bは、本実施形態に係る冷蔵庫のサクションパイプの配設位置を示す図2のC-C断面図であり、基本的に同じ断面図であるが、図9Aでは前面側(貯蔵室側)の部材の位置関係を破線で示し、図9Bでは背面側の部材の位置関係を破線で示している。図10は、図9AのD-D断面図であり、図11は、図9AのE-E断面図の右奥拡大図である。なお、図9A,図9B,図10では、Rキャピラリチューブ53a,Fキャピラリチューブ53bの図示を省略している。また、内部熱交換部58で熱的に接していることから各キャピラリチューブを含めて共用サクションパイプ57cと呼ぶことがある。共用サクションパイプ57cのうち、図9A及び図9Bにおける101から102までが、はんだ付けされた内部熱交換部58を有する箇所である。図9A及び図9Bにおける矢印は、冷媒循環時の冷媒流れ方向を示す。 9A and 9B are cross-sectional views taken along the lines C-C in FIG. 2, showing the position of the suction pipe of the refrigerator according to this embodiment. These are basically the same cross-sectional views, but in FIG. 9A, the positional relationship of the members on the front side (storage chamber side) is shown by broken lines, and in FIG. 9B, the positional relationship of the members on the rear side is shown by broken lines. FIG. 10 is a cross-sectional view taken along the lines D-D in FIG. 9A, and FIG. 11 is an enlarged view of the right rear of the cross-sectional view taken along the lines E-E in FIG. 9A. Note that in FIGS. 9A, 9B, and 10, the R capillary tube 53a and the F capillary tube 53b are omitted. Also, since the capillary tubes are in thermal contact with each other at the internal heat exchanger 58, they are sometimes referred to as the shared suction pipe 57c. Of the shared suction pipe 57c, 101 and 102 in FIG. 9A and FIG. 9B are the portions having the soldered internal heat exchanger 58. The arrows in FIG. 9A and FIG. 9B indicate the direction of refrigerant flow during refrigerant circulation.

図9Aに示すように、内部熱交換部58を備える共用サクションパイプ57cは,主に冷凍室7の背面で、特にF蒸発器室8bの背面、かつ真空断熱材25の前面に蛇行させて設けている。なお、ここでの背面は背面方向の投影面、前面は前面方向の投影面を指す。さらに、本明細書における「蛇行」とは、1回以上の折り返し(往復)を含む状態を指し、折り返しの前後は必ずしも互いに平行でなくても良い。 As shown in FIG. 9A, the common suction pipe 57c equipped with the internal heat exchanger 58 is provided in a serpentine manner mainly at the rear of the freezer compartment 7, particularly at the rear of the F evaporator compartment 8b, and at the front of the vacuum insulation material 25. Note that the rear here refers to the projected surface in the rear direction, and the front here refers to the projected surface in the front direction. Furthermore, in this specification, "serpentine" refers to a state including one or more turns (returns), and the front and rear of the turns do not necessarily have to be parallel to each other.

F蒸発器室8bの背面に設けた共用サクションパイプ57cは、内箱10bと離間距離を確保する、或いは近接する箇所を極力小さくするようにしている。具体的には、F蒸発器室8bの背面に設けた共用サクションパイプ57cを、図10において上から57c1,57c2,57c3,57c4とすると、F蒸発器室8bの上部の共用サクションパイプ57c1にスペース確保部材111を設け、共用サクションパイプ57c1と内箱10bとの離間距離が確保されるようにしている。なお、本実施形態では、共用サクションパイプ57c1~57c4のうち、上端にある57c1にスペース確保部材111を設けているため、共用サクションパイプ全体を位置規制し易くなっているが、57c1以外にスペース確保部材111を設けても構わない。 The shared suction pipe 57c provided on the back of the F evaporator chamber 8b is designed to ensure a distance from the inner box 10b or to minimize the area of proximity. Specifically, if the shared suction pipes 57c provided on the back of the F evaporator chamber 8b are 57c1, 57c2, 57c3, and 57c4 from the top in FIG. 10, a space securing member 111 is provided on the shared suction pipe 57c1 at the top of the F evaporator chamber 8b to ensure a distance between the shared suction pipe 57c1 and the inner box 10b. In this embodiment, the space securing member 111 is provided on the upper end 57c1 of the shared suction pipes 57c1 to 57c4, making it easier to regulate the position of the entire shared suction pipe, but the space securing member 111 may be provided in other places besides 57c1.

また、F蒸発器室8bの背面側を区画する内箱10bのうち、F蒸発器14bの下部の背面側に位置する箇所は、F蒸発器室8bの基本的な壁面よりも背面側にあって、F蒸発器14bとの隙間を形成しており、サイドステージ112と呼ぶ。このようなスペース確保部材111とサイドステージ112により、共用サクションパイプ57c2,共用サクションパイプ57c3も内箱10bとの離間距離が確保される。ここで、共用サクションパイプ57cと内箱10bとの離間距離は、共用サクションパイプ57cの前端から内箱10bの後面(背面)までの距離であるが、共用サクションパイプ57cの前側にキャピラリチューブの一部(図11の例ではFキャピラリチューブ53b)が位置する場合には、そのキャピラリチューブの前端から内箱10bの後面までの距離となる。共用サクションパイプ57cとキャピラリチューブは、共に銅などの金属製の配管で、はんだ付けにより接合されており、温度差が小さいためである。 In addition, the part of the inner box 10b that divides the rear side of the F evaporator chamber 8b that is located on the rear side of the lower part of the F evaporator 14b is located on the rear side of the basic wall surface of the F evaporator chamber 8b, forming a gap with the F evaporator 14b, and is called the side stage 112. Such space securing member 111 and side stage 112 ensure that the common suction pipe 57c2 and the common suction pipe 57c3 are also spaced apart from the inner box 10b. Here, the distance between the common suction pipe 57c and the inner box 10b is the distance from the front end of the common suction pipe 57c to the rear (rear) of the inner box 10b, but if a part of the capillary tube (F capillary tube 53b in the example of FIG. 11) is located in front of the common suction pipe 57c, it is the distance from the front end of the capillary tube to the rear of the inner box 10b. The shared suction pipe 57c and the capillary tube are both made of metal piping such as copper and are soldered together, so the temperature difference between them is small.

なお、本実施形態では、サイドステージ112を除いて離間距離が2mm程度確保されるようにしている。離間距離が確保されると、その間に発泡断熱材が充填され、共用サクションパイプ57cと内箱10b間の熱交換が抑制される。この熱交換抑制効果については後述する。スペース確保部材111は、共用サクションパイプ57c1と内箱10bとの熱交換を抑えるため、予め発泡して形成された断熱材(例えば発泡スチロール)などの熱伝導率が低い部材が望ましい。また、スペース確保部材111などが配置されておらず、かつ共用サクションパイプ57cと内箱10bとの離間距離が確保されている箇所(例えば図10の共用サクションパイプ57c2,共用サクションパイプ57c3と内箱10bの間)には、発泡断熱材が充填される。なお、一般的に発泡断熱材に用いられる発泡ウレタンフォームは発泡スチロール等よりも断熱性能が高いため、離間距離を確実に確保できれば、スペース確保部材111の配置範囲(パイプ軸方向のサイズ)は可能な限り小さくするのが望ましい。 In this embodiment, the distance is about 2 mm except for the side stage 112. When the distance is secured, the gap is filled with foam insulation material, and heat exchange between the shared suction pipe 57c and the inner box 10b is suppressed. This heat exchange suppression effect will be described later. In order to suppress heat exchange between the shared suction pipe 57c1 and the inner box 10b, the space securing member 111 is preferably a material with low thermal conductivity such as a pre-foamed insulation material (e.g., polystyrene foam). In addition, in places where the space securing member 111 is not arranged and the distance between the shared suction pipe 57c and the inner box 10b is secured (for example, between the shared suction pipe 57c2 and the shared suction pipe 57c3 and the inner box 10b in FIG. 10), foam insulation material is filled. In addition, since the foamed urethane foam generally used for the foam insulation material has higher insulation performance than polystyrene foam, it is desirable to make the arrangement range of the space securing member 111 (size in the pipe axial direction) as small as possible if the distance can be reliably secured.

また、冷凍用サクションパイプ57bの途中に設けられる逆止弁55の上部に冷媒合流部56が配設されている。これは、本実施形態で使用している逆止弁55が上向きに冷媒が流れるよう設置する必要があり、そのため逆止弁55を上方向に通過した冷媒が比較的短い冷凍用サクションパイプ57bで冷媒合流部56に到達するよう、逆止弁55の上部に冷媒合流部56を配している。 Furthermore, a refrigerant junction 56 is provided above a check valve 55 provided midway through the refrigeration suction pipe 57b. This is because the check valve 55 used in this embodiment needs to be installed so that the refrigerant flows upward, and therefore the refrigerant junction 56 is provided above the check valve 55 so that the refrigerant that passes upward through the check valve 55 reaches the refrigerant junction 56 via the relatively short refrigeration suction pipe 57b.

また、本実施形態では、サクションパイプ57(冷蔵用サクションパイプ57a、共用サクションパイプ57c)の一部が冷蔵室2の背面に配置されているが、冷蔵室2のうちR蒸発器室8aの背面に収まるようにサクションパイプ57を配設している。冷蔵室2の壁面のうち、サクションパイプ57に近接している個所は、庫内側も低温になり、冷蔵室2内に結露や着霜が生じることがあるが、これにより、結露や着霜が生じても、その結露水や霜が冷蔵室2内の食品と接触しないようにしている。 In addition, in this embodiment, a portion of the suction pipe 57 (refrigeration suction pipe 57a, shared suction pipe 57c) is located at the rear of the refrigerator compartment 2, but the suction pipe 57 is arranged so that it fits behind the R evaporator chamber 8a of the refrigerator compartment 2. The parts of the wall surface of the refrigerator compartment 2 that are close to the suction pipe 57 also become cold inside the compartment, and condensation or frost may occur inside the refrigerator compartment 2. However, even if condensation or frost does occur, this prevents the condensed water or frost from coming into contact with food in the refrigerator compartment 2.

さらにR蒸発器室8aのうち、主にR蒸発器14aの空気流れ上流側(冷蔵室戻り口15bからR蒸発器14aに向かう流路中)の背面にサクションパイプ57を配設している。サクションパイプ57の前面の壁面に着霜が生じても、その壁面にはR蒸発器14aに流入する前の冷蔵室2の0℃以上の空気が流れるため、この空気により加熱され、R第一除霜運転やR第二除霜運転中に比較的容易に融解させることができる。 Furthermore, a suction pipe 57 is disposed in the R evaporator chamber 8a, mainly on the rear side of the air flow upstream of the R evaporator 14a (in the flow path from the refrigerator compartment return port 15b to the R evaporator 14a). Even if frost forms on the wall surface in front of the suction pipe 57, air of 0°C or higher from the refrigerator compartment 2 flows over the wall surface before flowing into the R evaporator 14a, so the wall surface is heated by this air and can be melted relatively easily during the R first defrost operation or the R second defrost operation.

加えて、サクションパイプ57前面の冷蔵室2壁面で水(結露水又は除霜水)が生じても、その水はRトイ23aに流れるように構成している。すなわち、R蒸発器14aの除霜水と同じく、Rトイ23a、R排水口(図示なし)、R排水管27(図示なし)を介して機械室39に排出できるようにしている。 In addition, even if water (condensation water or defrost water) occurs on the wall surface of the refrigerator compartment 2 in front of the suction pipe 57, the water is configured to flow to the R toy 23a. In other words, like the defrost water of the R evaporator 14a, the water can be discharged to the machine room 39 via the R toy 23a, the R drain port (not shown), and the R drain pipe 27 (not shown).

さらに、本実施形態では、冷蔵室2壁面と共用サクションパイプ57cの離間距離が確実に確保できるように、R蒸発器室8aの背面に配置される共用サクションパイプ57cの周囲にもスペース確保部材113を設けている。このため、図10に示すように、R蒸発器室8aの背面を区画する内箱10bのうち、共用サクションパイプ57c及びスペース確保部材113の前方に位置する箇所114は、その周囲の内箱10bの基本的な背面位置よりも前面側にずらしている。なお、本実施形態では、R蒸発器8aにおいても、内箱10bと共用サクションパイプ57cとの離間距離が2mm程度確保されるようにしている。離間距離が確保されれば、その間に発泡断熱材が充填されるため、この熱抵抗により、冷蔵室2の壁面(内箱10b)の低温化が抑えられる。すなわち、本構成により、冷蔵室2の壁面(内箱10b)とサクションパイプ57間の熱交換を抑え、サクションパイプ57前面の壁面の低温化を抑えて結露や着霜を抑制している。 In addition, in this embodiment, a space securing member 113 is also provided around the shared suction pipe 57c arranged on the back of the R evaporator chamber 8a so that the distance between the wall surface of the refrigerator chamber 2 and the shared suction pipe 57c can be reliably secured. For this reason, as shown in FIG. 10, in the inner box 10b that defines the back surface of the R evaporator chamber 8a, a portion 114 located in front of the shared suction pipe 57c and the space securing member 113 is shifted toward the front side from the basic back position of the surrounding inner box 10b. In this embodiment, the distance between the inner box 10b and the shared suction pipe 57c is secured to about 2 mm even in the R evaporator 8a. If the distance is secured, the gap is filled with foam insulation, and this thermal resistance prevents the wall surface (inner box 10b) of the refrigerator chamber 2 from becoming cold. In other words, this configuration reduces heat exchange between the wall surface (inner box 10b) of the refrigerator compartment 2 and the suction pipe 57, and prevents the wall surface in front of the suction pipe 57 from becoming too cold, thereby suppressing condensation and frost formation.

なお、本実施形態では冷蔵室2の方が冷凍室7よりも外気との温度差が小さいことから、冷凍室7に比べ冷蔵室2の方が断熱壁の厚さを薄くしており、その結果、共用サクションパイプ57cの前後距離が確保し難いことから、共用サクションパイプ57c配設部前方の壁面を前方にずらしている。冷蔵室2の基本的な背面位置においても共用サクションパイプ57cの前後距離が確保できる場合は、共用サクションパイプ57c配設部前方の壁面を前方にずらさなくてもよい。 In this embodiment, the temperature difference between the refrigerator compartment 2 and the outside air is smaller than that of the freezer compartment 7, so the thickness of the insulating wall of the refrigerator compartment 2 is thinner than that of the freezer compartment 7. As a result, it is difficult to ensure the front-to-rear distance of the shared suction pipe 57c, so the wall surface in front of the shared suction pipe 57c installation area is shifted forward. If the front-to-rear distance of the shared suction pipe 57c can be ensured even at the basic rear position of the refrigerator compartment 2, it is not necessary to shift the wall surface in front of the shared suction pipe 57c installation area forward.

また、本実施形態では離間距離をR蒸発器8aの背面に2mm、F蒸発器室8bの背面においてもサイドステージ112を除いて2mm程度確保し、その間に発泡断熱材が充填されるようにしているが、必ずしも発泡断熱材が充填される必要はなく、空気層(ガス)の状態でも断熱効果が得られ、すなわちサクションパイプ57と冷蔵室2及び冷凍室7との熱交換抑制効果が得られる。さらに、離間距離は極力長くし、断熱厚さを確保することが望ましいが、接触する場合に比べると、例えば0.1mmでも離間距離が確保できれば接触熱抵抗として機能し、熱交換抑制効果が得られる。なお、スペース確保部材111,113は、共用サクションパイプ57cの軸回りに全周を覆うものに限られず、例えば、共用サクションパイプ57cの庫内側(前方)のみに設けられても良い。 In this embodiment, the distance is 2 mm on the back of the R evaporator 8a, and about 2 mm on the back of the F evaporator chamber 8b excluding the side stage 112, and the gap is filled with foam insulation material, but it is not necessary to fill the gap with foam insulation material, and the insulation effect can be obtained even in an air layer (gas) state, that is, the heat exchange suppression effect between the suction pipe 57 and the refrigerator chamber 2 and the freezer chamber 7 can be obtained. Furthermore, it is desirable to make the distance as long as possible and ensure the insulation thickness, but compared to the case of contact, if a distance of, for example, 0.1 mm is secured, it functions as a contact thermal resistance and the heat exchange suppression effect can be obtained. Note that the space securing members 111, 113 are not limited to those that cover the entire circumference around the axis of the shared suction pipe 57c, and may be provided only on the inside (front) of the shared suction pipe 57c, for example.

以上が本冷蔵庫の基本的な構造と制御である。次に上記に記載していない効果や詳細な効果について説明する。 The above is the basic structure and control of this refrigerator. Next, we will explain the effects not mentioned above and the detailed effects.

《サクションパイプを主に冷凍室の背面で蛇行させることによる効果》
本実施形態の冷蔵庫1では、図9Aで示したように、共用サクションパイプ57cを、主に冷凍室7の背面を蛇行させて設けている。この理由と効果について以下で示す。
<Effect of suction pipes running along the back of the freezer>
In the refrigerator 1 of this embodiment, as shown in Fig. 9A, the common suction pipe 57c is provided in a serpentine manner mainly on the rear surface of the freezer compartment 7. The reasons and effects of this will be described below.

まず、主に冷凍室7の背面に設けている理由を示す。なお、ここでの冷蔵室2はR蒸発器室8aを含む。冷蔵室2の背面に設けられた共用サクションパイプ57cは、冷凍運転時に低温の冷媒が流れるため、冷蔵室2と共用サクションパイプ57cの間で熱交換が生じ、冷蔵室2が冷却される。この冷凍運転中に冷却されていた冷蔵室2の熱量ΔQを抑制すると、冷凍運転で冷却されていた熱量ΔQを、冷凍運転より効率の高い冷蔵運転で冷却できるため、その効率の差により省エネルギー性能が向上する。すなわち、冷蔵室2と冷凍室7とを分けて冷却して冷蔵室2の冷却効率を高めた冷蔵庫では、共用サクションパイプ57cを主に冷凍室7の背面に設け、共用サクションパイプ57cによる冷蔵室2の冷却を抑制することで、省エネルギー性能を向上させることができる。 First, the reason why the common suction pipe 57c is mainly provided on the back side of the freezer compartment 7 will be explained. The refrigerator compartment 2 here includes the R evaporator compartment 8a. The common suction pipe 57c provided on the back side of the refrigerator compartment 2 allows low-temperature refrigerant to flow during freezing operation, so heat exchange occurs between the refrigerator compartment 2 and the common suction pipe 57c, and the refrigerator compartment 2 is cooled. If the heat amount ΔQ of the refrigerator compartment 2 that was cooled during this freezing operation is suppressed, the heat amount ΔQ that was cooled during freezing operation can be cooled by the refrigerator operation, which is more efficient than the freezing operation, and the difference in efficiency improves energy-saving performance. In other words, in a refrigerator in which the refrigerator compartment 2 and the freezer compartment 7 are cooled separately to increase the cooling efficiency of the refrigerator compartment 2, the common suction pipe 57c is provided mainly on the back side of the freezer compartment 7, and the cooling of the refrigerator compartment 2 by the common suction pipe 57c is suppressed, thereby improving energy-saving performance.

冷凍室7の背面で共用サクションパイプ57cを蛇行させている理由は、上記の意図から極力冷凍室7の背面に収まるようにしつつ、内部熱交換部58の長さを確保するためである。内部熱交換部58を長くすることで内部熱交換部58での各キャピラリチューブと共用サクションパイプ57cとの時間当たりの熱交換量を高めることができる。すなわち、極力冷凍室7の背面に収まるようにしながら、図4で示した内部熱交換部58による省エネルギー性能向上効果を確保することができる。 The reason why the shared suction pipe 57c is made to snake at the back of the freezer compartment 7 is to ensure the length of the internal heat exchanger 58 while fitting as closely as possible to the back of the freezer compartment 7. By lengthening the internal heat exchanger 58, the amount of heat exchanged per unit time between each capillary tube in the internal heat exchanger 58 and the shared suction pipe 57c can be increased. In other words, the energy saving performance improvement effect of the internal heat exchanger 58 shown in FIG. 4 can be ensured while fitting as closely as possible to the back of the freezer compartment 7.

以上のように、内部熱交換部58を備える共用サクションパイプ57cを、主に冷凍室7の背面を蛇行させて設けることで、内部熱交換部58による省エネルギー性能向上効果を実現しつつ、共用サクションパイプ57cと冷蔵室2との熱交換を抑え、冷却効率の高い冷蔵運転で冷却する熱量の割合を増やすことができる。すなわち、冷蔵室と冷凍室とを分けて冷却する冷蔵庫において、サクションパイプの熱交換を抑え、省エネルギー性能の高い冷蔵庫を提供することができる。 As described above, by providing the shared suction pipe 57c equipped with the internal heat exchanger 58 in a serpentine shape mainly on the back surface of the freezer compartment 7, it is possible to realize the energy-saving performance improvement effect of the internal heat exchanger 58 while suppressing heat exchange between the shared suction pipe 57c and the refrigerator compartment 2, thereby increasing the proportion of heat cooled during refrigeration operation with high cooling efficiency. In other words, in a refrigerator in which the refrigerator compartment and freezer compartment are cooled separately, it is possible to provide a refrigerator with high energy-saving performance by suppressing heat exchange in the suction pipe.

《冷蔵室内の結露・着霜の抑制に関する効果》
さらに、共用サクションパイプ57cによる冷蔵室2の冷却を抑えることで、冷蔵室2の結露や着霜を抑える効果も得られる。冷蔵室2の壁面のうち共用サクションパイプ57cに近接して冷却されている個所は、庫内側も低温になり、この低温の壁面に冷蔵室2内の水分により結露や着霜が生じることがある。よって、共用サクションパイプ57cを主に冷凍室7の背面に設け、共用サクションパイプ57cにより冷却される冷蔵室2の壁面を抑えることで、この結露量や着霜量を抑えることができる。
<Effect on suppressing condensation and frost formation inside the refrigerator>
Furthermore, by suppressing the cooling of the refrigerator compartment 2 by the shared suction pipe 57c, it is also possible to suppress condensation and frost formation in the refrigerator compartment 2. The inside of the refrigerator compartment 2 at the portion of the wall surface thereof that is cooled close to the shared suction pipe 57c also becomes cold, and condensation and frost may occur on this cold wall surface due to moisture inside the refrigerator compartment 2. Therefore, by providing the shared suction pipe 57c mainly on the rear surface of the freezer compartment 7 and suppressing the wall surface of the refrigerator compartment 2 that is cooled by the shared suction pipe 57c, it is possible to suppress the amount of condensation and frost formation.

加えて、図9A,図9B,図10で示したように、その他の構成によってもサクションパイプ57の冷蔵室2の結露、着霜に配慮している。具体的には、結露や着霜が生じてもその結露水や霜が冷蔵室2内の食品と接触しないよう、冷蔵室2のうちR蒸発器室8aの背面に収まるように冷蔵用サクションパイプ57aを配設している。また、着霜が生じても比較的容易に融解させられるよう、R蒸発器室8aのうちR蒸発器14aの空気流れ上流側の背面に冷蔵用サクションパイプ57aを配設している。さらに、冷蔵用サクションパイプ57aを配設している個所の前面に結露水や除霜水が生じても、その水が機械室39に排出される構成にしている。加えて、共用サクションパイプ57cを配設している個所の前面は、冷蔵室2の基本的な背面位置よりも前方にずらし、共用サクションパイプ57cの周囲にスペース確保部材113を設け、共用サクションパイプ57c前面の壁面の低温化を抑えて結露や着霜を抑制している。 In addition, as shown in Figures 9A, 9B, and 10, other configurations are also taken into consideration to prevent condensation and frost in the refrigerator compartment 2 of the suction pipe 57. Specifically, the refrigeration suction pipe 57a is arranged to fit behind the R evaporator chamber 8a in the refrigerator compartment 2 so that even if condensation or frost occurs, the condensed water or frost does not come into contact with the food in the refrigerator compartment 2. Also, the refrigeration suction pipe 57a is arranged behind the R evaporator 14a upstream of the air flow in the R evaporator chamber 8a so that frost can be melted relatively easily even if it occurs. Furthermore, even if condensation water or defrost water occurs in front of the location where the refrigeration suction pipe 57a is arranged, the water is discharged into the machine chamber 39. In addition, the front of the location where the shared suction pipe 57c is installed is shifted forward from the basic rear position of the refrigerator compartment 2, and a space-retaining member 113 is provided around the shared suction pipe 57c to prevent the wall surface in front of the shared suction pipe 57c from becoming too cold, thereby suppressing condensation and frost formation.

なお、上記した冷蔵室2の結露や着霜の抑制効果は、特に、冷蔵温度帯の貯蔵室専用のR蒸発器14aを備え、図5で示したように、F蒸発器14bよりも高い蒸発温度で冷蔵室2を冷却している冷蔵庫において重要である。蒸発温度が高いことで、R蒸発器14aでの着霜(除湿)が少なく、冷凍温度帯の貯蔵室と同一の蒸発器で冷蔵室2を冷却する冷蔵庫に比べて冷蔵室2が高湿になりやすい。冷蔵室2が高湿になることで食品の乾燥を抑制できるが、一方で露点が高く結露・着霜が生じやすいことから、R蒸発器14aを備えた冷蔵庫では、サクションパイプ57による冷蔵室2内の壁面の低温化を抑え、冷蔵室2の結露や着霜を抑える本構成が重要である。 The above-mentioned effect of suppressing condensation and frost formation in the refrigerator compartment 2 is particularly important in a refrigerator equipped with an R evaporator 14a dedicated to the storage compartment in the refrigeration temperature range, which cools the refrigerator compartment 2 at a higher evaporation temperature than the F evaporator 14b, as shown in FIG. 5. The high evaporation temperature results in less frost (dehumidification) in the R evaporator 14a, and the refrigerator compartment 2 is more likely to become humid than in a refrigerator that cools the refrigerator compartment 2 with the same evaporator as the storage compartment in the freezing temperature range. The high humidity in the refrigerator compartment 2 can suppress the drying of food, but on the other hand, the high dew point makes it easy for condensation and frost to form. Therefore, in a refrigerator equipped with an R evaporator 14a, this configuration is important for suppressing the temperature increase of the wall surface in the refrigerator compartment 2 by the suction pipe 57 and suppressing condensation and frost formation in the refrigerator compartment 2.

以上のように、本実施形態ではサクションパイプ57による冷蔵室2の冷却を抑制し、省エネルギー性能の向上と、冷蔵室2内の結露・着霜の抑制を実現している。なお、前述したようにサクションパイプ57による冷蔵室2の冷却は、冷凍運転中に生じることで冷却効率の低下を招き、また冷凍運転中の方がサクションパイプ57を流れる冷媒が低温で結露や着霜が生じやすい。本実施形態ではサクションパイプ57の多くを共通冷媒配管である共用サクションパイプ57cとしているが、例えば共用サクションパイプ57cよりも冷蔵用サクションパイプ57a及び冷凍用サクションパイプ57bが長い場合は、冷凍運転中に冷媒が流れる冷凍用サクションパイプ57bに対して、前述した冷蔵室2の冷却抑制構造、すなわち、主に冷凍室7の背面で蛇行させる構造を採用することが有効となる。 As described above, in this embodiment, the cooling of the refrigerator compartment 2 by the suction pipe 57 is suppressed, improving energy saving performance and suppressing condensation and frost formation in the refrigerator compartment 2. As described above, the cooling of the refrigerator compartment 2 by the suction pipe 57 occurs during freezing operation, which leads to a decrease in cooling efficiency, and the refrigerant flowing through the suction pipe 57 is lower in temperature during freezing operation, making condensation and frost more likely to occur. In this embodiment, most of the suction pipes 57 are common suction pipes 57c, which are common refrigerant piping. However, if the refrigeration suction pipes 57a and the freezing suction pipes 57b are longer than the common suction pipes 57c, for example, it is effective to adopt the above-mentioned cooling suppression structure of the refrigerator compartment 2, i.e., a structure that snakes mainly at the back of the freezing compartment 7, for the freezing suction pipes 57b through which the refrigerant flows during freezing operation.

なお、本明細書において、「サクションパイプを主に冷凍室の背面に設ける」とは、冷蔵用サクションパイプ57a、冷凍用サクションパイプ57b及び共用サクションパイプ57cを含むすべてのサクションパイプ57の合計長さのうち、50%を超える長さの領域が、冷凍室7の背面の位置にするように配置することを意味する。さらに、サクションパイプのうち、冷凍運転時に低温の冷媒が流れ、冷蔵室2の結露・着霜に影響しやすい部分である、冷凍用サクションパイプ57b及び共用サクションパイプ57cに着目した場合、これら2つのサクションパイプの合計長さのうち、3分の2以上の長さの領域を、冷凍室7の背面に位置させるのが望ましい。 In this specification, "the suction pipes are mainly provided at the rear of the freezer compartment" means that the area of the suction pipes 57 that exceeds 50% of the total length of all suction pipes 57, including the refrigeration suction pipe 57a, the freezing suction pipe 57b, and the shared suction pipe 57c, is positioned at the rear of the freezer compartment 7. Furthermore, when focusing on the freezing suction pipe 57b and the shared suction pipe 57c, which are the parts of the suction pipes through which low-temperature refrigerant flows during freezing operation and which are susceptible to condensation and frost in the refrigerator compartment 2, it is desirable to position an area of at least two-thirds of the total length of these two suction pipes at the rear of the freezer compartment 7.

《サクションパイプを主に冷凍用蒸発器室の背面で蛇行させることによる効果》
本実施形態では、共用サクションパイプ57cを、主に冷凍室7の背面で、特にF蒸発器室8bの背面に設けている。このF蒸発器室8bの背面に設ける効果を以下で説明する。
<Effect of suction pipes meandering mainly behind the refrigeration evaporator chamber>
In this embodiment, the common suction pipe 57c is provided mainly on the rear surface of the freezing chamber 7, and particularly on the rear surface of the F evaporator chamber 8b. The effect of providing the common suction pipe 57c on the rear surface of the F evaporator chamber 8b will be described below.

図5を用いて説明したように、本実施形態の冷蔵庫では冷蔵室2と冷凍室7を交互に冷却する構成のため、R蒸発器14aに冷媒を流して冷蔵室2を冷却する冷蔵運転中は冷凍室7の冷却が行えない。よって、冷凍室7の食品の温度上昇を極力抑えることが求められる。一方、冷蔵運転中はR蒸発器14aの温度が冷凍室7よりも高く(図5参照)、R蒸発器14aの下流のサクションパイプ57も冷凍室7よりも高温であり、さらに内部熱交換部58によりRキャピラリチューブ53aとの熱交換で共用サクションパイプ57cは温度上昇するため、サクションパイプ57と冷凍室7で熱交換が生じると冷凍室7が加熱される。この時、冷凍室7の背面のうち、F蒸発器室8bの背面が加熱されるようにしておくことで、F蒸発器室8b内の空気及びF蒸発器室8b内に収納されるF蒸発器14bなどが蓄熱部材として働き、冷凍室7の食品への影響を抑えることができる。すなわち、サクションパイプ57を、冷凍室7に直接露出している壁面でなく、F蒸発器室8bの背面に設けることで、前述した冷蔵室2の冷却を抑えながら、冷凍室7の食品の温度上昇も抑制することができる。 As explained with reference to FIG. 5, the refrigerator of this embodiment is configured to alternately cool the refrigerator compartment 2 and the freezer compartment 7, so that the freezer compartment 7 cannot be cooled during refrigeration operation in which the refrigerant flows through the R evaporator 14a to cool the refrigerator compartment 2. Therefore, it is necessary to suppress the temperature rise of food in the freezer compartment 7 as much as possible. On the other hand, during refrigeration operation, the temperature of the R evaporator 14a is higher than that of the freezer compartment 7 (see FIG. 5), the suction pipe 57 downstream of the R evaporator 14a is also hotter than the freezer compartment 7, and the temperature of the shared suction pipe 57c rises due to heat exchange with the R capillary tube 53a by the internal heat exchanger 58, so that when heat exchange occurs between the suction pipe 57 and the freezer compartment 7, the freezer compartment 7 is heated. At this time, by making the back surface of the F evaporator chamber 8b of the back surface of the freezer compartment 7 heated, the air in the F evaporator chamber 8b and the F evaporator 14b housed in the F evaporator chamber 8b act as heat storage members, and the effect on the food in the freezer compartment 7 can be suppressed. In other words, by installing the suction pipe 57 on the back surface of the F evaporator chamber 8b, rather than on a wall surface directly exposed to the freezer chamber 7, it is possible to suppress the cooling of the refrigerator chamber 2 as described above while also suppressing the temperature rise of the food in the freezer chamber 7.

《冷蔵運転中は冷凍用ファンを停止させることによる効果》
また、冷蔵運転中は、Fファン9bの駆動が停止し、F蒸発器室8bと冷凍室7間の対流を抑えている。これにより、F蒸発器室8bが加熱されても、F蒸発器室8bから冷凍室7への熱移動が抑えられ、F蒸発器室8bの蓄熱部材としての効果を高めることができる。さらに、F蒸発器室8bの対流が抑えられるため、F蒸発器室8bの背面壁の熱伝達率が小さくなり、サクションパイプ57とF蒸発器室8bの背面壁との熱交換も抑えられる。
<Effects of stopping the freezer fan during refrigeration operation>
During refrigeration operation, the F fan 9b is stopped, suppressing convection between the F evaporator chamber 8b and the freezer chamber 7. This suppresses heat transfer from the F evaporator chamber 8b to the freezer chamber 7 even if the F evaporator chamber 8b is heated, enhancing the effect of the F evaporator chamber 8b as a heat storage member. Furthermore, since convection in the F evaporator chamber 8b is suppressed, the heat transfer coefficient of the back wall of the F evaporator chamber 8b is reduced, and heat exchange between the suction pipe 57 and the back wall of the F evaporator chamber 8b is also suppressed.

《サクションパイプと冷凍室等との間に離間距離を設けることによる効果》
さらに本実施形態では、図9A,図9B,図10で示したように、スペース確保部材111とサイドステージ112を用いて、サクションパイプ57と冷凍室7及びF蒸発器8b間に離間距離を設けている。これにより、サクションパイプ57と冷凍室7及びF蒸発器14bとの熱交換を抑えている。
<Effects of providing a distance between the suction pipe and the freezer, etc.>
9A, 9B, and 10, a space is provided between the suction pipe 57 and the freezing chamber 7 and the F evaporator 8b by using a space securing member 111 and a side stage 112. This suppresses heat exchange between the suction pipe 57 and the freezing chamber 7 and the F evaporator 14b.

なお、冷凍室7及びF蒸発器14bの加熱は、前述の冷凍室7の温度上昇とともに、サクションパイプ57が冷却されることで蒸発温度が低温化し、冷却効率が低下するといった影響も及ぼす。よって、サクションパイプ57と冷凍室7及びF蒸発器14bの熱交換を抑えることは、冷却効率の向上、すなわち省エネルギー性能の向上にも有効である。一方、このサクションパイプ57が冷却されることで生じる冷却効率の低下は、一般的に前述した冷蔵運転と冷凍運転の冷却効率の差に比べれば小さく、前述した冷蔵室2の熱交換抑制の方が省エネルギー性能向上に有効である。 The heating of the freezer compartment 7 and the F evaporator 14b not only increases the temperature of the freezer compartment 7 as described above, but also cools the suction pipe 57, lowering the evaporation temperature and reducing the cooling efficiency. Therefore, suppressing heat exchange between the suction pipe 57 and the freezer compartment 7 and the F evaporator 14b is effective in improving cooling efficiency, i.e., improving energy-saving performance. On the other hand, the decrease in cooling efficiency caused by the cooling of the suction pipe 57 is generally smaller than the difference in cooling efficiency between the refrigeration operation and the freezing operation as described above, and suppressing heat exchange in the refrigerator compartment 2 as described above is more effective in improving energy-saving performance.

また、サイドステージ112を設けることで、F蒸発器8bの耐着霜性の向上効果も得られる。F蒸発器8bは下部から冷凍室7の空気が流入するため、下部で霜詰まりが発生しやすいが、サイドステージ112を利用してF蒸発器8bの下部を空気がバイパスできるようにしておくことでF蒸発器8b上部に空気を流すことができる。すなわち、F蒸発器8bの下部で霜詰まりが発生しても、F蒸発器8b上部を使って冷却を続けることができる。このサイドステージ112を用いることで、霜詰まりによる冷却性能低下の抑制を行いつつ、追加部材なしで離間距離の確保が可能となる。さらにサイドステージ112の位置はF蒸発器14bよりも空気流れの上流側であり、F蒸発器14bに冷やされる前の空気が流れるため、F蒸発器8bの中で比較的温度が高い空気が流れる箇所である。そのため、サイドステージ112とその背面にあるサクションパイプ57が近接していても、サイドステージ112とサクションパイプ57との温度差が比較的小さく、熱交換も比較的小さく抑えることができる。 In addition, by providing the side stage 112, the frost resistance of the F evaporator 8b can be improved. Since the air from the freezer compartment 7 flows into the F evaporator 8b from the bottom, frost clogging is likely to occur at the bottom, but by using the side stage 112 to allow air to bypass the bottom of the F evaporator 8b, air can be circulated to the top of the F evaporator 8b. In other words, even if frost clogging occurs at the bottom of the F evaporator 8b, cooling can be continued using the top of the F evaporator 8b. By using this side stage 112, it is possible to ensure a separation distance without additional parts while suppressing the decrease in cooling performance due to frost clogging. Furthermore, the position of the side stage 112 is upstream of the F evaporator 14b in the air flow, and since air before being cooled by the F evaporator 14b flows through it, it is a place where relatively high-temperature air flows in the F evaporator 8b. Therefore, even if the side stage 112 and the suction pipe 57 on its back are close to each other, the temperature difference between the side stage 112 and the suction pipe 57 is relatively small, and heat exchange can be kept relatively small.

以上のように本実施形態の冷蔵庫は、サクションパイプ57による冷凍室7の加熱を抑制し、冷凍室7内の食品の温度上昇抑制と、省エネルギー性能の向上を実現している。なお、前述したようにサクションパイプ57による冷凍室7の加熱は、冷蔵運転中の方がサクションパイプ57を流れる冷媒が高温で熱交換が生じやすく、また、冷凍室7の食品としても冷凍室7を冷却できない冷蔵運転中における食品の温度上昇が問題となる。本実施形態ではサクションパイプ57の多くを共通冷媒配管である共用サクションパイプ57cとしているが、例えば共用サクションパイプ57cよりも冷蔵用サクションパイプ57a及び冷凍用サクションパイプ57bが長い場合は、冷蔵運転中に冷媒が流れる冷蔵用サクションパイプ57aに対して、前述した冷凍室7の加熱抑制構造、すなわち、スペース確保部材111やサイドステージ112を採用することが有効となる。 As described above, the refrigerator of this embodiment suppresses heating of the freezer compartment 7 by the suction pipe 57, suppresses the temperature rise of food in the freezer compartment 7, and improves energy saving performance. As described above, the heating of the freezer compartment 7 by the suction pipe 57 is more likely to occur during refrigeration operation because the refrigerant flowing through the suction pipe 57 is at a higher temperature, and heat exchange is more likely to occur. In addition, as for the food in the freezer compartment 7, the temperature rise of the food during refrigeration operation, which cannot cool the freezer compartment 7, is a problem. In this embodiment, most of the suction pipes 57 are common suction pipes 57c, which are common refrigerant piping. However, if the refrigeration suction pipes 57a and the freezing suction pipes 57b are longer than the common suction pipes 57c, for example, it is effective to adopt the above-mentioned heating suppression structure for the freezer compartment 7, i.e., the space securing member 111 and the side stage 112, for the refrigeration suction pipes 57a through which the refrigerant flows during refrigeration operation.

《サクションパイプの背面に真空断熱材が位置することによる効果》
さらに本実施形態では、サクションパイプ57と庫外との熱交換も配慮されており、具体的には、図9A及び図9Bに示すように、サクションパイプ57を主に真空断熱材25の前面に配設している。ここで、サクションパイプ57が外箱10aに近いと、外箱10aを介してサクションパイプ57と庫外とで熱交換が生じ、サクションパイプ57が庫外の熱により加熱され、冷凍サイクルで冷却する熱負荷が増える。特にサクションパイプ57の上流側は蒸発温度に近い低温のため、貯蔵室と庫外との熱交換よりも熱交換量が増えてしまうことがある。これに対し、本実施形態では、サクションパイプ57と背面壁(外箱10a)との間に真空断熱材25が配設されるようにして、この熱交換を抑えている。また、サクションパイプ57を冷凍室7の背面に配設することで、天井壁、側面壁及び底面壁とサクションパイプ57との距離が確保され、すなわち断熱発泡材による断熱厚さが確保されるため、天井壁、側面壁及び底面壁とサクションパイプ57との熱交換が小さくなる。
<Effect of having vacuum insulation material located behind the suction pipe>
Furthermore, in this embodiment, the heat exchange between the suction pipe 57 and the outside of the refrigerator is also taken into consideration. Specifically, as shown in Figs. 9A and 9B, the suction pipe 57 is mainly arranged in front of the vacuum insulation material 25. Here, if the suction pipe 57 is close to the outer box 10a, heat exchange occurs between the suction pipe 57 and the outside of the refrigerator through the outer box 10a, the suction pipe 57 is heated by the heat from the outside of the refrigerator, and the heat load to be cooled by the refrigeration cycle increases. In particular, since the upstream side of the suction pipe 57 is at a low temperature close to the evaporation temperature, the amount of heat exchange may be greater than the heat exchange between the storage chamber and the outside of the refrigerator. In contrast, in this embodiment, the vacuum insulation material 25 is arranged between the suction pipe 57 and the back wall (outer box 10a) to suppress this heat exchange. In addition, by arranging the suction pipe 57 on the back surface of the freezer compartment 7, the distance between the ceiling wall, side wall and bottom wall and the suction pipe 57 is ensured, i.e., the insulation thickness provided by the insulating foam material is ensured, so that heat exchange between the ceiling wall, side wall and bottom wall and the suction pipe 57 is reduced.

なお、真空断熱材の形状自由度や冷蔵庫の製造性等から、一般的に真空断熱材を冷蔵庫の背面壁と側面壁の間の角部に配設することが難しい。よって、サクションパイプ57を冷蔵庫の角部に配設すると庫外との熱交換が増えやすい(真空断熱材25による断熱が難しい)。しかし、本実施形態では、サクションパイプ57を主に冷凍室7の背面に設けており、サクションパイプ57が冷蔵庫の角部に配設されないようにしている。具体的には、比較的低温のサクションパイプ57の上流側(図9A及び図9Bにおける101から102の中間よりも冷媒流れ上流側)と、天井壁、側面壁及び背面壁との、真空断熱材25が間に入らない範囲での最短距離(図11における長さL2)が、冷蔵室2及び冷凍室7と、天井壁、側面壁及び平面壁との真空断熱材25が間に入らない範囲での最短距離(図11における長さL3)よりも長くなっている。 In addition, due to the degree of freedom in the shape of the vacuum insulation material and the manufacturability of the refrigerator, it is generally difficult to arrange the vacuum insulation material in the corner between the rear wall and the side wall of the refrigerator. Therefore, if the suction pipe 57 is arranged in the corner of the refrigerator, the heat exchange with the outside is likely to increase (insulation by the vacuum insulation material 25 is difficult). However, in this embodiment, the suction pipe 57 is mainly provided on the rear of the freezer chamber 7, so that the suction pipe 57 is not arranged in the corner of the refrigerator. Specifically, the shortest distance (length L2 in FIG. 11) between the upstream side of the suction pipe 57, which is relatively low temperature (upstream side of the refrigerant flow from the middle between 101 and 102 in FIG. 9A and FIG. 9B) and the ceiling wall, side wall, and rear wall without the vacuum insulation material 25 between them is longer than the shortest distance (length L3 in FIG. 11) between the refrigerator chamber 2 and the freezer chamber 7 and the ceiling wall, side wall, and flat wall without the vacuum insulation material 25 between them.

《共用サクションパイプに関する効果》
また、図9A及び図9Bに示すように、本実施形態では、サクションパイプ57のうち、R蒸発器14a側の冷蔵用サクションパイプ57a及びF蒸発器14b側の冷凍用サクションパイプ57bよりも、共用利用している共用サクションパイプ57cを長くし、また共用サクションパイプ57cに内部熱交換部58を設けている。この理由の1つは、冷媒配管を極力共有することで、冷媒配管に使用する資源・材料費を低減することである。もう1つの理由は、内部熱交換部58の距離の確保と配設自由度の両立である。冷蔵用サクションパイプ57aと冷凍用サクションパイプ57bのそれぞれが内部熱交換部58を設ける構成にすると、それぞれ内部熱交換部58の長さを確保するために冷媒配管長さが必要になり、配設の自由度が低下し、冷凍室7背面や真空断熱材25の前面に収めることが難しい。これに対し、共用利用している共用サクションパイプ57cに内部熱交換部58を設けることで、極力冷凍室7の背面及び真空断熱材25の前面に収まるようにしつつ、内部熱交換部58の長さを確保することができる。
<Effects of shared suction pipe>
9A and 9B, in this embodiment, the common suction pipe 57c is longer than the refrigeration suction pipe 57a on the R evaporator 14a side and the freezing suction pipe 57b on the F evaporator 14b side, and the common suction pipe 57c is provided with an internal heat exchanger 58. One reason for this is to reduce the cost of resources and materials used for the refrigerant piping by sharing the refrigerant piping as much as possible. Another reason is to ensure both the distance of the internal heat exchanger 58 and the freedom of installation. If the refrigeration suction pipe 57a and the freezing suction pipe 57b are each provided with an internal heat exchanger 58, a refrigerant piping length is required to ensure the length of the internal heat exchanger 58, which reduces the freedom of installation and makes it difficult to accommodate them on the back side of the freezer chamber 7 or in front of the vacuum insulation material 25. In response to this, by providing an internal heat exchange section 58 in the shared suction pipe 57c, which is used in common, it is possible to ensure the length of the internal heat exchange section 58 while fitting it as closely as possible to the rear surface of the freezer compartment 7 and the front surface of the vacuum insulation material 25.

なお、本発明は、前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、前記した実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, but includes various modified examples. For example, the above-described embodiment has been described in detail to clearly explain the present invention, and is not necessarily limited to having all of the configurations described. In addition, it is possible to add, delete, or replace part of the configuration of the above-described embodiment with other configurations.

1…冷蔵庫、2…冷蔵室、3…製氷室、4…上段冷凍室、5…下段冷凍室、6…野菜室、8a…R蒸発器室(冷蔵用蒸発器室)、8b…F蒸発器室(冷凍用蒸発器室)、9a…Rファン(冷蔵用ファン)、9b…Fファン(冷凍用ファン)、10…断熱箱体、10a…外箱、10b…内箱、11…冷蔵室風路、11a…冷蔵室吐出口、12…冷凍室風路、12a…冷凍室吐出口、14a…R蒸発器(冷蔵用蒸発器)、14b…F蒸発器(冷凍用蒸発器)、15a,15b…冷蔵室戻り口、16…ヒンジカバー、18…野菜室戻り風路、18a…野菜室戻り口、21…ラジアントヒータ、22b…排水口、23a…Rトイ、23b…Fトイ、24…圧縮機、25…真空断熱材、26…操作部、27b…F排水管、28,29,30…断熱仕切壁、32…蒸発皿、34a,34b,34c,34d…棚、35…庫内貯蔵室、38…機械室ファン、39…機械室、40a…R蒸発器温度センサ、40b…F蒸発器温度センサ、41…冷蔵室温度センサ、42…冷凍室温度センサ、43…野菜室温度センサ、50a…庫外放熱器(放熱手段)、50b…壁面放熱配管(放熱手段)、50c…結露防止配管(放熱手段)、51…ドライヤ、52…三方弁(冷媒制御手段)、53a…Rキャピラリチューブ(減圧手段)、53b…Fキャピラリチューブ(減圧手段)、54b…R気液分離器、54b…F気液分離器、55…逆止弁、56…冷媒合流部、57…サクションパイプ、57a…冷蔵用サクションパイプ、57b…冷凍用サクションパイプ、57c…共用サクションパイプ、58…内部熱交換部、61…R風路構成部材、62…F風路構成部材、111,113…スペース確保部材、112…サイドステージ 1...refrigerator, 2...refrigeration compartment, 3...ice-making compartment, 4...upper freezer compartment, 5...lower freezer compartment, 6...vegetable compartment, 8a...R evaporator compartment (evaporator compartment for refrigeration), 8b...F evaporator compartment (evaporator compartment for freezing), 9a...R fan (fan for refrigeration), 9b...F fan (fan for freezing), 10...insulated box, 10a...outer box, 10b...inner box, 11...refrigerator compartment air duct, 11a...refrigerator compartment outlet, 12...freezer compartment air duct, 12a...freezer compartment outlet, 14a...R evaporator ( refrigeration evaporator), 14b...F evaporator (freezing evaporator), 15a, 15b...refrigeration compartment return port, 16...hinge cover, 18...vegetable compartment return air duct, 18a...vegetable compartment return port, 21...radiant heater, 22b...drain port, 23a...R toy, 23b...F toy, 24...compressor, 25...vacuum insulation material, 26...operation unit, 27b...F drain pipe, 28, 29, 30...insulating partition wall, 32...evaporation dish, 34a, 34b, 34c, 34d...shelf, 3 5... Internal storage compartment, 38... Machine compartment fan, 39... Machine compartment, 40a... R evaporator temperature sensor, 40b... F evaporator temperature sensor, 41... Refrigerator compartment temperature sensor, 42... Freezer compartment temperature sensor, 43... Vegetable compartment temperature sensor, 50a... External radiator (heat dissipation means), 50b... Wall surface heat dissipation piping (heat dissipation means), 50c... Condensation prevention piping (heat dissipation means), 51... Dryer, 52... Three-way valve (refrigerant control means), 53a... R capillary tube (pressure reduction means) ), 53b...F capillary tube (pressure reducing means), 54b...R gas-liquid separator, 54b...F gas-liquid separator, 55...check valve, 56...refrigerant junction, 57...suction pipe, 57a...refrigerating suction pipe, 57b...freezing suction pipe, 57c...shared suction pipe, 58...internal heat exchanger, 61...R air passage component, 62...F air passage component, 111, 113...space securing member, 112...side stage

Claims (9)

内箱と外箱の間に発泡断熱材を充填して形成される断熱箱体と、圧縮機と、冷媒の放熱を行う放熱器と、三方弁と、冷蔵用蒸発器と、冷凍用蒸発器と、前記冷蔵用蒸発器へ流れる冷媒を減圧する冷蔵用キャピラリチューブと、前記冷凍用蒸発器へ流れる冷媒を減圧する冷凍用キャピラリチューブと、前記冷蔵用蒸発器及び前記冷凍用蒸発器から前記圧縮機まで前記冷媒を戻すとともに前記冷蔵用キャピラリチューブ及び前記冷凍用キャピラリチューブと熱交換するサクションパイプと、前記冷蔵用蒸発器で生成された低温空気を冷蔵室に送風する冷蔵用ファンと、前記冷凍用蒸発器で生成された低温空気を冷凍室に送風する冷凍用ファンと、を備え、
前記圧縮機、前記放熱器、前記三方弁、前記冷蔵用キャピラリチューブ、前記冷蔵用蒸発器、前記サクションパイプの順に前記冷媒を流しながら前記冷蔵用ファンを駆動させて前記冷蔵室を冷却する冷蔵運転と、前記圧縮機、前記放熱器、前記三方弁、前記冷凍用キャピラリチューブ、前記冷凍用蒸発器、前記サクションパイプの順に前記冷媒を流しながら前記冷凍用ファンを駆動させて前記冷凍室を冷却する冷凍運転と、を実行する冷蔵庫において、
前記サクションパイプが、主に前記冷凍室の背面に蛇行させて設けられていることを特徴とする冷蔵庫。
the refrigeration system includes an insulated box body formed by filling a space between an inner box and an outer box with a foam insulation material, a compressor, a radiator for radiating heat from a refrigerant, a three-way valve, a refrigeration evaporator, a freezing evaporator, a refrigeration capillary tube for reducing the pressure of the refrigerant flowing to the refrigeration evaporator, a freezing capillary tube for reducing the pressure of the refrigerant flowing to the freezing evaporator, a suction pipe for returning the refrigerant from the refrigeration evaporator and the freezing evaporator to the compressor and exchanging heat with the refrigeration capillary tube and the freezing capillary tube, a refrigeration fan for blowing low-temperature air generated by the refrigeration evaporator into a refrigeration chamber, and a freezing fan for blowing low-temperature air generated by the refrigeration evaporator into a freezing chamber,
a refrigerator that performs a refrigeration operation in which the refrigeration fan is driven while the refrigerant flows through the compressor, the radiator, the three-way valve, the refrigeration capillary tube, the refrigeration evaporator, and the suction pipe in this order, to cool the refrigeration compartment; and a freezing operation in which the refrigeration fan is driven while the refrigerant flows through the compressor, the radiator, the three-way valve, the refrigeration capillary tube, the refrigeration evaporator, and the suction pipe in this order, to cool the freezing compartment,
The refrigerator is characterized in that the suction pipe is provided mainly in a serpentine manner on the rear surface of the freezer compartment.
前記冷凍用蒸発器を収納する冷凍用蒸発器室をさらに備え、
前記サクションパイプが、主に前記冷凍用蒸発器室の背面に蛇行させて設けられていることを特徴とする請求項1に記載の冷蔵庫。
Further comprising a refrigeration evaporator chamber for accommodating the refrigeration evaporator,
2. The refrigerator according to claim 1, wherein the suction pipe is provided in a serpentine manner mainly on the back surface of the refrigeration evaporator chamber.
前記冷蔵運転において、前記冷凍用ファンを停止させることを特徴とする請求項2に記載の冷蔵庫。 The refrigerator according to claim 2, characterized in that the freezing fan is stopped during the refrigeration operation. 前記サクションパイプの背面に真空断熱材が位置することを特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, characterized in that a vacuum insulation material is located on the back side of the suction pipe. 前記サクションパイプのうち、前記冷蔵用蒸発器から冷媒合流部まで接続する部分を冷蔵用サクションパイプとし、前記冷凍用蒸発器から冷媒合流部まで接続する部分を冷凍用サクションパイプとし、前記冷媒合流部から圧縮機まで接続する部分を共用サクションパイプとすると、
前記共用サクションパイプは、前記冷蔵用サクションパイプ及び前記冷凍用サクションパイプよりも長く、前記冷蔵用キャピラリチューブ及び前記冷凍用キャピラリチューブと熱交換することを特徴とする請求項1乃至4のいずれかに記載の冷蔵庫。
In the suction pipe, a portion connecting the refrigeration evaporator to the refrigerant junction is called a refrigeration suction pipe, a portion connecting the refrigeration evaporator to the refrigerant junction is called a refrigeration suction pipe, and a portion connecting the refrigerant junction to the compressor is called a shared suction pipe.
5. The refrigerator according to claim 1, wherein the common suction pipe is longer than the refrigeration suction pipe and the freezing suction pipe, and exchanges heat with the refrigeration capillary tube and the freezing capillary tube.
前記冷蔵用蒸発器を収納する冷蔵用蒸発器室をさらに備え、
前記サクションパイプの一部が、前記冷蔵用蒸発器室の背面、かつ、前記冷蔵用蒸発器の空気流れ上流側に位置することを特徴とする請求項1乃至4のいずれかに記載の冷蔵庫。
Further comprising a refrigeration evaporator chamber for accommodating the refrigeration evaporator,
5. The refrigerator according to claim 1, wherein a part of the suction pipe is located at a rear surface of the refrigerating evaporator chamber and upstream of the air flow of the refrigerating evaporator.
前記内箱と前記サクションパイプの間には、前記発泡断熱材とは別に、スペース確保部材が位置することを特徴とする請求項1乃至4のいずれかに記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 4, characterized in that a space-retaining member is located between the inner box and the suction pipe, in addition to the foam insulation material. 前記内箱のうち、前記スペース確保部材の前方に位置する箇所は、その周囲の前記内箱よりも前面側に位置することを特徴とする請求項7に記載の冷蔵庫。 The refrigerator according to claim 7, characterized in that the portion of the inner box located in front of the space securing member is located further forward than the surrounding inner box. 前記内箱のうち、前記冷凍用蒸発器の背面、かつ、前記冷凍用蒸発器の空気流れ上流側に、前記冷凍用蒸発器との隙間を形成するサイドステージが設けられ、
前記サイドステージの背面に、前記サクションパイプが位置することを特徴とする請求項7に記載の冷蔵庫。
A side stage is provided in the inner box on the rear side of the refrigeration evaporator and on the upstream side of the air flow of the refrigeration evaporator to form a gap with the refrigeration evaporator,
8. The refrigerator according to claim 7, wherein the suction pipe is located on a rear surface of the side stage.
JP2022195784A 2022-12-07 2022-12-07 refrigerator Pending JP2024082068A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022195784A JP2024082068A (en) 2022-12-07 2022-12-07 refrigerator
PCT/JP2023/030599 WO2024122126A1 (en) 2022-12-07 2023-08-24 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022195784A JP2024082068A (en) 2022-12-07 2022-12-07 refrigerator

Publications (1)

Publication Number Publication Date
JP2024082068A true JP2024082068A (en) 2024-06-19

Family

ID=91378722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022195784A Pending JP2024082068A (en) 2022-12-07 2022-12-07 refrigerator

Country Status (2)

Country Link
JP (1) JP2024082068A (en)
WO (1) WO2024122126A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10775098B2 (en) * 2017-01-03 2020-09-15 Samsung Electronics Co., Ltd. Refrigerator including fixers to fix components of refrigerator
JP2019138514A (en) * 2018-02-08 2019-08-22 日立グローバルライフソリューションズ株式会社 refrigerator
JP6975735B2 (en) * 2019-02-13 2021-12-01 日立グローバルライフソリューションズ株式会社 refrigerator

Also Published As

Publication number Publication date
WO2024122126A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
JP5017340B2 (en) refrigerator
JP5178771B2 (en) Freezer refrigerator
TWI716636B (en) refrigerator
JP6894389B2 (en) refrigerator
JP3850145B2 (en) Refrigerator evaporating dish structure
JP6872689B2 (en) refrigerator
JP2013057415A (en) Refrigerator
JP7090198B2 (en) refrigerator
WO2024122126A1 (en) Refrigerator
JP2019138514A (en) refrigerator
JP6975735B2 (en) refrigerator
JP6940424B2 (en) refrigerator
JP6506645B6 (en) refrigerator
JP2004183998A (en) Refrigerator
CN110131951B (en) Refrigerator with a door
JP6847063B2 (en) refrigerator
JP6807882B2 (en) refrigerator
JP6934433B2 (en) refrigerator
JP6975657B2 (en) refrigerator
JP7473390B2 (en) refrigerator
CN112378146A (en) Refrigerator with a door
JP2019027649A (en) refrigerator
CN110131958A (en) Refrigerator
JP6883531B2 (en) refrigerator
JP7369520B2 (en) refrigerator