JP6883531B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6883531B2
JP6883531B2 JP2018014299A JP2018014299A JP6883531B2 JP 6883531 B2 JP6883531 B2 JP 6883531B2 JP 2018014299 A JP2018014299 A JP 2018014299A JP 2018014299 A JP2018014299 A JP 2018014299A JP 6883531 B2 JP6883531 B2 JP 6883531B2
Authority
JP
Japan
Prior art keywords
refrigerating
chamber
evaporator
heater
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018014299A
Other languages
Japanese (ja)
Other versions
JP2019132492A (en
Inventor
慎一郎 岡留
慎一郎 岡留
良二 河井
良二 河井
真申 小川
真申 小川
福太郎 岡田
福太郎 岡田
智史 小沼
智史 小沼
大 板倉
大 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2018014299A priority Critical patent/JP6883531B2/en
Priority to CN201811030272.0A priority patent/CN110094918B/en
Publication of JP2019132492A publication Critical patent/JP2019132492A/en
Application granted granted Critical
Publication of JP6883531B2 publication Critical patent/JP6883531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷蔵庫に関する。 The present invention relates to a refrigerator.

特許文献1(特開2003−130535号公報)には、「外箱と内箱間に断熱材を充填してなる断熱箱体の内部を少なくとも冷凍室と野菜室を含む冷蔵室とに区画形成し、同冷凍室の後部に同冷凍室に対応する第1冷却器と冷気強制循環用の第1送風機とを備え、仕切体で仕切られた冷気生成室を設ける一方、前記冷蔵室または野菜室の後部に同冷蔵室および野菜室に対応する第2冷却器と冷気強制循環用の第2送風機とを備え、仕切体で仕切られた冷気生成室を設け、同冷気生成室の下部に前記第2冷却器の除霜水を受ける水受皿を設け、同水受皿の排水口と前記断熱箱体の後方下部に設けられた機械室内の蒸発皿との間に排水路を設けてなるものにおいて、前記水受皿の内部に除霜水の凍結を防止するヒータを設けてなる構成」し、「また、前記第2冷却器の除霜運転終了後、前記ヒータへ所定時間電力を供給する」冷蔵庫が記載されている(特許文献1[0007][0008]参照)。 Patent Document 1 (Japanese Unexamined Patent Publication No. 2003-130535) states that "the inside of a heat insulating box body in which a heat insulating material is filled between an outer box and an inner box is divided into at least a freezing room and a refrigerating room including a vegetable room. A first cooler corresponding to the freezer and a first blower for forced circulation of cold air are provided at the rear of the freezer, and a cold air generation chamber partitioned by a partition is provided, while the refrigerator or vegetable compartment is provided. A second cooler corresponding to the refrigerator compartment and the vegetable compartment and a second blower for forced circulation of cold air are provided at the rear portion, and a cold air generation chamber partitioned by a partition is provided. (2) In a refrigerator provided with a water tray for receiving defrosted water and a drainage channel provided between the drain port of the water tray and the evaporation plate in the machine room provided at the lower rear part of the heat insulating box. A refrigerator having a structure in which a heater for preventing freezing of defrosted water is provided inside the water tray and "power is supplied to the heater for a predetermined time after the defrosting operation of the second cooler is completed". It is described (see Patent Document 1 [0007] [0008]).

特開2003−130535号公報Japanese Unexamined Patent Publication No. 2003-130535

特許文献1の冷蔵庫は、第2冷却器の除霜水を受ける水受皿の内部にヒータを設け、前記第2冷却器の除霜運転終了後、前記ヒータへ所定時間電力を供給して除霜水の凍結を防止している。 The refrigerator of Patent Document 1 is provided with a heater inside a water tray that receives the defrosted water of the second cooler, and after the defrosting operation of the second cooler is completed, power is supplied to the heater for a predetermined time to defrost. Prevents water from freezing.

しかしながら、特許文献1の冷蔵庫では、水受皿を冷蔵室と冷凍室間の仕切り部材(特許文献1図1等参照)に配しているため、水受皿は冷凍室により冷却される。従って、第2冷却器の除霜運転終了後に前記ヒータに通電した場合、冷凍室により冷却されるため、ヒータの加熱量が多くなってしまうといった課題が生じていた。 However, in the refrigerator of Patent Document 1, since the water tray is arranged on the partition member between the refrigerating chamber and the freezing chamber (see FIG. 1 of Patent Document 1 and the like), the water tray is cooled by the freezing chamber. Therefore, when the heater is energized after the defrosting operation of the second cooler is completed, the heater is cooled by the freezing chamber, which causes a problem that the amount of heat of the heater increases.

そこで本発明は、冷蔵用蒸発器室(冷気生成室)の下部に冷凍室等の冷凍温度帯の空間を配設した冷蔵庫において、除霜水を確実に排出しつつ、省エネルギー性能の高い冷蔵庫を提供することを目的とする。 Therefore, according to the present invention, in a refrigerator in which a space in the freezing temperature range such as a freezing room is arranged below the evaporator room for refrigeration (cold air generation room), a refrigerator having high energy-saving performance while reliably discharging defrosted water is provided. The purpose is to provide.

上記課題に鑑みてなされた本発明は、冷蔵室と、該冷蔵室を冷却する冷蔵用蒸発器と、該冷蔵用蒸発器で冷却した空気を前記冷蔵室に送風する冷蔵用ファンと、前記冷蔵用蒸発器と前記冷蔵用ファンを設ける冷蔵用蒸発器室と、該冷蔵用蒸発器室と前記冷蔵室間を接続する冷蔵室風路と、冷凍室と、該冷凍室を冷却する冷凍用蒸発器と、該冷凍用蒸発器で冷却した空気を冷凍室に送風する冷凍用ファンと、前記冷凍用蒸発器と前記冷凍用ファンを設ける冷凍用蒸発器室と、該冷凍用蒸発器室と前記冷凍室間を接続する冷凍室風路と、前記冷凍用蒸発器を加熱する第一のヒータと、圧縮機と、放熱器と、減圧手段と、冷媒流路制御手段と、を備え、前記冷蔵用蒸発器に付着した霜を空気により加熱して除霜する冷蔵用除霜運転と、前記冷凍用蒸発器に付着した霜を前記第一のヒータにより加熱して除霜する冷凍用除霜運転を備え、前記冷蔵用蒸発器室の下部に前記冷凍用蒸発器室又は前記冷凍室を配設した冷蔵庫において、前記冷蔵用蒸発器より生じる除霜水を庫外に排出する排水経路中に第二のヒータを備え、前記冷凍用除霜運転時に、前記第二のヒータに通電することを特徴とする冷蔵庫。 The present invention made in view of the above problems includes a refrigerating chamber, a refrigerating evaporator that cools the refrigerating chamber, a refrigerating fan that blows air cooled by the refrigerating evaporator to the refrigerating chamber, and the refrigerating chamber. Refrigerator chamber provided with a refrigerator and a refrigerating fan, a refrigerating chamber air passage connecting the refrigerating evaporator chamber and the refrigerating chamber, a freezing chamber, and refrigerating evaporation for cooling the refrigerating chamber. A refrigerator, a refrigerating fan that blows air cooled by the refrigerating evaporator to a freezing chamber, a refrigerating evaporator chamber provided with the refrigerating evaporator and the refrigerating fan, the refrigerating evaporator chamber, and the above. The refrigerator is provided with a freezer chamber air passage connecting the freezer compartments, a first heater for heating the refrigerating evaporator, a compressor, a radiator, a depressurizing means, and a refrigerant flow path controlling means. A refrigerating defrosting operation that heats the frost adhering to the evaporator with air to defrost it, and a refrigerating defrosting operation that heats the frost adhering to the refrigerating evaporator to defrost it. In a refrigerator having the refrigerating evaporator chamber or the refrigerating chamber arranged below the refrigerating evaporator chamber, the defrost water generated from the refrigerating evaporator is discharged to the outside of the refrigerator. A refrigerator provided with two heaters, wherein the second heater is energized during the refrigerating defrosting operation.

本発明によれば、冷蔵用蒸発器室の下部に冷凍室等の冷凍温度帯の空間を配設した冷蔵庫において、除霜水を確実に排出しつつ、省エネルギー性能の高い冷蔵庫を提供することができる。 According to the present invention, in a refrigerator in which a space in a freezing temperature zone such as a freezing chamber is arranged below the evaporator chamber for refrigeration, it is possible to provide a refrigerator having high energy-saving performance while reliably discharging defrosted water. it can.

実施例1に係わる冷蔵庫の正面図Front view of the refrigerator according to the first embodiment 図1のA−A断面図AA sectional view of FIG. 図2のB−B断面図BB sectional view of FIG. 冷蔵用排水管の構成を示す図The figure which shows the structure of the drainage pipe for refrigeration 実施例1の冷蔵庫における電気ヒータ配線を示す回路図The circuit diagram which shows the electric heater wiring in the refrigerator of Example 1. 実施例1の冷蔵庫に冷凍サイクル構成を示す概略図Schematic diagram showing a refrigeration cycle configuration in the refrigerator of Example 1. 実施例1の冷蔵庫における冷却運転制御を示すタイムチャートの一例An example of a time chart showing cooling operation control in the refrigerator of Example 1. 実施例1の冷蔵庫におけるRF除霜運転制御を示すタイムチャートの一例An example of a time chart showing RF defrosting operation control in the refrigerator of Example 1. 実施例1のRF除霜運転時における各ヒータの加熱制御Heating control of each heater during the RF defrosting operation of Example 1. 外箱及び内箱とR排水管の配設関係を示す断面図Cross-sectional view showing the arrangement relationship between the outer box and the inner box and the R drain pipe

以下、本発明の実施形態である。 The following is an embodiment of the present invention.

<実施例1>
本発明に関する冷蔵庫の実施例1について説明する。図1は実施例1に係わる冷蔵庫の正面図、図2は図1のA−A断面図、図3は図2のB−B断面図である。冷蔵庫1の箱体10は、上方から冷蔵室2、左右に併設された製氷室3と上段冷凍室4、下段冷凍室5、野菜室6の順番で貯蔵室を有している。冷蔵庫1はそれぞれの貯蔵室の開口を開閉するドアを備えている。これらのドアは、冷蔵室2の開口を開閉する、左右に分割された回転式の冷蔵室ドア2a、2bと、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6の開口をそれぞれ開閉する引き出し式の製氷室ドア3a、上段冷凍室ドア4a、下段冷凍室ドア5a、野菜室ドア6aである。以下では、製氷室3、上段冷凍室4、下段冷凍室5は、まとめて冷凍室7と呼ぶ。
<Example 1>
Example 1 of the refrigerator according to the present invention will be described. 1 is a front view of the refrigerator according to the first embodiment, FIG. 2 is a sectional view taken along the line AA of FIG. 1, and FIG. 3 is a sectional view taken along the line BB of FIG. The box body 10 of the refrigerator 1 has a refrigerating chamber 2 from above, an ice making chamber 3 attached to the left and right, an upper freezing chamber 4, a lower freezing chamber 5, and a vegetable compartment 6 in this order. Refrigerator 1 is provided with a door that opens and closes the opening of each storage room. These doors open and close the opening of the refrigerating room 2, the rotating refrigerating room doors 2a and 2b divided into left and right, and the openings of the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6. A pull-out type ice making chamber door 3a, an upper freezing chamber door 4a, a lower freezing chamber door 5a, and a vegetable compartment door 6a that open and close, respectively. Hereinafter, the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are collectively referred to as a freezing chamber 7.

冷凍室7は、基本的に庫内を冷凍温度帯(0℃未満)の例えば平均的に−18℃程度にした貯蔵室であり、冷蔵室2及び野菜室は庫内を冷蔵温度帯(0℃以上)とし、例えば冷蔵室2は平均的に4℃程度、野菜室は平均的に7℃程度にした貯蔵室である。 The freezing chamber 7 is basically a storage chamber in which the inside of the refrigerator is set to a freezing temperature zone (less than 0 ° C.), for example, about -18 ° C on average, and the refrigerating chamber 2 and the vegetable compartment have a refrigerating temperature zone (0 ° C.) For example, the refrigerating room 2 is a storage room having an average temperature of about 4 ° C., and the vegetable room is a storage room having an average temperature of about 7 ° C.

ドア2aには庫内の温度設定の操作を行う操作部26を設けている。冷蔵庫1とドア2a、2bを固定するためにドアヒンジ(図示せず)が冷蔵室2上部及び下部に設けてあり、上部のドアヒンジはドアヒンジカバー16で覆われている。 The door 2a is provided with an operation unit 26 for operating the temperature setting in the refrigerator. Door hinges (not shown) are provided at the upper and lower parts of the refrigerator compartment 2 to fix the refrigerator 1 and the doors 2a and 2b, and the upper door hinges are covered with the door hinge cover 16.

図2に示すように、外箱10aと内箱10bとの間に発泡断熱材(例えば発泡ウレタン)を充填して形成される箱体10により、冷蔵庫1の庫外と庫内は隔てられている。箱体10には発泡断熱材に加えて複数の真空断熱材25を、鋼板製の外箱10aと合成樹脂製の内箱10bとの間に実装している。冷蔵室2と、上段冷凍室4及び製氷室3は断熱仕切壁28によって隔てられ、同様に下段冷凍室5と野菜室6は断熱仕切壁29によって隔てられている。また、製氷室3、上段冷凍室4、及び下段冷凍室5の各貯蔵室の前面側には、ドア3a、4a、5aの隙間から冷凍室7内の空気が庫外へ漏れ、庫外の空気が各貯蔵室に侵入しないよう、断熱仕切壁30を設けている。 As shown in FIG. 2, the outside and inside of the refrigerator 1 are separated by a box body 10 formed by filling an outer box 10a and an inner box 10b with a foam insulating material (for example, urethane foam). There is. In addition to the foam heat insulating material, a plurality of vacuum heat insulating materials 25 are mounted on the box body 10 between the outer box 10a made of steel plate and the inner box 10b made of synthetic resin. The refrigerating room 2, the upper freezing room 4, and the ice making room 3 are separated by a heat insulating partition wall 28, and similarly, the lower freezing room 5 and the vegetable room 6 are separated by a heat insulating partition wall 29. Further, on the front side of each storage chamber of the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5, the air inside the freezing chamber 7 leaks to the outside of the refrigerator through the gaps between the doors 3a, 4a, and 5a, and the outside of the refrigerator. A heat insulating partition wall 30 is provided so that air does not enter each storage chamber.

冷蔵室2のドア2a、2bの庫内側に複数のドアポケット33a、33b、33cを設け、また複数の棚34a、34b、34c、34dを設けることで、冷蔵室2内は複数の貯蔵スペースに区画されている。冷凍室7及び野菜室6には、それぞれドア3a、4a、5a、6aと一体に引き出される製氷室容器(図示せず)、上段冷凍室容器4b、下段冷凍室容器5b、野菜室容器6bを備えている
断熱仕切壁28の上方には、冷蔵室2の温度帯よりも低めに設定されたチルドルーム35を設けている。本チルドルームは、例えば後述するR蒸発器14aとRファン9aの制御、及び断熱仕切壁28内に設けたヒータ(図示せず)により、冷蔵温度帯の例えば約0〜3℃にするモードと冷凍温度帯の例えば約−3〜0℃にするモードに切換えることができる。
By providing a plurality of door pockets 33a, 33b, 33c inside the doors 2a and 2b of the refrigerating room 2 and providing a plurality of shelves 34a, 34b, 34c, 34d, the inside of the refrigerating room 2 becomes a plurality of storage spaces. It is partitioned. The freezer compartment 7 and the vegetable compartment 6 are provided with an ice-making chamber container (not shown), an upper freezer compartment container 4b, a lower freezer compartment container 5b, and a vegetable compartment container 6b, which are pulled out integrally with the doors 3a, 4a, 5a, and 6a, respectively. Above the heat insulating partition wall 28 provided, a chilled room 35 set lower than the temperature zone of the refrigerating room 2 is provided. This chilled room has a mode in which the refrigerating temperature range is set to, for example, about 0 to 3 ° C. by controlling the R evaporator 14a and the R fan 9a, which will be described later, and a heater (not shown) provided in the heat insulating partition wall 28. It is possible to switch to a mode in which the refrigerating temperature range is set to, for example, about -3 to 0 ° C.

冷蔵用蒸発器であるR蒸発器14aは冷蔵室2の略背部に備えた冷蔵用蒸発器室であるR蒸発器室8a内に設けてある。R蒸発器14aと熱交換して低温になった空気は、R蒸発器14aの上方に設けた冷蔵用ファンであるRファン9aにより、冷蔵室風路11、冷蔵室吐出口11aを介して冷蔵室2に送風され、冷蔵室2内を冷却する。冷蔵室2に送風された空気は冷蔵室戻り口15a及び15b(図3参照)からR蒸発器室8aに戻り、再びR蒸発器14aにより冷却される。 The R evaporator 14a, which is a refrigerating evaporator, is provided in the R evaporator chamber 8a, which is a refrigerating evaporator chamber provided substantially behind the refrigerating chamber 2. The air that has become cold due to heat exchange with the R evaporator 14a is refrigerated through the refrigerating chamber air passage 11 and the refrigerating chamber discharge port 11a by the R fan 9a, which is a refrigerating fan provided above the R evaporator 14a. The air is blown into the room 2 to cool the inside of the refrigerating room 2. The air blown to the refrigerating chamber 2 returns to the R evaporator chamber 8a from the refrigerating chamber return ports 15a and 15b (see FIG. 3), and is cooled again by the R evaporator 14a.

冷凍用蒸発器であるF蒸発器14bは冷凍室7の略背部に備えた冷凍用蒸発器室であるF蒸発器室8b内に設けてある。F蒸発器14bと熱交換して低温になった空気は、F蒸発器14bの上方に設けた冷凍用ファンであるFファン9bにより、冷凍室風路12、冷凍室吐出口12aを介して冷凍室7に送風し、冷凍室7内を冷却する。冷凍室7に送風された空気は冷凍室戻り口17からF蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。 The F evaporator 14b, which is a freezing evaporator, is provided in the F evaporator chamber 8b, which is a freezing evaporator chamber provided substantially behind the freezing chamber 7. The air that has become cold due to heat exchange with the F evaporator 14b is frozen by the F fan 9b, which is a freezing fan provided above the F evaporator 14b, through the freezing chamber air passage 12 and the freezing chamber discharge port 12a. Air is blown into the chamber 7 to cool the inside of the freezing chamber 7. The air blown to the freezing chamber 7 returns to the F evaporator chamber 8b from the freezing chamber return port 17, and is cooled again by the F evaporator 14b.

本実施例の冷蔵庫1では、野菜室6もF蒸発器14bで低温にした空気で冷却する。F蒸発器14bで低温になったF蒸発器室8bの空気は、Fファン9bにより野菜室風路(図示せず)、野菜室ダンパ(図示せず)を介して野菜室6に送風し、野菜室6内を冷却する。野菜室6が低温の場合は、野菜室ダンパを閉じることで野菜室6の冷却を抑える。なお、野菜室6に送風された空気は断熱仕切壁29の下部前方に設けた野菜室側の冷気戻り部18aから野菜室冷気戻りダクト18を介してF蒸発器室8bの下部に戻る。 In the refrigerator 1 of this embodiment, the vegetable compartment 6 is also cooled by the air cooled by the F evaporator 14b. The air in the F evaporator chamber 8b, which has become cold in the F evaporator 14b, is blown to the vegetable chamber 6 by the F fan 9b through the vegetable chamber air passage (not shown) and the vegetable chamber damper (not shown). Cool the inside of the vegetable compartment 6. When the vegetable compartment 6 has a low temperature, the cooling of the vegetable compartment 6 is suppressed by closing the vegetable compartment damper. The air blown to the vegetable compartment 6 returns from the cold air return portion 18a on the vegetable compartment side provided in front of the lower portion of the heat insulating partition wall 29 to the lower portion of the F evaporator chamber 8b via the vegetable compartment cold air return duct 18.

冷蔵室2、冷凍室7、野菜室6の庫内背面側には、それぞれ冷蔵室温度センサ41、冷凍室温度センサ42、野菜室温度センサ43を設け、R蒸発器14aの上部にはR蒸発器温度センサ40a、F蒸発器14bの上部にはF蒸発器温度センサ40bを設け、これらのセンサにより、冷蔵室2、冷凍室7、野菜室6、R蒸発器14a、及びF蒸発器14bの温度を検知している。また、冷蔵庫1の天井部のドアヒンジカバー16の内部には、外気(庫外空気)の温度を検知する外気温度センサ37と湿度を検知する湿度センサ38を設けている。その他のセンサとして、ドア2a、2b、3a、4a、5a、6aの開閉状態をそれぞれ検知するドアセンサ(図示せず)等も設けている。 A refrigerator compartment temperature sensor 41, a freezer compartment temperature sensor 42, and a vegetable compartment temperature sensor 43 are provided on the back side of the refrigerator compartment 2, the freezer compartment 7, and the vegetable compartment 6, respectively, and R evaporation is provided above the R evaporator 14a. An F evaporator temperature sensor 40b is provided above the vessel temperature sensor 40a and the F evaporator 14b, and the refrigerator chamber 2, the freezer compartment 7, the vegetable compartment 6, the R evaporator 14a, and the F evaporator 14b are provided by these sensors. The temperature is being detected. Further, inside the door hinge cover 16 on the ceiling of the refrigerator 1, an outside air temperature sensor 37 for detecting the temperature of the outside air (outside air) and a humidity sensor 38 for detecting the humidity are provided. As other sensors, door sensors (not shown) that detect the open / closed state of the doors 2a, 2b, 3a, 4a, 5a, and 6a are also provided.

図2及び図3に示すように、F蒸発器室8bの下部には、F蒸発器14bを加熱する除霜ヒータ21を設けている。除霜ヒータ21は、例えば50W〜200Wの電気ヒータで、本実施例では90Wのラジアントヒータとしている。F蒸発器14bの除霜時に発生した除霜水(融解水)はF蒸発器室8bの下部に設けたトイ23bに落下し、排水口22b、F排水管27bを介して圧縮機24の上部に設けた蒸発皿32に排出される。 As shown in FIGS. 2 and 3, a defrost heater 21 for heating the F evaporator 14b is provided in the lower part of the F evaporator chamber 8b. The defrost heater 21 is, for example, an electric heater of 50 W to 200 W, and in this embodiment, it is a radiant heater of 90 W. The defrosted water (melted water) generated during the defrosting of the F evaporator 14b falls on the toy 23b provided at the lower part of the F evaporator chamber 8b, and passes through the drain port 22b and the F drain pipe 27b to the upper part of the compressor 24. It is discharged to the evaporating dish 32 provided in.

また、R蒸発器14aの除霜方法については図8を用いて後述するが、R蒸発器14aの除霜時に発生した除霜水は、R蒸発器室8aの下部に設けたトイ23aに落下し、排水口22a、R排水管27aを介して圧縮機24の上部に設けた蒸発皿32に排出される。 The defrosting method of the R evaporator 14a will be described later with reference to FIG. 8, but the defrosted water generated during the defrosting of the R evaporator 14a falls on the toy 23a provided in the lower part of the R evaporator chamber 8a. Then, the water is discharged to the evaporating dish 32 provided on the upper part of the compressor 24 via the drain port 22a and the R drain pipe 27a.

図3に示すように、トイ23aにはトイ23aでの除霜水が凍結した際に除霜水を融解させるトイヒータ101を設けている。また、R排水管27aには排水管上部ヒータ102及び排水管下部ヒータ103を設けている。なお各ヒータ101、102,103は、例えば消費電力20W以下と、除霜ヒータ21よりも消費電力が低い電気ヒータであり、本実施例ではトイヒータ101が6W,排水管上部ヒータ102が3W、排水管下部ヒータ103が1Wのヒータとしている。 As shown in FIG. 3, the toy 23a is provided with a toy heater 101 that melts the defrosted water when the defrosted water in the toy 23a freezes. Further, the R drainage pipe 27a is provided with a drainage pipe upper heater 102 and a drainage pipe lower heater 103. Each of the heaters 101, 102, and 103 is an electric heater having a power consumption of 20 W or less, which is lower than that of the defrost heater 21, and in this embodiment, the toy heater 101 is 6 W, the drain pipe upper heater 102 is 3 W, and drainage is performed. The lower pipe heater 103 is a 1 W heater.

図4はR排水管27aの構成を示す図である。図中の201、202は、図3に示す201、202と同じ高さ位置を示し、範囲201は冷凍室7及びF蒸発器室8bの高さ範囲を表し、範囲202は断熱仕切壁28から断熱仕切壁29の下端までの高さ範囲を表す。 FIG. 4 is a diagram showing the configuration of the R drainage pipe 27a. In the figure, 201 and 202 indicate the same height positions as 201 and 202 shown in FIG. 3, the range 201 represents the height range of the freezing chamber 7 and the F evaporator chamber 8b, and the range 202 is from the heat insulating partition wall 28. Represents the height range to the lower end of the heat insulating partition wall 29.

R排水管27aは、上部は冷凍室7及びF蒸発器室8bから離れるよう排水口22aから外箱10a側に向かうよう外向きに傾斜しながら下方に向けて設けられており、この区間に排水管上部ヒータ102を設けている。その下部のR排水管27aは外箱10aの略近傍に設けられており、断熱仕切壁29の下端まで排水管下部ヒータ103を設けている。その下部(断熱仕切壁29よりも下部)のR排水管27aは蒸発皿32に除霜水が排出されるよう内向きに傾斜している。なお、本実施例では、排水管上部ヒータ102と排水管下部ヒータ103は何れも熱伝導率の高いアルミシールによりR排水管27aに固定しており、これにより、ヒータ線が直接触れていない箇所もアルミシールによる熱伝導で加熱できる構成にしている。 The upper part of the R drainage pipe 27a is provided so as to be away from the freezing chamber 7 and the F evaporator chamber 8b so as to be inclined outward from the drainage port 22a toward the outer box 10a side, and drainage is performed in this section. A pipe upper heater 102 is provided. The lower R drain pipe 27a is provided substantially in the vicinity of the outer box 10a, and the drain pipe lower heater 103 is provided up to the lower end of the heat insulating partition wall 29. The R drain pipe 27a at the lower part (lower than the heat insulating partition wall 29) is inclined inward so that the defrost water is discharged to the evaporating dish 32. In this embodiment, both the drain pipe upper heater 102 and the drain pipe lower heater 103 are fixed to the R drain pipe 27a by an aluminum seal having high thermal conductivity, whereby the heater wire is not directly touched. Is also configured so that it can be heated by heat conduction with an aluminum seal.

上記のように排水管上部ヒータ102と排水管下部ヒータ103を配設したことで、排水管上部ヒータ102と排水管下部ヒータ103の上端は、範囲201の上端よりも高い位置まで設けられ、また下端は範囲201の下端よりも低い位置まで設けられている。範囲201内のR排水管27aは、冷凍温度帯の冷凍室7及びF蒸発器室8bにより冷却されるため、R排水管27a内がマイナス温度となり、R排水管27a内で除霜水が凍結する可能性がある。一方、範囲201に排水管上部ヒータ102と排水管下部ヒータ103を設けることで、排水管内で水が凍結した場合も融解させることができ、すなわちR排水管27aから蒸発皿32(図3参照)に排水することができる。 By disposing the drainage pipe upper heater 102 and the drainage pipe lower heater 103 as described above, the upper ends of the drainage pipe upper heater 102 and the drainage pipe lower heater 103 are provided to a position higher than the upper end of the range 201. The lower end is provided to a position lower than the lower end of the range 201. Since the R drain pipe 27a in the range 201 is cooled by the freezing chamber 7 and the F evaporator chamber 8b in the freezing temperature zone, the temperature inside the R drain pipe 27a becomes negative, and the defrosted water freezes in the R drain pipe 27a. there's a possibility that. On the other hand, by providing the drain pipe upper heater 102 and the drain pipe lower heater 103 in the range 201, even if the water freezes in the drain pipe, it can be thawed, that is, from the R drain pipe 27a to the evaporating dish 32 (see FIG. 3). Can be drained to.

さらに、排水管上部ヒータ102の上端は、範囲202の上端と同等または又はそれよりも高い位置となるよう設けられ、排水管下部ヒータ103の下端は範囲202の下端と同等またはそれよりも低い位置となるよう設けられている。断熱仕切壁28及び断熱仕切壁29は、冷凍温度帯の冷凍室7及びF蒸発器室8bと接しており、少なくとも一部はマイナス温度になる。従って、断熱仕切壁28及び断熱仕切壁29の高さ範囲のR排水管27a内もマイナス温度となる可能性があるが、範囲202と同等以上の範囲まで排水管上部ヒータ102と排水管下部ヒータ103を設けることで、より確実にR排水管27aから蒸発皿32(図3参照)に排水することができる。なお、R排水管27aのうち断熱仕切壁28内部の箇所は、直接断熱仕切壁28により冷却されて低温になり易いため、特にこの箇所に排水管上部ヒータ102を設けることが有効である。 Further, the upper end of the drain pipe upper heater 102 is provided so as to be at a position equal to or higher than the upper end of the range 202, and the lower end of the drain pipe lower heater 103 is at a position equal to or lower than the lower end of the range 202. It is provided so as to be. The heat insulating partition wall 28 and the heat insulating partition wall 29 are in contact with the freezing chamber 7 and the F evaporator chamber 8b in the freezing temperature zone, and at least a part thereof has a negative temperature. Therefore, the inside of the R drain pipe 27a in the height range of the heat insulating partition wall 28 and the heat insulating partition wall 29 may also have a negative temperature, but the drain pipe upper heater 102 and the drain pipe lower heater are within the range equal to or higher than the range 202. By providing 103, drainage from the R drain pipe 27a to the evaporating dish 32 (see FIG. 3) can be performed more reliably. Since the portion of the R drainage pipe 27a inside the heat insulating partition wall 28 is directly cooled by the heat insulating partition wall 28 and tends to become low in temperature, it is particularly effective to provide the drainage pipe upper heater 102 at this portion.

ここで、図2、図3に示すように、トイ23aにはRファン9aを駆動させると冷蔵室2から冷蔵室蒸発器14aへの戻り空気が流れる構成にしている。後述するR蒸発器14aの除霜運転時はRファン9aを駆動させるため、このプラス温度の戻り空気でトイ23aを加熱することができる。これにより、トイ23aでの除霜水の凍結を抑制し、また凍結した場合も融解に必要なトイヒータ101の加熱量を抑制することができ省エネルギー性能を高めることができる。 Here, as shown in FIGS. 2 and 3, the toy 23a is configured such that when the R fan 9a is driven, the return air from the refrigerating chamber 2 to the refrigerating chamber evaporator 14a flows. Since the R fan 9a is driven during the defrosting operation of the R evaporator 14a, which will be described later, the toy 23a can be heated by the return air having a positive temperature. As a result, the freezing of the defrosted water in the toy 23a can be suppressed, and even when the toy 23a freezes, the heating amount of the toy heater 101 required for thawing can be suppressed, and the energy saving performance can be improved.

また、排水管27a下部(排水管下部ヒータ103を設けた箇所)は、冷凍室7及びF蒸発器室8bよりも外箱10aに近接させている。これにより、特に外気高温時、外箱10aを介して外気により加熱することができるため、排水管27a下部での凍結を抑制し、また凍結した場合も排水管下部ヒータ103の加熱量を抑制することができ省エネルギー性能を高めることができる。一方、外気が低温の場合は排水管下部ヒータ103を加熱して除霜水が確実に排出できるようにしている。加えて、R排水管27aは約0℃の除霜水が流れるため、R排水管27aに近接した外箱10aが除霜水により冷却され、露点温度よりも低温になる可能性があるが、排水管下部ヒータ103を設けたことで、外気が高湿の場合は後述するR第一除霜運転とR第二除霜運転時に排水管下部ヒータ103に通電して外箱10aの温度低下を抑え、外箱10aへの結露を抑制することができる。 Further, the lower part of the drainage pipe 27a (the place where the lower part heater 103 of the drainage pipe is provided) is closer to the outer box 10a than the freezing chamber 7 and the F evaporator chamber 8b. As a result, especially when the outside air is hot, it can be heated by the outside air through the outer box 10a, so that freezing in the lower part of the drainage pipe 27a is suppressed, and even when frozen, the heating amount of the drainage pipe lower part heater 103 is suppressed. It is possible to improve the energy saving performance. On the other hand, when the outside air is low temperature, the drain pipe lower heater 103 is heated to ensure that the defrosted water can be discharged. In addition, since the defrost water of about 0 ° C. flows through the R drain pipe 27a, the outer box 10a close to the R drain pipe 27a may be cooled by the defrost water, and the temperature may be lower than the dew point temperature. By providing the drain pipe lower heater 103, when the outside air is highly humid, the drain pipe lower heater 103 is energized during the R first defrosting operation and the R second defrosting operation, which will be described later, to reduce the temperature of the outer box 10a. It can be suppressed and dew condensation on the outer box 10a can be suppressed.

冷蔵庫1の上部(図2参照)には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31を配置している。制御基板31は、冷蔵室温度センサ41、冷凍室温度センサ42、野菜室温度センサ43、蒸発器温度センサ40a、40b等と接続され、前述のCPUは、これらの出力値や操作部26の設定、前述のROMに予め記録されたプログラム等を基に、圧縮機24やRファン9a、冷蔵用ファン9b、前述の各ヒータ21、101、102、103、及び後述する冷媒制御弁52の制御等を行っている。 On the upper part of the refrigerator 1 (see FIG. 2), a control board 31 on which a CPU, a memory such as ROM and RAM, an interface circuit, etc., which are a part of the control device, is mounted is arranged. The control board 31 is connected to the refrigerator compartment temperature sensor 41, the freezer compartment temperature sensor 42, the vegetable compartment temperature sensor 43, the evaporator temperature sensors 40a, 40b, etc., and the CPU described above sets these output values and the operation unit 26. , Control of the compressor 24, the R fan 9a, the refrigerating fan 9b, the heaters 21, 101, 102, 103 described above, and the refrigerant control valve 52 described later, etc., based on the program or the like recorded in advance in the ROM described above. It is carried out.

図5は、実施例1の冷蔵庫における電気ヒータ配線を示す回路図である。除霜ヒータ21、トイヒータ101、排水管上部ヒータ102、排水管下部ヒータ103は制御基板31に接続されており、制御基板31により加熱の制御がなされる。ここで、除霜ヒータ21は制御基板31のピンP1とP4に接続され、トイヒータ101はピンP2とP4、排水管下部ヒータ103はピンP3とP4に接続されており、これらは独立して制御することができる。一方、排水管上部ヒータ102は除霜ヒータ21と同様に制御基板31のピンP1とP4に接続しており、除霜ヒータ21と同期して駆動する。排水管上部ヒータ102を、トイヒータ101、排水管下部ヒータ103と独立して制御することができ、後述する省エネルギー性能向上効果を得ながら排水管上部ヒータ102用のピンを削減でき、制御基板31のコストの低減と設置スペースの抑制が可能になる。 FIG. 5 is a circuit diagram showing the electric heater wiring in the refrigerator of the first embodiment. The defrost heater 21, the toy heater 101, the drain pipe upper heater 102, and the drain pipe lower heater 103 are connected to the control board 31, and the heating is controlled by the control board 31. Here, the defrost heater 21 is connected to pins P1 and P4 of the control board 31, the toy heater 101 is connected to pins P2 and P4, and the drain pipe lower heater 103 is connected to pins P3 and P4, which are controlled independently. can do. On the other hand, the drain pipe upper heater 102 is connected to pins P1 and P4 of the control board 31 like the defrost heater 21, and is driven in synchronization with the defrost heater 21. The drainage pipe upper heater 102 can be controlled independently of the toy heater 101 and the drainage pipe lower heater 103, and the number of pins for the drainage pipe upper heater 102 can be reduced while obtaining the effect of improving the energy saving performance described later, and the control board 31 can be controlled. It is possible to reduce costs and reduce installation space.

図6は、実施例1に関わる冷蔵庫の冷凍サイクル(冷媒流路)である。本実施例の冷蔵庫1では、圧縮機24、冷媒の放熱を行う放熱手段である庫外放熱器50aと壁面放熱配管50b、仕切り壁28、29、30の前面部への結露を抑制する結露防止配管50c、冷媒を減圧させる減圧手段である冷蔵用キャピラリチューブ53aと冷凍用キャピラリチューブ53b、冷媒と庫内の空気を熱交換させて、庫内の熱を吸熱するR蒸発器14aとF蒸発器14bを備え、これらにより庫内を冷却している。また、冷凍サイクル中の水分を除去するドライヤ51と、液冷媒が圧縮機24に流入するのを防止する気液分離器54a、54bを備え、さらに冷媒流路を制御する三方弁52、逆止弁56、冷媒流を接続する冷媒合流部55も備えており、これらを冷媒配管により接続することで冷凍サイクルを構成している。 FIG. 6 is a refrigerator refrigeration cycle (refrigerant flow path) according to the first embodiment. In the refrigerator 1 of this embodiment, dew condensation prevention that suppresses dew condensation on the front portions of the compressor 24, the external radiator 50a that is a heat radiating means for radiating the refrigerant, the wall surface radiating pipe 50b, and the partition walls 28, 29, 30. Pipe 50c, refrigerating capillary tube 53a and refrigerating capillary tube 53b, which are depressurizing means for depressurizing the refrigerant, R evaporator 14a and F evaporator that exchange heat between the refrigerant and the air inside the refrigerator to absorb the heat inside the refrigerator. 14b is provided, and the inside of the refrigerator is cooled by these. Further, a dryer 51 for removing water during the refrigeration cycle, gas-liquid separators 54a and 54b for preventing the liquid refrigerant from flowing into the compressor 24, a three-way valve 52 for controlling the refrigerant flow path, and a check valve are provided. A valve 56 and a refrigerant merging portion 55 for connecting the refrigerant flow are also provided, and these are connected by a refrigerant pipe to form a refrigeration cycle.

なお本実施例の冷蔵庫1は、冷媒に可燃性冷媒のイソブタンを用いている。また、本実施例の圧縮機24はインバータを備えて回転速度を変えることができる。 The refrigerator 1 of this embodiment uses isobutane, which is a flammable refrigerant, as a refrigerant. Further, the compressor 24 of this embodiment is provided with an inverter and can change the rotation speed.

三方弁52は、52a、52bで示す2つの流出口を備え、流出口52a側に冷媒を流す冷蔵モードと、流出口52b側に冷媒を流す冷凍モードを備え、これらを切換えることができる部材である。また、本実施例の三方弁52は、流出口52aと流出口52bの何れも冷媒が流れないようにする全閉、また何れも冷媒が流れるようにする全開のモードも備え、これらにも切換え可能である。 The three-way valve 52 has two outlets shown by 52a and 52b, and has a refrigerating mode in which the refrigerant flows on the outlet 52a side and a refrigerating mode in which the refrigerant flows on the outlet 52b side, and these can be switched. is there. Further, the three-way valve 52 of the present embodiment also has a fully closed mode that prevents the refrigerant from flowing in both the outlet 52a and the outlet 52b, and a fully open mode that allows the refrigerant to flow, and is switched to these modes as well. It is possible.

本実施例の冷蔵庫1では、冷媒は以下のように流れる。圧縮機24から吐出した冷媒は、庫外放熱器50a、庫外放熱器50b、結露防止配管50c、ドライヤ51の順に流れ、三方弁52に至る。三方弁52の流出口52aは冷媒配管を介して冷蔵用キャピラリチューブ53aと接続され、流出口52bは冷媒配管を介して冷凍用キャピラリチューブ53bと接続されている。 In the refrigerator 1 of this embodiment, the refrigerant flows as follows. The refrigerant discharged from the compressor 24 flows in the order of the external radiator 50a, the external radiator 50b, the dew condensation prevention pipe 50c, and the dryer 51, and reaches the three-way valve 52. The outlet 52a of the three-way valve 52 is connected to the refrigerating capillary tube 53a via a refrigerant pipe, and the outlet 52b is connected to the freezing capillary tube 53b via a refrigerant pipe.

流出口52a側に冷媒が流れるようにすると、流出口52aから流出した冷媒は、冷蔵用キャピラリチューブ53a、R蒸発器14a、気液分離機54a、冷媒合流部55の順に流れた後、圧縮機24に戻る。冷蔵用キャピラリチューブ53aで低圧低温になった冷媒がR蒸発器14aを流れることでR蒸発器14aが低温となり、R蒸発器室8aの空気を冷却することができ、すなわち冷蔵室2を冷却することができる。 When the refrigerant flows to the outlet 52a side, the refrigerant flowing out from the outlet 52a flows in the order of the refrigerating capillary tube 53a, the R evaporator 14a, the gas-liquid separator 54a, and the refrigerant confluence 55, and then the compressor. Return to 24. The low-pressure low-temperature refrigerant in the refrigerating capillary tube 53a flows through the R evaporator 14a, so that the R evaporator 14a becomes low-temperature, and the air in the R evaporator chamber 8a can be cooled, that is, the refrigerating chamber 2 is cooled. be able to.

また三方弁52を流出口52b側に冷媒が流れるようにした場合は、流出口52bから流出した冷媒は、冷凍用キャピラリチューブ53b、F蒸発器14b、気液分離機54b、逆止弁56、冷媒合流部55の順に流れた後、圧縮機24に戻る。逆止弁56は気液分離機54bから冷媒合流部55側には冷媒が流れ、冷媒合流部55から気液分離機54b側へは流れないように配設している。冷凍用キャピラリチューブ53bで低圧低温になった冷媒がF蒸発器14bを流れることでF蒸発器14bが低温となり、R蒸発器室8aの空気を冷却することができ、すなわち冷凍室7を冷却することができる。 When the three-way valve 52 is configured so that the refrigerant flows to the outlet 52b side, the refrigerant flowing out from the outlet 52b is a refrigerating capillary tube 53b, an F evaporator 14b, a gas-liquid separator 54b, a check valve 56, and the like. After flowing in the order of the refrigerant merging portion 55, the process returns to the compressor 24. The check valve 56 is arranged so that the refrigerant flows from the gas-liquid separator 54b to the refrigerant merging portion 55 side and does not flow from the refrigerant merging portion 55 to the gas-liquid separator 54b side. The low-pressure low-temperature refrigerant in the refrigerating capillary tube 53b flows through the F-evaporator 14b, so that the F-evaporator 14b becomes low-temperature, and the air in the R-evaporator chamber 8a can be cooled, that is, the freezer chamber 7 is cooled. be able to.

図7は、実施例1の冷蔵庫における冷却運転制御を示すタイムチャートの一例である。ここでは外気が比較的高温(例えば32℃)で、低湿でない(例えば60%RH)場合を表している。 FIG. 7 is an example of a time chart showing cooling operation control in the refrigerator of the first embodiment. Here, it represents a case where the outside air is relatively high temperature (for example, 32 ° C.) and is not low humidity (for example, 60% RH).

時刻tは冷蔵室2を冷却する冷蔵運転を開始した時刻である。冷蔵運転では、三方弁52を流出口52a側にし、圧縮機24を駆動させてR蒸発器14aに冷媒を流して、R蒸発器14aを低温にする。この状態でRファン9aを運転することで、R蒸発器14aを通過して低温になった空気により冷蔵室2を冷却する。ここで、冷蔵運転中のR蒸発器14aの温度は、後述する冷凍運転中のF蒸発器14bよりも高くしている。一般的に蒸発器の温度が高い方が、COP(圧縮機24の入力に対する冷却する熱量の割合)が高く、省エネルギー性能が高い。従って、蒸発器の温度を低温にする必要がある冷凍室7に比べ、高い蒸発器の温度でも冷却できる冷蔵室2を冷却する際は、蒸発器の温度を高めて省エネルギー性能を高めている。なお、本実施例の冷蔵庫1では、冷蔵運転中のR蒸発器14a温度が高くなるよう、冷蔵運転中の圧縮機24の回転速度を冷凍運転中よりも低速にしている。 Time t 0 is the time when the refrigerating operation for cooling the refrigerating chamber 2 is started. In the refrigerating operation, the three-way valve 52 is set to the outlet 52a side, the compressor 24 is driven to flow the refrigerant through the R evaporator 14a, and the temperature of the R evaporator 14a is lowered. By operating the R fan 9a in this state, the refrigerating chamber 2 is cooled by the air that has passed through the R evaporator 14a and has become cold. Here, the temperature of the R evaporator 14a during the refrigerating operation is higher than that of the F evaporator 14b during the freezing operation described later. Generally, the higher the temperature of the evaporator, the higher the COP (ratio of the amount of heat to be cooled to the input of the compressor 24) and the higher the energy saving performance. Therefore, as compared with the freezing chamber 7 in which the temperature of the evaporator needs to be lowered, when cooling the refrigerating chamber 2 which can be cooled even at a high temperature of the evaporator, the temperature of the evaporator is raised to improve the energy saving performance. In the refrigerator 1 of the present embodiment, the rotation speed of the compressor 24 during the refrigerating operation is set to be lower than that during the refrigerating operation so that the temperature of the R evaporator 14a during the refrigerating operation becomes high.

冷蔵運転により冷蔵室2が冷却され、冷蔵室温度センサ42により検知する冷蔵室温度がTRoffまで低下する(時刻t)と、冷蔵運転から冷媒回収運転に切換える。冷媒回収運転では三方弁52を全閉状態で圧縮機24を駆動させ、R蒸発器14a内の冷媒を回収する。これにより、次の冷凍運転での冷媒不足を抑制する。なお、この際Rファン9aを駆動させており、これによりR蒸発器14a内の残留冷媒を冷蔵室2の冷却に活用できるとともに、R蒸発器14a内の冷媒が蒸発して圧縮機24へ到達しやすくなり、比較的短い時間で多くの冷媒を回収できるため、冷却効率を高めることができる。 When the refrigerating chamber 2 is cooled by the refrigerating operation and the refrigerating chamber temperature detected by the refrigerating chamber temperature sensor 42 drops to TRoff (time t 1 ), the refrigerating operation is switched to the refrigerant recovery operation. In the refrigerant recovery operation, the compressor 24 is driven with the three-way valve 52 fully closed to recover the refrigerant in the R evaporator 14a. As a result, the shortage of refrigerant in the next freezing operation is suppressed. At this time, the R fan 9a is driven, whereby the residual refrigerant in the R evaporator 14a can be used for cooling the refrigerating chamber 2, and the refrigerant in the R evaporator 14a evaporates to reach the compressor 24. It becomes easy to do so, and a large amount of refrigerant can be recovered in a relatively short time, so that the cooling efficiency can be improved.

冷媒回収運転が終わると(時刻t)、冷凍室7を冷却する冷凍運転に切換える。冷凍運転では、三方弁52を流出口52b側にし、F蒸発器14bに冷媒を流して、F蒸発器14bを低温にする。この状態でFファン9bを運転することで、F蒸発器14bを通過して低温になった空気により冷凍室7を冷却する。この冷凍運転を冷凍室温度センサ41により検出する冷凍室温度がTFoffになる(時刻t)まで行う。また、冷凍運転中に野菜室ダンパ(図示せず)も開け、野菜室温度センサ43により検出する野菜室温度がTRoffになる(時刻t)まで野菜室6を冷却する。 When the refrigerant recovery operation is completed (time t 2 ), the freezing chamber 7 is switched to the freezing operation for cooling. In the freezing operation, the three-way valve 52 is set to the outlet 52b side, the refrigerant flows through the F evaporator 14b, and the temperature of the F evaporator 14b is lowered. By operating the F fan 9b in this state, the freezing chamber 7 is cooled by the air that has passed through the F evaporator 14b and has become cold. This freezing operation is performed until the freezing room temperature detected by the freezing room temperature sensor 41 becomes T Foff (time t 5). Further, the vegetable compartment damper (not shown) is also opened during the freezing operation, and the vegetable compartment 6 is cooled until the vegetable chamber temperature detected by the vegetable chamber temperature sensor 43 becomes TRoff (time t 3).

さらに、本実施例の冷蔵庫1では、この冷凍運転中にR蒸発器14aの第一除霜運転(以下、R第一除霜運転)も行う。R第一除霜運転は、Rファン9aを駆動させることで行う。冷凍運転中はR蒸発器14aに冷媒が流れないようにしているため、冷蔵室2の空気がR蒸発器14aを通過すると、R蒸発器14aよりも温度の高い冷蔵室2との熱交換によりR蒸発器14a及びR蒸発器14aに付着した霜は加熱される。R蒸発器14aの除霜はこの加熱により行われる。なお、R蒸発器14a及びR蒸発器14aに付着した霜により空気は冷却され、この空気がRファン9aにより冷蔵室2に送風されるため、冷蔵室2を冷却する(温度の上昇を抑える)ことができる。従って、ヒータを用いることなくR蒸発器14aに付着した霜を融解することができ、加えて冷蔵室2の冷却も行えるため、本実施例のR第一除霜運転は、省エネルギー性能が高い除霜運転である。このR第一除霜運転は冷蔵用蒸発器温度センサ40aにより検出する冷蔵用蒸発器温度がTDRになる(時刻t)まで行われる。 Further, in the refrigerator 1 of the present embodiment, the first defrosting operation of the R evaporator 14a (hereinafter referred to as the R first defrosting operation) is also performed during this freezing operation. The R first defrosting operation is performed by driving the R fan 9a. Since the refrigerant does not flow into the R evaporator 14a during the refrigerating operation, when the air in the refrigerating chamber 2 passes through the R evaporator 14a, it exchanges heat with the refrigerating chamber 2 having a temperature higher than that of the R evaporator 14a. The frost adhering to the R evaporator 14a and the R evaporator 14a is heated. Defrosting of the R evaporator 14a is performed by this heating. The air is cooled by the frost adhering to the R evaporator 14a and the R evaporator 14a, and this air is blown to the refrigerator chamber 2 by the R fan 9a, so that the refrigerator chamber 2 is cooled (suppressing the temperature rise). be able to. Therefore, the frost adhering to the R evaporator 14a can be melted without using a heater, and in addition, the refrigerating chamber 2 can be cooled. Therefore, the R first defrosting operation of this embodiment has high energy-saving performance. It is a frost operation. The R first defrosting operation is carried out until the refrigerating evaporator temperature detected by the refrigerating evaporator temperature sensor 40a is T DR (time t 4).

R第一除霜運転及び冷凍運転の何れも終了条件が満足すると(時刻t)、再び三方弁52を全閉状態で圧縮機24を駆動させる冷媒回収運転を行い、F蒸発器14b内の冷媒を回収し、次の冷蔵運転での冷媒不足を抑制する。なお、この際Fファン9bを駆動させており、これによりF蒸発器14b内の残留冷媒を冷凍室7の冷却に活用できるとともに、F蒸発器14b内の冷媒が蒸発して圧縮機24へ到達しやすくなり、比較的短い時間で多くの冷媒を回収できるため、冷却効率を高めることができる。 When the end conditions of both the first defrosting operation and the refrigerating operation are satisfied (time t 5 ), the refrigerant recovery operation for driving the compressor 24 with the three-way valve 52 fully closed is performed again, and the inside of the F evaporator 14b is performed. Recover the refrigerant and suppress the refrigerant shortage in the next refrigeration operation. At this time, the F fan 9b is driven, whereby the residual refrigerant in the F evaporator 14b can be used for cooling the freezer chamber 7, and the refrigerant in the F evaporator 14b evaporates to reach the compressor 24. It becomes easy to do so, and a large amount of refrigerant can be recovered in a relatively short time, so that the cooling efficiency can be improved.

時刻tになると再び冷蔵運転に戻り、前述した運転を繰り返す。以上が本実施例の冷蔵庫の基本的な冷却運転及びR蒸発器14aの第一除霜制御である。これらの運転により、冷蔵室2、冷凍室7及び野菜室6を冷却して所定の温度に維持しつつ、R蒸発器14aの霜成長を抑えている。 At time t 6 when the return to the refrigerating operation to repeat the operation described above. The above is the basic cooling operation of the refrigerator of this embodiment and the first defrost control of the R evaporator 14a. By these operations, the refrigerating chamber 2, the freezing chamber 7, and the vegetable compartment 6 are cooled and maintained at a predetermined temperature, while suppressing the frost growth of the R evaporator 14a.

なお、R第一除霜運転の終了条件(冷蔵用蒸発器温度がTDRになる)が満たされる前に、冷凍運転の終了条件(冷凍室温度がTFoffになる)を満たした場合はR第一除霜運転を継続したまま圧縮機24をOFFにする。その後、R第一除霜運転の終了条件が満たされれば圧縮機24をONにして冷蔵運転に移行する。これにより、融解途中のR蒸発器14aに付着した霜及び除霜水が冷蔵運転で再び冷却されて再凍結することが抑えられ、R蒸発器14aの除霜をより確実に行うことができる。 If the end condition of the refrigerating operation (the temperature of the freezer becomes T Foff ) is satisfied before the end condition of the R first defrosting operation (the temperature of the evaporator for refrigeration becomes T DR) is satisfied, R The compressor 24 is turned off while the first defrosting operation is continued. After that, if the end condition of the R first defrosting operation is satisfied, the compressor 24 is turned on and the refrigerating operation is started. As a result, it is possible to prevent the frost and defrosted water adhering to the R evaporator 14a during thawing from being cooled again by the refrigerating operation and refreezing, so that the R evaporator 14a can be defrosted more reliably.

また、時刻t及び時刻tにおいて冷凍室温度が所定値(例えばTFOFF+1℃)よりも低い場合、また時刻t及び時刻tにおいて冷蔵室温度が所定値(例えばTROFF+1℃)よりも低い場合も圧縮機24を停止する。これにより、庫内の過度な冷却を抑えることができる。 Further, the freezing compartment temperature exceeds a predetermined value at time t 1 and time t 2 (e.g. T FOFF + 1 ℃) is lower than, also the time t 5 and the refrigerating compartment temperature exceeds a predetermined value at time t 6 (e.g., T ROFF + 1 ℃) If it is lower than, the compressor 24 is stopped. As a result, excessive cooling inside the refrigerator can be suppressed.

なお、R第一除霜運転は冷凍運転時に必ず実施する必要はなく、冷蔵室扉2a,2bの開閉が少なく、周囲が低湿(例えば50%RH以下)の場合は、R蒸発器14aに付着する霜の量が少ないことから、本実施例の冷蔵庫1ではR第一除霜運転を冷凍運転3回に1回実施する。これにより、R第一除霜運転の頻度を減らすことで、Rファン9aを駆動させるために用いる電力を抑えて省エネルギー性能を向上させることができる。一方、冷蔵室扉2a,2bの開閉が多い、或いは周囲が高湿な場合は、R蒸発器14aに付着する霜の量が多く、冷却効率が低下する可能性があることから、本実施例の冷蔵庫1では冷凍運転毎にR第一除霜運転を行う。これにより、冷却効率の低下を抑え、省エネルギー性能を向上させることができる。 It should be noted that the R first defrosting operation does not necessarily have to be performed during the refrigerating operation, and when the refrigerating chamber doors 2a and 2b are rarely opened and closed and the surroundings are low humidity (for example, 50% RH or less), they adhere to the R evaporator 14a. Since the amount of frost generated is small, the R first defrosting operation is performed once every three refrigerating operations in the refrigerator 1 of this embodiment. As a result, by reducing the frequency of the R first defrosting operation, the electric power used to drive the R fan 9a can be suppressed and the energy saving performance can be improved. On the other hand, when the refrigerating chamber doors 2a and 2b are frequently opened and closed, or when the surroundings are highly humid, the amount of frost adhering to the R evaporator 14a is large and the cooling efficiency may decrease. In the refrigerator 1, the R first defrosting operation is performed every refrigerating operation. As a result, it is possible to suppress a decrease in cooling efficiency and improve energy saving performance.

図8は、実施例1の冷蔵庫におけるRF除霜運転制御を示すタイムチャートの一例である。ここでは外気が比較的高温(例えば32℃)で、高湿でない(例えば60%RH)場合を表している。このRF除霜運転とは、R蒸発器14aとF蒸発器14bの両方の除霜を行う運転である。 FIG. 8 is an example of a time chart showing RF defrosting operation control in the refrigerator of Example 1. Here, the case where the outside air is relatively high temperature (for example, 32 ° C.) and not high humidity (for example, 60% RH) is represented. This RF defrosting operation is an operation for defrosting both the R evaporator 14a and the F evaporator 14b.

本実施例の冷蔵庫1では、例えばドア2a、2b、3a、4a、5a、6aの開閉回数、及び圧縮機24の合計駆動時間等から判断される除霜運転の開始条件を満足する(時刻td0)と、本実施例の冷蔵庫1では冷凍運転を行う。これにより、RF除霜運転中の冷凍室7の温度上昇による冷凍食品や氷等の融解を抑制する。また、この間にR第一除霜運転(Rファン9aをON)を行い、R蒸発器14a及びR蒸発器14aに付着した霜を加熱し、後述するR第二除霜運転が短時間で終わるようにしている。 The refrigerator 1 of this embodiment satisfies, for example, the start condition of the defrosting operation determined from the number of times of opening and closing of the doors 2a, 2b, 3a, 4a, 5a, 6a, the total driving time of the compressor 24, and the like (time t). In d0 ) and the refrigerator 1 of this embodiment, a freezing operation is performed. This suppresses the melting of frozen foods, ice, etc. due to the temperature rise of the freezing chamber 7 during the RF defrosting operation. Further, during this period, the R first defrosting operation (R fan 9a is turned on) is performed to heat the frost adhering to the R evaporator 14a and the R evaporator 14a, and the R second defrosting operation described later is completed in a short time. I am trying to do it.

この冷凍運転を所定の時間、例えば30分間行った後(時刻td1)、本実施例の冷蔵庫1はF蒸発器14bの除霜運転(以下、F除霜運転)とR蒸発器14aの第二除霜運転(以下、R第二除霜運転)を行う。 After performing this refrigerating operation for a predetermined time, for example, 30 minutes (time t d1 ), the refrigerator 1 of this embodiment has a defrosting operation of the F evaporator 14b (hereinafter referred to as F defrosting operation) and a first of the R evaporators 14a. (Ii) Defrosting operation (hereinafter referred to as R second defrosting operation) is performed.

まずF除霜運転に関する制御について説明する。圧縮機24とFファン9bをOFFとし、除霜ヒータ21をONにする。F蒸発器14b及びF蒸発器14bに付着した霜は除霜ヒータ21により加熱され、徐々に温度が上昇し、融解温度(0℃)以上になると、F蒸発器14bに付着した霜が融解する。冷凍用蒸発器温度センサ40bにより検出する冷凍用蒸発器温度が霜の融解温度よりも十分に高いTDF(例えば10℃)になる(時刻td4)と、F除霜運転を終了し、除霜ヒータ21をOFFにする。これにより、F蒸発器14bの除霜を行う。 First, the control related to the F defrosting operation will be described. The compressor 24 and the F fan 9b are turned off, and the defrost heater 21 is turned on. The frost adhering to the F evaporator 14b and the F evaporator 14b is heated by the defrost heater 21, and the temperature gradually rises. When the temperature rises above the melting temperature (0 ° C.), the frost adhering to the F evaporator 14b melts. .. Freezing evaporator temperature detected by the freezing evaporator temperature sensor 40b is above the melting temperature of the frost becomes sufficiently high T DF (e.g. 10 ° C.) (time t d4), and terminates the F defrosting operation, removal Turn off the frost heater 21. As a result, the F evaporator 14b is defrosted.

次にR第二除霜運転に関する制御について説明する。R第二除霜運転は、R第一除霜運転と同じく、Rファン9aを駆動させ、R蒸発器14aよりも温度の高い冷蔵室2との熱交換により、R蒸発器14a及びR蒸発器14aに付着した霜を加熱して除霜する。加えて、RF除霜運転中に行うR第二除霜運転では、トイヒータ101、排水管上部ヒータ102をONにする(時刻td1)。このRファン9aと、トイヒータ101、排水管上部ヒータ102がONの運転を,冷蔵用蒸発器温度がTDR2になる(時刻td2)まで行う。なお、R第二除霜運転では、より確実にR蒸発器14aの霜の融解・排出が行えるよう、終了温度TDR2は、R第一除霜運転終了温度TDRよりも高い温度としている。冷蔵用蒸発器温度がTDR2になる(時刻td2)と、本実施例ではRファン9aをOFFにする。トイヒータ101はRファン9aがOFFになった後も通電を続け、時間Δtd5後にOFFにする。R第二除霜運転で生じる除霜水はトイ23a、R排水管27aを伝って流れ、冷蔵用蒸発器14bの除霜終了と、排水管27a部の下部(排水管下部ヒータ103を設けた箇所)への除霜水の到達には時間遅れが生じるため、冷蔵用蒸発器温度がTDR2になった後も所定の時間加熱しておくことで、より確実に除霜水を排出することができる。なお、図9を用いて後述するが時間Δtd5は外気や扉開閉によって変化する。 Next, the control related to the R second defrosting operation will be described. In the R second defrosting operation, as in the R first defrosting operation, the R fan 9a is driven and heat is exchanged with the refrigerating chamber 2 having a temperature higher than that of the R evaporator 14a, thereby causing the R evaporator 14a and the R evaporator. The frost adhering to 14a is heated to remove the frost. In addition, in the R second defrosting operation performed during the RF defrosting operation, the toy heater 101 and the drain pipe upper heater 102 are turned on (time t d1 ). The operation of turning on the R fan 9a, the toy heater 101, and the drain pipe upper heater 102 is performed until the refrigerating evaporator temperature reaches T DR2 (time t d2). In the R second defrosting operation, the end temperature T DR2 is set to a temperature higher than the R first defrosting operation end temperature T DR so that the frost of the R evaporator 14a can be melted and discharged more reliably. When the temperature of the evaporator for refrigeration reaches T DR2 (time t d2 ), the R fan 9a is turned off in this embodiment. The toy heater 101 continues to be energized even after the R fan 9a is turned off, and is turned off after a time Δt d5 . The defrosted water generated in the R second defrosting operation flows through the toy 23a and the R drain pipe 27a, and the defrosting of the refrigerating evaporator 14b is completed, and the lower part of the drain pipe 27a (the drain pipe lower heater 103 is provided). Since there will be a time delay in the arrival of the defrosted water at the location), it is necessary to heat the defrosted water for a predetermined time even after the temperature of the evaporator for refrigeration reaches T DR2, so that the defrosted water can be discharged more reliably. Can be done. As will be described later with reference to FIG. 9, the time Δt d5 changes depending on the outside air and the opening and closing of the door.

F除霜運転の終了条件(冷凍用蒸発器温度がTDF以上)と、R第二除霜運転の終了条件(R蒸発器14aがTDR2以上)の両方を満たす(時刻td3)と、RF除霜運転を終了し、圧縮機24を再びONにして冷却運転制御を開始する。なお、RF除霜運転終了直後の冷却運転は、冷凍運転から開始する。これにより、冷凍室7内の冷凍食品や氷等の融解を抑制している。また、冷凍運転から冷蔵運転の最初の切換え(正確には冷蔵運転前の冷媒回収運転への切換え)は、冷凍室温度が図7で示した冷却制御時のTFoffよりも高いTFoff2になる(時刻td3)と行う。これにより、冷凍室7内の冷凍食品や氷等の融解を抑制しつつ、冷蔵室2の過度な温度上昇も抑制している。 When both the end condition of the F defrosting operation (the temperature of the refrigerating evaporator is T DF or higher) and the end condition of the R second defrosting operation (R evaporator 14a is T DR 2 or higher) are satisfied (time t d3 ). The RF defrosting operation is ended, the compressor 24 is turned on again, and the cooling operation control is started. The cooling operation immediately after the RF defrosting operation is completed starts from the freezing operation. As a result, melting of frozen foods, ice, etc. in the freezing chamber 7 is suppressed. Further, the first switching from the refrigerating operation to the refrigerating operation (to be exact, switching to the refrigerant recovery operation before the refrigerating operation) is T Foff 2 in which the freezing chamber temperature is higher than the T Foff during the cooling control shown in FIG. (Time t d3 ). As a result, while suppressing the melting of frozen foods, ice, etc. in the freezing chamber 7, the excessive temperature rise of the refrigerating chamber 2 is also suppressed.

以上が本実施例の冷蔵庫1の構造及び基本的な制御である。以下でこの詳細な効果を説明する。 The above is the structure and basic control of the refrigerator 1 of this embodiment. This detailed effect will be described below.

本実施例の冷蔵庫1では、冷蔵用冷却器14aの除霜運転を2種類設けている。すなわち、図7で示した冷却運転制御中に実施するR第一除霜運転と、図8で示したRF除霜運転中に実施するR第二除霜運転を設けている。 In the refrigerator 1 of this embodiment, two types of defrosting operations of the refrigerating cooler 14a are provided. That is, the R first defrosting operation performed during the cooling operation control shown in FIG. 7 and the R second defrosting operation performed during the RF defrosting operation shown in FIG. 8 are provided.

冷却運転中に行うR第一除霜運転は、図7で示したように冷凍室7及びF蒸発器室8bが低温の状態で行う。図3に示すR排水管27aの上部及びトイ23aは、近接している冷凍室7及びF蒸発器室8bと熱交換が生じる。従って、R第一除霜運転中にトイヒータ101、排水管上部ヒータ102を加熱しても、冷凍室7及びF蒸発器室8bを加熱することになる。また、冷凍室7及びF蒸発器室8bにより冷却されるためにトイ23a及びR排水管27aの温度も上昇し難くなるため、加熱量を第二除霜運転よりも多くする必要がある。従って、R第一除霜運転中にトイヒータ101、排水管上部ヒータ102に通電すると、トイ23a及びR排水管27aをプラス温度まで加熱するために必要なヒータの消費電力が多く、加えて冷凍室7及びF蒸発器室8bを加熱することになるため、冷凍運転で冷却する熱量も増加するため、省エネルギー性能が低下する。 The R first defrosting operation performed during the cooling operation is performed in a state where the freezing chamber 7 and the F evaporator chamber 8b are at a low temperature as shown in FIG. The upper part of the R drain pipe 27a and the toy 23a shown in FIG. 3 exchange heat with the adjacent freezing chamber 7 and F evaporator chamber 8b. Therefore, even if the toy heater 101 and the drain pipe upper heater 102 are heated during the R first defrosting operation, the freezing chamber 7 and the F evaporator chamber 8b are heated. Further, since the temperature of the toy 23a and the R drainage pipe 27a is difficult to rise because it is cooled by the freezing chamber 7 and the F evaporator chamber 8b, it is necessary to increase the heating amount as compared with the second defrosting operation. Therefore, when the toy heater 101 and the drain pipe upper heater 102 are energized during the R first defrosting operation, the power consumption of the heater required to heat the toy 23a and the R drain pipe 27a to a positive temperature is large, and in addition, the freezing chamber Since the 7 and the F evaporator chamber 8b are heated, the amount of heat to be cooled in the refrigerating operation also increases, so that the energy saving performance deteriorates.

一方、R第二除霜運転では、RF除霜運転中に行うため、図8に示すように冷凍室7及びF蒸発器室8bの冷却が抑えられており、加えてF蒸発器14bをプラス温度まで加熱するため、特にF蒸発器室8bは高温となっている。トイ23a及びR排水管27aに対する冷凍室7及びF蒸発器室8bによる冷却が抑えられるため、少ない加熱量でトイ23a及びR排水管27aの温度をプラス温度とし、すなわちトイ23a及びR排水管27aの温度にて凍結した除霜水を融解させ、排出することができる。従って、R第二除霜運転中にトイヒータ101、排水管上部ヒータ102に加熱することで、消費電力量を抑えながら、確実に除霜水の排出を行うことができる。 On the other hand, since the R second defrosting operation is performed during the RF defrosting operation, the cooling of the freezer chamber 7 and the F evaporator chamber 8b is suppressed as shown in FIG. 8, and the F evaporator 14b is added. Since it is heated to a temperature, the temperature of the F evaporator chamber 8b is particularly high. Since the cooling of the toy 23a and the R drain pipe 27a by the freezing chamber 7 and the F evaporator chamber 8b is suppressed, the temperature of the toy 23a and the R drain pipe 27a is set to a positive temperature with a small amount of heating, that is, the toy 23a and the R drain pipe 27a The frozen defrost water can be thawed and discharged at the temperature of. Therefore, by heating the toy heater 101 and the drain pipe upper heater 102 during the R second defrosting operation, the defrosted water can be reliably discharged while suppressing the power consumption.

また、R第一除霜運転は冷却運転中に行い、例えば本実施例では約80分毎に1回と高頻度で行うのに対し、R第二除霜運転はRF除霜運転中に行うため、12時間〜数日に1回と頻度は少ない。トイヒータ101、排水管上部ヒータ102を加熱して除霜水を融解させる場合、除霜水の融解に用いる熱量に加え、冷凍室7及びF蒸発器室8bにより低温になったトイ23a、R排水管27aをプラス温度まで加熱するための熱量が必要になる。除霜水の融解に用いる熱量は、加熱の頻度によらず凍結した除霜水の量によって決まるが、トイ23a、R排水管27aをプラス温度まで加熱する熱量は加熱する回数によって決まるため、加熱する頻度が多くなれば必要な熱量も増加する。従って、除霜水を融解させる頻度を少なくし、R第二除霜運転でトイヒータ101、排水管上部ヒータ102に集中して加熱して除霜水を排出することで、トイヒータ101、排水管上部ヒータ102の加熱時間を抑え、消費電力量を低減することができる。 Further, the R first defrosting operation is performed during the cooling operation, for example, in this embodiment, it is performed as frequently as once every 80 minutes, whereas the R second defrosting operation is performed during the RF defrosting operation. Therefore, the frequency is low, from 12 hours to once every few days. When the toy heater 101 and the drain pipe upper heater 102 are heated to melt the defrosted water, in addition to the amount of heat used for melting the defrosted water, the toys 23a and R drainage that have become cold due to the freezing chamber 7 and the F evaporator chamber 8b. The amount of heat required to heat the tube 27a to a positive temperature is required. The amount of heat used to melt the defrost water is determined by the amount of frozen defrost water regardless of the frequency of heating, but the amount of heat to heat the toys 23a and R drain pipe 27a to a positive temperature is determined by the number of times of heating. The more often you do, the more heat you need. Therefore, by reducing the frequency of melting the defrost water and concentrating the heating on the toy heater 101 and the drain pipe upper heater 102 in the R second defrost operation to discharge the defrost water, the toy heater 101 and the drain pipe upper part are discharged. The heating time of the heater 102 can be suppressed and the amount of power consumption can be reduced.

以上のように、冷却運転制御中に実施するR第一除霜運転とRF除霜運転中に実施するR第二除霜運転でヒータの通電制御を変え、主にRF除霜運転中にトイヒータ101、排水管上部ヒータ102に通電することで、確実に除霜水の排出を行いながら、省エネルギー性能の高い冷蔵庫を得られる。 As described above, the energization control of the heater is changed between the R first defrosting operation performed during the cooling operation control and the R second defrosting operation performed during the RF defrosting operation, and the toy heater is mainly used during the RF defrosting operation. By energizing the 101 and the upper heater 102 of the drain pipe, a refrigerator having high energy-saving performance can be obtained while surely discharging the defrosted water.

なお、本制御による省エネルギー性能向上効果は排水管上部ヒータ102の通電制御において特に有効である。図2、図3を用いて前述したように、トイ23a及びR排水管27aの下部(排水管下部ヒータ103を設けた箇所)は、冷蔵室2の空気及び外気により加熱しており、ヒータによる加熱が除霜水を排出するために必須ではなく、また加熱が必要な場合も必要な加熱量は小さい。一方、排水管上部ヒータ102を設けた箇所は、図3に示すように冷凍室7、F蒸発器室8bに近い箇所に設けられているため、マイナス温度になりやすい箇所となる。従って、周囲環境によらず、排水管上部ヒータ102はR第二除霜運転時に加熱して、除霜水が確実に排出できるようにしている。すなわち、R第二除霜運転で排水管上部ヒータ102に通電することで、確実に除霜水の排出を行いながら、省エネルギー性能の高い冷蔵庫を得られる。 The effect of improving the energy saving performance by this control is particularly effective in the energization control of the drain pipe upper heater 102. As described above with reference to FIGS. 2 and 3, the lower part of the toy 23a and the R drainage pipe 27a (the place where the drainage pipe lower part heater 103 is provided) is heated by the air and the outside air of the refrigerating chamber 2 and is heated by the heater. Heating is not essential for draining defrost water, and if heating is required, the amount of heating required is small. On the other hand, since the location where the drain pipe upper heater 102 is provided is provided near the freezing chamber 7 and the F evaporator chamber 8b as shown in FIG. 3, it is likely to have a negative temperature. Therefore, regardless of the surrounding environment, the drain pipe upper heater 102 is heated during the R second defrosting operation to ensure that the defrosted water can be discharged reliably. That is, by energizing the drain pipe upper heater 102 in the R second defrosting operation, a refrigerator having high energy saving performance can be obtained while surely discharging the defrosted water.

また本実施例では、周囲環境によらずR第二除霜運転時には排水管上部ヒータ102を加熱することから、排水管上部ヒータ102と除霜ヒータ21の制御を連動する制御としてもよい。このため本実施例では、図5に示したように、除霜ヒータ21と排水管上部ヒータ102を制御するピンを何れもP1,P4と共通化させている。これにより、ピン数を抑制して制御基板31のコストを低減しつつ、上述した効果を得ることができる。 Further, in this embodiment, since the drain pipe upper heater 102 is heated during the R second defrosting operation regardless of the surrounding environment, the control of the drain pipe upper heater 102 and the defrost heater 21 may be linked. Therefore, in this embodiment, as shown in FIG. 5, the pins for controlling the defrost heater 21 and the drain pipe upper heater 102 are both shared with P1 and P4. As a result, the above-mentioned effect can be obtained while suppressing the number of pins and reducing the cost of the control board 31.

一方、その他のトイヒータ101及び排水管下部ヒータ103は異なる制御ピンを用いることで、より高い省エネルギー性能を得られる。以下でこの理由を説明する。 On the other hand, the other toy heater 101 and the drain pipe lower heater 103 can obtain higher energy saving performance by using different control pins. The reason for this will be explained below.

図9は本実施例1のRF除霜運転時における各ヒータ101,102、103の加熱制御をまとめたものである。(a)は外気が高温の場合、(b)は外気が低温の場合である。トイヒータ101はR第二除霜運転時に基本的に加熱を行うが、外気が高温高湿の場合、また冷蔵室扉2a、2bの開閉が多い場合はΔtd5を長くして、トイヒータ101の加熱量を多くする。これは、上記の場合、冷蔵運転中にR蒸発器14aに多量の着霜が生じ、トイ23aに除霜水が多く溜まっている可能性があるため、除霜水の融解に必要な熱量が多くなることが考えられるためである。すなわち、トイ23aの除霜水量に応じてトイヒータ101の加熱量を制御することで、R第一除霜運転で生じた除霜水がトイ23aで凍結していた場合も除霜水を融解、排出することができ、また除霜水量が少ない場合はヒータの加熱を抑制できる。従って、確実に除霜水の排出を行いながら、さらに省エネルギー性能を高めることができる。加えて、外気が低温低湿かつ冷蔵室扉2a、2bの開閉も少ない場合は、冷却負荷が少なくR蒸発器14aを低温にする冷蔵運転が少ないため、図9(b)に示すようにトイヒータ101の加熱をゼロとして、さらにヒータの入力を抑えて省エネルギー性能を高める。 FIG. 9 summarizes the heating control of the heaters 101, 102, and 103 during the RF defrosting operation of the first embodiment. (A) is a case where the outside air is high temperature, and (b) is a case where the outside air is low temperature. The toy heater 101 is basically heated during the R second defrosting operation, but when the outside air is hot and humid, or when the refrigerating chamber doors 2a and 2b are frequently opened and closed, Δt d5 is lengthened to heat the toy heater 101. Increase the amount. This is because, in the above case, a large amount of frost is formed on the R evaporator 14a during the refrigerating operation, and a large amount of defrost water may be accumulated in the toy 23a. This is because it is possible that the number will increase. That is, by controlling the heating amount of the toy heater 101 according to the amount of defrosted water of the toy 23a, the defrosted water is thawed even when the defrosted water generated in the R first defrosting operation is frozen in the toy 23a. It can be discharged, and when the amount of defrosted water is small, the heating of the heater can be suppressed. Therefore, it is possible to further improve the energy saving performance while reliably discharging the defrosted water. In addition, when the outside air is low temperature and low humidity and the refrigerating chamber doors 2a and 2b are opened and closed less frequently, the cooling load is small and the refrigerating operation for lowering the temperature of the R evaporator 14a is small. Therefore, as shown in FIG. 9B, the toy heater 101 The heating of the heater is set to zero, and the input of the heater is further suppressed to improve the energy saving performance.

また、本実施例の排水管下部ヒータ103は、外気の温度が比較的高い場合はOFFとする。排水管下部ヒータ103を設けた箇所は、図3を用いて示したように、外箱10aを介して外気により加熱でき凍結の可能性が低いため、ヒータの加熱を抑制して省エネルギー性能を高めている。一方、温度が比較的低い場合は外気による加熱が少ないため、排水管下部ヒータ103をONとして、確実に除霜水を排出することができる。 Further, the drain pipe lower heater 103 of this embodiment is turned off when the temperature of the outside air is relatively high. As shown with reference to FIG. 3, the portion where the drain pipe lower heater 103 is provided can be heated by the outside air via the outer box 10a, and the possibility of freezing is low. Therefore, the heating of the heater is suppressed to improve the energy saving performance. ing. On the other hand, when the temperature is relatively low, the heating by the outside air is small, so that the defrost water can be reliably discharged by turning on the drain pipe lower heater 103.

また、排水管下部ヒータ103は、外気が高湿の場合(例えば相対湿度80%)も通電する。図3を用いて前述したように、除霜時にはR排水管27aは約0℃の除霜水が流れることから、R排水管27aに近接した外箱10aは除霜水により冷却され、高湿時には露点温度よりも外箱10aの表面が低温になる可能性があるため、排水管下部ヒータ103に通電して外箱10aの結露を抑制する。なお、この現象はR第一除霜時とR第二除霜時のいずれの場合も生じる可能性があることから、湿度が比較的高い場合はR第二除霜とR第一除霜のいずれの場合も排水管下部ヒータ103に通電することで、より確実に外箱10aの結露を抑制する。 Further, the drain pipe lower heater 103 is energized even when the outside air is high humidity (for example, relative humidity 80%). As described above with reference to FIG. 3, since the defrost water at about 0 ° C. flows through the R drain pipe 27a during defrosting, the outer box 10a adjacent to the R drain pipe 27a is cooled by the defrost water and has high humidity. Since the surface of the outer box 10a may sometimes be lower than the dew point temperature, the drain pipe lower heater 103 is energized to suppress dew condensation on the outer box 10a. Since this phenomenon may occur in both the R first defrosting and the R second defrosting, when the humidity is relatively high, the R second defrosting and the R first defrosting are performed. In either case, by energizing the drain pipe lower heater 103, dew condensation on the outer box 10a is more reliably suppressed.

このように、トイヒータ23a、排水管上部ヒータ102、排水管下部ヒータ103は加熱を行う条件、及び加熱量を変化させる条件がそれぞれ異なることから、本実施例ではヒータを3つに分け、また、異なる制御ピンを用いてそれぞれ独立して制御できるようにしている。これにより、それぞれに応じた条件でヒータの通電を制御することができ、確実に除霜水の排出を行いつつ、不要なヒータの加熱を抑制し、省エネルギー性能を向上させることができる。特にトイヒータ101は、ヒータ101〜103の中で最も消費電力が高いことから、排水管下部ヒータ103と独立して制御することが省エネルギー性能向上に有効である。 As described above, since the toy heater 23a, the drain pipe upper heater 102, and the drain pipe lower heater 103 have different heating conditions and conditions for changing the heating amount, the heaters are divided into three in this embodiment. Different control pins are used so that they can be controlled independently. As a result, it is possible to control the energization of the heater under the conditions corresponding to each, and it is possible to suppress unnecessary heating of the heater and improve the energy saving performance while surely discharging the defrosted water. In particular, since the toy heater 101 has the highest power consumption among the heaters 101 to 103, it is effective to control the toy heater 101 independently of the drain pipe lower heater 103 to improve the energy saving performance.

なお、図3、図4で示したように、本実施例の排水管上部ヒータ102と、排水管下部ヒータ103は、排水口22aから外箱10a側に向かうよう外向きに傾斜しながら下方に向けている区間と、その下部で外箱10aの略近傍に設けられている区間で分けているが、排水管上部ヒータ102と排水管下部ヒータ103の分割位置はこの条件に限定されるものではなく、RF除霜運転中に加熱する排水管上部ヒータ102は外気よりもF蒸発器室8b又は冷凍室7に熱的に近接している箇所に設ければよい。 As shown in FIGS. 3 and 4, the drainage pipe upper heater 102 and the drainage pipe lower heater 103 of this embodiment are inclined downward from the drainage port 22a toward the outer box 10a side. It is divided into a section to be directed and a section provided in the vicinity of the outer box 10a at the lower part, but the division position of the drainage pipe upper heater 102 and the drainage pipe lower heater 103 is not limited to this condition. Instead, the drain pipe upper heater 102 that is heated during the RF defrosting operation may be provided at a location that is thermally closer to the F evaporator chamber 8b or the freezing chamber 7 than the outside air.

ここで、F蒸発器室8b等に熱的に近接しているとは、R排水管27aの温度が、外気よりもF蒸発器室8b又は冷凍室7の温度に影響する場合である。すなわち、外気とR排水管27a間の断熱性能の方が、F蒸発器室8b又は冷凍室7とR排水管27a間の断熱性能よりも高くなるように配すことである。例えば、R排水管27aを外箱10aよりも内箱10bに近い側に配置した状態である。 Here, the thermal proximity to the F evaporator chamber 8b and the like means that the temperature of the R drain pipe 27a affects the temperature of the F evaporator chamber 8b or the freezing chamber 7 more than the outside air. That is, the heat insulating performance between the outside air and the R drain pipe 27a is arranged to be higher than the heat insulating performance between the F evaporator chamber 8b or the freezing chamber 7 and the R drain pipe 27a. For example, the R drainage pipe 27a is arranged closer to the inner box 10b than the outer box 10a.

図10は外箱10a、内箱10bとR排水管27aの配設関係を示す断面図である。(a)は排水管上部ヒータ102を配設する図3のC−C断面図、(b)は排水管下部ヒータ103を配設する図3のD−D断面図である。F蒸発器室8b又は冷凍室7と接する内箱1b、R排水管27a、外箱1a間を繋ぐ直線区間の熱伝導率がほぼ一定の場合、R排水管27aから外箱10a間の距離L1に対し、R排水管27aから内箱10b間の距離L2が短い場合、外気(外箱1a)よりもF蒸発器室8b又は冷凍室7の影響を受けやすい。従って、図10(a)に示すL1>L2となっている区間は排水管上部ヒータ102を設けることが有効である。また、図10(a)に示すように、R排水管27aの上部は、R排水管27aと外箱1a間に熱伝導率が断熱部材10低い真空断熱材25が配されている。従って、R排水管27aから外箱1a間の熱抵抗が大きいため、よりF蒸発器室8b又は冷凍室7の影響を受けやすいことから、真空断熱材25より内側の箇所は排水管上部ヒータ102を設けることが有効である。 FIG. 10 is a cross-sectional view showing the arrangement relationship between the outer box 10a, the inner box 10b, and the R drain pipe 27a. (A) is a sectional view taken along the line CC of FIG. 3 in which the upper heater 102 of the drain pipe is arranged, and (b) is a sectional view taken along the line DD of FIG. 3 in which the lower heater 103 of the drain pipe is arranged. When the thermal conductivity of the straight section connecting the inner box 1b, the R drain pipe 27a, and the outer box 1a in contact with the F evaporator chamber 8b or the freezing chamber 7 is almost constant, the distance L1 between the R drain pipe 27a and the outer box 10a. On the other hand, when the distance L2 between the R drain pipe 27a and the inner box 10b is short, it is more susceptible to the F evaporator chamber 8b or the freezing chamber 7 than the outside air (outer box 1a). Therefore, it is effective to provide the drain pipe upper heater 102 in the section where L1> L2 shown in FIG. 10A. Further, as shown in FIG. 10A, a vacuum heat insulating material 25 having a low thermal conductivity of a heat insulating member 10 is arranged between the R drain pipe 27a and the outer box 1a in the upper part of the R drain pipe 27a. Therefore, since the thermal resistance between the R drain pipe 27a and the outer box 1a is large, it is more easily affected by the F evaporator chamber 8b or the freezing chamber 7. Therefore, the portion inside the vacuum heat insulating material 25 is the drain pipe upper heater 102. It is effective to provide.

一方、図10(b)に示すように、R排水管27aの下部はL1<L2となるよう外箱10aに近接させて配設している。これにより、外気の影響を受けやすくしている。加えて、R排水管27aと外箱1a間に真空断熱材25が設けられないようにして、より外気の影響を受けやすい構造にしている。これらにより、外気の熱によるR排水管27aに対する加熱量を増加させることができ、R排水管27a内の除霜水の凍結抑制及び融解に必要なヒータの入力を抑えることができる。従って、R排水管27aの一部を内箱1bよりも外箱1aに近接させて配設し、R排水管27aから外気側の断熱性能よりもR排水管27aからF蒸発器室8b又は冷凍室7間の断熱性能が高くなるようR排水管27aを配設することで、R排水管27aを加熱することができ、すなわちヒータを用いず、或いはヒータの加熱量を抑えることができ、確実に除霜水の排出を行いながら、省エネルギー性能の高い冷蔵庫を得られる。 On the other hand, as shown in FIG. 10B, the lower portion of the R drainage pipe 27a is arranged close to the outer box 10a so that L1 <L2. This makes it more susceptible to the influence of the outside air. In addition, the vacuum heat insulating material 25 is not provided between the R drain pipe 27a and the outer box 1a, so that the structure is more susceptible to the influence of the outside air. As a result, the amount of heating to the R drainage pipe 27a by the heat of the outside air can be increased, and the input of the heater required for freezing suppression and thawing of the defrost water in the R drainage pipe 27a can be suppressed. Therefore, a part of the R drainage pipe 27a is arranged closer to the outer box 1a than the inner box 1b, and the R drainage pipe 27a to the F evaporator chamber 8b or the refrigerator is better than the heat insulating performance on the outside air side from the R drainage pipe 27a. By arranging the R drain pipe 27a so that the heat insulating performance between the chambers 7 is high, the R drain pipe 27a can be heated, that is, the heater can be not used or the heating amount of the heater can be suppressed, which is reliable. A refrigerator with high energy-saving performance can be obtained while discharging defrost water.

なお、例えばR排水管27aよりも内箱10b側に真空断熱材25を配す構成としてもよい。R排水管27aから外気側の断熱性能よりもR排水管27aからF蒸発器室8b又は冷凍室7間の断熱性能が高くなるため、前述の効果が得られる。 For example, the vacuum heat insulating material 25 may be arranged on the inner box 10b side of the R drain pipe 27a. Since the heat insulating performance between the R drain pipe 27a and the F evaporator chamber 8b or the freezing chamber 7 is higher than the heat insulating performance on the outside air side from the R drain pipe 27a, the above-mentioned effect can be obtained.

さらに、本実施形態では、R排水管27aのうち、外箱10a側へ傾斜する上部領域と、略鉛直方向に配置される下部領域と、の境界地点を、F蒸発器14bの上端よりも高い位置としている。このため、F蒸発器14bの影響を受けてマイナス温度になりやすい高さでは、R排水管27aを蒸発器14bから遠い箇所に配置でき、除霜水を確実に排出できる。このとき、R排水管27aの上部領域よりも下部領域の方を長くし、外箱10aに近接した状態の割合を高くするのが効果的である。 Further, in the present embodiment, the boundary point between the upper region of the R drain pipe 27a inclined toward the outer box 10a side and the lower region arranged in the substantially vertical direction is higher than the upper end of the F evaporator 14b. It is a position. Therefore, at a height at which the temperature tends to be negative due to the influence of the F evaporator 14b, the R drain pipe 27a can be arranged at a location far from the evaporator 14b, and the defrosted water can be reliably discharged. At this time, it is effective to make the lower region longer than the upper region of the R drain pipe 27a and increase the ratio of the state close to the outer box 10a.

また、本実施形態では、排水管上部ヒータ102と排水管下部ヒータ103とを別個のヒータでそれぞれ独立して制御する構成を示したが、排水管上部ヒータ102と排水管下部ヒータ103共通の1個のヒータで構成しても良い。その場合、冷凍室7、F蒸発器室8bに近くてマイナス温度になりやすいR排水管27a上部の方のヒータ密度を、R排水管27a下部のヒータ密度より高くするのが望ましい。 Further, in the present embodiment, the configuration in which the drainage pipe upper heater 102 and the drainage pipe lower heater 103 are independently controlled by separate heaters is shown, but the drainage pipe upper heater 102 and the drainage pipe lower heater 103 are common 1 It may be composed of a plurality of heaters. In that case, it is desirable that the heater density of the upper part of the R drainage pipe 27a, which is close to the freezing chamber 7 and the F evaporator room 8b and tends to have a negative temperature, be higher than the heater density of the lower part of the R drainage pipe 27a.

以上が、本実施の形態例を示す実施例である。なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The above is an example showing the embodiment of the present embodiment. The present invention is not limited to the above-described examples, and includes various modifications. For example, the above-described examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, it is possible to add / delete / replace a part of the configuration of the embodiment with another configuration.

1 冷蔵庫
2 冷蔵室
2a、2b 冷蔵室ドア
3 製氷室
4 上段冷凍室
5 下段冷凍室冷凍室
3a,4a、5a 冷凍室ドア
6 野菜室
6a 野菜室ドア
7 冷凍室(3、4、5の総称)
8a R蒸発器室(冷蔵用蒸発器室)
8b F蒸発器室(冷凍用蒸発器室)
9a Rファン(冷蔵用ファン)
9b Fファン(冷凍用ファン)
10 断熱箱体
10a 外箱
10b 内箱
11 冷蔵室風路
11a 冷蔵室吐出口
12 冷凍室風路
12a 冷凍室吐出口
14a R蒸発器(冷蔵用蒸発器)
14b F蒸発器(冷凍用蒸発器)
15a、b 冷蔵室戻り口
16 ヒンジカバー
17 冷凍室戻り口
18 野菜室戻り風路
18a 野菜室戻り口
21 ラジアントヒータ
22a、22b 排水口
23a、23b トイ
24 圧縮機
27a R排水管
27b F排水管
28、29、30 断熱仕切壁
31 制御基板
32 蒸発皿
35 チルドルーム
39 機械室
40a R蒸発器温度センサ
40b F蒸発器温度センサ
41 冷蔵室温度センサ
42 冷凍室温度センサ
43 野菜室温度センサ
50a、50b 放熱器
51 ドライヤ
52 三方弁(冷媒制御手段)
53a 冷蔵用キャピラリチューブ(減圧手段)
53b 冷凍用キャピラリチューブ(減圧手段)
54b 冷蔵用気液分離器
54b 冷凍用気液分離器
55 冷媒合流部
56 逆止弁
57a、57b 熱交換部
101 トイ部ヒータ
102 排水管上部ヒータ
103 排水管下部ヒータ
P1〜P4 ピン
1 Refrigerator 2 Refrigerator room 2a, 2b Refrigerator room door 3 Ice making room 4 Upper freezing room 5 Lower freezing room Freezing room 3a, 4a, 5a Freezing room door 6 Vegetable room 6a Vegetable room door 7 Freezing room (3, 4, 5) )
8a R Evaporator room (refrigerator room)
8b F Evaporator room (freezing evaporator room)
9a R fan (refrigerator fan)
9b F fan (freezing fan)
10 Insulated box body 10a Outer box 10b Inner box 11 Refrigerator room air passage 11a Refrigerator room air passage 12 Freezer room air passage 12a Freezer room discharge port 14a R Evaporator (refrigerator evaporator)
14b F evaporator (freezing evaporator)
15a, b Refrigerator return port 16 Hing cover 17 Freezer room return port 18 Vegetable room return port 18a Vegetable room return port 21 Radiant heater 22a, 22b Drain port 23a, 23b Toy 24 Compressor 27a R Drain pipe 27b F Drain pipe 28 , 29, 30 Insulation partition wall 31 Control board 32 Evaporator 35 Chilled room 39 Machine room 40a R Evaporator temperature sensor 40b F Evaporator temperature sensor 41 Refrigerator room temperature sensor 42 Freezer room temperature sensor 43 Vegetable room temperature sensor 50a, 50b Heat dissipation Vessel 51 Dryer 52 Three-way valve (refrigerant control means)
53a Capillary tube for refrigeration (decompression means)
53b Capillary tube for freezing (decompression means)
54b Refrigerating gas-liquid separator 54b Refrigerating gas-liquid separator 55 Refrigerant confluence 56 Check valve 57a, 57b Heat exchange 101 Toy part heater 102 Drain pipe upper heater 103 Drain pipe lower heater P1 to P4 pins

Claims (6)

冷蔵室と、該冷蔵室を冷却する冷蔵用蒸発器と、該冷蔵用蒸発器で冷却した空気を前記冷蔵室に送風する冷蔵用ファンと、前記冷蔵用蒸発器と前記冷蔵用ファンを設ける冷蔵用蒸発器室と、該冷蔵用蒸発器室と前記冷蔵室間を接続する冷蔵室風路と、冷凍室と、該冷凍室を冷却する冷凍用蒸発器と、該冷凍用蒸発器で冷却した空気を冷凍室に送風する冷凍用ファンと、前記冷凍用蒸発器と前記冷凍用ファンを設ける冷凍用蒸発器室と、該冷凍用蒸発器室と前記冷凍室間を接続する冷凍室風路と、前記冷凍用蒸発器を加熱する第一のヒータと、を備え、
前記冷蔵用蒸発器に付着した霜を空気により加熱して除霜する冷蔵用除霜運転と、前記冷凍用蒸発器に付着した霜を前記第一のヒータにより加熱して除霜する冷凍用除霜運転を備え、
前記冷蔵用蒸発器室の下部に前記冷凍用蒸発器室又は前記冷凍室を配設した冷蔵庫において、
前記冷蔵用蒸発器より生じる除霜水を庫外に排出する排水経路中に第二のヒータを備え、
前記冷凍用除霜運転時に、前記第二のヒータに通電し、
前記排水経路中で、前記冷凍用蒸発器室又は前記冷凍室よりも外気に近接している箇所に第三のヒータを備え、
該第三のヒータは、外気が低温の場合に通電する冷蔵庫。
A refrigerator provided with a refrigerating chamber, a refrigerating evaporator for cooling the refrigerating chamber, a refrigerating fan for blowing air cooled by the refrigerating evaporator to the refrigerating chamber, a refrigerating evaporator, and the refrigerating fan. The refrigerator chamber, the refrigerating chamber air passage connecting the refrigerating evaporator chamber and the refrigerating chamber, the freezing chamber, the refrigerating evaporator for cooling the freezing chamber, and the refrigerating evaporator were used for cooling. A refrigerating fan that blows air into the freezing chamber, a refrigerating evaporator chamber provided with the refrigerating evaporator and the refrigerating fan, and a freezer chamber air passage connecting the refrigerating evaporator chamber and the refrigerating chamber. A first heater for heating the refrigerating evaporator,
A refrigerating defrosting operation in which the frost adhering to the refrigerating evaporator is heated by air to remove the frost, and a refrigerating defrosting operation in which the frost adhering to the refrigerating evaporator is heated by the first heater to remove the frost. Equipped with frost operation
In the freezing evaporator room or the refrigerator in which the freezing room is provided below the refrigerating evaporator room.
A second heater is provided in the drainage path for discharging the defrosted water generated from the refrigerating evaporator to the outside of the refrigerator.
During the freezing defrosting operation, the second heater is energized and
A third heater is provided in the drainage path at a location closer to the outside air than the freezing evaporator chamber or the freezing chamber.
The third heater is a refrigerator that energizes when the outside air is cold.
冷蔵室と、該冷蔵室を冷却する冷蔵用蒸発器と、該冷蔵用蒸発器で冷却した空気を前記冷蔵室に送風する冷蔵用ファンと、前記冷蔵用蒸発器と前記冷蔵用ファンを設ける冷蔵用蒸発器室と、該冷蔵用蒸発器室と前記冷蔵室間を接続する冷蔵室風路と、冷凍室と、該冷凍室を冷却する冷凍用蒸発器と、該冷凍用蒸発器で冷却した空気を冷凍室に送風する冷凍用ファンと、前記冷凍用蒸発器と前記冷凍用ファンを設ける冷凍用蒸発器室と、該冷凍用蒸発器室と前記冷凍室間を接続する冷凍室風路と、前記冷凍用蒸発器を加熱する第一のヒータと、を備え、
前記冷蔵用蒸発器に付着した霜を空気により加熱して除霜する冷蔵用除霜運転と、前記冷凍用蒸発器に付着した霜を前記第一のヒータにより加熱して除霜する冷凍用除霜運転を備え、
前記冷蔵用蒸発器室の下部に前記冷凍用蒸発器室又は前記冷凍室を配設した冷蔵庫において、
前記冷蔵用蒸発器より生じる除霜水を庫外に排出する排水経路中に第二のヒータを備え、
前記冷凍用除霜運転時に、前記第二のヒータに通電し、
前記排水経路中で、前記冷凍用蒸発器室又は前記冷凍室よりも外気に近接している箇所に第三のヒータを備え、
該第三のヒータは、外気が高湿の場合に通電する冷蔵庫。
A refrigerator provided with a refrigerating chamber, a refrigerating evaporator for cooling the refrigerating chamber, a refrigerating fan for blowing air cooled by the refrigerating evaporator to the refrigerating chamber, a refrigerating evaporator, and the refrigerating fan. The refrigerator chamber, the refrigerating chamber air passage connecting the refrigerating evaporator chamber and the refrigerating chamber, the freezing chamber, the refrigerating evaporator for cooling the freezing chamber, and the refrigerating evaporator were used for cooling. A refrigerating fan that blows air into the freezing chamber, a refrigerating evaporator chamber provided with the refrigerating evaporator and the refrigerating fan, and a freezer chamber air passage connecting the refrigerating evaporator chamber and the refrigerating chamber. A first heater for heating the refrigerating evaporator,
A refrigerating defrosting operation in which the frost adhering to the refrigerating evaporator is heated by air to remove the frost, and a refrigerating defrosting operation in which the frost adhering to the refrigerating evaporator is heated by the first heater to remove the frost. Equipped with frost operation
In the freezing evaporator room or the refrigerator in which the freezing room is provided below the refrigerating evaporator room.
A second heater is provided in the drainage path for discharging the defrosted water generated from the refrigerating evaporator to the outside of the refrigerator.
During the freezing defrosting operation, the second heater is energized and
A third heater is provided in the drainage path at a location closer to the outside air than the freezing evaporator chamber or the freezing chamber.
The third heater is a refrigerator that energizes when the outside air is highly humid.
冷蔵室と、該冷蔵室を冷却する冷蔵用蒸発器と、該冷蔵用蒸発器で冷却した空気を前記冷蔵室に送風する冷蔵用ファンと、前記冷蔵用蒸発器を収容する冷蔵用蒸発器室と、該冷蔵用蒸発器室と前記冷蔵室間を接続する冷蔵室風路と、冷凍室と、該冷凍室を冷却する冷凍用蒸発器と、を備え、
前記冷蔵用蒸発器に付着した霜を空気により加熱して除霜する冷蔵用除霜運転と、前記冷凍用蒸発器に付着した霜を第一のヒータにより加熱して除霜する冷凍用除霜運転と、を実行可能で、
前記冷蔵用蒸発器室の下部に前記冷凍室又は前記冷凍用蒸発器を収容する冷凍用蒸発器室を配設した冷蔵庫において、
前記冷蔵用蒸発器より生じる除霜水を庫外に排出する排水経路中で、前記冷凍室又は前記冷凍用蒸発器室よりも外気に近接している箇所にヒータを備え、
該ヒータは、外気が低温の場合に通電する冷蔵庫。
A refrigerating chamber, a refrigerating evaporator for cooling the refrigerating chamber, a refrigerating fan for blowing air cooled by the refrigerating evaporator to the refrigerating chamber, and a refrigerating evaporator chamber for accommodating the refrigerating evaporator. A refrigerating chamber air passage connecting the refrigerating evaporator chamber and the refrigerating chamber, a freezing chamber, and a refrigerating evaporator for cooling the refrigerating chamber are provided.
A refrigerating defrosting operation in which the frost adhering to the refrigerating evaporator is heated by air to remove the frost, and a refrigerating defrosting operation in which the frost adhering to the refrigerating evaporator is heated by the first heater to remove the frost. Driving and feasible,
In a refrigerator which is disposed a refrigeration evaporator chamber which accommodates the freezing chamber or the refrigerating evaporator to the lower part of the refrigerating evaporator chamber,
In the drainage path for discharging the defrosted water generated from the refrigerating evaporator to the outside of the refrigerator, a heater is provided in a place closer to the outside air than the freezing chamber or the freezing evaporator chamber.
The heater is a refrigerator that energizes when the outside air is cold.
冷蔵室と、該冷蔵室を冷却する冷蔵用蒸発器と、該冷蔵用蒸発器で冷却した空気を前記冷蔵室に送風する冷蔵用ファンと、前記冷蔵用蒸発器を収容する冷蔵用蒸発器室と、該冷蔵用蒸発器室と前記冷蔵室間を接続する冷蔵室風路と、冷凍室と、該冷凍室を冷却する冷凍用蒸発器と、を備え、
前記冷蔵用蒸発器に付着した霜を空気により加熱して除霜する冷蔵用除霜運転と、前記冷凍用蒸発器に付着した霜を第一のヒータにより加熱して除霜する冷凍用除霜運転と、を実行可能で、
前記冷蔵用蒸発器室の下部に前記冷凍室又は前記冷凍用蒸発器を収容する冷凍用蒸発器室を配設した冷蔵庫において、
前記冷蔵用蒸発器より生じる除霜水を庫外に排出する排水経路中で、前記冷凍室又は前記冷凍用蒸発器室よりも外気に近接している箇所にヒータを備え、
該ヒータは、外気が高湿の場合に通電する冷蔵庫。
A refrigerating chamber, a refrigerating evaporator for cooling the refrigerating chamber, a refrigerating fan for blowing air cooled by the refrigerating evaporator to the refrigerating chamber, and a refrigerating evaporator chamber for accommodating the refrigerating evaporator. A refrigerating chamber air passage connecting the refrigerating evaporator chamber and the refrigerating chamber, a freezing chamber, and a refrigerating evaporator for cooling the refrigerating chamber are provided.
A refrigerating defrosting operation in which the frost adhering to the refrigerating evaporator is heated by air to remove the frost, and a refrigerating defrosting operation in which the frost adhering to the refrigerating evaporator is heated by the first heater to remove the frost. Driving and feasible,
In a refrigerator which is disposed a refrigeration evaporator chamber which accommodates the freezing chamber or the refrigerating evaporator to the lower part of the refrigerating evaporator chamber,
In the drainage path for discharging the defrosted water generated from the refrigerating evaporator to the outside of the refrigerator, a heater is provided in a place closer to the outside air than the freezing chamber or the freezing evaporator chamber.
The heater is a refrigerator that energizes when the outside air is highly humid.
外気の温度を検知する外気温度センサと、
前記冷蔵用蒸発器より生じる除霜水を庫外に排出する前記排水経路中に第二のヒータと、を備え、
前記第二のヒータの少なくとも一部は、前記排水経路中で、外気よりも前記冷凍用蒸発器室又は前記冷凍室に熱的に近接している箇所に設けられている請求項1乃至4何れか一項に記載の冷蔵庫。
An outside air temperature sensor that detects the temperature of the outside air,
A second heater is provided in the drainage path for discharging the defrosted water generated from the refrigerating evaporator to the outside of the refrigerator.
Any of claims 1 to 4, wherein at least a part of the second heater is provided in the drainage path at a position thermally closer to the freezing evaporator chamber or the freezing chamber than the outside air. The refrigerator described in item 1.
外気の湿度を検知する外気湿度センサを備える請求項2,4又は5に記載の冷蔵庫。 The refrigerator according to claim 2, 4 or 5, further comprising an outside air humidity sensor that detects the humidity of the outside air.
JP2018014299A 2018-01-31 2018-01-31 refrigerator Active JP6883531B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018014299A JP6883531B2 (en) 2018-01-31 2018-01-31 refrigerator
CN201811030272.0A CN110094918B (en) 2018-01-31 2018-09-05 Refrigerator with a door

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018014299A JP6883531B2 (en) 2018-01-31 2018-01-31 refrigerator

Publications (2)

Publication Number Publication Date
JP2019132492A JP2019132492A (en) 2019-08-08
JP6883531B2 true JP6883531B2 (en) 2021-06-09

Family

ID=67547363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014299A Active JP6883531B2 (en) 2018-01-31 2018-01-31 refrigerator

Country Status (1)

Country Link
JP (1) JP6883531B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062027A (en) * 2000-08-10 2002-02-28 Toshiba Corp Refrigerator
JP2002107049A (en) * 2000-10-02 2002-04-10 Sanyo Electric Co Ltd Refrigerator
KR20070023154A (en) * 2005-08-23 2007-02-28 삼성전자주식회사 Refrigerator
JP2007078319A (en) * 2005-09-16 2007-03-29 Sanyo Electric Co Ltd Refrigerator
JP2016161231A (en) * 2015-03-03 2016-09-05 東芝ライフスタイル株式会社 Refrigerator

Also Published As

Publication number Publication date
JP2019132492A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP5017340B2 (en) refrigerator
JP2017116224A (en) refrigerator
JP6709363B2 (en) refrigerator
CN110094918B (en) Refrigerator with a door
JP6894389B2 (en) refrigerator
JP4982537B2 (en) refrigerator
JP6847063B2 (en) refrigerator
JP7090198B2 (en) refrigerator
CN111473573A (en) Refrigerator with a door
JP6883531B2 (en) refrigerator
JP7372186B2 (en) refrigerator
JP5656494B2 (en) refrigerator
JP2012063026A (en) Refrigerator
JP6940424B2 (en) refrigerator
JP5103452B2 (en) refrigerator
JP2019138514A (en) refrigerator
JP7473390B2 (en) refrigerator
JP6934433B2 (en) refrigerator
JP6975657B2 (en) refrigerator
JP6807882B2 (en) refrigerator
JP6975735B2 (en) refrigerator
JP2019132506A (en) refrigerator
JP7454458B2 (en) refrigerator
JP2024042217A (en) refrigerator
CN109708378B (en) Refrigerator with a door

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210302

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6883531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150