JP2024063739A - 水晶振動片及びこれを用いた水晶デバイス - Google Patents
水晶振動片及びこれを用いた水晶デバイス Download PDFInfo
- Publication number
- JP2024063739A JP2024063739A JP2023112278A JP2023112278A JP2024063739A JP 2024063739 A JP2024063739 A JP 2024063739A JP 2023112278 A JP2023112278 A JP 2023112278A JP 2023112278 A JP2023112278 A JP 2023112278A JP 2024063739 A JP2024063739 A JP 2024063739A
- Authority
- JP
- Japan
- Prior art keywords
- quartz crystal
- vibrating piece
- crystal vibrating
- dimension
- short side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 257
- 230000002093 peripheral effect Effects 0.000 claims abstract description 15
- 239000010453 quartz Substances 0.000 claims description 194
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 194
- 230000010355 oscillation Effects 0.000 claims description 12
- 230000005284 excitation Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
【課題】周波数が24MHzATカットの水晶振動片であって、外径サイズで言って長辺寸法が約1.2mm、短辺寸法が約1.0mmのパッケージに収容できる、新規な構造を有した水晶振動片を提供する。【解決手段】水晶振動片10は、振動部10aと、振動部より厚みが薄い周辺部10bと、当該水晶振動片の表裏各々に振動部及び周辺部の厚み差に起因して生じている段差10cと、を備える。そして、水晶振動片の水晶のX軸に沿う寸法をLx、水晶振動片の水晶のZ′軸に沿う寸法をLz、振動部の厚みをt、段差の高さdと表したとき、Lxが849~857μm、Lzが625~645μm、かつ、d/tが0.094≦d/t≦0.11の範囲である。【選択図】図1
Description
本発明は、振動部が凸状となっているいわゆるメサ型構造の水晶振動片およびこれを用いた水晶デバイスに関するものである。
厚み滑り振動モードで振動する水晶振動片の一種として、水晶振動片の振動部を他の部分に比べて凸状にした構造のものがある。いわゆるメサ型構造の水晶振動片である。この構造によれば、そうしない場合に比べ、振動部に振動エネルギーを効率的に閉じ込めることが出来るので、水晶振動片の特性向上が図れる。
この種の水晶振動片の一例が、例えば特許文献1に開示されている。この水晶振動片は、平面視で四角形状のもので、かつ、振動部と、この振動部より厚みが薄い周辺部と、振動部の表裏に設けた励振用電極と、を備えるものである。
この種の水晶振動片の一例が、例えば特許文献1に開示されている。この水晶振動片は、平面視で四角形状のもので、かつ、振動部と、この振動部より厚みが薄い周辺部と、振動部の表裏に設けた励振用電極と、を備えるものである。
然もこの水晶振動片は、厚み滑り振動の振動方向に沿った寸法をx、振動部の厚み寸法をt、振動部の前記振動方向に沿った寸法をMx、励振用電極の前記振動方向に沿った寸法をEx、前記振動方向に沿って生じる屈曲振動の波長をλとしたとき、これらx,t,Mx、Ex及びλが所定関係とされている(特許文献1の請求項1等)。
この水晶振動片によれば、CI(クリスタルインピダンス)を低減でき、かつ、設計余裕度が高い水晶振動片を実現できるという(特許文献1の段落7等)。
この水晶振動片によれば、CI(クリスタルインピダンス)を低減でき、かつ、設計余裕度が高い水晶振動片を実現できるという(特許文献1の段落7等)。
厚み滑りモードで振動する水晶振動片は、用途によって種々の周波数、大きさのものがある。然も、水晶は繊細な物性を有するため、所望の特性が得られる水晶振動片の構造は、水晶振動片の周波数や大きさの違いによって異なることが多い。そのため、周波数や大きさが異なる水晶振動片ごとに、水晶振動片の構造の適正化が必要である。
例えば、24MHz付近の周波数帯用のATカット水晶振動片であって、外径サイズで言って長辺寸法が約1.2mm、短辺寸法が約1.0mmというような小型のパッケージに収容できる水晶振動片に対しても、実用的な電気的特性を示す構造が求められている。24MHz付近の周波数帯のATカット水晶振動片は、携帯電話に代表される種々の通信端末装置の基準信号源として重要なためである。同様に、32MHz付近の周波数帯の水晶振動片に対しても、上記したような小型のパッケージに収容でき、かつ、実用的な電気的特性を示す構造が求められている。
この出願は上記の点に鑑みなされたものであり、従ってこの発明の目的は、周波数が24MHz、32MHz各々のATカットの水晶振動片であって、外径サイズで言って長辺寸法が1.2mm、短辺寸法が1.0mmのパッケージに収容できかつ特性に優れる、新規な構造を有した水晶振動片及びこれを用いた水晶デバイスを提供することにある。
例えば、24MHz付近の周波数帯用のATカット水晶振動片であって、外径サイズで言って長辺寸法が約1.2mm、短辺寸法が約1.0mmというような小型のパッケージに収容できる水晶振動片に対しても、実用的な電気的特性を示す構造が求められている。24MHz付近の周波数帯のATカット水晶振動片は、携帯電話に代表される種々の通信端末装置の基準信号源として重要なためである。同様に、32MHz付近の周波数帯の水晶振動片に対しても、上記したような小型のパッケージに収容でき、かつ、実用的な電気的特性を示す構造が求められている。
この出願は上記の点に鑑みなされたものであり、従ってこの発明の目的は、周波数が24MHz、32MHz各々のATカットの水晶振動片であって、外径サイズで言って長辺寸法が1.2mm、短辺寸法が1.0mmのパッケージに収容できかつ特性に優れる、新規な構造を有した水晶振動片及びこれを用いた水晶デバイスを提供することにある。
この目的の達成を図るため、この発明によれば、発振周波数が24MHzであり、平面形状が長方形状であるATカットの水晶振動片であって、振動部と、この振動部より厚みが薄い周辺部と、当該水晶振動片の表裏各々に前記振動部及び前記周辺部の厚み差に起因して生じている段差と、を備える水晶振動片において、
前記水晶振動片の水晶のX軸に沿う寸法をLx、前記水晶振動片の水晶のZ′軸に沿う寸法をLz、前記振動部の厚みをt、前記段差の高さをdと定義したとき、
Lxが849~857μm、
Lzが625~645μm、より好ましくは630~638μm、かつ、
d/tが0.094≦d/t≦0.11の範囲であることを特徴とする。
なお、この発明で言う24MHzとは、24MHzそのものの場合は勿論、その付近の周波数、例えば各種の電子機器の基準信号源等として利用されている24.305MHz,24.545MHz、24.576MHz等の周波数も含まれる。
前記水晶振動片の水晶のX軸に沿う寸法をLx、前記水晶振動片の水晶のZ′軸に沿う寸法をLz、前記振動部の厚みをt、前記段差の高さをdと定義したとき、
Lxが849~857μm、
Lzが625~645μm、より好ましくは630~638μm、かつ、
d/tが0.094≦d/t≦0.11の範囲であることを特徴とする。
なお、この発明で言う24MHzとは、24MHzそのものの場合は勿論、その付近の周波数、例えば各種の電子機器の基準信号源等として利用されている24.305MHz,24.545MHz、24.576MHz等の周波数も含まれる。
また、この出願の他の発明によれば、発振周波数が32MHzであり、平面形状が長方形状であるATカットの水晶振動片であって、振動部と、この振動部より厚みが薄い周辺部と、当該水晶振動片の表裏各々に前記振動部及び前記周辺部の厚み差に起因して生じている段差と、を備える水晶振動片において、
前記水晶振動片の水晶のX軸に沿う寸法をLx、前記水晶振動片の水晶のZ′軸に沿う寸法をLz、前記振動部の厚みをt、前記段差の高さをdと定義したとき、
Lxが636~643μm、
Lzが472~479μm、かつ、
d/tが0.094≦d/t≦0.11の範囲であることを特徴とする。
前記水晶振動片の水晶のX軸に沿う寸法をLx、前記水晶振動片の水晶のZ′軸に沿う寸法をLz、前記振動部の厚みをt、前記段差の高さをdと定義したとき、
Lxが636~643μm、
Lzが472~479μm、かつ、
d/tが0.094≦d/t≦0.11の範囲であることを特徴とする。
また、この出願の他の発明である水晶デバイスによれば、上記した周波数が24MHZの水晶振動片、又は32MHzの水晶振動片と、当該水晶振動片を実装する容器と、を備えることを特徴とする。
なお、この出願の発明で言う水晶デバイスとは、本発明の水晶振動片を備える水晶振動子、本発明の水晶振動片と温度センサ(例えばサーミス)とを含むいわゆる温度センサ付き水晶振動子、本発明の水晶振動片とこの水晶振動片用の発振回路とを含む水晶発振器、及び本発明の水晶振動片とこの水晶振動片用の発振回路と温度補償のための温度センサと温度補償回路とを含む温度補償型の水晶発振器等である。
この水晶デバイスの発明を実施するに当たり、前記容器は、外径サイズで言って長辺寸法が1.2mm、短辺寸法が1.0mmのものとすることが好ましい。市場で要求される小型の水晶デバイスを提供できるからである。なお、長辺寸法が1.2mm、短辺寸法が1.0mmという各数値は、容器の製造許容誤差の範囲、例えば各寸法に対し±0.1mmの範囲である。なお、本発明の水晶振動片は、外径サイズで言って長辺寸法が1.2mm、短辺寸法が1.0mmより大きい容器に実装して用いても勿論良い。
なお、この出願の発明で言う水晶デバイスとは、本発明の水晶振動片を備える水晶振動子、本発明の水晶振動片と温度センサ(例えばサーミス)とを含むいわゆる温度センサ付き水晶振動子、本発明の水晶振動片とこの水晶振動片用の発振回路とを含む水晶発振器、及び本発明の水晶振動片とこの水晶振動片用の発振回路と温度補償のための温度センサと温度補償回路とを含む温度補償型の水晶発振器等である。
この水晶デバイスの発明を実施するに当たり、前記容器は、外径サイズで言って長辺寸法が1.2mm、短辺寸法が1.0mmのものとすることが好ましい。市場で要求される小型の水晶デバイスを提供できるからである。なお、長辺寸法が1.2mm、短辺寸法が1.0mmという各数値は、容器の製造許容誤差の範囲、例えば各寸法に対し±0.1mmの範囲である。なお、本発明の水晶振動片は、外径サイズで言って長辺寸法が1.2mm、短辺寸法が1.0mmより大きい容器に実装して用いても勿論良い。
この発明の水晶振動片及び水晶デバイスによれば、24MHz、32MHzの水晶振動片であって、外径サイズで言って長辺寸法が約1.2mm、短辺寸法が約1.0mmというような小型のパッケージに収容できる水晶振動片において、水晶のX軸に沿う寸法Lx、水晶のZ′軸に沿う寸法Lz、振動部の厚みt、段差の高さdを、所定の範囲にしてあるので、周囲温度の変動に対する水晶振動片の特性変動例えばクリスタルインピダンス(CI)の変動を所望の範囲に抑制できる。従って、小型のパッケージに収容できかつ特性に優れる、新規な構造を有した水晶振動片及びこれを用いた水晶デバイスを提供できる。
以下、図面を参照してこの発明の水晶振動片および水晶デバイスの実施形態について説明する。なお、説明に用いる各図はこれらの発明を理解できる程度に概略的に示してあるにすぎない。また、説明に用いる各図において、同様な構成成分については同一の番号を付して示し、その説明を省略する場合もある。また、以下の説明中で述べる形状、寸法、材質等はこの発明の範囲内の好適例に過ぎない。従って、本発明は以下の実施形態のみに限定されるものではない。
1. 24MHzの水晶振動片及び水晶デバイスの実施形態
1-1.構造
先ず、図1(A)、(B)を参照して、発振周波数が24MHzの実施形態の水晶振動片10について説明する。
図1(A)は、実施形態の水晶振動片10の平面図、図1(B)は、水晶振動片10の図1(A)中のP-P線に沿った断面図である。図1中の座標軸X,Y、Z′は、各々水晶の結晶軸X、Y、Z′軸に相当するものである。なお、Z′とは、ATカットの水晶振動片10の切断角度に起因して水晶のZ軸から所定角度ずれたことを意味するものである。
1-1.構造
先ず、図1(A)、(B)を参照して、発振周波数が24MHzの実施形態の水晶振動片10について説明する。
図1(A)は、実施形態の水晶振動片10の平面図、図1(B)は、水晶振動片10の図1(A)中のP-P線に沿った断面図である。図1中の座標軸X,Y、Z′は、各々水晶の結晶軸X、Y、Z′軸に相当するものである。なお、Z′とは、ATカットの水晶振動片10の切断角度に起因して水晶のZ軸から所定角度ずれたことを意味するものである。
実施形態の水晶振動片10は、発振周波数が24MHzであり、平面形状が長方形状のATカットの水晶振動片であって、振動部10aと、振動部10aより厚みが薄い周辺部10bと、当該水晶振動片10の表裏各々に振動部10a及び周辺部10bの厚み差に起因して生じている段差10cと、を備える水晶振動片である。
然も、水晶振動片10は、当該水晶振動片の水晶のX軸に沿う寸法をLx、前記水晶振動片の水晶のZ′軸に沿う寸法をLz、前記振動部の厚みをt、前記段差の高さをdと定義したとき、
Lxが849~857μm、
Lzが625~645μm、より好ましくは630~638μm、かつ、
d/tが0.094≦d/t≦0.11の範囲のものである。
なお、水晶振動片の表裏の段差の高さをd1、d2と定義したとき(図1(B)参照)、d1、d2は典型的には実質的に同じである。ただし、d1、d2は、本発明の目的を損ねない範囲で違う場合があっても良い。
また、水晶振動片10の2つの短辺のうち水晶振動片1を収容する容器31(図1(C)参照)に固定される側の短辺を固定側短辺10d、その反対側の短辺を先端側短辺10eと定義した場合、先端側短辺10eの両角部は丸みを持っていても良いし、又は、図6を用いて後述するように略直角の場合いずれでも良い。
然も、水晶振動片10は、当該水晶振動片の水晶のX軸に沿う寸法をLx、前記水晶振動片の水晶のZ′軸に沿う寸法をLz、前記振動部の厚みをt、前記段差の高さをdと定義したとき、
Lxが849~857μm、
Lzが625~645μm、より好ましくは630~638μm、かつ、
d/tが0.094≦d/t≦0.11の範囲のものである。
なお、水晶振動片の表裏の段差の高さをd1、d2と定義したとき(図1(B)参照)、d1、d2は典型的には実質的に同じである。ただし、d1、d2は、本発明の目的を損ねない範囲で違う場合があっても良い。
また、水晶振動片10の2つの短辺のうち水晶振動片1を収容する容器31(図1(C)参照)に固定される側の短辺を固定側短辺10d、その反対側の短辺を先端側短辺10eと定義した場合、先端側短辺10eの両角部は丸みを持っていても良いし、又は、図6を用いて後述するように略直角の場合いずれでも良い。
振動部10aは、平面視で四角形状であり、この実施形態の場合は長方形状である。ただし、振動部10aは、平面形状が正方形状の場合があっても良く、場合によっては円形、楕円形であっても良い。振動部10aの大きさや、振動部10aの水晶振動片10に対する位置は、水晶振動片10の設計に応じて任意の設定にできるが、その一例を下方の実験結果の項において説明する。
水晶振動片10は、その表裏各々に、励振用電極11と、引出電極11aとを備えている。励振用電極11は、この実施形態の場合、振動部10aの領域内に収まるように設けてあり、平面視で四角形状であり、この実施形態の場合は長方形状であるが、場合により円形や楕円形でも良い。励振用電極11の大きさ、励振用電極11の振動部10aに対する位置は、水晶振動片10の設計に応じて任意の設定にできるが、その一例を下方の実験結果の項において説明する。
引出電極11aは、励振用電極11の一部から、水晶振動片10の固定側短辺10dの側に引き出してある。励振用電極11及び引出電極11aは、任意好適な金属膜で構成できる。
なお、図1において、水晶振動片10の固定側短辺10dから図面の下方側に出ている凸状部分10xは、水晶振動片10が、フォトリソグラフィイ技術によって水晶ウエハ(図示せず)に多数形成されたものであることに由来するもので、水晶ウエハから各水晶振動片10を折り取る際に残存した部分である。凸状部分10xは必須ではないが、水晶振動片10を容器31に導電性接着剤33によって固定する際の接着強度向上に寄与することが出来る。
水晶振動片10は、その表裏各々に、励振用電極11と、引出電極11aとを備えている。励振用電極11は、この実施形態の場合、振動部10aの領域内に収まるように設けてあり、平面視で四角形状であり、この実施形態の場合は長方形状であるが、場合により円形や楕円形でも良い。励振用電極11の大きさ、励振用電極11の振動部10aに対する位置は、水晶振動片10の設計に応じて任意の設定にできるが、その一例を下方の実験結果の項において説明する。
引出電極11aは、励振用電極11の一部から、水晶振動片10の固定側短辺10dの側に引き出してある。励振用電極11及び引出電極11aは、任意好適な金属膜で構成できる。
なお、図1において、水晶振動片10の固定側短辺10dから図面の下方側に出ている凸状部分10xは、水晶振動片10が、フォトリソグラフィイ技術によって水晶ウエハ(図示せず)に多数形成されたものであることに由来するもので、水晶ウエハから各水晶振動片10を折り取る際に残存した部分である。凸状部分10xは必須ではないが、水晶振動片10を容器31に導電性接着剤33によって固定する際の接着強度向上に寄与することが出来る。
次に、主に図1(C)、(D)を参照して、実施形態の水晶デバイス30について説明する。図1(C)は、実施形態の水晶デバイス30の平面図、図1(D)は、水晶デバイス30の側面図である。
実施形態の水晶デバイス30は、容器31と、導電性接着剤33と、蓋部材35と、上述した水晶振動片10と、を備えた水晶振動子30の例である。
容器31は、水晶振動片10を内包でき平面視で長方形状の凹部31aと、凹部31aの周囲を囲っている土手部31bと、凹部31aの底面の一部に設けた接続パッド31cと、容器31の外部底面に設けた外部接続端子31dと、を備えている。接続パッド31cは、水晶振動片10が接続固定されるものである。接続パッド31cは、図示しないビヤ配線等によって、外部接続端子31dに接続してある。この容器31は、例えば、公知のセラミックパッケージによって構成できる。
実施形態の水晶デバイス30は、容器31と、導電性接着剤33と、蓋部材35と、上述した水晶振動片10と、を備えた水晶振動子30の例である。
容器31は、水晶振動片10を内包でき平面視で長方形状の凹部31aと、凹部31aの周囲を囲っている土手部31bと、凹部31aの底面の一部に設けた接続パッド31cと、容器31の外部底面に設けた外部接続端子31dと、を備えている。接続パッド31cは、水晶振動片10が接続固定されるものである。接続パッド31cは、図示しないビヤ配線等によって、外部接続端子31dに接続してある。この容器31は、例えば、公知のセラミックパッケージによって構成できる。
水晶振動片10は、容器31の凹部31a内に、実装してある。具体的には、水晶振動片10は、固定側短辺10dの側の引出電極11aの位置で、容器31の接続パッド31cに導電性接着剤33によって接続固定してある。従って、水晶振動片10は、いわゆる片持ち支持の構造で容器31に固定してある。
容器31の土手部31bに、任意好適な封止方法によって、蓋部材35を接続してある。この結果、水晶振動片10は、容器31内に気密状態で封止される。なお、容器31の凹部31a内は、減圧雰囲気、窒素又雰囲気又は不活性ガス雰囲気となっている。
なお、ここでは水晶デバイスとして水晶振動子30の例を述べたが、図9(A)に示す平面図、図9(B)に示す側面図のように、水晶振動片10とさらに他の機能部品39とを備える水晶デバイス37であっても良い。具体的には、本発明の水晶振動片10と他の機能部品39としての温度センサ(例えばサーミス)とを含むいわゆる温度センサ付き水晶振動子であっても良い。また、他の機能部品39が、水晶振動片10用の発振回路となっている水晶発振器であっても良い。また、他の機能部品39が、本発明の水晶振動片用の発振回路と温度補償のための温度センサと温度補償回路とを含むIC等とされた温度補償型の水晶発振器等であっても良い。また、図9では水晶振動片10と機能部品39とを1つの部屋に実装した構造例を示したが、図10に断面図で示すように、水晶振動片10と機能部品39とを別々の部屋に実装した構造のもの、断面で見るといわゆるH型構造のものでも良い。
容器31の土手部31bに、任意好適な封止方法によって、蓋部材35を接続してある。この結果、水晶振動片10は、容器31内に気密状態で封止される。なお、容器31の凹部31a内は、減圧雰囲気、窒素又雰囲気又は不活性ガス雰囲気となっている。
なお、ここでは水晶デバイスとして水晶振動子30の例を述べたが、図9(A)に示す平面図、図9(B)に示す側面図のように、水晶振動片10とさらに他の機能部品39とを備える水晶デバイス37であっても良い。具体的には、本発明の水晶振動片10と他の機能部品39としての温度センサ(例えばサーミス)とを含むいわゆる温度センサ付き水晶振動子であっても良い。また、他の機能部品39が、水晶振動片10用の発振回路となっている水晶発振器であっても良い。また、他の機能部品39が、本発明の水晶振動片用の発振回路と温度補償のための温度センサと温度補償回路とを含むIC等とされた温度補償型の水晶発振器等であっても良い。また、図9では水晶振動片10と機能部品39とを1つの部屋に実装した構造例を示したが、図10に断面図で示すように、水晶振動片10と機能部品39とを別々の部屋に実装した構造のもの、断面で見るといわゆるH型構造のものでも良い。
1-2.実験及びシミュレーション
1-2-1.Lx,Lzについて
次に、本発明で主張している水晶振動片10の寸法Lx,Lzや、振動部10aの厚みtと段差10cの高さdとの関係等について、説明する。
この出願に係る発明者は、水晶振動片10の水晶のX軸に沿う寸法Lxを、845μm、849μm、853μm、857μm、861μmの5つの水準とし、かつ、これら5つの水準各々に対し、水晶のZ′軸に沿う寸法Lzを、626μm、630μm、634μm、638μmの4つの水準とした水晶振動片を、それぞれ試作した。ただし、Lxを849μmとした水準については、上記の4つのLzの水準に加えて、620~626μmの間の水準と、639~654μmの間の水準を増やして水晶振動片を試作した。
1-2-1.Lx,Lzについて
次に、本発明で主張している水晶振動片10の寸法Lx,Lzや、振動部10aの厚みtと段差10cの高さdとの関係等について、説明する。
この出願に係る発明者は、水晶振動片10の水晶のX軸に沿う寸法Lxを、845μm、849μm、853μm、857μm、861μmの5つの水準とし、かつ、これら5つの水準各々に対し、水晶のZ′軸に沿う寸法Lzを、626μm、630μm、634μm、638μmの4つの水準とした水晶振動片を、それぞれ試作した。ただし、Lxを849μmとした水準については、上記の4つのLzの水準に加えて、620~626μmの間の水準と、639~654μmの間の水準を増やして水晶振動片を試作した。
なお、これらの試作に当たり、水晶振動片10に備わる振動部10aのX寸法は547μm、Z′寸法は515μm、励振用電極11のX寸法は449μm、Z′寸法は462μmとした。また、段差11cの高さdは、振動部の厚みtに対し、d/t=0.1となる値にした。d/tを0.1とした理由は後述する。なお、X寸法やZ′寸法の方向は、各々、Lx寸法、Lz寸法の方向に平行な方向である。
また、振動部10a及び励振用電極11の、水晶振動片10に対する位置は、振動部10a及び励振用電極11各々の平面的な中心点α(図1(C)参照)が、水晶振動片10の平面的中心点β(図1(C)参照)に対して、水晶振動片10の先端の方向に85μm偏心する位置にした。
また、振動部10a及び励振用電極11の、水晶振動片10に対する位置は、振動部10a及び励振用電極11各々の平面的な中心点α(図1(C)参照)が、水晶振動片10の平面的中心点β(図1(C)参照)に対して、水晶振動片10の先端の方向に85μm偏心する位置にした。
このような条件で試作した水晶振動片を用い、水晶デバイスの一例である図1(C)に示した構造の水晶振動子30を試作した。
次に、これら試作した水晶振動子30の、周囲温度に対するクリスタルインピダンス(CI)の変動具合、すなわちCIの温度特性をそれぞれ測定した。なお、測定温度範囲は、-40~125℃の範囲とし、測定温度ステップは1℃とした。
これら測定結果から、Lz寸法の好ましい範囲について検討した。図2(A)は、試作した水晶振動子中の、Lx寸法が857μmであり、かつ、Lz寸法が上記の4つの水準である水晶振動子各々の、室温におけるCIに着目して示した、CIとLz寸法との関係を示した図である。また、図2(B)は、Lx寸法が853μmであり、かつ、Lz寸法が上記の4つの水準である水晶デバイス各々の、室温におけるCIとLzとの関係を示した図である。また、図2(C)は、Lx寸法が849μmであり、かつ、Lz寸法が上記の4つの水準及び上記した追加した水準を含む広い寸法範囲の水晶振動子各々の、室温におけるCIとLzとの関係を示した図である。いずれの図も、横軸はLz寸法(μm)、縦軸はCI(Ω)として示した図である。ただし、CI値は基準のCI値と比較した相対値により示してある。
水晶振動子30のCI規格の上限を、CI値の相対値で言って2とした場合、図2(A)~(C)から分かるように、この規格を満たすことができるLz寸法は、625~645μmが良く、より好ましくは630~638μmが良いことが分かる。
次に、これら試作した水晶振動子30の、周囲温度に対するクリスタルインピダンス(CI)の変動具合、すなわちCIの温度特性をそれぞれ測定した。なお、測定温度範囲は、-40~125℃の範囲とし、測定温度ステップは1℃とした。
これら測定結果から、Lz寸法の好ましい範囲について検討した。図2(A)は、試作した水晶振動子中の、Lx寸法が857μmであり、かつ、Lz寸法が上記の4つの水準である水晶振動子各々の、室温におけるCIに着目して示した、CIとLz寸法との関係を示した図である。また、図2(B)は、Lx寸法が853μmであり、かつ、Lz寸法が上記の4つの水準である水晶デバイス各々の、室温におけるCIとLzとの関係を示した図である。また、図2(C)は、Lx寸法が849μmであり、かつ、Lz寸法が上記の4つの水準及び上記した追加した水準を含む広い寸法範囲の水晶振動子各々の、室温におけるCIとLzとの関係を示した図である。いずれの図も、横軸はLz寸法(μm)、縦軸はCI(Ω)として示した図である。ただし、CI値は基準のCI値と比較した相対値により示してある。
水晶振動子30のCI規格の上限を、CI値の相対値で言って2とした場合、図2(A)~(C)から分かるように、この規格を満たすことができるLz寸法は、625~645μmが良く、より好ましくは630~638μmが良いことが分かる。
また、上記測定結果から、Lx寸法の好ましい範囲について検討した。図3(A)~(C)及び図4(A)、(B)は、試作した水晶振動子中の、Lz寸法を630μmとし、かつ、Lx寸法を上記5つの水準とした水晶振動子各々の、温度とCIとの関係を示した図である。具体的には、図3(A)はLX寸法が861μmである場合の上記関係図、図3(B)はLX寸法が857μmである場合の上記関係図、図3(C)はLX寸法が853μmである場合の上記関係図、図4(A)はLX寸法が849μmである場合の上記関係図、図4(B)はLX寸法が845μmである場合の上記関係図である。
温度とCIとの関係において、水晶振動子の測定温度範囲内でのCI値は小さい方が好ましく、かつ、1つの水晶振動子において測定温度範囲内のCIの変動は小さい方が好ましい。水晶振動子30の測定温度範囲内のCI値の上限をCI値の相対値で言って2.5とし、水晶デバイス毎の-40~125℃の温度範囲でCIの変動の許容幅をCI値の相対値で言って0.15とした場合、この規格を満たすのは、Lx寸法が849~861μmであることが分かり、より好ましくは、Lx寸法が849~857μmが良いことが分かる。
1-2.2.段差の高さdと水晶振動片の厚みtについて
有限要素法により、d/tの好ましい範囲について解析した。解析は、図1(A)に示した水晶振動片10であって、Lx寸法を853μm、かつ、Lz寸法を630μmとし、d/tを0.061、0.067、0.073、0.079、0.085、0.091、0.097、1.04、1.1、1.16の各種水準とした、複数の解析モデルを作成し、それぞれのCI(クリスタルインピダンス)を抽出することによって行った。
図5は、横軸にd/tをとり、縦軸にCIのある基準値に対するCI値の相対値をとって、両者の関係を示した図である。図5から、段差が大きくなるにつれてCIは小さくなり、d/tが0.1付近でCIは最低値を示すが、さらに段差を大きくすると(d/tを大きくすると)CIは増加に転じることが分かる。d/tが0.1より大きくなるとCIが増加する理由は、不要振動の影響が生じてくるためと推定する。
CIの規格の上限をCI値の相対値で言って100であるとした場合、図5から、d/tは、0.094≦d/t≦0.11が良いことが分かる。
有限要素法により、d/tの好ましい範囲について解析した。解析は、図1(A)に示した水晶振動片10であって、Lx寸法を853μm、かつ、Lz寸法を630μmとし、d/tを0.061、0.067、0.073、0.079、0.085、0.091、0.097、1.04、1.1、1.16の各種水準とした、複数の解析モデルを作成し、それぞれのCI(クリスタルインピダンス)を抽出することによって行った。
図5は、横軸にd/tをとり、縦軸にCIのある基準値に対するCI値の相対値をとって、両者の関係を示した図である。図5から、段差が大きくなるにつれてCIは小さくなり、d/tが0.1付近でCIは最低値を示すが、さらに段差を大きくすると(d/tを大きくすると)CIは増加に転じることが分かる。d/tが0.1より大きくなるとCIが増加する理由は、不要振動の影響が生じてくるためと推定する。
CIの規格の上限をCI値の相対値で言って100であるとした場合、図5から、d/tは、0.094≦d/t≦0.11が良いことが分かる。
2.水晶振動片の先端の両角部形状
水晶振動片の先端側の角部は丸みがあっても略直角でも良いと上では述べたが、水晶振動片の平面的な大きさを確保する上では、水晶振動片の先端側の角部は略直角である方が好ましい。その説明を、図6を参照して行う。なお、図6は図1(A)同様の平面図である。
水晶振動片100の先端側短辺10eと水晶振動片100の長辺とのが成す角度をθy1(θy2)と定義したとき、θy1(θy2)は略直角が良く、具体的には85~90度の範囲の角度であることが好ましい。このような形状であると、そうで無い場合に比べ、CI(クリスタルインピダンス)が良化するからである。その理由は、水晶振動片100の先端角部が略直角であると、水晶振動片100の長辺寸法Lxが実効的に長くなるため主振動のエネルギー閉じ込めに有効と考えられる。この効果は、水晶振動片が小型化されればされる程、有効になると考えられる。
なお、角度θy1及びθy2は同じ場合、異なる場合いずれであって良い。また、角度θy1及びθy2とは別の観点として、水晶振動片100の水晶のZ′軸に沿う寸法のうち平均的寸法をW0と定義し、先端側短辺10eでの直線状の部分の長さをW1と定義したとき、W1/W0が0.93~0.99であることが好ましい。
水晶振動片の先端側の角部は丸みがあっても略直角でも良いと上では述べたが、水晶振動片の平面的な大きさを確保する上では、水晶振動片の先端側の角部は略直角である方が好ましい。その説明を、図6を参照して行う。なお、図6は図1(A)同様の平面図である。
水晶振動片100の先端側短辺10eと水晶振動片100の長辺とのが成す角度をθy1(θy2)と定義したとき、θy1(θy2)は略直角が良く、具体的には85~90度の範囲の角度であることが好ましい。このような形状であると、そうで無い場合に比べ、CI(クリスタルインピダンス)が良化するからである。その理由は、水晶振動片100の先端角部が略直角であると、水晶振動片100の長辺寸法Lxが実効的に長くなるため主振動のエネルギー閉じ込めに有効と考えられる。この効果は、水晶振動片が小型化されればされる程、有効になると考えられる。
なお、角度θy1及びθy2は同じ場合、異なる場合いずれであって良い。また、角度θy1及びθy2とは別の観点として、水晶振動片100の水晶のZ′軸に沿う寸法のうち平均的寸法をW0と定義し、先端側短辺10eでの直線状の部分の長さをW1と定義したとき、W1/W0が0.93~0.99であることが好ましい。
2. 水晶振動片のZ′寸法Lzの検討
この出願に係る発明者の検討によれば、図7(A)を参照して説明するように、水晶振動片110の寸法Lzを、水晶のX軸に沿う途中位置Xxから水晶振動片の固定側短辺10dに向かって減少させると、そうしない場合に比べ、水晶振動片110の特性向上が図れることが分かった。以下、この点について説明する。図7(A)はそのための水晶振動片110の平面図である。
水晶振動片110は、Z′方向の寸法Lzを、X軸に沿う途中位置Xxから水晶振動片110の固定側短辺10dに向かって減少させた、Z′寸法の減幅部111を備えている。然も、Z′寸法の減幅部111の、水晶のX軸方向の輪郭を見たとき、輪郭は直線であり、この直線を減幅輪郭線Lgと定義したとき、減幅輪郭線Lgと水晶のZ′軸との成す角度θを、θ=93±2°としてある。θは水晶振動片110の設計に応じ適正化し得るものであり、例えば、水晶振動片110製造用のホトマスク寸法や、水晶振動片110の外形形成時のウエットエットエッチング時間等を変更することで調整できる。発明者の検討によれば、θは好ましくはθ=93±1°が良い。
この出願に係る発明者の検討によれば、図7(A)を参照して説明するように、水晶振動片110の寸法Lzを、水晶のX軸に沿う途中位置Xxから水晶振動片の固定側短辺10dに向かって減少させると、そうしない場合に比べ、水晶振動片110の特性向上が図れることが分かった。以下、この点について説明する。図7(A)はそのための水晶振動片110の平面図である。
水晶振動片110は、Z′方向の寸法Lzを、X軸に沿う途中位置Xxから水晶振動片110の固定側短辺10dに向かって減少させた、Z′寸法の減幅部111を備えている。然も、Z′寸法の減幅部111の、水晶のX軸方向の輪郭を見たとき、輪郭は直線であり、この直線を減幅輪郭線Lgと定義したとき、減幅輪郭線Lgと水晶のZ′軸との成す角度θを、θ=93±2°としてある。θは水晶振動片110の設計に応じ適正化し得るものであり、例えば、水晶振動片110製造用のホトマスク寸法や、水晶振動片110の外形形成時のウエットエットエッチング時間等を変更することで調整できる。発明者の検討によれば、θは好ましくはθ=93±1°が良い。
減幅輪郭線Lgは、水晶振動片110のZ′方向の両端に生じている。ここで、途中位置Xxをどこにするかは、水晶振動片110の特性改善を考慮して決めることが出来るが、この出願に係る発明者の実験によれば、途中位置Xxの、固定側短辺10dから水晶のX軸に沿う寸法をLxaと定義すると、Lxaが水晶振動片110の長辺寸法Lxに対し、Lxa/Lx=0.32~0.42の範囲の値が良いことが分かっている。図7(A)の場合、Lxa/Lx=0.37としてある。また、違う観点から見て、途中位置Xxは、振動部10aの縁部近傍とすることも良いと考える。
図7(B)は、Z′方向の減幅部111を持つ実施例の水晶振動子と、Z′方向の減幅部111を持たないこと以外は実施例と同様の構造を持つ比較例の水晶振動子の、CIの温度特性を併せて示した図である。図7(B)において、横軸は温度、縦軸はCI値の相対値である。
図7(B)中、G1を付したグループは実施例のCIの温度特性であり、G2を付したグループは比較例のCIの温度特性である。図7(B)から、実施例の水晶振動子の方が比較例に比べ、CIの絶対値は半分程度に小さく、然も、水晶振動子ごとの温度に対するCI変動具合も半分以下に低減できることが分かる。
実施例の水晶振動子の方が比較例に比べ、特性が優れる理由は、次のことだと推定している。図8(A)、(B)はそのための説明図であり、実施例及び比較例各々の水晶振動片であって、寸法Lxと寸法Lzを種々に振った水晶振動片の有限要素法解析用のモデルでのCI値を用いて、Lx、Lzに対するCI分布を示したコンタ図である。図8(A)、(B)において斜線を付した部分は、CIが最も小さい領域である。
図7(B)中、G1を付したグループは実施例のCIの温度特性であり、G2を付したグループは比較例のCIの温度特性である。図7(B)から、実施例の水晶振動子の方が比較例に比べ、CIの絶対値は半分程度に小さく、然も、水晶振動子ごとの温度に対するCI変動具合も半分以下に低減できることが分かる。
実施例の水晶振動子の方が比較例に比べ、特性が優れる理由は、次のことだと推定している。図8(A)、(B)はそのための説明図であり、実施例及び比較例各々の水晶振動片であって、寸法Lxと寸法Lzを種々に振った水晶振動片の有限要素法解析用のモデルでのCI値を用いて、Lx、Lzに対するCI分布を示したコンタ図である。図8(A)、(B)において斜線を付した部分は、CIが最も小さい領域である。
図8(A),(B)において、CIが最も小さい領域(斜線領域)の、本発明で主張するLxが849~857μm、かつ、Lzが625~645μm636~643μmの領域に対する関係を見ると、Z′寸法の減幅部111を持つ実施例の場合(図8(A))、CIの最小領域が本発明で主張するLx-Lz範囲に含まれることが分かる。一方、Z′寸法の減幅部を持たない比較例の場合(図8(B))、CIの最小領域は、本発明で主張するLx-Lz範囲に含まれるものの、実施例に比べ狭く、然も、2領域に分かれていることが分かる。比較例において、CIの最小領域が2領域に分かれている理由は、主振動に対し不要振動の一種である斜め伝搬屈曲振動が結合しているためである。図7(B)、図8(A),(B)から、Z′寸法の減幅部111は水晶振動子の特性改善に有効な構造であると言える。
4.32MHzの水晶振動片の実施形態
発振周波数が32MHzであって、外形寸法で言って長辺寸法が約1.2mm、短辺寸法が約1.0mmというような小型のパッケージに収容できかつ特性に優れる、新規な構造を有した水晶振動片を見出すために、上記した24MHzの水晶振動片の試作実験及びシミュレーションと同様に、試作実験及びシミュレーションを実施した。ただし、これらの試作に当たり、Lx寸法は630μm~650μmの範囲の中の数水準とし、Lz寸法は465~485μmの範囲の中の数水準で実施した。その際、振動部のX寸法は410μm、Z′寸法は386μm、励振用電極11のX寸法は337μm、Z′寸法は346μmとした。また、段差の高さdは、振動部の厚みtに対し、d/t=0.1となる値にした。また、振動部及び励振用電極は、振動部及び励振用電極各々の平面的な中心点α(図1(C)参照)が、水晶振動片の平面的中心点β(図1(C)参照)に対して、水晶振動片の先端の方向に64μm偏心した位置に配置した。
発振周波数が32MHzであって、外形寸法で言って長辺寸法が約1.2mm、短辺寸法が約1.0mmというような小型のパッケージに収容できかつ特性に優れる、新規な構造を有した水晶振動片を見出すために、上記した24MHzの水晶振動片の試作実験及びシミュレーションと同様に、試作実験及びシミュレーションを実施した。ただし、これらの試作に当たり、Lx寸法は630μm~650μmの範囲の中の数水準とし、Lz寸法は465~485μmの範囲の中の数水準で実施した。その際、振動部のX寸法は410μm、Z′寸法は386μm、励振用電極11のX寸法は337μm、Z′寸法は346μmとした。また、段差の高さdは、振動部の厚みtに対し、d/t=0.1となる値にした。また、振動部及び励振用電極は、振動部及び励振用電極各々の平面的な中心点α(図1(C)参照)が、水晶振動片の平面的中心点β(図1(C)参照)に対して、水晶振動片の先端の方向に64μm偏心した位置に配置した。
この試作実験及びシミュレーションから、発振周波数が32MHzであり、平面形状が長方形状であるATカットの水晶振動片であって、振動部と、この振動部より厚みが薄い周辺部と、当該水晶振動片の表裏各々に前記振動部及び前記周辺部の厚み差に起因して生じている段差と、を備える水晶振動片において、
Lxが636~643μm、
Lzが472~479μm、かつ、
d/tが0.094≦d/t≦0.11の範囲であるのが良いことが分かった。
Lxが636~643μm、
Lzが472~479μm、かつ、
d/tが0.094≦d/t≦0.11の範囲であるのが良いことが分かった。
上述した実施形態では、振動部及び励振用電極の各々のX寸法、Z′寸法や、振動部及び励振用電極の水晶振動片に対する位置を、それぞれの周波数について1つの例で示したが、振動部及び励振用電極の各々のX寸法、Z′寸法や、振動部及び励振用電極の水晶振動片に対する位置は、上記例でなくても、本発明の効果を得ることができる。すなわち、振動部及び励振用電極の各々のX寸法、Z′寸法や、振動部及び励振用電極の水晶振動片に対する位置は、本発明の目的を損ねることのない範囲で変更できる。
また、上述の実施形態では、容器として凹部を有した容器を用いた例を示したが、容器は、平板状のベースと水晶振動片を内包できるキャップ状の蓋部材とによって構成される容器であっても良い。
また、上述の実施形態では、容器として凹部を有した容器を用いた例を示したが、容器は、平板状のベースと水晶振動片を内包できるキャップ状の蓋部材とによって構成される容器であっても良い。
10:実施形態の水晶振動片 10a:振動部
10b:周辺部 10c:段差
10d:固定側短辺 10e:先端側短辺
10x:凸状部分 10y:先端の角部
11:励振用電極 11a:引出電極
30:実施形態の水晶デバイス 31:容器
31a:凹部 31b:土手部
31c:接着パッド 31d:外部接続端子
33:導電性接着剤 35:蓋部材
37:他の実施形態の水晶デバイス 39:機能部品
100:本発明の水晶振動片の好ましい例
θy1、θy2:第2の短辺と長辺との成す角度
110:本発明の水晶振動片の他の好ましい例
111:Z′寸法の減幅部
10b:周辺部 10c:段差
10d:固定側短辺 10e:先端側短辺
10x:凸状部分 10y:先端の角部
11:励振用電極 11a:引出電極
30:実施形態の水晶デバイス 31:容器
31a:凹部 31b:土手部
31c:接着パッド 31d:外部接続端子
33:導電性接着剤 35:蓋部材
37:他の実施形態の水晶デバイス 39:機能部品
100:本発明の水晶振動片の好ましい例
θy1、θy2:第2の短辺と長辺との成す角度
110:本発明の水晶振動片の他の好ましい例
111:Z′寸法の減幅部
Claims (9)
- 発振周波数が24MHzであり、平面形状が長方形状であるATカットの水晶振動片であって、振動部と、この振動部より厚みが薄い周辺部と、当該水晶振動片の表裏各々に前記振動部及び前記周辺部の厚み差に起因して生じている段差と、を備える水晶振動片において、
前記水晶振動片の水晶のX軸に沿う寸法をLx、前記水晶振動片の水晶のZ′軸に沿う寸法をLz、前記振動部の厚みをt、前記段差の高さをdと定義したとき、
Lxが849~857μm、
Lzが625~645μm、かつ、
d/tが0.094≦d/t≦0.11の範囲であることを特徴とする水晶振動片。 - 前記Lzは、630~638μmであることを特徴とする請求項1に記載の水晶振動片。
- 前記水晶振動片の固定部材によって容器に接着される側とは反対の短辺である先端側短辺と、前記水晶振動片の長辺との成す角度θy1、θy2が、85~90度の範囲であることを特徴とする請求項1に記載の水晶振動片。
- 前記水晶振動片の前記寸法Lzが、前記X軸に沿う途中位置から当該水晶振動片の固定部材によって容器に接続される短辺である固定側短辺に向かって減少している減幅部を備えることを特徴とする請求項1に記載の水晶振動片。
- 前記水晶振動片の前記寸法Lzが、前記X軸に沿う途中位置から当該水晶振動片の固定部材によって容器に接続される短辺である固定側短辺に向かって減少している減幅部を備え、
前記減幅部の前記X軸方向の輪郭を見たとき、当該輪郭は直線であり、
この直線を減幅輪郭線Lgと定義したとき、前記減幅輪郭線Lgと水晶のZ′軸との成す角度θが、θ=93±2°であることを特徴とする請求項1に記載の水晶振動片。 - 前記水晶振動片の前記寸法Lzが、前記X軸に沿う途中位置から当該水晶振動片の固定部材によって容器に接続される短辺である固定側短辺に向かって減少している減幅部を備え、
前記減幅部の前記X軸方向の輪郭を見たとき、当該輪郭は直線であり、
この直線を減幅輪郭線Lgと定義したとき、前記減幅輪郭線Lgと水晶のZ′軸との成す角度θが、θ=93±2°であり、
当該水晶振動片の前記固定側短辺の近傍部分が固定部材によって容器に固定される部分であることを特徴とする請求項1に記載の水晶振動片。 - 請求項1~6のいずれか1項に記載の水晶振動片と、前記水晶振動片を内包する容器と、を備えたことを特徴とする水晶デバイス。
- 前記容器は平面視で長方形状であり、かつ、外形寸法で言って、長辺寸法が1.2mm、短辺寸法が1.0mmの容器であることを特徴とする請求項7に記載の水晶デバイス。
- 発振周波数が32MHzであり、平面形状が長方形状であるATカットの水晶振動片であって、振動部と、この振動部より厚みが薄い周辺部と、当該水晶振動片の表裏各々に前記振動部及び前記周辺部の厚み差に起因して生じている段差と、を備える水晶振動片において、
前記水晶振動片の水晶のX軸に沿う寸法をLx、前記水晶振動片の水晶のZ′軸に沿う寸法をLz、前記振動部の厚みをt、前記段差の高さをdと定義したとき、
Lxが636~643μm、
Lzが472~479μm、かつ、
d/tが0.094≦d/t≦0.11の範囲であることを特徴とする水晶振動片。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311380713.0A CN117938107A (zh) | 2022-10-26 | 2023-10-24 | 晶体振动片及使用其的晶体元件 |
US18/493,784 US20240146284A1 (en) | 2022-10-26 | 2023-10-24 | Quartz-crystal vibrating piece and quartz crystal device using the same |
TW112140938A TW202418758A (zh) | 2022-10-26 | 2023-10-26 | 晶體振動片及使用其的晶體元件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022171200 | 2022-10-26 | ||
JP2022171200 | 2022-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024063739A true JP2024063739A (ja) | 2024-05-13 |
Family
ID=91030720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023112278A Pending JP2024063739A (ja) | 2022-10-26 | 2023-07-07 | 水晶振動片及びこれを用いた水晶デバイス |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024063739A (ja) |
-
2023
- 2023-07-07 JP JP2023112278A patent/JP2024063739A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5625432B2 (ja) | 圧電振動素子、及び圧電振動子 | |
JP5796355B2 (ja) | 圧電振動素子、圧電振動子、電子デバイス、及び電子機器 | |
KR20120135058A (ko) | 압전 진동 소자, 압전 진동 소자의 제조 방법, 압전 진동자, 전자 디바이스 및, 전자 기기 | |
US20140300252A1 (en) | Resonating element, resonator, electronic device, electronic apparatus, moving vehicle and method of manufacturing resonating element | |
JP2007158486A (ja) | 水晶振動素子、水晶振動子、及び水晶発振器 | |
JP5957997B2 (ja) | 振動素子、振動子、電子デバイス、発振器、及び電子機器 | |
JP2004200917A (ja) | 圧電振動片と圧電振動片を利用した圧電デバイス、ならびに圧電デバイスを利用した携帯電話装置および圧電デバイスを利用した電子機器 | |
JP5824967B2 (ja) | 振動素子、振動子、電子デバイス、及び電子機器 | |
JP2000278080A (ja) | 圧電デバイス | |
JP5772082B2 (ja) | 圧電振動素子、圧電振動子、圧電発振器及び電子デバイス | |
JP2013042440A (ja) | 圧電振動素子、圧電振動子、電子デバイス、及び電子機器 | |
JP5772081B2 (ja) | 圧電振動素子、圧電振動子、圧電発振器及び電子デバイス | |
JP2011041040A (ja) | 圧電基板、圧電振動素子、及び圧電デバイス | |
JP5668392B2 (ja) | 圧電振動素子、圧電振動子及び圧電発振器 | |
JP5910092B2 (ja) | 圧電振動素子、圧電振動子、電子デバイス、及び電子機器 | |
JP5824958B2 (ja) | 振動素子、振動子、電子デバイス、及び電子機器 | |
JP2013162265A (ja) | 振動素子、振動子、電子デバイス、発振器、及び電子機器 | |
JP5988125B1 (ja) | 水晶振動子及び水晶振動デバイス | |
JP7448901B2 (ja) | 圧電デバイス | |
JP2024063739A (ja) | 水晶振動片及びこれを用いた水晶デバイス | |
JP3102869B2 (ja) | 超薄板圧電共振子の構造 | |
JP4310838B2 (ja) | 圧電デバイス | |
JP6035808B2 (ja) | 振動素子、振動子、電子デバイス、及び電子機器 | |
US20240146284A1 (en) | Quartz-crystal vibrating piece and quartz crystal device using the same | |
JP2014127913A (ja) | 素子搭載用部材および圧電デバイス |