JP2024065119A - Piezoelectric vibrator and method for manufacturing the same - Google Patents

Piezoelectric vibrator and method for manufacturing the same Download PDF

Info

Publication number
JP2024065119A
JP2024065119A JP2021008166A JP2021008166A JP2024065119A JP 2024065119 A JP2024065119 A JP 2024065119A JP 2021008166 A JP2021008166 A JP 2021008166A JP 2021008166 A JP2021008166 A JP 2021008166A JP 2024065119 A JP2024065119 A JP 2024065119A
Authority
JP
Japan
Prior art keywords
electrode
molecular weight
polydimethylsiloxane
conductive adhesive
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021008166A
Other languages
Japanese (ja)
Inventor
治英 乙村
章久 山口
宗幸 大代
政浩 斉藤
一彦 佐藤
正安 五十嵐
啓太 渕瀬
不二夫 八木橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Murata Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Murata Manufacturing Co Ltd
Priority to JP2021008166A priority Critical patent/JP2024065119A/en
Priority to PCT/JP2021/041466 priority patent/WO2022158091A1/en
Publication of JP2024065119A publication Critical patent/JP2024065119A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/09Elastic or damping supports
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

【課題】導電性保持部材の弾性率の低減と導電性の向上とを両立させることができる圧電振動子および圧電振動子の製造方法を提供する。【解決手段】励振電極と励振電極に電気的に接続された接続電極とを有する圧電振動素子と、電極パッドを有するベース部材と、接続電極と電極パッドとを接続する導電性保持部材と、を備え、導電性保持部材は、導電性接着剤の硬化物であり、導電性接着剤は、両末端ビニル化ポリジメチルシロキサンを含み、両末端ビニル化ポリジメチルシロキサンは、分子量が644以上であり2500以下である成分を含み、当該成分の含有量が1モル%以下である。【選択図】図1[Problem] To provide a piezoelectric vibrator and a method for manufacturing a piezoelectric vibrator that can achieve both a reduction in the elastic modulus of a conductive holding member and an improvement in conductivity. [Solution] A piezoelectric vibrator includes a piezoelectric vibration element having an excitation electrode and a connection electrode electrically connected to the excitation electrode, a base member having an electrode pad, and a conductive holding member that connects the connection electrode and the electrode pad, the conductive holding member being a cured product of a conductive adhesive, the conductive adhesive including polydimethylsiloxane having vinyl groups at both ends, the polydimethylsiloxane having vinyl groups at both ends including a component having a molecular weight of 644 or more and 2500 or less, and the content of the component is 1 mol % or less. [Selected Figure] Figure 1

Description

本発明は、圧電振動子および圧電振動子の製造方法に関する。 The present invention relates to a piezoelectric vibrator and a method for manufacturing a piezoelectric vibrator.

発振装置や帯域フィルタなどに用いられる基準信号の信号源に、圧電振動子が広く用いられている。圧電振動子は、例えば、ベースとなるパッケージに対して導電性保持部材を介して振動片を接合する。導電性保持部材は、例えば、導電性接着剤の硬化物である。 Piezoelectric vibrators are widely used as signal sources for reference signals used in oscillators, bandpass filters, and the like. For example, a piezoelectric vibrator has a vibrating arm bonded to a base package via a conductive holding member. The conductive holding member is, for example, a cured conductive adhesive.

特許文献1には、(A)アルケニル基含有オルガノポリシロキサン100質量部と、(B)SiH基を3個有し、アルケニル基を有しないオルガノハイドロジェンポリシロキサンと、(C)触媒量の白金族金属系触媒とを含み、(B)成分中に含まれるケイ素原子に結合した水素原子の数が、(A)成分中に含まれるケイ素原子に結合したアルケニル基1個当たり、0.3~5.0個となる量である、エアバッグ用シリコーン弾性接着剤組成物が開示されている。 Patent Document 1 discloses a silicone elastic adhesive composition for airbags that contains (A) 100 parts by mass of an alkenyl group-containing organopolysiloxane, (B) an organohydrogenpolysiloxane having three SiH groups and no alkenyl groups, and (C) a catalytic amount of a platinum group metal catalyst, in which the number of hydrogen atoms bonded to silicon atoms contained in component (B) is an amount of 0.3 to 5.0 per alkenyl group bonded to silicon atoms contained in component (A).

特許文献2には、(A)1分子中に2個以上のケイ素原子を含有し、ケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンと、(B)1分子中に2個以上のケイ素原子を含有し、ケイ素原子1つに少なくとも1つ水素原子を有するオルガノポリシロキサンと、(C)触媒量の白金系ヒドロシリル化触媒と、(D)導電性が発現するのに充分な量の導電性粉体とを含む、導電性接着剤組成物が開示されている。 Patent Document 2 discloses a conductive adhesive composition that contains: (A) an organopolysiloxane that contains two or more silicon atoms in one molecule and has an alkenyl group bonded to the silicon atom; (B) an organopolysiloxane that contains two or more silicon atoms in one molecule and has at least one hydrogen atom per silicon atom; (C) a catalytic amount of a platinum-based hydrosilylation catalyst; and (D) a conductive powder in an amount sufficient to exhibit conductivity.

特許文献3には、(A)ケイ素原子に結合したアルケニル基が分子中に2個以上のオルガノポリシロキサンと、(B)ケイ素原子に結合した水素原子が分子中に2個以上のオルガノハイドロジェンポリシロキサンと、(C)ヒドロシリル化反応用触媒とを含み、重量平均分子量は150~10,000の範囲内、好ましくは、200~5,000の範囲内であり、(A)成分の重量平均分子量Mw/数平均分子量Mnは2.0以下、好ましくは重量平均分子量Mw/数平均分子量Mnは1.8以下である、接着促進剤が開示されている。 Patent Document 3 discloses an adhesion promoter that includes (A) an organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in the molecule, (B) an organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms in the molecule, and (C) a catalyst for hydrosilylation reactions, and has a weight average molecular weight in the range of 150 to 10,000, preferably in the range of 200 to 5,000, and the weight average molecular weight Mw/number average molecular weight Mn of component (A) is 2.0 or less, preferably 1.8 or less.

特開2013-112722号公報JP 2013-112722 A 特開2004-119254号公報JP 2004-119254 A 特開2017-88644号公報JP 2017-88644 A

ところで、従来の技術においては、導電性保持部材の弾性率の低減と導電性の向上とを両立することが望まれていた。 However, in conventional technology, it is desirable to simultaneously reduce the elastic modulus of the conductive retaining member and improve its conductivity.

本発明は、このような事情に鑑みてなされたものであり、導電性保持部材の弾性率の低減と導電性の向上とを両立させることができる圧電振動子および圧電振動子の製造方法を提供することを目的とする。 The present invention was made in consideration of these circumstances, and aims to provide a piezoelectric vibrator and a method for manufacturing a piezoelectric vibrator that can simultaneously reduce the elastic modulus of the conductive holding member and improve the conductivity.

本発明の一側面に係る圧電振動子は、励振電極と前記励振電極に電気的に接続された接続電極とを有する圧電振動素子と、電極パッドを有するベース部材と、接続電極と電極パッドとを接続する導電性保持部材と、を備え、導電性保持部材は、導電性接着剤の硬化物であり、導電性接着剤は、両末端ビニル化ポリジメチルシロキサンを含み、両末端ビニル化ポリジメチルシロキサンは、分子量が644以上であり2500以下である成分を含み、当該成分の含有量が1モル%以下である。 A piezoelectric vibrator according to one aspect of the present invention comprises a piezoelectric vibration element having an excitation electrode and a connection electrode electrically connected to the excitation electrode, a base member having an electrode pad, and a conductive holding member connecting the connection electrode and the electrode pad, the conductive holding member being a cured product of a conductive adhesive, the conductive adhesive including polydimethylsiloxane having vinyl groups at both ends, the polydimethylsiloxane having vinyl groups at both ends including a component having a molecular weight of 644 or more and 2500 or less, and the content of the component being 1 mol% or less.

本発明の一側面に係る圧電振動子の製造方法は、両末端ビニル化ポリジメチルシロキサンを含む導電性接着剤を圧電振動素子の接続電極とベース部材の電極パッドとの間に設ける工程と、前記導電性接着剤を硬化させた導電性保持部材により、前記接続電極と前記電極パッドとを接合する工程と、を含み、前記両末端ビニル化ポリジメチルシロキサンは、分子量が644以上であり2500以下である成分の含有量が1モル%以下である。 A method for manufacturing a piezoelectric vibrator according to one aspect of the present invention includes the steps of providing a conductive adhesive containing polydimethylsiloxane having vinylated ends between a connection electrode of a piezoelectric vibrator element and an electrode pad of a base member, and bonding the connection electrode and the electrode pad with a conductive retaining member formed by hardening the conductive adhesive, wherein the polydimethylsiloxane having vinylated ends contains 1 mol % or less of a component having a molecular weight of 644 or more and 2500 or less.

本発明によれば、導電性保持部材の弾性率の低減と導電性の向上とを両立させることができる。 According to the present invention, it is possible to reduce the elastic modulus of the conductive retaining member while improving its conductivity.

実施形態に係る水晶振動子の構成を概略的に示す分解斜視図である。1 is an exploded perspective view showing a schematic configuration of a quartz crystal resonator according to an embodiment; 実施形態に係る水晶振動子の構成を概略的に示す断面図である。1 is a cross-sectional view illustrating a schematic configuration of a quartz crystal resonator according to an embodiment. 導電性接着剤の抵抗値の測定に用いる評価用基板の構造を概略的に示す平面図である。1 is a plan view illustrating a schematic structure of an evaluation substrate used for measuring the resistance value of a conductive adhesive. 導電性接着剤の抵抗値の測定に用いる評価用基板の構造を概略的に示す断面図である。1 is a cross-sectional view showing a schematic structure of an evaluation substrate used for measuring the resistance value of a conductive adhesive. 実施例1の導電性接着剤の抵抗値を示すグラフである。1 is a graph showing the resistance value of the conductive adhesive of Example 1. 実施例1の導電性接着剤の弾性率を示すグラフである。1 is a graph showing the elastic modulus of the conductive adhesive of Example 1. 実施例2の導電性接着剤の抵抗値を示すグラフである。13 is a graph showing the resistance value of the conductive adhesive of Example 2. 実施例2の導電性接着剤の弾性率を示すグラフである。13 is a graph showing the elastic modulus of the conductive adhesive of Example 2. 実施例3の導電性接着剤の弾性率を示すグラフである。13 is a graph showing the elastic modulus of the conductive adhesive of Example 3. 実施例3の導電性接着剤のヒステリシス特性を示すグラフである。13 is a graph showing the hysteresis characteristics of the conductive adhesive of Example 3.

以下、図面を参照して、本発明の実施形態に係る圧電振動子の一例である水晶振動子の構成について説明する。なお、各図において、X軸、Y´軸及びZ´軸は、それぞれ、後述の水晶片11の結晶軸(Crystallographic Axes)に対応している。X軸が電気軸(極性軸)、Y軸が機械軸、Z軸が光学軸に対応している。Y´軸及びZ´軸は、それぞれ、Y軸及びZ軸をX軸の周りにY軸からZ軸の方向に所定角度だけ回転させた軸である。 The configuration of a quartz crystal vibrator, which is an example of a piezoelectric vibrator according to an embodiment of the present invention, will be described below with reference to the drawings. In each figure, the X-axis, Y'-axis, and Z'-axis correspond to the crystallographic axes of the quartz crystal piece 11 described below. The X-axis corresponds to the electrical axis (polarity axis), the Y-axis corresponds to the mechanical axis, and the Z-axis corresponds to the optical axis. The Y'-axis and Z'-axis are axes that are rotated around the X-axis by a predetermined angle in the direction from the Y-axis to the Z-axis.

図1及び図2に示すように、水晶振動子1は、圧電振動素子の一例としての水晶振動素子10と、ベース部材30と、蓋部材40と、接合部材50と、を備えている。 As shown in Figures 1 and 2, the quartz crystal vibrator 1 includes a quartz crystal vibrator element 10, which is an example of a piezoelectric vibrator element, a base member 30, a cover member 40, and a bonding member 50.

水晶振動素子10は、電気エネルギーを機械エネルギーに変換し、圧電効果により水晶を振動させる素子である。水晶振動素子10は、薄片状の水晶片11と、第1励振電極14aと、第2励振電極14bと、第1引出電極15aと、第2引出電極15bと、第1接続電極16aと、第2接続電極16bとを備えている。 The quartz crystal vibration element 10 is an element that converts electrical energy into mechanical energy and vibrates the quartz crystal by the piezoelectric effect. The quartz crystal vibration element 10 includes a thin quartz crystal piece 11, a first excitation electrode 14a, a second excitation electrode 14b, a first extraction electrode 15a, a second extraction electrode 15b, a first connection electrode 16a, and a second connection electrode 16b.

水晶片11は、例えば、ATカット型の水晶片である。ATカット型の水晶片11は、互いに交差するX軸、Y´軸、及びZ´軸からなる直交座標系において、X軸及びZ´軸によって特定される面と平行な面(以下、「XZ´面」と呼ぶ。他の軸によって特定される面についても同様である。)が主面となり、Y´軸と平行な方向が厚さとなるように形成される。例えば、ATカット型の水晶片11は、人工水晶(Synthetic Quartz Crystal)の結晶体を切断及び研磨加工して得られる水晶基板(例えば、水晶ウェハ)をエッチング加工することで形成される。 The quartz crystal piece 11 is, for example, an AT-cut quartz crystal piece. The AT-cut quartz crystal piece 11 is formed so that in an orthogonal coordinate system consisting of an X-axis, a Y'-axis, and a Z'-axis that intersect with each other, the main surface is a plane parallel to the plane specified by the X-axis and the Z'-axis (hereinafter referred to as the "XZ' plane"; the same applies to planes specified by the other axes), and the thickness is in the direction parallel to the Y'-axis. For example, the AT-cut quartz crystal piece 11 is formed by etching a quartz crystal substrate (for example, a quartz crystal wafer) obtained by cutting and polishing a crystal of synthetic quartz crystal.

水晶振動素子10は、ATカット型の水晶片11を用いた場合、広い温度範囲で高い周波数安定性を有する。ATカット型の水晶振動素子10は、厚みすべり振動モード(Thickness Shear Vibration Mode)を主要振動として用いる。水晶片11のカット角は、例えばBTカット、GTカット、SCカットなどを適用してよい。また、水晶振動素子は、Z板と呼ばれるカット角の水晶片を用いた音叉型水晶振動素子であってもよい。 When an AT-cut type quartz crystal vibration element 10 uses an AT-cut type quartz crystal piece 11, the quartz crystal vibration element 10 has high frequency stability over a wide temperature range. The AT-cut type quartz crystal vibration element 10 uses a thickness shear vibration mode as the main vibration. The cut angle of the quartz crystal piece 11 may be, for example, a BT cut, a GT cut, or an SC cut. The quartz crystal vibration element may also be a tuning fork type quartz crystal vibration element that uses a quartz crystal piece with a cut angle called a Z-cut.

水晶片11は、例えば、矩形板状をなしており、励振部17と、励振部17に隣接する周辺部18,19とを有している。水晶片11は、いわゆる平板型構造であってもよいが、図1に示すように、いわゆるメサ型構造であってもよい。メサ型構造を有する水晶片11は、第1主面11A及び第2主面11Bの両側において、励振部17が周辺部18,19から突出している。なお、以下の説明においては、第1主面11Aは、水晶片11のY´軸を上から見た、励振部17および周辺部18,19のそれぞれの主たる面を含み、第2主面11Bは、水晶片11のY´軸を下から見た、励振部17および周辺部18,19のそれぞれの主たる面を含むものとする。 The quartz crystal piece 11 is, for example, rectangular plate-shaped and has an excitation portion 17 and peripheral portions 18, 19 adjacent to the excitation portion 17. The quartz crystal piece 11 may have a so-called flat plate structure, or may have a so-called mesa structure as shown in FIG. 1. In the quartz crystal piece 11 having a mesa structure, the excitation portion 17 protrudes from the peripheral portions 18, 19 on both sides of the first main surface 11A and the second main surface 11B. In the following description, the first main surface 11A includes the main surfaces of the excitation portion 17 and the peripheral portions 18, 19 when the Y' axis of the quartz crystal piece 11 is viewed from above, and the second main surface 11B includes the main surfaces of the excitation portion 17 and the peripheral portions 18, 19 when the Y' axis of the quartz crystal piece 11 is viewed from below.

第1励振電極14a及び第2励振電極14bは、励振部17に設けられている。第1励振電極14aは水晶片11の第1主面11Aに設けられ、第2励振電極14bは水晶片11の第2主面11Bに設けられている。水晶片11の第1主面11Aを平面視したとき、第1励振電極14a及び第2励振電極14bは、それぞれ矩形状をなしており、互いの略全体が重なり合っている。 The first excitation electrode 14a and the second excitation electrode 14b are provided on the excitation portion 17. The first excitation electrode 14a is provided on the first main surface 11A of the crystal piece 11, and the second excitation electrode 14b is provided on the second main surface 11B of the crystal piece 11. When the first main surface 11A of the crystal piece 11 is viewed in plan, the first excitation electrode 14a and the second excitation electrode 14b each have a rectangular shape and overlap each other substantially entirely.

第1引出電極15a及び第2引出電極15bは、周辺部18に設けられている。第1引出電極15aは水晶片11の第1主面11Aに設けられ、第2引出電極15bは水晶片11の第2主面11Bに設けられている。第1引出電極15aは、第1励振電極14aと第1接続電極16aとを電気的に接続している。第2引出電極15bは、第2励振電極14bと第2接続電極16bとを電気的に接続している。例えば、第1引出電極15aの一端が第1励振電極14aに接続され、第1引出電極15aの他端が水晶片11の第1主面11Aと第2主面11Bとを繋ぐ側面に設けられた側面電極を介して第1接続電極16aに接続されている。また、第2引出電極15bの一端が第2励振電極14bに接続され、第2引出電極15bの他端が水晶片11の第1主面11Aと第2主面11Bとを繋ぐ側面に設けられた側面電極を介して第2接続電極16bに接続されている。 The first extraction electrode 15a and the second extraction electrode 15b are provided on the peripheral portion 18. The first extraction electrode 15a is provided on the first main surface 11A of the crystal piece 11, and the second extraction electrode 15b is provided on the second main surface 11B of the crystal piece 11. The first extraction electrode 15a electrically connects the first excitation electrode 14a and the first connection electrode 16a. The second extraction electrode 15b electrically connects the second excitation electrode 14b and the second connection electrode 16b. For example, one end of the first extraction electrode 15a is connected to the first excitation electrode 14a, and the other end of the first extraction electrode 15a is connected to the first connection electrode 16a via a side electrode provided on a side surface connecting the first main surface 11A and the second main surface 11B of the crystal piece 11. In addition, one end of the second extraction electrode 15b is connected to the second excitation electrode 14b, and the other end of the second extraction electrode 15b is connected to the second connection electrode 16b via a side electrode provided on the side surface connecting the first main surface 11A and the second main surface 11B of the crystal piece 11.

第1接続電極16a及び第2接続電極16bは、周辺部18に設けられている。第1接続電極16aは水晶片11の第1主面11Aに設けられ、第2接続電極16bは水晶片11の第2主面11Bに設けられている。第1接続電極16aは、第1励振電極14aをベース部材30に電気的に接続するための電極であり、第2接続電極16bは、第2励振電極14bをベース部材30に電気的に接続するための電極である。第1接続電極16a及び第2接続電極16bは、金(Au)を主成分とする電極である。第1接続電極16a及び第2接続電極16bの表面は、例えば、金(Au)を主成分とする金属層により構成されている。 The first connection electrode 16a and the second connection electrode 16b are provided on the peripheral portion 18. The first connection electrode 16a is provided on the first main surface 11A of the crystal piece 11, and the second connection electrode 16b is provided on the second main surface 11B of the crystal piece 11. The first connection electrode 16a is an electrode for electrically connecting the first excitation electrode 14a to the base member 30, and the second connection electrode 16b is an electrode for electrically connecting the second excitation electrode 14b to the base member 30. The first connection electrode 16a and the second connection electrode 16b are electrodes whose main component is gold (Au). The surfaces of the first connection electrode 16a and the second connection electrode 16b are composed of, for example, a metal layer whose main component is gold (Au).

ベース部材30は、例えば、絶縁性セラミック(アルミナ)などの焼結材からなり、水晶振動素子10を励振可能に保持する。ベース部材30の上面31Aには、水晶振動素子10が搭載され、ベース部材30の下面31Bには、図示しない外部の回路基板が接合される。 The base member 30 is made of a sintered material such as insulating ceramic (alumina) and holds the quartz crystal vibration element 10 in an excitable state. The quartz crystal vibration element 10 is mounted on the upper surface 31A of the base member 30, and an external circuit board (not shown) is bonded to the lower surface 31B of the base member 30.

ベース部材30は、第1電極パッド33a及び第2電極パッド33bを備えている。第1電極パッド33a及び第2電極パッド33bは、基体31の上面31Aに設けられている。第1電極パッド33a及び第2電極パッド33bは、ベース部材30に水晶振動素子10を電気的に接続するための端子である。第1電極パッド33a及び第2電極パッド33bは、Au(金)を主成分とする電極である。第1電極パッド33a及び第2電極パッド33bのそれぞれの表面は、例えば、金(Au)を主成分とする金属層により構成されている。第1電極パッド33aの表面は第1導電性保持部材36aに接触し、第2電極パッド33bの表面は第2導電性保持部材36bに接触している。 The base member 30 includes a first electrode pad 33a and a second electrode pad 33b. The first electrode pad 33a and the second electrode pad 33b are provided on the upper surface 31A of the substrate 31. The first electrode pad 33a and the second electrode pad 33b are terminals for electrically connecting the crystal vibration element 10 to the base member 30. The first electrode pad 33a and the second electrode pad 33b are electrodes mainly composed of Au (gold). The surfaces of the first electrode pad 33a and the second electrode pad 33b are composed of a metal layer mainly composed of gold (Au), for example. The surface of the first electrode pad 33a is in contact with the first conductive holding member 36a, and the surface of the second electrode pad 33b is in contact with the second conductive holding member 36b.

ベース部材30は、第1外部電極35a、第2外部電極35b、第3外部電極35c及び第4外部電極35dを備えている。第1外部電極35a~第4外部電極35dは、基体31の下面31Bに設けられている。第1外部電極35a及び第2外部電極35bは、図示しない外部の基板と水晶振動子1とを電気的に接続するための端子である。第1電極パッド33aは、基体31をY´軸方向に沿って貫通する第1貫通電極34aを介して、第1外部電極35aに電気的に接続されている。第2電極パッド33bは、基体31をY´軸方向に沿って貫通する第2貫通電極34bを介して、第2外部電極35bに電気的に接続されている。第3外部電極35c及び第4外部電極35dは、電気信号等が入出力されないダミー電極であるが、蓋部材40を接地させて蓋部材20の電磁シールド機能を向上させる接地電極であってもよい。なお、第3外部電極35c及び第4外部電極35dは、省略されてもよい。 The base member 30 includes a first external electrode 35a, a second external electrode 35b, a third external electrode 35c, and a fourth external electrode 35d. The first external electrode 35a to the fourth external electrode 35d are provided on the lower surface 31B of the base 31. The first external electrode 35a and the second external electrode 35b are terminals for electrically connecting an external substrate (not shown) to the crystal unit 1. The first electrode pad 33a is electrically connected to the first external electrode 35a via a first through electrode 34a that penetrates the base 31 along the Y'-axis direction. The second electrode pad 33b is electrically connected to the second external electrode 35b via a second through electrode 34b that penetrates the base 31 along the Y'-axis direction. The third external electrode 35c and the fourth external electrode 35d are dummy electrodes to which electrical signals are not input or output, but may be ground electrodes that improve the electromagnetic shielding function of the cover member 20 by grounding the cover member 40. The third external electrode 35c and the fourth external electrode 35d may be omitted.

ベース部材30は、第1導電性保持部材36a及び第2導電性保持部材36bを備えている。第1導電性保持部材36aは、第1電極パッド33aおよび第1接続電極16aに接合され、第1電極パッド33aと第1接続電極16aとを電気的に接続している。第2導電性保持部材36bは、第2電極パッド33bおよび第2接続電極16bに接合され、第2電極パッド33bと第2接続電極16bとを電気的に接続している。第1導電性保持部材36a及び第2導電性保持部材36bは、励振部17が励振可能となるように、ベース部材30から間隔を空けて水晶振動素子10を保持している。 The base member 30 includes a first conductive holding member 36a and a second conductive holding member 36b. The first conductive holding member 36a is bonded to the first electrode pad 33a and the first connection electrode 16a, and electrically connects the first electrode pad 33a and the first connection electrode 16a. The second conductive holding member 36b is bonded to the second electrode pad 33b and the second connection electrode 16b, and electrically connects the second electrode pad 33b and the second connection electrode 16b. The first conductive holding member 36a and the second conductive holding member 36b hold the quartz crystal vibration element 10 at a distance from the base member 30 so that the excitation portion 17 can be excited.

第1導電性保持部材36a及び第2導電性保持部材36bは、熱硬化性樹脂や光硬化性樹脂等を含む導電性接着剤の硬化物であり、第1導電性保持部材36a及び第2導電性保持部材36bの主成分はシリコーン樹脂である。第1導電性保持部材36a及び第2導電性保持部材36bは導電性粒子を含む。導電性粒子は、例えば銀(Ag)を含む金属粒子である。シリコーン樹脂の弾性率は、広い温度範囲でエポキシ樹脂よりも安定している。第1導電性保持部材36a及び第2導電性保持部材36bの主成分をシリコーン樹脂とすることで、エポキシ樹脂を主成分とする場合に比べて、水晶振動素子10の周波数温度特性が改善される。 The first conductive holding member 36a and the second conductive holding member 36b are cured products of a conductive adhesive containing a thermosetting resin, a photocurable resin, etc., and the main component of the first conductive holding member 36a and the second conductive holding member 36b is a silicone resin. The first conductive holding member 36a and the second conductive holding member 36b contain conductive particles. The conductive particles are, for example, metal particles containing silver (Ag). The elastic modulus of silicone resin is more stable than that of epoxy resin over a wide temperature range. By using silicone resin as the main component of the first conductive holding member 36a and the second conductive holding member 36b, the frequency-temperature characteristics of the quartz crystal vibration element 10 are improved compared to when epoxy resin is used as the main component.

導電性接着剤は、シリコーン導電性接着剤であり、両末端ビニル化ポリジメチルシロキサンを含む。具体的には、導電性接着剤は、例えば、両末端ビニル化ポリジメチルシロキサンと、オルガノハイドロジェンポリシロキサンと、銀粉と、石油溶剤と、エポキシ化合物と、白金触媒とを含む。両末端ビニル化ポリジメチルシロキサンは、分子量が644以上であり2500以下である低分子量の成分を含み、当該成分の含有量が1モル%以下である。両末端ビニル化ポリジメチルシロキサンは、好ましくは、数平均分子量が6200以上である。両末端ビニル化ポリジメチルシロキサンは、好ましくは、数平均分子量が12700以下である。 The conductive adhesive is a silicone conductive adhesive and contains polydimethylsiloxane having vinylated ends. Specifically, the conductive adhesive contains, for example, polydimethylsiloxane having vinylated ends, organohydrogenpolysiloxane, silver powder, a petroleum solvent, an epoxy compound, and a platinum catalyst. The polydimethylsiloxane having vinylated ends contains a low molecular weight component having a molecular weight of 644 or more and 2500 or less, and the content of the component is 1 mol% or less. The polydimethylsiloxane having vinylated ends preferably has a number average molecular weight of 6200 or more. The polydimethylsiloxane having vinylated ends preferably has a number average molecular weight of 12700 or less.

両末端ビニル化ポリジメチルシロキサンの合成手順が異なる場合、得られる両末端ビニル化ポリジメチルシロキサンの分子量分布も異なる。そこで、本発明者は、以下に示す合成手順により、分子量分布が狭く、分子量が644以上であり2500以下である低分子量の成分の含有量が1モル%以下に抑えられた両末端ビニル化ポリジメチルシロキサンが得られることを見出した。なお、以下に示す低分子量の含有量を抑制する手法は例示であり、本発明に係る導電性接着剤は以下の合成手順に限定されるものではない。 When the synthesis procedure for polydimethylsiloxane having vinyl ends is different, the molecular weight distribution of the resulting polydimethylsiloxane having vinyl ends will also be different. Therefore, the inventors have discovered that the synthesis procedure shown below can be used to obtain polydimethylsiloxane having vinyl ends with a narrow molecular weight distribution and a content of low molecular weight components having a molecular weight of 644 or more and 2500 or less suppressed to 1 mol % or less. Note that the method for suppressing the content of low molecular weight components shown below is an example, and the conductive adhesive according to the present invention is not limited to the synthesis procedure shown below.

すなわち、まず、ヘキサメチルシクロトリシロキサン(D3,33.4g,150 mmol)の塩化メチレン(84 mL)溶液に、水/テトラヒドロフラン(THF)混合溶液(1/99(v/v),92.9 μL,5.16 mmol)を加えた。次いで、1,3-トリメチレン-2-プロピルグアニジン(TMnPG)のTHF溶液(1.06 mL,100 mg mL-1,753 μmol)を加えてヘキサメチルシクロトリシロキサンの重合を開始させた。6時間50分後、反応溶液に脱水ピリジン(2.49 mL,30.9 mmol)およびクロロジメチル(ビニル)シラン(2.78 mL,20.6 mmol)を順に加えて重合を停止させた。粗生成物を濃縮した後、得られた液体から不要分をアセトニトリル(100 mL)で5回抽出除去した。アセトニトリル相を除去した後,減圧濃縮することで、無色油状液体として目的の両末端ビニル化ポリジメチルシロキサン(数平均分子量 6200)を28.5g得た。また、同様の合成手順において、ヘキサメチルシクロトリシロキサンと水のモル比を変更することで、数平均分子量が3600および12700の両末端ビニル化ポリジメチルシロキサンを得た。 That is, first, a water/tetrahydrofuran (THF) mixed solution (1/99 (v/v), 92.9 μL, 5.16 mmol) was added to a methylene chloride (84 mL) solution of hexamethylcyclotrisiloxane (D3, 33.4 g, 150 mmol). Next, a THF solution of 1,3-trimethylene-2-propylguanidine (TMnPG) (1.06 mL, 100 mg mL −1 , 753 μmol) was added to initiate polymerization of hexamethylcyclotrisiloxane. After 6 hours and 50 minutes, dehydrated pyridine (2.49 mL, 30.9 mmol) and chlorodimethyl(vinyl)silane (2.78 mL, 20.6 mmol) were added to the reaction solution in that order to terminate the polymerization. After concentrating the crude product, unnecessary substances were removed from the resulting liquid by extraction with acetonitrile (100 mL) five times. After removing the acetonitrile phase, the mixture was concentrated under reduced pressure to obtain 28.5 g of the target polydimethylsiloxane having vinylated ends at both ends as a colorless oily liquid (number average molecular weight 6200). Furthermore, by changing the molar ratio of hexamethylcyclotrisiloxane to water using the same synthesis procedure, polydimethylsiloxanes having vinylated ends at both ends with number average molecular weights of 3600 and 12700 were obtained.

第1導電性保持部材36a及び第2導電性保持部材36bを設ける工程は、両末端ビニル化ポリジメチルシロキサンを含む導電性接着剤を水晶振動素子10の接続電極16a,16bとベース部材30の電極パッド33a,33bとの間に設ける工程と、導電性接着剤を硬化させた導電性保持部材により、水晶振動素子10の接続電極16a,16bと電極パッド33a,33bとを接合する工程とを含む。両末端ビニル化ポリジメチルシロキサンは、分子量が644以上であり2500以下である成分の含有量が1モル%以下である。導電性接着剤を水晶振動素子10の接続電極16a,16bとベース部材30の電極パッド33a,33bとの間に設ける工程は、例えば、粘度が調整されてペースト状となった導電性接着剤を電極パッド33a,33bの上に塗布する塗布工程と、導電性接着剤の上に水晶振動素子10を載置して接続電極16a,16bの表面に濡れ広がった導電性接着剤によって水晶振動素子10を支持させる載置工程と、導電性接着剤を硬化させる硬化工程とを含む。 The process of providing the first conductive retaining member 36a and the second conductive retaining member 36b includes the process of providing a conductive adhesive containing polydimethylsiloxane having vinylated ends between the connection electrodes 16a, 16b of the quartz vibration element 10 and the electrode pads 33a, 33b of the base member 30, and the process of joining the connection electrodes 16a, 16b of the quartz vibration element 10 to the electrode pads 33a, 33b with the conductive retaining member formed by hardening the conductive adhesive. The polydimethylsiloxane having vinylated ends contains 1 mol% or less of a component having a molecular weight of 644 or more and 2500 or less. The process of providing the conductive adhesive between the connection electrodes 16a, 16b of the quartz crystal vibration element 10 and the electrode pads 33a, 33b of the base member 30 includes, for example, a coating process in which the conductive adhesive, the viscosity of which has been adjusted to form a paste, is applied onto the electrode pads 33a, 33b; a placement process in which the quartz crystal vibration element 10 is placed on the conductive adhesive and the conductive adhesive that has spread over the surfaces of the connection electrodes 16a, 16b supports the quartz crystal vibration element 10; and a curing process in which the conductive adhesive is cured.

(実施例1)
実施例1の導電性接着剤は、(A)1分子中に2個以上のケイ素原子を含有し、ケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンと、(B)1分子中に2個以上のケイ素原子を含有し、ケイ素原子1つに少なくとも1つの水素原子を有するオルガノポリシロキサンとを含み、(A)と(B)の合計量に対して両末端ビニル化ポリジメチルシロキサンを30重量部添加した。また、実施例1の両末端ビニル化ポリジメチルシロキサンの第1サンプルは、数平均分子量が6200の分布において、分子量が644以上であり2500以下である低分子量の成分の含有量が18モル%以下である。実施例1の両末端ビニル化ポリジメチルシロキサンの第2サンプルは、数平均分子量が6200の分布において、分子量が644以上であり2500以下である低分子量の成分の含有量が18モル%以下である。分子量が2500以下の低分子量の成分の含有量とは、両末端ビニル化ポリジメチルシロキサンの全体の分子量に対する、分子量が644以上であり2500以下である低分子量の成分の個数比である。導電性接着剤の構成成分の重量比は、導電性粒子65%、ポリメチルシルセスキオキサン16%、シリコーン樹脂13%、溶剤4%、エポキシ樹脂2%である。シリコーン樹脂は、分子量が644以上であり2500以下である低分子量の成分を含み、当該成分の含有量が22モル%以下である。比較例の導電性接着剤は、両末端ビニル化ポリジメチルシロキサンを含まないこと以外は実施例1の導電性接着剤と共通である。
Example 1
The conductive adhesive of Example 1 includes (A) an organopolysiloxane containing two or more silicon atoms in one molecule and having an alkenyl group bonded to the silicon atom, and (B) an organopolysiloxane containing two or more silicon atoms in one molecule and having at least one hydrogen atom per silicon atom, and 30 parts by weight of polydimethylsiloxane vinylated at both ends is added to the total amount of (A) and (B). In addition, the first sample of the polydimethylsiloxane vinylated at both ends of Example 1 has a distribution of number average molecular weight of 6200, in which the content of low molecular weight components having a molecular weight of 644 or more and 2500 or less is 18 mol % or less. The second sample of the polydimethylsiloxane vinylated at both ends of Example 1 has a distribution of number average molecular weight of 6200, in which the content of low molecular weight components having a molecular weight of 644 or more and 2500 or less is 18 mol % or less. The content of low molecular weight components having a molecular weight of 2500 or less is the ratio of the number of low molecular weight components having a molecular weight of 644 or more and 2500 or less to the total molecular weight of the polydimethylsiloxane having vinylated ends. The weight ratio of the components of the conductive adhesive is 65% conductive particles, 16% polymethylsilsesquioxane, 13% silicone resin, 4% solvent, and 2% epoxy resin. The silicone resin contains a low molecular weight component having a molecular weight of 644 or more and 2500 or less, and the content of this component is 22 mol% or less. The conductive adhesive of the comparative example is the same as the conductive adhesive of Example 1 except that it does not contain polydimethylsiloxane having vinylated ends.

次に、導電性接着剤の硬化物の抵抗値の評価方法について説明する。
図3に示すように、評価用基板B10には、第1電極対E10と、第2電極対E20と、第3電極対E30と、第4電極対E40と、第5電極対E50とが、この順に並べて設けられている。第1電極対E10~第5電極対E50は、絶縁基板の上に設けられている。第1電極対E10は、一対の測定電極E11,E12と、測定電極E11と測定電極E12とを接続するブリッジ電極E13とを有している。第2電極対E20は、一対の測定電極E21,E22と、測定電極E21と測定電極E22とを接続するブリッジ電極E23を有している。また、第3電極対E30は、一対の測定電極E31,E32と、測定電極E31と測定電極E32とを接続するブリッジ電極E33を有している。また、第4電極対E40は、一対の測定電極E41,E42と、測定電極E41と測定電極E42とを接続するブリッジ電極E43を有している。また、第5電極対E50は、一対の測定電極E51,E52と、測定電極E51と測定電極E52とを接続するブリッジ電極E53を有している。ブリッジ電極E13~E53のそれぞれの中央部E1,E2,E3,E4,E5は、導電性接着剤の硬化物E9によって覆われている。第1電極対E10~第5電極対E50は、導電性接着剤の硬化物E9によって電気的に接続されている。
Next, a method for evaluating the resistance value of the cured conductive adhesive will be described.
As shown in Fig. 3, the evaluation substrate B10 is provided with a first electrode pair E10, a second electrode pair E20, a third electrode pair E30, a fourth electrode pair E40, and a fifth electrode pair E50 arranged in this order. The first electrode pair E10 to the fifth electrode pair E50 are provided on an insulating substrate. The first electrode pair E10 has a pair of measurement electrodes E11, E12, and a bridge electrode E13 that connects the measurement electrodes E11 and E12. The second electrode pair E20 has a pair of measurement electrodes E21, E22, and a bridge electrode E23 that connects the measurement electrodes E21 and E22. The third electrode pair E30 has a pair of measurement electrodes E31, E32, and a bridge electrode E33 that connects the measurement electrodes E31 and E32. The fourth electrode pair E40 has a pair of measurement electrodes E41, E42 and a bridge electrode E43 connecting the measurement electrodes E41 and E42. The fifth electrode pair E50 has a pair of measurement electrodes E51, E52 and a bridge electrode E53 connecting the measurement electrodes E51 and E52. The central portions E1, E2, E3, E4, and E5 of the bridge electrodes E13 to E53 are covered with a cured product E9 of a conductive adhesive. The first electrode pair E10 to the fifth electrode pair E50 are electrically connected by the cured product E9 of the conductive adhesive.

絶縁基板は、例えば、アルミナ基板である。第1電極対E10~第5電極対E50は、ニッケルからなる下地層と、金(Au)からなる表面層とを有する積層構造の金属電極である。第1電極対E10~第5電極対E50の表面は、金(Au)を主成分とする金属層により構成されている。 The insulating substrate is, for example, an alumina substrate. The first electrode pair E10 to the fifth electrode pair E50 are metal electrodes with a laminated structure having a base layer made of nickel and a surface layer made of gold (Au). The surfaces of the first electrode pair E10 to the fifth electrode pair E50 are composed of a metal layer whose main component is gold (Au).

図4に示すように、中央部E1と中央部E2との間の抵抗値1-2、中央部E1と中央部E3との間の抵抗値1-3、中央部E1と中央部E4との間の抵抗値1-4、及び、中央部E1と中央部E5との間の抵抗値1-5のそれぞれの変化を測定することで、導電性接着剤の硬化物E9の抵抗値を評価した。抵抗値1-2は、中央部E1と導電性接着剤の硬化物E9との接触抵抗、中央部E1と中央部E2との間における導電性接着剤の硬化物E9の抵抗、及び、導電性接着剤の硬化物E9と中央部E2との接触抵抗によって定まる。抵抗値1-3、抵抗値1-4、及び抵抗値1-5も同様に、それぞれ、導電性接着剤の硬化物E9自体の抵抗と、導電性接着剤の硬化物E9と電極対の中央部との接触抵抗によって定まる。 As shown in FIG. 4, the resistance value of the cured conductive adhesive E9 was evaluated by measuring the changes in resistance value 1-2 between the central portion E1 and the central portion E2, resistance value 1-3 between the central portion E1 and the central portion E3, resistance value 1-4 between the central portion E1 and the central portion E4, and resistance value 1-5 between the central portion E1 and the central portion E5. The resistance value 1-2 is determined by the contact resistance between the central portion E1 and the cured conductive adhesive E9, the resistance of the cured conductive adhesive E9 between the central portion E1 and the central portion E2, and the contact resistance between the cured conductive adhesive E9 and the central portion E2. Similarly, the resistance values 1-3, 1-4, and 1-5 are determined by the resistance of the cured conductive adhesive E9 itself and the contact resistance between the cured conductive adhesive E9 and the central portion of the electrode pair, respectively.

抵抗値1-2の測定では、中央部E1,E2と導電性接着剤の硬化物E9以外の影響を相殺するため、次のように測定した。すなわち、測定電極E11と測定電極E21との間の抵抗値、測定電極E11と測定電極E22との間の抵抗値、測定電極E12と測定電極E22との間の抵抗値、及び、測定電極E12と測定電極E21との間の抵抗値を測定し、足し合わせた計算結果をAとした。また、測定電極E11と測定電極E12との間の抵抗値、及び、測定電極E21と測定電極E22との間の抵抗値を測定し、足し合わせて2倍した計算結果をBとした。そして、AからBを差し引き、4で割ることで抵抗値1-2を算出した。抵抗値1-3、抵抗値1-4、及び抵抗値1-5も同様に算出した。 In the measurement of resistance value 1-2, in order to offset the influence of anything other than the central parts E1 and E2 and the cured product E9 of the conductive adhesive, the measurement was performed as follows. That is, the resistance value between measurement electrode E11 and measurement electrode E21, the resistance value between measurement electrode E11 and measurement electrode E22, the resistance value between measurement electrode E12 and measurement electrode E22, and the resistance value between measurement electrode E12 and measurement electrode E21 were measured, and the result of adding them up was determined as A. In addition, the resistance value between measurement electrode E11 and measurement electrode E12, and the resistance value between measurement electrode E21 and measurement electrode E22 were measured, and the result of adding them up and multiplying them by two was determined as B. Then, resistance value 1-2 was calculated by subtracting B from A and dividing by 4. Resistance value 1-3, resistance value 1-4, and resistance value 1-5 were calculated in the same manner.

(評価結果)
図5に示す例では、上述した実施例1における第1サンプル、第2サンプル、および、比較例の導電性接着剤の各々について、抵抗値の測定を行った。同図に示すように、実施例1の評価結果によれば、導電性接着剤は、両末端ビニル化ポリジメチルシロキサンを含む場合には、両末端ビニル化ポリジメチルシロキサンを含まない場合に比して、抵抗値が大きい。また、数平均分子量が6200の分布において、分子量が644以上であり2500以下である低分子量の成分の含有量が相対的に少ない第2サンプルは、分子量が644以上であり2500以下である低分子量の成分の含有量が相対的に多い第1サンプルに比して、抵抗値が小さい。すなわち、数平均分子量が6200の分布において、分子量が644以上であり2500以下である低分子量の成分の含有量を少なくすることで、導電性接着剤の抵抗値が低減される。
(Evaluation results)
In the example shown in FIG. 5, the resistance values of the first sample, the second sample in the above-mentioned Example 1, and the conductive adhesive of the comparative example were measured. As shown in the figure, according to the evaluation results of Example 1, when the conductive adhesive contains polydimethylsiloxane having vinylated ends at both ends, the resistance value is higher than when the conductive adhesive does not contain polydimethylsiloxane having vinylated ends at both ends. In addition, in the distribution of the number average molecular weight of 6200, the second sample, which has a relatively small content of low molecular weight components having a molecular weight of 644 or more and 2500 or less, has a smaller resistance value than the first sample, which has a relatively large content of low molecular weight components having a molecular weight of 644 or more and 2500 or less. In other words, the resistance value of the conductive adhesive is reduced by reducing the content of low molecular weight components having a molecular weight of 644 or more and 2500 or less in the distribution of the number average molecular weight of 6200.

図6に示す例では、上述した実施例1における第1サンプル、第2サンプル、比較例の導電性接着剤の各々について、弾性率の測定を行った。弾性率の測定は、例えば、導電性接着剤を硬化させて、5cm×1cm×0.3cmのサンプルを作製し、-40℃~80℃の温度範囲でサンプルの弾性率を測定した。同図に示すように、実施例1の評価結果によれば、両末端ビニル化ポリジメチルシロキサンを含む場合には、両末端ビニル化ポリジメチルシロキサンを含まない場合に比して、弾性率が小さい。また、数平均分子量が6200の分布において、分子量が644以上であり2500以下である低分子量の成分の含有量が相対的に少ない第2サンプルは、分子量が644以上であり2500以下である低分子量の成分の含有量が相対的に多い第1サンプルに比して、弾性率が小さい。すなわち、数平均分子量が6200の分布において、分子量が644以上であり2500以下である低分子量の成分の含有量を少なくすることで、導電性接着剤の弾性率が低減される。 In the example shown in FIG. 6, the elastic modulus was measured for each of the conductive adhesives of the first sample, the second sample, and the comparative example in the above-mentioned Example 1. For example, the conductive adhesive was cured to prepare a sample of 5 cm x 1 cm x 0.3 cm, and the elastic modulus of the sample was measured in a temperature range of -40°C to 80°C. As shown in the figure, according to the evaluation results of Example 1, when both ends of the polydimethylsiloxane are vinylated, the elastic modulus is smaller than when both ends of the polydimethylsiloxane are not vinylated. In addition, in the distribution of the number average molecular weight of 6200, the second sample, which has a relatively small content of low molecular weight components with a molecular weight of 644 or more and 2500 or less, has a smaller elastic modulus than the first sample, which has a relatively large content of low molecular weight components with a molecular weight of 644 or more and 2500 or less. In other words, the elastic modulus of the conductive adhesive is reduced by reducing the content of low molecular weight components with a molecular weight of 644 or more and 2500 or less in the distribution of the number average molecular weight of 6200.

したがって、図5及び図6を比較して示すように、数平均分子量が6200の分布において、分子量が644以上であり2500以下である低分子量の成分の含有量が少ない場合には、導電性接着剤の弾性率の低減と導電性の向上とを両立させることができる。 Therefore, as shown by comparing Figures 5 and 6, in a distribution with a number average molecular weight of 6200, if the content of low molecular weight components with a molecular weight of 644 or more and 2500 or less is small, it is possible to achieve both a reduction in the elastic modulus of the conductive adhesive and an improvement in its conductivity.

(実施例2)
実施例2の導電性接着剤は、(A)1分子中に2個以上のケイ素原子を含有し、ケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンと、(B)1分子中に2個以上のケイ素原子を含有し、ケイ素原子1つに少なくとも1つの水素原子を有するオルガノポリシロキサンとを含み、(A)と(B)の合計量に対して両末端ビニル化ポリジメチルシロキサンを60重量部添加した。実施例2の両末端ビニル化ポリジメチルシロキサンの第1サンプルは、数平均分子量が3600の分布において、分子量が644以上であり2500以下である含有量が31モル%以下である。実施例2の両末端ビニル化ポリジメチルシロキサンの第2サンプルは、数平均分子量が6200の分布において、分子量が644以上であり2500以下である含有量が1モル%以下である。実施例2の両末端ビニル化ポリジメチルシロキサンの第3サンプルは、数平均分子量が12700の分布において、分子量が644以上であり2500以下である含有量が0モル%以下である。導電性接着剤の構成成分の重量比は、導電性粒子65%、ポリメチルシルセスキオキサン16%、シリコーン樹脂13%、溶剤4%、エポキシ樹脂2%である。シリコーン樹脂は、分子量が644以上であり2500以下である低分子量の成分を含み、当該成分の含有量が22モル%以下である。比較例の導電性接着剤は、両末端ビニル化ポリジメチルシロキサンを含まないこと以外は実施例2の導電性接着剤と共通である。
Example 2
The conductive adhesive of Example 2 includes (A) an organopolysiloxane containing two or more silicon atoms in one molecule and having an alkenyl group bonded to the silicon atom, and (B) an organopolysiloxane containing two or more silicon atoms in one molecule and having at least one hydrogen atom per silicon atom, and 60 parts by weight of polydimethylsiloxane vinylated at both ends was added to the total amount of (A) and (B). In the first sample of the polydimethylsiloxane vinylated at both ends of Example 2, the content of molecular weights of 644 or more and 2500 or less in the distribution of the number average molecular weight of 3600 is 31 mol % or less. In the second sample of the polydimethylsiloxane vinylated at both ends of Example 2, the content of molecular weights of 644 or more and 2500 or less in the distribution of the number average molecular weight of 6200 is 1 mol % or less. In the third sample of the polydimethylsiloxane having vinylated ends at both ends of Example 2, the content of molecular weights of 644 or more and 2500 or less is 0 mol % or less in the distribution of the number average molecular weight of 12700. The weight ratio of the components of the conductive adhesive is 65% conductive particles, 16% polymethylsilsesquioxane, 13% silicone resin, 4% solvent, and 2% epoxy resin. The silicone resin contains a low molecular weight component having a molecular weight of 644 or more and 2500 or less, and the content of this component is 22 mol % or less. The conductive adhesive of the comparative example is the same as the conductive adhesive of Example 2 except that it does not contain polydimethylsiloxane having vinylated ends at both ends.

(評価結果)
図7に示す例では、上述した実施例2における第1サンプル、第2サンプル、第3サンプル、および、比較例の導電性接着剤の各々について、抵抗値の測定を行った。同図に示すように、実施例2の評価結果によれば、導電性接着剤は、両末端ビニル化ポリジメチルシロキサンを含む場合には、両末端ビニル化ポリジメチルシロキサンを含まない場合に比して、抵抗値が大きい。また、両末端ビニル化ポリジメチルシロキサンの数平均分子量が6200である第2サンプル、および、両末端ビニル化ポリジメチルシロキサンの数平均分子量が12700である第3サンプルは、両末端ビニル化ポリジメチルシロキサンの数平均分子量が3600である第1サンプルに比して、抵抗値が小さい。すなわち、両末端ビニル化ポリジメチルシロキサンの数平均分子量は、好ましくは、6200以上であり、両末端ビニル化ポリジメチルシロキサンの数平均分子量を大きくすることで、導電性接着剤の抵抗値が低減される。
(Evaluation results)
In the example shown in FIG. 7, the resistance values of the first, second and third samples in the second embodiment and the comparative conductive adhesive were measured. As shown in the figure, according to the evaluation results of the second embodiment, the conductive adhesive has a higher resistance value when it contains polydimethylsiloxane having vinylated ends at both ends than when it does not contain polydimethylsiloxane having vinylated ends at both ends. In addition, the second sample in which the number average molecular weight of polydimethylsiloxane having vinylated ends at both ends is 6200 and the third sample in which the number average molecular weight of polydimethylsiloxane having vinylated ends at both ends is 12700 have a lower resistance value than the first sample in which the number average molecular weight of polydimethylsiloxane having vinylated ends at both ends is 3600. That is, the number average molecular weight of polydimethylsiloxane having vinylated ends at both ends is preferably 6200 or more, and the resistance value of the conductive adhesive is reduced by increasing the number average molecular weight of polydimethylsiloxane having vinylated ends at both ends.

図8に示す例では、上述した実施例2における第1サンプル、第2サンプル、第3サンプル、および、比較例の導電性接着剤の各々について、弾性率の測定を行った。同図に示すように、実施例2の評価結果によれば、両末端ビニル化ポリジメチルシロキサンを含む場合には、両末端ビニル化ポリジメチルシロキサンを含まない場合に比して、弾性率が小さい。また、両末端ビニル化ポリジメチルシロキサンの数平均分子量が3600である第1サンプル、および、両末端ビニル化ポリジメチルシロキサンの数平均分子量が6200である第2サンプルは、両末端ビニル化ポリジメチルシロキサンの数平均分子量が12700である第3サンプルに比して、弾性率が小さい。すなわち、両末端ビニル化ポリジメチルシロキサンの数平均分子量は、好ましくは、6200以下であり、両末端ビニル化ポリジメチルシロキサンの数平均分子量を小さくすることで、導電性接着剤の弾性率が低減する。 In the example shown in FIG. 8, the elastic modulus was measured for each of the first, second, and third samples in the above-mentioned Example 2 and the conductive adhesive of the comparative example. As shown in the figure, according to the evaluation results of Example 2, when both ends are vinylated polydimethylsiloxane is included, the elastic modulus is smaller than when both ends are not included. In addition, the first sample in which the number average molecular weight of both ends are vinylated polydimethylsiloxane is 3600, and the second sample in which the number average molecular weight of both ends are vinylated polydimethylsiloxane is 6200, have a smaller elastic modulus than the third sample in which the number average molecular weight of both ends are vinylated polydimethylsiloxane is 12700. In other words, the number average molecular weight of both ends are preferably 6200 or less, and the elastic modulus of the conductive adhesive is reduced by reducing the number average molecular weight of both ends are vinylated polydimethylsiloxane.

したがって、図7及び図8を比較して示すように、両末端ビニル化ポリジメチルシロキサンの数平均分子量が6200以上である場合には、導電性接着剤の弾性率の低減と導電性の向上とを両立させることができる。 Therefore, as shown by comparing Figures 7 and 8, when the number average molecular weight of the polydimethylsiloxane vinylated at both ends is 6,200 or more, it is possible to achieve both a reduction in the elastic modulus of the conductive adhesive and an improvement in its conductivity.

(実施例3)
実施例3の導電性接着剤は、(A)1分子中に2個以上のケイ素原子を含有し、ケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンと、(B)1分子中に2個以上のケイ素原子を含有し、ケイ素原子1つに少なくとも1つの水素原子を有するオルガノポリシロキサンと、を含み、(A)と(B)の合計量に対して両末端ビニル化ポリジメチルシロキサンを30重量部添加した。実施例3の両末端ビニル化ポリジメチルシロキサンは、数平均分子量が6200の分布において、分子量が644以上であり2500以下である含有量が1モル%以下である。導電性接着剤の構成成分の重量比は、導電性粒子65%、ポリメチルシルセスキオキサン16%、シリコーン樹脂13%、溶剤4%、エポキシ樹脂2%である。シリコーン樹脂は、分子量が644以上であり2500以下である低分子量の成分を含み、当該成分の分子量が22モル%以下である。比較例の導電性接着剤は、両末端ビニル化ポリジメチルシロキサンを含まないこと以外は実施例2の導電性接着剤と共通である。
Example 3
The conductive adhesive of Example 3 includes (A) an organopolysiloxane containing two or more silicon atoms in one molecule and having an alkenyl group bonded to the silicon atom, and (B) an organopolysiloxane containing two or more silicon atoms in one molecule and having at least one hydrogen atom per silicon atom, and 30 parts by weight of polydimethylsiloxane vinylated at both ends was added to the total amount of (A) and (B). In the distribution of the number average molecular weight of 6200, the content of the molecular weight of 644 or more and 2500 or less is 1 mol% or less in the polydimethylsiloxane vinylated at both ends of Example 3. The weight ratio of the components of the conductive adhesive is 65% conductive particles, 16% polymethylsilsesquioxane, 13% silicone resin, 4% solvent, and 2% epoxy resin. The silicone resin includes a low molecular weight component having a molecular weight of 644 or more and 2500 or less, and the molecular weight of the component is 22 mol% or less. The conductive adhesive of the comparative example is the same as the conductive adhesive of Example 2 except that it does not contain polydimethylsiloxane vinylated at both ends.

(評価結果)
図9に示す例では、上述した実施例3の導電性接着剤、および、比較例の導電性接着剤の各々について、弾性率の測定を行った。同図に示す評価結果によれば、導電性接着剤は、両末端ビニル化ポリジメチルシロキサンを含む場合には、両末端ビニル化ポリジメチルシロキサンを含まない場合に比して、弾性率が小さい。すなわち、両末端ポリジメチルシロキサンを添加することで、導電性接着剤の抵抗値が低減される。
(Evaluation results)
In the example shown in Fig. 9, the elastic modulus was measured for each of the conductive adhesive of Example 3 and the conductive adhesive of the comparative example. According to the evaluation results shown in the figure, the conductive adhesive has a smaller elastic modulus when it contains polydimethylsiloxane having vinylated ends at both ends than when it does not contain polydimethylsiloxane having vinylated ends at both ends. In other words, the resistance value of the conductive adhesive is reduced by adding polydimethylsiloxane having vinylated ends at both ends.

図10に示す例では、上述した実施例3の導電性接着剤、および、比較例の導電性接着剤の各々について、ヒステリシス特性の測定を行った。ヒステリシス特性の測定は、例えば、水晶振動子1における-40℃~85℃の温度範囲での周波数出力を測定した。図11に示す評価結果によれば、比較例の導電性接着剤を使用した場合に比して、実施例3の導電性接着剤を使用した場合には、水晶振動子1の周波数温度特性のヒステリシス特性の平均値が約40%改善した。すなわち、導電性接着剤の弾性率が低下することで、温度変化に伴うベース部材30の変形に対する水晶振動素子10への応力が緩和された。 In the example shown in FIG. 10, the hysteresis characteristics were measured for the conductive adhesive of Example 3 and the conductive adhesive of the comparative example. For the measurement of the hysteresis characteristics, for example, the frequency output of the quartz crystal resonator 1 was measured in the temperature range of -40°C to 85°C. According to the evaluation results shown in FIG. 11, the average value of the hysteresis characteristics of the frequency-temperature characteristics of the quartz crystal resonator 1 was improved by about 40% when the conductive adhesive of Example 3 was used compared to when the conductive adhesive of the comparative example was used. In other words, the elastic modulus of the conductive adhesive was reduced, and the stress on the quartz crystal resonator element 10 due to the deformation of the base member 30 caused by temperature changes was alleviated.

以下に、本発明の実施形態の一部又は全部を付記し、その効果について説明する。なお、本発明は以下の付記に限定されるものではない。 Below, some or all of the embodiments of the present invention will be described, and their effects will be explained. Note that the present invention is not limited to the following notes.

本発明の一態様によれば、励振電極と励振電極に電気的に接続された接続電極とを有する圧電振動素子と、電極パッドを有するベース部材と、接続電極と電極パッドとを接続する導電性保持部材と、を備え、導電性保持部材は、導電性接着剤の硬化物であり、導電性接着剤は、両末端ビニル化ポリジメチルシロキサンを含み、両末端ビニル化ポリジメチルシロキサンは、分子量が644以上であり2500以下である成分を含み、当該成分の含有量が1モル%以下である、圧電振動子が提供される。 According to one aspect of the present invention, a piezoelectric vibrator is provided that includes a piezoelectric vibration element having an excitation electrode and a connection electrode electrically connected to the excitation electrode, a base member having an electrode pad, and a conductive holding member that connects the connection electrode and the electrode pad, the conductive holding member being a cured product of a conductive adhesive, the conductive adhesive including polydimethylsiloxane having vinyl groups at both ends, the polydimethylsiloxane having vinyl groups at both ends including a component having a molecular weight of 644 or more and 2500 or less, and the content of the component being 1 mol % or less.

本発明の一態様によれば、両末端ビニル化ポリジメチルシロキサンの数平均分子量が6200以上である、圧電振動子が提供される。 According to one aspect of the present invention, a piezoelectric vibrator is provided in which the number average molecular weight of polydimethylsiloxane vinylated at both ends is 6,200 or more.

本発明の一態様によれば、両末端ビニル化ポリジメチルシロキサンの数平均分子量が12700以下である、圧電振動子が提供される。 According to one aspect of the present invention, a piezoelectric vibrator is provided in which the number average molecular weight of polydimethylsiloxane vinylated at both ends is 12,700 or less.

本発明の一態様によれば、電極パッドは、Auを主成分とする電極である、圧電振動子が提供される。 According to one aspect of the present invention, a piezoelectric vibrator is provided in which the electrode pad is an electrode whose main component is Au.

本発明の一態様によれば、圧電振動素子は、水晶振動素子である、圧電振動子が提供される。 According to one aspect of the present invention, a piezoelectric vibrator is provided in which the piezoelectric vibration element is a quartz crystal vibration element.

本発明の一態様によれば、両末端ビニル化ポリジメチルシロキサンを含む導電性接着剤を圧電振動素子の接続電極とベース部材の電極パッドとの間に設ける工程と、導電性接着剤を硬化させた導電性保持部材により、接続電極と電極パッドとを接合する工程と、を含み、両末端ビニル化ポリジメチルシロキサンは、分子量が644以上であり2500以下である成分の含有量が1モル%以下である、圧電振動子の製造方法が提供される。 According to one aspect of the present invention, a method for manufacturing a piezoelectric vibrator is provided, which includes the steps of providing a conductive adhesive containing polydimethylsiloxane having vinyl ends between a connection electrode of a piezoelectric vibrator element and an electrode pad of a base member, and bonding the connection electrode and the electrode pad with a conductive retaining member formed by hardening the conductive adhesive, in which the polydimethylsiloxane having vinyl ends contains 1 mol % or less of a component having a molecular weight of 644 or more and 2500 or less.

以上説明したように、本発明の一態様によれば、導電性保持部材の弾性率の低減と導電性の向上とを両立させることができる。 As described above, according to one aspect of the present invention, it is possible to achieve both a reduction in the elastic modulus of the conductive retaining member and an improvement in the conductivity.

なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。 The above-described embodiments are intended to facilitate understanding of the present invention, and are not intended to limit the present invention. The present invention may be modified or improved without departing from the spirit of the present invention, and equivalents are also included in the present invention. In other words, designs modified by a person skilled in the art as appropriate are also included within the scope of the present invention as long as they include the characteristics of the present invention. For example, the elements of each embodiment and their arrangement, materials, conditions, shapes, sizes, etc. are not limited to those exemplified, and can be modified as appropriate. Furthermore, the elements of each embodiment can be combined to the extent technically possible, and combinations of these are also included within the scope of the present invention as long as they include the characteristics of the present invention.

1…水晶振動子
10…水晶振動素子
11…水晶片
14a…第1励振電極
14b…第2励振電極
15a…第1引出電極
15b…第2引出電極
16a…第1接続電極
16b…第2接続電極
30…ベース部材
33a…第1電極パッド
33b…第2電極パッド
36a…第1導電性保持部材
36b…第2導電性保持部材
40…蓋部材
50…接合部材。
REFERENCE SIGNS LIST 1... quartz crystal vibrator 10... quartz crystal vibrator element 11... quartz crystal piece 14a... first excitation electrode 14b... second excitation electrode 15a... first extraction electrode 15b... second extraction electrode 16a... first connection electrode 16b... second connection electrode 30... base member 33a... first electrode pad 33b... second electrode pad 36a... first conductive holding member 36b... second conductive holding member 40... cover member 50... bonding member.

Claims (6)

励振電極と前記励振電極に電気的に接続された接続電極とを有する圧電振動素子と、
電極パッドを有するベース部材と、
前記接続電極と前記電極パッドとを接続する導電性保持部材と、
を備え、
前記導電性保持部材は、導電性接着剤の硬化物であり、
前記導電性接着剤は、両末端ビニル化ポリジメチルシロキサンを含み、
前記両末端ビニル化ポリジメチルシロキサンは、分子量が644以上であり2500以下である成分を含み、当該成分の含有量が1モル%以下である、
圧電振動子。
A piezoelectric vibration element having an excitation electrode and a connection electrode electrically connected to the excitation electrode;
A base member having an electrode pad;
a conductive holding member that connects the connection electrode and the electrode pad;
Equipped with
the conductive holding member is a cured product of a conductive adhesive,
The conductive adhesive includes polydimethylsiloxane having both ends vinylated,
The polydimethylsiloxane having vinyl groups at both ends contains a component having a molecular weight of 644 or more and 2,500 or less, and the content of the component is 1 mol % or less.
Piezoelectric vibrator.
前記両末端ビニル化ポリジメチルシロキサンの数平均分子量が6200以上である、
請求項1に記載の圧電振動子。
The number average molecular weight of the polydimethylsiloxane vinylated at both ends is 6,200 or more.
The piezoelectric vibrator according to claim 1 .
前記両末端ビニル化ポリジメチルシロキサンの数平均分子量が12700以下である、
請求項2に記載の圧電振動子。
The number average molecular weight of the polydimethylsiloxane having vinyl groups at both ends is 12,700 or less.
The piezoelectric vibrator according to claim 2 .
前記電極パッドは、Auを主成分とする電極である、
請求項1から3のいずれか1項に記載の圧電振動子。
The electrode pad is an electrode mainly composed of Au.
The piezoelectric vibrator according to claim 1 .
前記圧電振動素子は、水晶振動素子である、
請求項1から4のいずれか1項に記載の圧電振動子。
The piezoelectric vibration element is a quartz crystal vibration element.
The piezoelectric vibrator according to claim 1 .
両末端ビニル化ポリジメチルシロキサンを含む導電性接着剤を圧電振動素子の接続電極とベース部材の電極パッドとの間に設ける工程と、
前記導電性接着剤を硬化させた導電性保持部材により、前記接続電極と前記電極パッドとを接合する工程と、
を含み、
前記両末端ビニル化ポリジメチルシロキサンは、分子量が644以上であり2500以下である成分の含有量が1モル%以下である、
圧電振動子の製造方法。
providing a conductive adhesive containing polydimethylsiloxane having vinyl ends between a connection electrode of the piezoelectric vibration element and an electrode pad of a base member;
a step of joining the connection electrodes and the electrode pads by a conductive holding member obtained by curing the conductive adhesive;
Including,
The polydimethylsiloxane having vinyl groups at both ends has a content of 1 mol % or less of a component having a molecular weight of 644 or more and 2,500 or less.
A method for manufacturing a piezoelectric vibrator.
JP2021008166A 2021-01-21 2021-01-21 Piezoelectric vibrator and method for manufacturing the same Pending JP2024065119A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021008166A JP2024065119A (en) 2021-01-21 2021-01-21 Piezoelectric vibrator and method for manufacturing the same
PCT/JP2021/041466 WO2022158091A1 (en) 2021-01-21 2021-11-11 Piezoelectric oscillator and manufacturing method of piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021008166A JP2024065119A (en) 2021-01-21 2021-01-21 Piezoelectric vibrator and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2024065119A true JP2024065119A (en) 2024-05-15

Family

ID=82548714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021008166A Pending JP2024065119A (en) 2021-01-21 2021-01-21 Piezoelectric vibrator and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2024065119A (en)
WO (1) WO2022158091A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428974A (en) * 1987-07-24 1989-01-31 Toyama Prefecture Piezoelectric pressure sensitive element and manufacture thereof
DE4320527A1 (en) * 1992-06-22 1993-12-23 Whitaker Corp Electrically conducting silicone gel - contg. silver coated mica and oxide free silver@ flakes are non-flowing, self-curing and thermally stable and have good conductivity
JP4852850B2 (en) * 2005-02-03 2012-01-11 セイコーエプソン株式会社 Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, frequency stabilization method, and piezoelectric vibrator manufacturing method

Also Published As

Publication number Publication date
WO2022158091A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
KR100631246B1 (en) Conductive adhesive and piezo-electric device with piezo-electric element mounted thereon by using such adhesive
CN113302840A (en) Elastic wave device, branching filter, and communication device
CN108140723B (en) Piezoelectric element, piezoelectric microphone, piezoelectric resonator, and method for manufacturing piezoelectric element
US8659213B2 (en) Piezoelectric devices and methods for manufacturing the same
US9093638B2 (en) Vibrating element, sensor unit and electronic apparatus
JP2010232806A (en) Piezoelectric resonator, piezoelectric oscillator, electronic device and method for manufacturing piezoelectric resonator
JP4852216B2 (en) Vibrating gyroscope
KR101661361B1 (en) Composite substrate, and elastic surface wave filter and resonator using the same
JP5774295B2 (en) Piezoelectric device
CN110724917A (en) Resonator element, resonator, oscillator, electronic apparatus, and moving object
US20130049541A1 (en) Surface mount type piezoelectric device
JP2011254354A (en) Composite substrate and surface acoustic wave device using the same
JP2024065119A (en) Piezoelectric vibrator and method for manufacturing the same
JP2016100744A (en) Surface acoustic wave device
JP5911349B2 (en) Crystal device
US8823247B2 (en) Piezoelectric vibrating devices including respective packages in which castellations include respective connecting electrodes
JP4859347B2 (en) Vibrating gyroscope
JP2008085469A (en) Conductive adhesive and piezoelectric device utilizing the same
JP5287763B2 (en) Sensor device and manufacturing method thereof
JP2022112361A (en) Piezoelectric vibrator and manufacturing method thereof
JP2022112377A (en) Piezoelectric vibrator and manufacturing method thereof
JP2018164193A (en) Crystal element and crystal device
JP2014049966A (en) Crystal device
JPS5944117A (en) Method of holding piezoelectric device
JP2000022484A (en) Piezoelectric vibrator, piezoelectric oscillator and manufacture of them