JP2024059682A - Transport Equipment - Google Patents

Transport Equipment Download PDF

Info

Publication number
JP2024059682A
JP2024059682A JP2024018092A JP2024018092A JP2024059682A JP 2024059682 A JP2024059682 A JP 2024059682A JP 2024018092 A JP2024018092 A JP 2024018092A JP 2024018092 A JP2024018092 A JP 2024018092A JP 2024059682 A JP2024059682 A JP 2024059682A
Authority
JP
Japan
Prior art keywords
flow path
forming member
path forming
water
water surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024018092A
Other languages
Japanese (ja)
Inventor
智也 増田
利隆 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquaintec Corp
Original Assignee
Aquaintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquaintec Corp filed Critical Aquaintec Corp
Priority to JP2024018092A priority Critical patent/JP2024059682A/en
Publication of JP2024059682A publication Critical patent/JP2024059682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Floating Material (AREA)

Abstract

【課題】吐出させる流体の量を抑え、かつ、簡易な構造により、水面に浮遊した被移送物を移送することができる移送装置を提供する。【解決手段】流路Sにつながり水中に没する吸込口5aが設けられた流路形成部材5と、流路S内に流体を吐出する吐出口7aと、水中に没する流入口3aが設けられ流路形成部材5を囲う仕切部材3とを備え、流入口3aは、水面に浮遊したスカムScを仕切部材3と流路形成部材5との間の周辺領域R1に流入させる開口であり、吸込口5aは、周辺領域R1に流入したスカムScを流路S内に吸い込む開口であり、流路Sは、流路S内に吸い込まれたスカムScが流体の吐出方向下流側に向かって移動する経路であり、流路形成部材5と仕切部材3は、吐出方向下流側に向かうに従い水面に近づくように傾斜した姿勢で配置されたものであり、吐出口7aは、流路形成部材5の傾斜した姿勢に沿って流体を吐出するものである。【選択図】図2[Problem] To provide a transfer device capable of transferring a transfer target floating on the water surface with a simple structure while suppressing the amount of fluid discharged. [Solution] The device comprises a flow path forming member 5 having a suction port 5a connected to a flow path S and submerged in water, a discharge port 7a for discharging a fluid into the flow path S, and a partition member 3 having an inlet 3a submerged in water and surrounding the flow path forming member 5, the inlet 3a being an opening for allowing scum Sc floating on the water surface to flow into a peripheral region R1 between the partition member 3 and the flow path forming member 5, the suction port 5a being an opening for sucking the scum Sc that has flowed into the peripheral region R1 into the flow path S, the flow path S being a path along which the scum Sc sucked into the flow path S moves toward the downstream side in the discharge direction of the fluid, the flow path forming member 5 and the partition member 3 being disposed in an inclined position so as to approach the water surface as they approach the downstream side in the discharge direction, and the discharge port 7a for discharging the fluid along the inclined position of the flow path forming member 5. [Selected Figure] Figure 2

Description

本発明は、水面に浮遊した被移送物を移送する移送装置に関する。 The present invention relates to a transport device that transports an object floating on the water surface.

下水処理場の導水渠や沈殿池等には、水面に浮遊したスカム等の被移送物を、スカムピット等に向けて移送する移送装置が設けられている(例えば、特許文献1等参照)。 In the sewage treatment plant, water conduits and settling tanks are provided with transfer devices that transfer materials such as scum floating on the water surface to scum pits, etc. (see, for example, Patent Document 1, etc.).

図13は、特許文献1記載の移送装置を上方から見た様子の模式図である。特許文献1に記載された移送装置6は、図の左側から右側に向けて汚水が流れていく導水渠9において、汚水の水面から100mm~200mm程度上方に設けられた複数のスプレーノズル61を備えている。これら複数のスプレーノズル61は、導水渠9の幅方向(図13では上下方向)に所定の間隔で配置されるとともに、スカムSc(被移送物)の移送方向(図13では左側から右側に向かう方向)にも所定の間隔で複数列配置されている。特許文献1に記載された移送装置6では、複数のスプレーノズル61から、不図示のスカムピット等に向かう移送方向に略水平に圧力水やエアーが吐出される。これにより、水面上にスカムピットに向かう気流や吹送流を発生させ、この気流等によって、水面に浮遊したスカムをスカムピット等に向けて移送するものである。 Figure 13 is a schematic diagram of the transfer device described in Patent Document 1 as seen from above. The transfer device 6 described in Patent Document 1 is equipped with multiple spray nozzles 61 installed about 100 mm to 200 mm above the surface of the wastewater in a conduit 9 through which wastewater flows from the left side to the right side of the figure. These multiple spray nozzles 61 are arranged at predetermined intervals in the width direction of the conduit 9 (vertical direction in Figure 13), and are also arranged in multiple rows at predetermined intervals in the transfer direction of the scum Sc (transferred object) (direction from left to right in Figure 13). In the transfer device 6 described in Patent Document 1, pressurized water or air is ejected from the multiple spray nozzles 61 approximately horizontally in the transfer direction toward a scum pit or the like (not shown). This generates an air current or wind current on the water surface toward the scum pit, and the scum floating on the water surface is transferred toward the scum pit or the like by this air current or the like.

特開平7-303883号公報Japanese Patent Application Laid-Open No. 7-303883

しかしながら、特許文献1に記載された移送装置6では、スプレーノズル61から吐出される圧力水等が拡散してしまい、被移送物を移送できる気流等を水面上の広い範囲に発生させることは難しい。このため、図13では、スプレーノズル61から吐出される圧力水等が効力を及ぼすことができる範囲を一点鎖線で囲んだ白抜きで示すように、一つのスプレーノズル61によって被移送物(スカムSc)を移送できる水面上の範囲は限定的になってしまう。この結果、スカムScが浮遊する水面上(図では、水面上にまとまった状態で浮遊しているスカムにSc0の符号を付している)に、それぞれ間隔をあけて多数のスプレーノズル61を配置しなければならず、さらに、これら多数のスプレーノズル61に圧力水等を供給する多数の配管62も必要になる等、装置が大掛りになってしまう。その上、多数のスプレーノズル61から吐出させる圧力水等も大量に必要になる。また、スプレーノズル61からエアーを吐出する態様では、吐出したエアーによってスカムScが乾燥して固まってしまう場合がある。このように固まってしまったスカムScは水面上を動きにくくなるため、さらに多くのエアーを吐出させなければならないという問題もある。 However, in the transfer device 6 described in Patent Document 1, the pressurized water discharged from the spray nozzle 61 is dispersed, making it difficult to generate an air current capable of transferring the object to be transferred over a wide area on the water surface. For this reason, as shown in FIG. 13, the area on the water surface where the pressurized water discharged from the spray nozzle 61 can have an effect is shown in white surrounded by a dashed line, the area on the water surface where the object to be transferred (scum Sc) can be transferred by one spray nozzle 61 is limited. As a result, a large number of spray nozzles 61 must be arranged at intervals on the water surface where the scum Sc floats (in the figure, the scum floating in a lump on the water surface is marked with the symbol Sc0), and a large number of pipes 62 are also required to supply the pressurized water to these many spray nozzles 61, making the device large-scale. In addition, a large amount of pressurized water is required to be discharged from the many spray nozzles 61. In addition, in the case of discharging air from the spray nozzle 61, the scum Sc may dry out and harden due to the discharged air. Another problem is that the scum Sc that has solidified in this way is less likely to move on the water surface, which means that even more air must be ejected.

本発明は上記事情に鑑み、吐出させる流体の量を抑え、かつ、簡易な構造により、水面に浮遊した被移送物を移送することができる移送装置を提供することを目的とする。 In view of the above circumstances, the present invention aims to provide a transfer device that can transfer objects floating on the water surface with a simple structure while reducing the amount of fluid discharged.

上記目的を解決する本発明の移送装置は、流路を形成するものであって、該流路につながり水中に没する吸込口が設けられた流路形成部材と、
前記流路内に流体を吐出する吐出口と、
水中に没する流入口が設けられ、前記流路形成部材を囲う仕切部材とを備え、
前記流入口は、水面に浮遊した被移送物を、前記流路内に流体が吐出されることで前記仕切部材と前記流路形成部材との間の領域に流入させる開口として機能するものであり、
前記吸込口は、前記流路内に流体が吐出されることで、前記仕切部材と前記流路形成部材との間の領域に流入した前記被移送物を該流路内に吸い込む開口として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されることで該流体の吐出方向下流側に向かって移動する経路として機能するものであり、
前記流路形成部材と前記仕切部材は、前記吐出方向下流側に向かうに従い水面に近づくように傾斜した姿勢で配置されたものであり、
前記吐出口は、前記流路形成部材の傾斜した姿勢に沿って流体を吐出するものであることを特徴とする移送装置。
The present invention provides a transfer device that achieves the above object, comprising: a flow path forming member that forms a flow path and has a suction port that is connected to the flow path and is submerged in water;
a discharge port that discharges a fluid into the flow path;
a partition member that is provided with an inlet that is submerged in water and that surrounds the flow path forming member;
the inlet functions as an opening that allows a transport object floating on the water surface to flow into a region between the partition member and the flow path forming member by discharging a fluid into the flow path,
the suction port functions as an opening for sucking the object to be transferred, which has flowed into a region between the partition member and the flow path forming member, into the flow path by discharging a fluid into the flow path,
the flow path functions as a path along which the object to be transferred, which has been sucked into the flow path, moves toward a downstream side in a discharge direction of the fluid as the fluid is discharged into the flow path,
the flow passage forming member and the partition member are disposed in an inclined position so as to approach a water surface toward a downstream side in the discharge direction,
A transfer device, characterized in that the discharge port discharges the fluid along the inclined posture of the flow path forming member.

本発明によれば、吐出させる流体の量を抑え、かつ、簡易な構造により、水面に浮遊した被移送物を移送することができる移送装置を提供することができる。 The present invention provides a transfer device that can transfer objects floating on the water surface by reducing the amount of fluid discharged and using a simple structure.

本発明の一実施形態の移送装置が設けられた導水渠を上方から見た平面図である。FIG. 2 is a plan view of a water conduit provided with a transfer device according to an embodiment of the present invention, as viewed from above. 図1に示す導水渠のA-A線断面図である。2 is a cross-sectional view of the water conduit shown in FIG. 1 taken along line AA. 図1に示す移送装置のB-B線断面図である。2 is a cross-sectional view of the transfer device shown in FIG. 1 along line BB. (a)は、第1変形例の移送装置を示す図であり、(b)は、第2変形例の移送装置を示す図である。FIG. 13A is a diagram showing a transfer device of a first modified example, and FIG. 13B is a diagram showing a transfer device of a second modified example. (a)は、第3変形例の移送装置を示す図であり、(b)は、第4変形例の移送装置を示す図である。13A is a diagram showing a transfer device of a third modified example, and FIG. 13B is a diagram showing a transfer device of a fourth modified example. (a)は、第5変形例の移送装置を示す図であり、(b)は、第6変形例の移送装置を示す図である。13A is a diagram showing a transfer device according to a fifth modified example, and FIG. 13B is a diagram showing a transfer device according to a sixth modified example. (a)は、第7変形例の移送装置を示す図であり、(b)は、第8変形例の移送装置を示す図である。13A is a diagram showing a transfer device of a seventh modified example, and FIG. 13B is a diagram showing a transfer device of an eighth modified example. 第9変形例の移送装置を示す図である。FIG. 13 is a diagram showing a transfer device of a ninth modified example. 第10変形例の移送装置を示す図である。FIG. 23 is a diagram showing a transfer device of a tenth modified example. 第11変形例の移送装置を示す図である。FIG. 23 is a diagram showing a transfer device of an eleventh modified example. 本発明の第2実施形態の移送装置が設けられた伏せ越し構造の概略構成図である。FIG. 11 is a schematic diagram of a crossing structure provided with a transfer device according to a second embodiment of the present invention. 図11に示す伏せ越し管のC-C線断面図である。This is a cross-sectional view of the inverted pipe shown in Figure 11 along line CC. 特許文献1記載の移送装置を上方から見た様子の模式図である。FIG. 2 is a schematic diagram of the transfer device described in Patent Document 1 as viewed from above.

以下、図面を参照して本発明の実施の形態を説明する。本発明の移送装置は、水面に浮遊する被移送物を移送する様々な設備や構造等に採用することができ、例えば、下水処理場における導水渠や沈殿池、あるいは下水管の伏せ越し構造等に好適に適用することができる。本実施形態では、最初沈殿池や最終沈殿池の導水渠に設けられ、水面に浮遊するスカムを移送する移送装置を例に挙げて説明する。すなわち、本実施形態では、スカムが被移送物の一例に相当する。導水渠は、下水処理場における、沈砂池やばっ気槽等から受け入れた汚水を、複数の沈殿池に分配する水路であり、水面に浮遊するスカムは、スカムピットに回収される。 The following describes an embodiment of the present invention with reference to the drawings. The transfer device of the present invention can be used in various facilities and structures that transfer materials floating on the water surface, and can be suitably applied to, for example, conduits and settling tanks in sewage treatment plants, or inverted sewer pipe structures. In this embodiment, a transfer device that is installed in the conduit of a first settling tank or a final settling tank and transfers scum floating on the water surface is described as an example. That is, in this embodiment, scum corresponds to an example of a material to be transferred. A conduit is a waterway that distributes wastewater received from a grit tank or an aeration tank in a sewage treatment plant to multiple settling tanks, and scum floating on the water surface is collected in a scum pit.

図1は、本発明の一実施形態の移送装置が設けられた導水渠を上方から見た平面図であり、図2は、図1に示す導水渠のA-A線断面図である。なお、図1では、導水渠9から汚水が分配される複数の沈殿池Pの一部も示している。 Figure 1 is a plan view of a conduit equipped with a transfer device according to one embodiment of the present invention, as seen from above, and Figure 2 is a cross-sectional view of the conduit shown in Figure 1 taken along line A-A. Note that Figure 1 also shows some of the multiple settling basins P into which wastewater is distributed from the conduit 9.

図1に示すように、導水渠9は、上方から見て左右方向に長い長方形状の水路であり、不図示の沈砂池等から送られてきた汚水を受け入れる流水部91と、この流水部91とは塞止壁93で仕切られたスカムピット92を有している。流水部91は、汚水を図の左側から受け入れるものであり、受け入れた汚水は、図の右側に設けられたスカムピット92に向けて流れ、塞止壁93で塞き止められる。また、流水部91には、汚水が流水部91を流れる方向に並設された複数の沈殿池Pが、連通口94を介して接続されている。流水部91を流れていく汚水は、それぞれの連通口94からそれぞれの沈殿池Pに流れ込むことで分配され、それぞれの沈殿池Pに流れ込んだ汚水は、図の下方に向かって流れていく。 As shown in FIG. 1, the water conduit 9 is a rectangular waterway that is long in the left-right direction when viewed from above, and has a flow section 91 that receives wastewater sent from a grit basin (not shown) and a scum pit 92 that is separated from the flow section 91 by a blocking wall 93. The flow section 91 receives wastewater from the left side of the figure, and the received wastewater flows toward the scum pit 92 provided on the right side of the figure and is blocked by the blocking wall 93. In addition, the flow section 91 is connected to multiple settling tanks P arranged side by side in the direction in which the wastewater flows through the flow section 91 via communication ports 94. The wastewater flowing through the flow section 91 is distributed by flowing into each settling tank P from each communication port 94, and the wastewater that flows into each settling tank P flows toward the bottom of the figure.

図1および図2に示すように、流水部91には移送装置1が設けられている。この移送装置1を駆動させる前は、流水部91の汚水Wの水面WL(図2参照)には、その全域にスカムScが浮遊している。図1および図2では、詳しくは後述するように、移送装置1の吐出口7aから水が吐出されることによってスカムScが図の右側に移送され、塞止壁93の近傍に集められている様子を示している。すなわち、スカムScは、流水部91の長手方向に移送され、図1および図2では、左側から右側に向かう方向が、流体が吐出される吐出方向に相当し、スカムScが移送される移送方向にも相当する。なお、流水部91の短手方向、すなわち、吐出方向と水平面内で直交する方向を、以下、幅方向と称する場合がある。 1 and 2, the flow section 91 is provided with a transfer device 1. Before the transfer device 1 is driven, scum Sc floats over the entire water surface WL (see FIG. 2) of the wastewater W in the flow section 91. As described in detail below, FIGS. 1 and 2 show that the scum Sc is transferred to the right side of the figure by the discharge of water from the discharge port 7a of the transfer device 1 and collected near the blocking wall 93. That is, the scum Sc is transferred in the longitudinal direction of the flow section 91, and in FIGS. 1 and 2, the direction from the left to the right corresponds to the discharge direction in which the fluid is discharged and also corresponds to the transport direction in which the scum Sc is transported. The short side direction of the flow section 91, i.e., the direction perpendicular to the discharge direction in the horizontal plane, may be referred to as the width direction hereinafter.

塞止壁93には、スカムピット92に連通した開口部93aが形成され、この開口部93aを閉塞するゲート931が設けられている。ゲート931は、例えば上下方向にスライドし、開口部93aを開閉可能なものである。このゲート931を、その上端が、塞止壁93で塞き止められた汚水Wの水面WLよりも下方に位置するようにスライドさせると、塞止壁93の近傍に集められたスカムScが汚水とともに、開口部93aからゲート931を乗り越えてスカムピット92に流れ込む。なお、スカムピット92に回収されたスカムは、不図示のスカム処理機に送られ、脱水処理などの所定の処理が行われる。 An opening 93a that communicates with the scum pit 92 is formed in the blocking wall 93, and a gate 931 that blocks this opening 93a is provided. The gate 931 can slide, for example, vertically to open and close the opening 93a. When the gate 931 is slid so that its upper end is positioned below the water level WL of the wastewater W blocked by the blocking wall 93, the scum Sc that has collected near the blocking wall 93 flows together with the wastewater from the opening 93a over the gate 931 into the scum pit 92. The scum collected in the scum pit 92 is sent to a scum processor (not shown) where it is subjected to a predetermined process such as dehydration.

続いて、図1~図3を用いて、移送装置1を詳細に説明する。 Next, the transfer device 1 will be described in detail using Figures 1 to 3.

図3は、図1に示す移送装置1のB-B線断面図である。この図3では、紙面手前側に向かう方向が吐出方向になり、左右方法が幅方向になる。 Figure 3 is a cross-sectional view of the transfer device 1 shown in Figure 1 taken along line B-B. In Figure 3, the direction toward the front of the page is the discharge direction, and the left-right direction is the width direction.

図1~図3に示すように、移送装置1は、仕切部材3、流路形成部材5および吐出部材7を備えている。仕切部材3は、図1および図2に示すように、流水部91において、吐出方向に延在したものであり、全長が、流水部91の長手方向の長さよりも僅かに短く形成されている。また、仕切部材3は、図1に示すように、吐出方向と平行あるいは略平行に延在し、図2に示すように、水平あるいは略水平に延在したものである。この仕切部材3は、図3に示すように、流水部91を流れる汚水W中において、流路形成部材5周辺の周辺領域R1と、他の領域R2とを、周辺領域R1が内側になるように仕切るものであり、周辺領域R1につながり、汚水W中に没する流入口3aを有している。本実施形態の仕切部材3は、径が300mm以上400mm以下のステンレス製の円筒体の上方の略1/3を切り欠いた断面円弧状のものであり、切り欠いた部分に、上方に向かって開口した流入口3aが形成されている。この流入口3aの幅方向の開口長L3(図4(a)参照)は、275mm以上375mm以下に設定されている。また、仕切部材3は、上端部分に幅方向の中央側へ入り込んだ湾曲部31を有しており、周辺領域R1は、流入口3a側の部分が、流入口3aに近づくほど狭くなっている。 As shown in Figs. 1 to 3, the transfer device 1 includes a partition member 3, a flow path forming member 5, and a discharge member 7. As shown in Figs. 1 and 2, the partition member 3 extends in the discharge direction in the flowing water section 91, and its overall length is formed to be slightly shorter than the longitudinal length of the flowing water section 91. As shown in Fig. 1, the partition member 3 extends parallel or approximately parallel to the discharge direction, and as shown in Fig. 2, it extends horizontally or approximately horizontally. As shown in Fig. 3, the partition member 3 separates the peripheral region R1 around the flow path forming member 5 from the other region R2 in the wastewater W flowing through the flowing water section 91, so that the peripheral region R1 is on the inside, and has an inlet 3a that is connected to the peripheral region R1 and submerged in the wastewater W. The partition member 3 in this embodiment is a stainless steel cylinder with a diameter of 300 mm to 400 mm, and has an arc-shaped cross section with approximately the upper 1/3 cut out, and the inlet 3a that opens upward is formed in the cut-out portion. The widthwise opening length L3 of the inlet 3a (see FIG. 4(a)) is set to 275 mm or more and 375 mm or less. In addition, the partition member 3 has a curved portion 31 at the upper end portion that extends toward the center in the width direction, and the peripheral region R1 becomes narrower on the inlet 3a side as it approaches the inlet 3a.

図1および図2に示すように、流路形成部材5も、仕切部材3と同様に、流水部91において、吐出方向に延在したものであり、その全長が、仕切部材3と略同じ長さに形成されている。また、流路形成部材5も、図1に示すように、吐出方向と平行あるいは略平行に延在し、図2に示すように、水平あるいは略水平に延在したものである。この流路形成部材5は、図3に示すように、流路Sを形成するものであり、この流路Sと周辺領域R1とを仕切っている。また、流路形成部材5は、流路Sにつながり、汚水W中に没する吸込口5aを有している。本実施形態の流路形成部材5は、径が150mm以上200mm以下のステンレス製の円筒体の下方の略1/6を切り欠いた断面円弧状のものであり、切り欠いた部分に、下方に向かって開口した吸込口5aが形成されている。流路形成部材5は、吸込口5aが周辺領域R1内で開口し、上端部分51が、流入口3aと略同じ高さになるように、不図示の取付部材によって仕切部材3に取り付けられている。なお、本実施形態では、流路形成部材5の径方向の中心(図では符号Oを付して概念的に示している)を、仕切部材3の径方向の中心に一致させている。したがって、仕切部材3と流路形成部材5との径方向の間隔Di(本実施形態では75mm程度)はいずれの箇所においても略同じになる。 1 and 2, the flow path forming member 5, like the partition member 3, extends in the discharge direction in the flow section 91, and its total length is formed to be approximately the same as that of the partition member 3. The flow path forming member 5 also extends parallel or approximately parallel to the discharge direction as shown in FIG. 1, and extends horizontally or approximately horizontally as shown in FIG. 2. As shown in FIG. 3, the flow path forming member 5 forms the flow path S and separates the flow path S from the peripheral region R1. The flow path forming member 5 also has an inlet 5a that is connected to the flow path S and is submerged in the wastewater W. The flow path forming member 5 of this embodiment has a cross-sectional arc shape with approximately 1/6 of the lower part of a stainless steel cylinder with a diameter of 150 mm to 200 mm cut out, and the inlet 5a that opens downward is formed in the cutout part. The flow path forming member 5 is attached to the partition member 3 by an attachment member (not shown) so that the suction port 5a opens within the peripheral region R1 and the upper end portion 51 is at approximately the same height as the inlet 3a. In this embodiment, the radial center of the flow path forming member 5 (conceptually shown with the symbol O in the figure) is aligned with the radial center of the partition member 3. Therefore, the radial distance Di (approximately 75 mm in this embodiment) between the partition member 3 and the flow path forming member 5 is approximately the same at every location.

吐出部材7は、その後端部分に給水管70が接続され、その先端部分に吐出口7aを備えたものであり、図2に示すように、吐出口7aが、吐出方向の上流側から流路形成部材5内(流路S)に挿入されている。給水管70から吐出部材7に供給された水は、水平方向あるいは略水平方向に吐出口7aから吐出される(図2における実線の右向きの矢印参照)。本実施形態では、吐出口7aから吐出される水の吐出圧は、0.3MPa以下に設定されている。なお、詳しくは後述するように、流路S内に水の流れが一旦生じればよいため、吐出口7aから吐出される水の圧力は、0.1MPa以下であっても十分な場合がある。また、吐出口7aから吐出される水の流量は、毎分300リットル以上3000リットル以下に調整される。ここで、吐出口7aから吐出する水は、汚水処理場に受け入れた汚水や水道水を使用してもよい。また、水以外の気体や気液混合体等の流体を、吐出口7aから吐出させてもよい。 The discharge member 7 has a water supply pipe 70 connected to its rear end and a discharge port 7a at its tip, and as shown in FIG. 2, the discharge port 7a is inserted into the flow path forming member 5 (flow path S) from the upstream side in the discharge direction. Water supplied from the water supply pipe 70 to the discharge member 7 is discharged from the discharge port 7a in a horizontal or approximately horizontal direction (see the solid right-facing arrow in FIG. 2). In this embodiment, the discharge pressure of the water discharged from the discharge port 7a is set to 0.3 MPa or less. As will be described in detail later, since it is sufficient that water flow is generated once in the flow path S, the pressure of the water discharged from the discharge port 7a may be sufficient even if it is 0.1 MPa or less. In addition, the flow rate of the water discharged from the discharge port 7a is adjusted to 300 liters or more and 3000 liters or less per minute. Here, the water discharged from the discharge port 7a may be sewage received in a sewage treatment plant or tap water. In addition, fluids such as gases and gas-liquid mixtures other than water may be discharged from the discharge port 7a.

本実施形態の吐出部材7は、丸パイプ状の給水管の先端部分を扁平状につぶすことで、その先端に長孔形状の吐出口7aが形成されたものである。このように丸パイプを扁平状につぶして吐出口7aを形成する態様を採用すれば、その作製が容易になる。また、図3に示すように、吐出口7aの幅方向の開口長L1を、吸込口5aの幅方向の開口長L2よりも長く設定している。具体的には、本実施形態では、吸込口5aの幅方向の開口長L2は100mm程度、吐出口7aの幅方向の開口長L1は120mm程度、また、吐出口7aの高さH1は20mm程度である。吐出口7aをこのような扁平な形状にすることで、真円の形状のものよりも、流速を高めた範囲を広く確保することができる。なお、丸パイプ状の給水管の先端部分をつぶさず、この丸パイプ状の給水管をそのまま用いることで、真円状の吐出口7aを採用する態様の方が好ましい場合もある。 The discharge member 7 of this embodiment is a round pipe-shaped water supply pipe whose tip is flattened to form a long hole-shaped discharge port 7a at its tip. By adopting the mode of forming the discharge port 7a by flattening the round pipe in this way, the production is easy. Also, as shown in FIG. 3, the widthwise opening length L1 of the discharge port 7a is set longer than the widthwise opening length L2 of the suction port 5a. Specifically, in this embodiment, the widthwise opening length L2 of the suction port 5a is about 100 mm, the widthwise opening length L1 of the discharge port 7a is about 120 mm, and the height H1 of the discharge port 7a is about 20 mm. By making the discharge port 7a in such a flat shape, a wider range of increased flow rate can be secured than that of a perfect circle. In some cases, it may be preferable to use the round pipe-shaped water supply pipe as it is without crushing the tip of the round pipe-shaped water supply pipe and adopt a perfect circle-shaped discharge port 7a.

ここで、流水部91の水面WLの高さは、沈砂池から受け入れる汚水の量等によって変動するため、この水面WLの高さの変動を考慮し、移送装置1を設ける高さ位置が設定される。具体的には、流水部91の水面WLの高さが変動した場合であっても、仕切部材3の流入口3aは、水面WLよりも低い位置であって、水面WLからの深さDp1が200mm以内、吐出口7aの高さ方向の中心は、水面WLからの深さDp2が50mm以上300mm以内、流路形成部材5の吸込口5aは、水面WLからの深さDp3が100mm以上400mm以内に収まるように設定されている。また、仕切部材3の流入口3aは、図2に一点鎖線で示す、塞止壁93における開口部93aの下端部分よりも、上方に位置している。 Here, the height of the water surface WL of the flow section 91 varies depending on the amount of wastewater received from the grit basin, and the height position of the transfer device 1 is set taking into consideration the variation in the height of the water surface WL. Specifically, even if the height of the water surface WL of the flow section 91 varies, the inlet 3a of the partition member 3 is set to be lower than the water surface WL, and the depth Dp1 from the water surface WL is within 200 mm, the center of the height direction of the outlet 7a is set to be 50 mm or more and 300 mm or less in depth from the water surface WL, and the suction port 5a of the flow path forming member 5 is set to be 100 mm or more and 400 mm or less in depth from the water surface WL. Also, the inlet 3a of the partition member 3 is located above the lower end portion of the opening 93a in the blocking wall 93, as shown by the dashed line in FIG. 2.

移送装置1は、その位置を固定してもよいが、水面WLの高さの変動に合わせて、図2および図3の両矢印で示すように、移送装置1全体、あるいは、仕切部材3と流路形成部材5のうちのいずれか一方を、鉛直方向に移動させる態様としてもよい。こうすることで、流入口3aや吸込口5aの位置を水面WLの高さの変動に追従させ、水面WLから一定の深さに維持することができる。なお、吐出口7aは、流路形成部材5の鉛直方向の移動に合わせて鉛直方向に移動させてもよいし、吐出口7aは固定し、流路形成部材5だけを鉛直方向に移動させる態様としてもよい。また、移送装置1を固定し、流入口3aや吸込口5aの位置が、水面WLから一定の深さに維持されるように、流水部91が受け入れる汚水の量を制御する態様としてもよい。 The transfer device 1 may be fixed in position, or the entire transfer device 1, or either the partition member 3 or the flow path forming member 5, may be moved vertically in accordance with the fluctuation of the height of the water surface WL, as shown by the double arrows in Figures 2 and 3. In this way, the positions of the inlet 3a and the suction port 5a can be made to follow the fluctuation of the height of the water surface WL and maintained at a constant depth from the water surface WL. The discharge port 7a may be moved vertically in accordance with the vertical movement of the flow path forming member 5, or the discharge port 7a may be fixed and only the flow path forming member 5 may be moved vertically. In addition, the transfer device 1 may be fixed, and the amount of wastewater received by the flow section 91 may be controlled so that the positions of the inlet 3a and the suction port 5a are maintained at a constant depth from the water surface WL.

以上のように構成された移送装置1では、図1および図2に示すように、吐出口7aから水を吐出させることで、スカムScが移送される。具体的には、吐出口7aから流路形成部材5の流路S内に水が吐出されることで、吐出された水の流れに引き込まれて、図3に示すように、吸込口5aから流路S内に吸い込まれる方向の水の流れが生じる。これにより、流入口3aから周辺領域R1内に流れ込む水の流れが生じるとともに、周辺領域R1内では吸込口5aに向かう水の流れが生じる。この結果、流水部91の水面WLには、仕切部材3の流入口3aに集まる方向の流れ(流入口3a付近の水面WLには、流入口3aに向かう方向の流れが生じ、他の場所の水がこれを補うことで生じる流れ)が生じる。 In the transfer device 1 configured as described above, as shown in FIG. 1 and FIG. 2, the scum Sc is transferred by discharging water from the discharge port 7a. Specifically, as water is discharged from the discharge port 7a into the flow path S of the flow path forming member 5, the scum Sc is drawn into the flow of the discharged water, and as shown in FIG. 3, a flow of water is generated in the direction of being sucked into the flow path S from the suction port 5a. As a result, a flow of water is generated that flows from the inlet 3a into the peripheral region R1, and a flow of water toward the suction port 5a is generated within the peripheral region R1. As a result, a flow is generated on the water surface WL of the flowing water portion 91 in the direction of gathering at the inlet 3a of the partition member 3 (a flow is generated on the water surface WL near the inlet 3a in the direction toward the inlet 3a, and a flow is generated by the water in other places supplementing this).

図1および図2では、スカムScの流れを模式的に示しており、水面上にまとまった状態で浮遊するスカムに符号Sc0を付すとともに薄い網掛けを付し、このスカムのまとまりSc0から分離したスカムScを一点鎖線で囲むとともに濃い網掛けを付している。流水部91の水面WL(図2および図3参照)の全域にまとまりとなって浮遊しているスカムは、水面に生じた、流入口3aに集まる方向の流れによって、その一部が崩れて小さな塊のスカムScとなって流入口3aから周辺領域R1内に流入する。これが繰り返されることによって、図1に示すように、水面WL上には、スカムが除去された領域(水面上の除去領域)が、仕切部材3の延在方向、すなわち移送方向に沿って生じる。また、スカムのまとまりSc0から分離したスカムScは、水面上の除去領域を移送方向に流れ、塞止壁93の近傍に集まる。また、スカムScは、水面上の除去領域を流れていく過程で、スカムのまとまりSc0に接触することでその一部を崩し、崩されたスカムScも、流入口3aから周辺領域R1内に流入し、あるいは水面上の除去領域を移送方向に流れていくといった作用が繰り返される。 1 and 2 show the flow of scum Sc in a schematic manner, with the scum floating on the water surface in a lump-like state being given the symbol Sc0 and lightly shaded, and the scum Sc separated from the scum lump Sc0 being surrounded by a dashed line and darkly shaded. The scum floating in a lump-like form over the entire water surface WL (see Figs. 2 and 3) of the flowing water section 91 is partially broken down by the flow on the water surface in the direction of gathering at the inlet 3a, and becomes small lumps of scum Sc, which flow from the inlet 3a into the peripheral region R1. By repeating this process, as shown in Fig. 1, a region where scum has been removed (a removal region on the water surface) is generated on the water surface WL along the extension direction of the partition member 3, i.e., the transport direction. The scum Sc separated from the scum lump Sc0 flows through the removal region on the water surface in the transport direction and gathers near the blocking wall 93. In addition, as the scum Sc flows through the removal area on the water surface, it comes into contact with the scum masses Sc0, causing some of them to break down, and the broken scum Sc also flows into the peripheral area R1 from the inlet 3a, or flows through the removal area on the water surface in the transport direction, and this action is repeated.

流入口3aに集まってきたスカムScは、図3にスカムScの流れを概念的に示すように、流入口3aから周辺領域R1内に流入し、周辺領域R1内を吸込口5aに向かって流れた後、吸込口5aから流路S内に吸い込まれる。ここで、吸込口5aの、水面WLからの深さを20mm以上に設定すると、スカムScを吸込口5aから、より円滑に流入させることができ好ましい。 As shown conceptually in Figure 3, the scum Sc that has gathered at the inlet 3a flows from the inlet 3a into the peripheral region R1, flows through the peripheral region R1 toward the suction port 5a, and is then sucked into the flow path S from the suction port 5a. Here, it is preferable to set the depth of the suction port 5a from the water surface WL to 20 mm or more, as this allows the scum Sc to flow more smoothly from the suction port 5a.

汚水W中において、周辺領域R1は、仕切部材3によって他の領域R2と仕切られているため、流入口3aから周辺領域R1内へのスカムScの流入が促進され、水面WLに浮遊したスカムScを効率的に周辺領域R1内に流入させることができる。さらに、周辺領域R1が他の領域R2と仕切部材3で仕切られることによって、周辺領域R1内を流入口3aから吸込口5aへ向かう水の流れが妨げられることがなくなり、周辺領域R1内に流入したスカムScは、周辺領域R1内を流れて円滑に吸込口5aから吸い込まれる。 In the wastewater W, the peripheral region R1 is separated from the other regions R2 by the partition member 3, which promotes the inflow of scum Sc from the inlet 3a into the peripheral region R1, and allows the scum Sc floating on the water surface WL to flow efficiently into the peripheral region R1. Furthermore, by separating the peripheral region R1 from the other regions R2 by the partition member 3, the flow of water from the inlet 3a to the suction port 5a within the peripheral region R1 is not impeded, and the scum Sc that flows into the peripheral region R1 flows within the peripheral region R1 and is smoothly sucked in through the suction port 5a.

さらに、図1および図2に示すように、流路S内では、吸い込まれたスカムScが、吐出口7aから吐出された水の流れによってスカムピット92に向かって移動し、流路形成部材5における吐出方向の下流端52から吹き出される。流路形成部材5の下流端52から吹き出されたスカムScは、前述したように、塞止壁93の近傍に集まり、ゲート931を開放することで、塞止壁93の近傍に集められたスカムScが、汚水とともにスカムピット92に回収される。ここで、吐出口7aから水を吐出することで流路S内に一旦生じた水の流れは、流路Sが流路形成部材5によって囲まれているため減衰しにくく、スカムScを長い距離移送することができる。これらによって、吐出口7aや、吐出口7aに水を供給する供給管70等の個数が少なくて済み、簡易な構造を採用することができる。さらに、吐出口7aから吐出される水量も抑えることができる。 Furthermore, as shown in FIG. 1 and FIG. 2, in the flow path S, the sucked scum Sc moves toward the scum pit 92 by the flow of water discharged from the discharge port 7a, and is blown out from the downstream end 52 of the flow path forming member 5 in the discharge direction. As described above, the scum Sc blown out from the downstream end 52 of the flow path forming member 5 gathers near the blocking wall 93, and by opening the gate 931, the scum Sc gathered near the blocking wall 93 is collected in the scum pit 92 together with the wastewater. Here, the flow of water once generated in the flow path S by discharging water from the discharge port 7a is not easily attenuated because the flow path S is surrounded by the flow path forming member 5, and the scum Sc can be transported a long distance. As a result, the number of discharge ports 7a and the supply pipes 70 that supply water to the discharge port 7a can be reduced, and a simple structure can be adopted. Furthermore, the amount of water discharged from the discharge port 7a can be reduced.

なお、流路形成部材5が長い場合には、図1の一点鎖線で示すように、流路形成部材5の延在方向における途中部分にも、吐出部材7を設けてもよい。さらに、流水部91の幅方向の長さが長い場合には、流路形成部材5および仕切部材3を流水部91の幅方向に複数並置し、それぞれの流路形成部材5の流路S内に水を吐出する吐出部材7を設けてもよいが、図1の両矢印で示すように、移送装置1を幅方向に移動可能とする態様としてもよい。 If the flow path forming member 5 is long, the discharge member 7 may be provided in the middle of the flow path forming member 5 in the extension direction, as shown by the dashed line in Figure 1. Furthermore, if the width of the flowing water section 91 is long, multiple flow path forming members 5 and partition members 3 may be arranged side by side in the width direction of the flowing water section 91, and discharge members 7 that discharge water into the flow path S of each flow path forming member 5 may be provided, or the transfer device 1 may be made movable in the width direction, as shown by the double arrow in Figure 1.

また、図2の二点鎖線で示すように、流路形成部材5と仕切部材3を、吐出方向の下流側に向かうに従い水面WLに近づくように傾斜した姿勢(吐出方向の下流側が高くなるように傾斜した姿勢)で配置し、流路形成部材5の傾斜した姿勢に沿って、吐出口7aから流路S内に水を吐出する態様としてもよい。この態様を採用すれば、吐出口7aから水を吐出することで流路S内に生じた水の流れがより減衰しにくくなり、スカムScをより長い距離移送することができる。なお、流路Sにおける、吐出口7aに近い部分は、相対的に強い水の流れが生じているため、流入口3aの位置が水面WLから多少深くなっても、水面WLに浮遊するスカムScが流入口3aから流入しにくくなるといった不具合は生じにくい。 Also, as shown by the two-dot chain line in FIG. 2, the flow path forming member 5 and the partition member 3 may be arranged in an inclined position (inclined so that the downstream side in the discharge direction is higher) so as to approach the water surface WL as they approach the downstream side in the discharge direction, and water may be discharged from the discharge port 7a into the flow path S along the inclined position of the flow path forming member 5. By adopting this mode, the water flow generated in the flow path S by discharging water from the discharge port 7a is less likely to attenuate, and the scum Sc can be transported a longer distance. Note that, since a relatively strong water flow is generated in the part of the flow path S close to the discharge port 7a, even if the position of the inlet 3a is somewhat deeper than the water surface WL, problems such as the scum Sc floating on the water surface WL being less likely to flow in from the inlet 3a are unlikely to occur.

次に、図1~図3に示す移送装置の変形例について、図4~図10を用いて説明する。以下に説明する変形例においては、図1~図3に示す実施形態との相違点を中心に説明し、図1~図3に示す実施形態における構成要素の名称と同じ名称の構成要素には、これまで用いた符号を付して説明し、重複する説明は省略することがある。また、図4~図10では、図3に対応した状態を示すとともに、図面を簡略化するため、吐出部材7については、吐出口7aのみを示し、仕切部材3および流路形成部材5については、断面形状を模式的に示している。 Next, modified examples of the transfer device shown in Figures 1 to 3 will be described using Figures 4 to 10. In the modified examples described below, differences from the embodiment shown in Figures 1 to 3 will be mainly described, and components with the same names as those in the embodiment shown in Figures 1 to 3 will be described using the same reference numerals used so far, and duplicated descriptions may be omitted. Also, Figures 4 to 10 show a state corresponding to Figure 3, and in order to simplify the drawings, only the discharge port 7a of the discharge member 7 is shown, and the cross-sectional shapes of the partition member 3 and flow path forming member 5 are shown diagrammatically.

図4(a)は、第1変形例の移送装置を示す図である。この変形例では、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも低くなるように、すなわち、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも、水面WLから深くなるように流路形成部材5と仕切部材3を配置している。これにより、仕切部材3と流路形成部材5との径方向の間隔Diは、吸込口5aに向かうにつれて狭くなり、周辺領域R1内を流れる水の流速は、吸込口5aに向かうにつれて速くなる。この結果、吸込口5aからスカムScをより確実に吸い込むことができる。 Figure 4(a) shows a transfer device of a first modified example. In this modified example, the flow path forming member 5 and the partition member 3 are arranged so that the upper end portion 51 of the flow path forming member 5 is lower than the inlet 3a of the partition member 3, i.e., the upper end portion 51 of the flow path forming member 5 is deeper from the water surface WL than the inlet 3a of the partition member 3. As a result, the radial distance Di between the partition member 3 and the flow path forming member 5 becomes narrower toward the suction port 5a, and the flow rate of the water flowing in the peripheral region R1 becomes faster toward the suction port 5a. As a result, scum Sc can be more reliably sucked in from the suction port 5a.

また、一点鎖線で示すように、流路形成部材5に径の小さなパイプ材を用い、その上部側部分を切り欠いて形成した流入口3aの幅方向の開口長L3が、吸込口5aの幅方向の開口長L2よりも短い態様としてもよい。こうすることで、流入口3aに流入する水の流速が速くなり、流入口3aからスカムScをより円滑に流入させることができる。なお、図4(a)において一点鎖線で示す仕切部材3は、その径方向の中心を、流路形成部材5の径方向の中心に一致させているため、仕切部材3と流路形成部材5との径方向の間隔Diはいずれの箇所においても略同じになる。ただし、実線で示す仕切部材3と同様に、流路形成部材5の位置を下げ、間隔Diが、吸込口5aに向かうにつれて狭くなる態様としてもよい。 Also, as shown by the dashed line, a small-diameter pipe material may be used for the flow path forming member 5, and the width direction opening length L3 of the inlet 3a formed by cutting out the upper part of the pipe material may be shorter than the width direction opening length L2 of the suction port 5a. This increases the flow rate of the water flowing into the inlet 3a, and allows the scum Sc to flow more smoothly from the inlet 3a. Note that the partition member 3 shown by the dashed line in FIG. 4(a) has its radial center aligned with the radial center of the flow path forming member 5, so that the radial distance Di between the partition member 3 and the flow path forming member 5 is approximately the same at all points. However, as with the partition member 3 shown by the solid line, the position of the flow path forming member 5 may be lowered, and the distance Di may be narrowed toward the suction port 5a.

図4(b)は、第2変形例の移送装置を示す図である。この変形例では、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも高くなるように、流路形成部材5と仕切部材3を配置している。これにより、流路Sにおける上部側部分S1は、流入口3aよりも上方に位置し、仕切部材3と流路形成部材5との径方向の間隔Diは、吸込口5aに向かうにつれて広くなる。この第2変形例では、周辺領域R1を広く確保することができる。 Figure 4(b) shows a transfer device of a second modified example. In this modified example, the flow path forming member 5 and the partition member 3 are arranged so that the upper end portion 51 of the flow path forming member 5 is higher than the inlet 3a of the partition member 3. As a result, the upper side portion S1 of the flow path S is located above the inlet 3a, and the radial distance Di between the partition member 3 and the flow path forming member 5 becomes wider toward the suction port 5a. In this second modified example, a wide peripheral area R1 can be secured.

また、一点鎖線で示すように、径の小さなパイプ材を用いて仕切部材3を形成し、その径方向の中心を、流路形成部材5の径方向の中心に一致させることで、仕切部材3と流路形成部材5との径方向の間隔Diをいずれの箇所においても同じになる態様としてもよい。なお、流路形成部材5を、その上端部分51が水面WL上に位置するように配置してもよいが、流路形成部材5における、水面WL上に突出した部分によって、水面WLにおける、幅方向の水の流れが遮られてしまうため、上端部分51が水中に没する位置に流路形成部材5を配置する態様が好ましい。さらに、流路形成部材5における上端部分51の、水面WLからの深さを、20mm以上に設定すれば、上端部分51にスカムScが載りにくくなり好ましい。 As shown by the dashed line, the partition member 3 may be formed using a small diameter pipe material, and its radial center may be aligned with the radial center of the flow path forming member 5, so that the radial distance Di between the partition member 3 and the flow path forming member 5 is the same at all points. The flow path forming member 5 may be arranged so that its upper end portion 51 is located above the water surface WL, but since the portion of the flow path forming member 5 that protrudes above the water surface WL blocks the widthwise water flow at the water surface WL, it is preferable to arrange the flow path forming member 5 in a position where the upper end portion 51 is submerged in water. Furthermore, if the depth of the upper end portion 51 of the flow path forming member 5 from the water surface WL is set to 20 mm or more, scum Sc is less likely to accumulate on the upper end portion 51, which is preferable.

図5(a)は、第3変形例の移送装置を示す図である。この第3変形例の移送装置1は、ともに扁平な形状の仕切部材3と流路形成部材5を備えている点が、図3に示す移送装置1と相違する。具体的には、仕切部材3は、その幅寸法W1の、1/2程度の高さ寸法を有するパイプの上端部分を切り欠いて形成したものである。また、流路形成部材5は、その幅寸法W2の、1/2程度の高さ寸法を有するパイプの下端部分を切り欠いて形成したものである。すなわち、本変形例における、仕切部材3と流路形成部材5は、吐出方向と水平面内で直交する幅方向の寸法が高さ方向の寸法よりも長い扁平な形状のものである。このように、扁平な形状の仕切部材3を採用すれば、流入口3aを幅方向に広くとることが容易になる。流入口3aを幅方向に広くすれば、水面WLのより広い範囲に浮遊したスカムScを、周辺領域R1内に流入させることができる。また、ともに扁平な形状の仕切部材3と流路形成部材5を採用することで、流水部91(図1参照)の汚水Wの流れを妨げにくくなり、汚水Wの流れに対する抵抗を軽減することも可能になる。 Figure 5 (a) is a diagram showing a transfer device of a third modified example. The transfer device 1 of this third modified example differs from the transfer device 1 shown in Figure 3 in that it is equipped with a partition member 3 and a flow path forming member 5, both of which are flat in shape. Specifically, the partition member 3 is formed by cutting out the upper end portion of a pipe having a height dimension of about 1/2 of its width dimension W1. Also, the flow path forming member 5 is formed by cutting out the lower end portion of a pipe having a height dimension of about 1/2 of its width dimension W2. That is, the partition member 3 and the flow path forming member 5 in this modified example are flat in shape, with the width dimension perpendicular to the discharge direction in the horizontal plane being longer than the height dimension. In this way, by adopting a partition member 3 having a flat shape, it becomes easy to make the inlet 3a wider in the width direction. By making the inlet 3a wider in the width direction, the scum Sc floating in a wider range of the water surface WL can be made to flow into the peripheral region R1. In addition, by using a partition member 3 and a flow path forming member 5, both of which have a flat shape, it becomes difficult to impede the flow of the wastewater W in the flow section 91 (see Figure 1), and it is also possible to reduce resistance to the flow of the wastewater W.

なお、一点鎖線で示すように、流路形成部材5の位置を下げ、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも低くなるように配置してもよい。また、扁平な形状の仕切部材3に代えて、二点鎖線で示すように、前述した、図3に示す仕切部材3を用いてもよい。 As shown by the dashed line, the position of the flow path forming member 5 may be lowered so that the upper end portion 51 of the flow path forming member 5 is lower than the inlet 3a of the partition member 3. Also, instead of the flat partition member 3, the partition member 3 shown in FIG. 3 may be used as shown by the dashed line.

図5(b)は、第4変形例の移送装置を示す図である。この変形例の移送装置1は、図5(a)に示す第3変形例の移送装置1において、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも高くなるように、流路形成部材5と仕切部材3を配置している。これにより、流路Sにおける上部側部分S1は、流入口3aよりも上方に位置している。なお、扁平な形状の流路形成部材5に代えて、一点鎖線で示すように、前述した、図3に示す流路形成部材5を用いてもよい。 Figure 5(b) is a diagram showing a transfer device of a fourth modified example. In this modified transfer device 1, the flow path forming member 5 and the partition member 3 are arranged so that the upper end portion 51 of the flow path forming member 5 is higher than the inlet 3a of the partition member 3 in the transfer device 1 of the third modified example shown in Figure 5(a). As a result, the upper side portion S1 of the flow path S is located above the inlet 3a. Note that instead of the flat flow path forming member 5, the flow path forming member 5 shown in Figure 3 described above may be used, as indicated by the dashed line.

図6(a)は、第5変形例の移送装置を示す図である。この変形例の移送装置1は、仕切部材3の形状が、図3に示す移送装置1と相違する。図6(a)に示すように、仕切部材3は、鉛直に立設した一対の壁部32と、これら一対の壁部32の下端部分を水平方向に連結する底部33とを有し、上方が開放された断面コ字状のものである。ここで、図3に示す実施形態や、図4や図5に示す変形例のように、仕切部材3の内周面が円弧状のものであると、仕切部材3と流路形成部材5との大小関係や、仕切部材3における流入口3aの開口長L3(図4(a)参照)によっては、仕切部材3と流路形成部材5のうちの一方を鉛直方向に移動させる際に、仕切部材3と流路形成部材5が干渉してしまう場合がある。本変形例によれば、流路形成部材5の側方に、鉛直に立設した壁部32が位置するため、図の両矢印に示すように、仕切部材3と流路形成部材5のうちの一方を鉛直方向に移動させる際に、仕切部材3と流路形成部材5が干渉しにくくなる。これによって、仕切部材3と流路形成部材5のうちの一方を鉛直方向に移動させる際の自由度が向上する。また、仕切部材3の作製も容易になる。 Figure 6 (a) is a diagram showing a transfer device of a fifth modified example. The transfer device 1 of this modified example differs from the transfer device 1 shown in Figure 3 in the shape of the partition member 3. As shown in Figure 6 (a), the partition member 3 has a pair of vertically erected wall portions 32 and a bottom portion 33 that connects the lower end portions of the pair of wall portions 32 in the horizontal direction, and has a U-shaped cross section with an open upper portion. Here, as in the embodiment shown in Figure 3 and the modified examples shown in Figures 4 and 5, if the inner circumferential surface of the partition member 3 is arc-shaped, depending on the size relationship between the partition member 3 and the flow path forming member 5 and the opening length L3 of the inlet 3a in the partition member 3 (see Figure 4 (a)), the partition member 3 and the flow path forming member 5 may interfere with each other when one of the partition member 3 and the flow path forming member 5 is moved vertically. According to this modified example, the wall portion 32 is positioned vertically to the side of the flow path forming member 5, so that when one of the partition member 3 and the flow path forming member 5 is moved vertically, as shown by the double arrow in the figure, the partition member 3 and the flow path forming member 5 are less likely to interfere with each other. This improves the degree of freedom when moving one of the partition member 3 and the flow path forming member 5 in the vertical direction. It also makes it easier to manufacture the partition member 3.

仕切部材3と流路形成部材5は、流路形成部材5の上端部分51が、仕切部材3の流入口3aと同じ高さになるように配置してもよいが、一点鎖線で示すように、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも低い位置に設定してもよい。なお、二点鎖線で示すように、仕切部材3は、壁部32の上端側部分321を、幅方向の外側に拡がるように湾曲させて形成してもよいし、壁部32と底部33との連結部分に、円弧状の隅部34を設けてもよい。 The partition member 3 and the flow path forming member 5 may be arranged so that the upper end portion 51 of the flow path forming member 5 is at the same height as the inlet 3a of the partition member 3, but as shown by the dashed line, the upper end portion 51 of the flow path forming member 5 may be set at a position lower than the inlet 3a of the partition member 3. As shown by the dashed line, the partition member 3 may be formed by curving the upper end portion 321 of the wall portion 32 so that it spreads outward in the width direction, or an arc-shaped corner portion 34 may be provided at the connection portion between the wall portion 32 and the bottom portion 33.

図6(b)は、第6変形例の移送装置を示す図である。この変形例の移送装置1は、図6(a)に示す第5変形例の移送装置1において、仕切部材3の流入口3aが、流路形成部材5の上端部分51よりも低くなるように、流路形成部材5と仕切部材3を配置している。なお、一点鎖線で示すように、仕切部材3の底部33を、下方に凸となる円弧状に形成してもよい。 Figure 6 (b) is a diagram showing a transfer device of a sixth modified example. In this modified transfer device 1, the flow path forming member 5 and the partition member 3 are arranged so that the inlet 3a of the partition member 3 is lower than the upper end portion 51 of the flow path forming member 5 in the transfer device 1 of the fifth modified example shown in Figure 6 (a). Note that, as shown by the dashed line, the bottom 33 of the partition member 3 may be formed in a circular arc shape that is convex downward.

図7(a)は、第7変形例の移送装置を示す図である。この変形例では、仕切部材3の形状が、図3に示す移送装置1と相違する。図7(a)に示すように、本変形例の仕切部材3は、上端部分に、幅方向の外側に拡がるように湾曲した第2湾曲部35を有している。これにより、仕切部材3の流入口3aが広がり、水面WLのより広い範囲に浮遊したスカムScを、流入口3aから周辺領域R1内に流入させることができる。また、一点鎖線で示すように、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも、低くなる位置に流路形成部材5を配置してもよい。 Figure 7(a) is a diagram showing a transfer device of a seventh modified example. In this modified example, the shape of the partition member 3 is different from that of the transfer device 1 shown in Figure 3. As shown in Figure 7(a), the partition member 3 of this modified example has a second curved portion 35 at the upper end portion that is curved so as to expand outward in the width direction. This widens the inlet 3a of the partition member 3, allowing scum Sc floating over a wider range of the water surface WL to flow from the inlet 3a into the peripheral region R1. In addition, as shown by the dashed line, the flow path forming member 5 may be positioned so that the upper end portion 51 of the flow path forming member 5 is lower than the inlet 3a of the partition member 3.

図7(b)は、第8変形例の移送装置を示す図である。この変形例の移送装置1は、図7(a)に示す第7変形例の移送装置1において、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも高くなるように、仕切部材3と流路形成部材5を配置している。また、本変形例では、仕切部材3と流路形成部材5との径方向の間隔Diが最も狭い部分を、吸込口5aの幅方向の開口長L2と略同じに設定している。なお、一点鎖線で示すように、径の小さな仕切部材3を採用し、第2湾曲部35と流路形成部材5との径方向の間隔Diを、吸込口5aの幅方向の開口長L2よりも短くして、この間隔Diを通過する水の流速を速めるようにしてもよい。 Figure 7 (b) is a diagram showing a transfer device of the eighth modified example. In this modified example, the partition member 3 and the flow path forming member 5 are arranged so that the upper end portion 51 of the flow path forming member 5 is higher than the inlet 3a of the partition member 3 in the transfer device 1 of the seventh modified example shown in Figure 7 (a). In addition, in this modified example, the part where the radial distance Di between the partition member 3 and the flow path forming member 5 is narrowest is set to be approximately the same as the opening length L2 in the width direction of the suction port 5a. Note that, as shown by the dashed line, a partition member 3 with a small diameter may be used, and the radial distance Di between the second curved portion 35 and the flow path forming member 5 may be made shorter than the opening length L2 in the width direction of the suction port 5a to increase the flow rate of water passing through this distance Di.

図8は、第9変形例の移送装置を示す図である。この変形例は、流路形成部材5の上端部分51と吐出口7aの水面WLからの深さを一定にした状態で、流入口3aにおける、水面WLからの深さDp1と開口長L3、および吸込口5aにおける、水面WLからの深さDp3と開口長L2を調整できるものである。 Figure 8 shows a transfer device of the ninth modified example. In this modified example, the depth Dp1 from the water surface WL and the opening length L3 at the inlet 3a, and the depth Dp3 from the water surface WL and the opening length L2 at the suction port 5a can be adjusted while the depths from the water surface WL of the upper end portion 51 of the flow path forming member 5 and the discharge port 7a are kept constant.

図8(a)において、二点鎖線の四角で囲んで示すように、仕切部材3は、1/2円弧状の一対の仕切部材構成体30を有し、図8(a)および同図(b)に示すように、これら一対の仕切部材構成体30を、互いの一部を重ねることで仕切部材3が構成されている。図8(a)および同図(b)では、一対の仕切部材構成体30が重なる部分を、βの符号で示している。これら一対の仕切部材構成体30は、径方向の中心Oを回動中心として回動し、重なる部分βの大きさを変更することができる。 As shown in FIG. 8(a) surrounded by a dashed double-dashed line rectangle, the partition member 3 has a pair of partition member components 30 in the shape of a half arc, and as shown in FIG. 8(a) and FIG. 8(b), the partition member 3 is formed by partially overlapping the pair of partition member components 30. In FIG. 8(a) and FIG. 8(b), the overlapping portion of the pair of partition member components 30 is indicated by the symbol β. The pair of partition member components 30 rotate around the radial center O as the rotation center, and the size of the overlapping portion β can be changed.

図8(a)に示す仕切部材3の状態から、図8(b)に示すように、重なる部分βを小さくすると、流入口3aの、水面WLからの深さDp1が浅くなり、流入口3aの開口長L3が狭くなる。図示は省略するが、反対に、重なる部分βを大きくすると、流入口3aの、水面WLからの深さDp1が深くなり、流入口3aの開口長L3は広くなる。このように、一対の仕切部材構成体30が重なる部分βの大きさを変更することで、流入口3aの、水面WLからの深さDp1と開口長L3を調整することができる。なお、図8では、水面WLの高さが一定の場合に、流入口3aの、水面WLからの深さDp1を調整する態様を例に挙げて説明したが、水面WLの高さの変動に追従させて、流入口3aの、水面WLからの深さDp1が一定になるように調整する態様としてもよい。 When the overlapping portion β is reduced from the state of the partition member 3 shown in FIG. 8(a) to that shown in FIG. 8(b), the depth Dp1 of the inlet 3a from the water surface WL becomes shallower and the opening length L3 of the inlet 3a becomes narrower. Conversely, although not shown, when the overlapping portion β is increased, the depth Dp1 of the inlet 3a from the water surface WL becomes deeper and the opening length L3 of the inlet 3a becomes wider. In this way, by changing the size of the overlapping portion β of the pair of partition member components 30, the depth Dp1 and opening length L3 of the inlet 3a from the water surface WL can be adjusted. Note that in FIG. 8, an example is given of a mode in which the depth Dp1 of the inlet 3a from the water surface WL is adjusted when the height of the water surface WL is constant, but a mode in which the depth Dp1 of the inlet 3a from the water surface WL is adjusted to be constant in accordance with the fluctuation of the height of the water surface WL may also be used.

また、図8(a)および同図(b)に示すように、流路形成部材5は、円筒体の下方の略1/3を切り欠いた断面円弧状の流路形成部材本体50と、この流路形成部材本体50の切り欠いた部分の両端部分にそれぞれ設けられた、一対のスライド片53とを備えている。一対のスライド片53それぞれは、1/5円弧状のものであり、下端部分は、流路形成部材本体50から下方に突出し、これら下端部分の間に吸込口5aが形成されている。また、一対のスライド片53それぞれは、流路形成部材本体50の内周面50aに沿ってスライドし、これによって、吸込口5aの、水面WLからの深さDp3と開口長L2を調整することができる。 8(a) and 8(b), the flow path forming member 5 comprises a flow path forming member main body 50 with an arc-shaped cross section with approximately 1/3 of the lower part of the cylinder cut out, and a pair of slide pieces 53 provided at both ends of the cut-out part of the flow path forming member main body 50. Each of the pair of slide pieces 53 is 1/5 arc-shaped, with the lower end portion protruding downward from the flow path forming member main body 50, and the suction port 5a is formed between these lower end portions. Each of the pair of slide pieces 53 slides along the inner peripheral surface 50a of the flow path forming member main body 50, thereby making it possible to adjust the depth Dp3 from the water surface WL and the opening length L2 of the suction port 5a.

具体的には、図8(a)に示す、流路形成部材5の状態から、図8(b)に、点線の円弧状の矢印で示すように、一対のスライド片53それぞれを、流路形成部材本体50の内側(上方)にスライドさせると、吸込口5aの、水面WLからの深さDp3が浅くなり、吸込口5aの開口長L2が広くなる。図示は省略するが、反対に、一対のスライド片53それぞれを、流路形成部材本体50の外側(下方)にスライドさせると、吸込口5aの、水面WLからの深さDp3が深くなり、吸込口5aの開口長L2が狭くなる。 Specifically, when each of the pair of slide pieces 53 is slid inward (upward) of the flow path forming member body 50 from the state shown in Fig. 8(a) as shown by the dotted arc-shaped arrows in Fig. 8(b), the depth Dp3 of the suction port 5a from the water surface WL becomes shallower and the opening length L2 of the suction port 5a becomes wider. Conversely, although not shown, when each of the pair of slide pieces 53 is slid outward (downward) of the flow path forming member body 50, the depth Dp3 of the suction port 5a from the water surface WL becomes deeper and the opening length L2 of the suction port 5a becomes narrower.

なお、図8に示す変形例における、仕切部材3の構成を、流路形成部材5に適用してもよいし、流路形成部材5の構成を、仕切部材3に適用してもよい。また、一対の仕切部材構成体30やスライド片53を、吐出方向において複数に分割し、それぞれ調整することで、例えば、流入口3aの、水面WLからの深さDp1や、吸込口5aの開口長L2等を、吐出方向の上流側と、吐出方向の下流側とで異ならせることもできる。 The configuration of the partition member 3 in the modified example shown in FIG. 8 may be applied to the flow path forming member 5, and the configuration of the flow path forming member 5 may be applied to the partition member 3. In addition, by dividing the pair of partition member constituents 30 or the slide pieces 53 into multiple parts in the discharge direction and adjusting each of them, for example, the depth Dp1 of the inlet 3a from the water surface WL and the opening length L2 of the suction port 5a can be made different between the upstream side in the discharge direction and the downstream side in the discharge direction.

図9は、第10変形例の移送装置を示す図である。この変形例の移送装置1は、流路形成部材5が、仕切部材3の、幅方向における一端(図では左側の端部)に接続した、いわゆる片持ち状態で仕切部材3に支持されたものである。二点鎖線の四角で囲んで示すように、概念的には、流路形成部材5と仕切部材3それぞれは、一部を互いに共通にした、点線で示す共通部4を有している。これにより、仕切部材3と流路形成部材5との径方向の間隔Diが確保しやすくなる。また、本変形例では、仕切部材3から流路形成部材5にかけて、内周面4aが連続した曲面で構成されている。これにより、仕切部材3の流入口3aから吸込口5aに向かう水の流れが内周面4aに沿ったスムーズな流れになり、流路形成部材5の吸込口5aからスカムScを円滑に吸い込むことができる。なお、流路形成部材5の上端部分51の高さ(水面WLからの深さ)を、仕切部材3の、幅方向における他端(図では右側の端部)の高さ(水面WLからの深さ)と異ならせてもよいが、図9に示すように、流路形成部材5の上端部分51の高さと、仕切部材3の、幅方向における他端の高さを同じにすれば、スカムScが、幅方向の両側から流入口3aに流入しやすくなり好ましい。 9 is a diagram showing a transfer device of the tenth modified example. In this modified example, the transfer device 1 is supported by the partition member 3 in a so-called cantilevered state, in which the flow path forming member 5 is connected to one end (the end on the left side in the figure) of the partition member 3 in the width direction. As shown in the two-dot chain line rectangle, conceptually, the flow path forming member 5 and the partition member 3 each have a common part 4 shown by a dotted line, which is partly shared with each other. This makes it easier to ensure the radial distance Di between the partition member 3 and the flow path forming member 5. In addition, in this modified example, the inner circumferential surface 4a is composed of a continuous curved surface from the partition member 3 to the flow path forming member 5. As a result, the flow of water from the inlet 3a of the partition member 3 toward the suction port 5a becomes a smooth flow along the inner circumferential surface 4a, and the scum Sc can be smoothly sucked in from the suction port 5a of the flow path forming member 5. The height (depth from the water surface WL) of the upper end portion 51 of the flow path forming member 5 may be different from the height (depth from the water surface WL) of the other end in the width direction of the partition member 3 (the end on the right side in the figure). However, as shown in FIG. 9, if the height of the upper end portion 51 of the flow path forming member 5 and the height of the other end in the width direction of the partition member 3 are made the same, it is preferable because this makes it easier for scum Sc to flow into the inlet 3a from both sides in the width direction.

図10は、第11変形例の移送装置を示す図である。この変形例では、仕切部材3を省略し、流路形成部材5を、その吸込口5aが上方を向く姿勢に配置している。本変形例では、流路形成部材5の流路S内に吐出口7aから水が吐出されると、吐出された水の流れに引き込まれて、図10に示すように、吸込口5aから流路S内に吸い込まれる方向の水の流れが生じる。これにより、図10にスカムScの流れを概念的に示すように、流水部91の水面WLに浮遊しているスカムScが吸込口5aに向かって集まり、吸込口5aから流路S内に吸い込まれる。流路S内に吸い込まれたスカムScは、吐出口7aから吐出された水の流れによって移送方向に移動する。 Figure 10 shows a transfer device of the eleventh modified example. In this modified example, the partition member 3 is omitted, and the flow path forming member 5 is arranged in a position in which its suction port 5a faces upward. In this modified example, when water is discharged from the discharge port 7a into the flow path S of the flow path forming member 5, the water is drawn into the flow of the discharged water, and as shown in Figure 10, a flow of water is generated in the direction in which the water is sucked into the flow path S from the suction port 5a. As a result, as the flow of scum Sc is conceptually shown in Figure 10, the scum Sc floating on the water surface WL of the flowing water section 91 gathers toward the suction port 5a and is sucked into the flow path S from the suction port 5a. The scum Sc sucked into the flow path S moves in the transfer direction due to the flow of water discharged from the discharge port 7a.

なお、円弧状の両矢印で示すように、径方向の中心Oを回動中心として流路形成部材5を回動させ、直線の矢印で示す、吸込口5aが開口する方向を、角度αの範囲で変更できる態様としてもよい。また、流路形成部材5として、一点鎖線で示すように、図5(a)の第3変形例の移送装置1における、扁平状の流路形成部材5を用いてもよい。なお、図3に示す実施形態や、図4等に示す、仕切部材3を有する変形例においては、径方向の中心を回動中心として仕切部材3を回動させる態様を採用してもよい。 As shown by the arc-shaped double arrow, the flow path forming member 5 may be rotated around the radial center O as the rotation center, and the direction in which the suction port 5a opens may be changed within the range of angle α as shown by the straight arrow. As shown by the dashed line, the flat flow path forming member 5 in the transfer device 1 of the third modified example in FIG. 5(a) may be used as the flow path forming member 5. In the embodiment shown in FIG. 3 and the modified example having the partition member 3 shown in FIG. 4, etc., the partition member 3 may be rotated around the radial center as the rotation center.

次いで、設置する設備が異なる、本発明の移送装置の第2実施形態について説明する。以下に説明する第2実施形態においても、図1~図3に示す実施形態における構成要素の名称と同じ名称の構成要素には、これまで用いた符号を付して説明し、重複する説明は省略することがある。 Next, a second embodiment of the transfer device of the present invention, which differs in the equipment to be installed, will be described. In the second embodiment described below, components with the same names as those in the embodiment shown in Figures 1 to 3 will be described using the same reference numerals as used above, and duplicate descriptions may be omitted.

図11は、本発明の第2実施形態の移送装置が設けられた伏せ越し構造の概略構成図である。伏せ越し構造とは、下水管が河川や鉄道等を横切る場合、これら河川等よりも低い位置に伏せ越し管を設け、上流側管路と下流側管路との水位差によって下水を流す構造をいう。 Figure 11 is a schematic diagram of an inverted crossing structure equipped with a transfer device according to a second embodiment of the present invention. In an inverted crossing structure, when a sewer pipe crosses a river, a railway, or the like, an inverted crossing pipe is installed at a position lower than the river, etc., and sewage is allowed to flow by utilizing the water level difference between the upstream and downstream pipes.

伏せ越し構造8は、図11において、河川Riの左側から右側に下水DRを流すものであり、図では白抜きの矢印で示すように、左から右に向かう方向が下水DRの流れる方向になる。この伏せ越し構造8は、図11に示すように、下水DRの流れの上流側から下流側にかけて記載順に、上流側管路81、上流側マンホール82、伏せ越し管83、下流側マンホール84および下流側管路85が設けられている。上流側管路81は、上流側マンホール82に接続しており、伏せ越し管83は、河川Riよりも低い位置において、上流側マンホール82と、下流側マンホール84とに接続している。下流側管路85は、上流側管路81が上流側マンホール82に接続した位置よりも低い位置において、下流側マンホール84に接続している。なお、上流側マンホール82の底と下流側マンホール84の底には、それぞれ土砂溜まり821,841が形成されている。 In FIG. 11, the overpass structure 8 allows the sewage DR to flow from the left side to the right side of the river Ri, and as shown by the white arrow in the figure, the direction from left to right is the flow direction of the sewage DR. As shown in FIG. 11, the overpass structure 8 is provided with an upstream pipeline 81, an upstream manhole 82, an overpass pipe 83, a downstream manhole 84, and a downstream pipeline 85 in the order of description from the upstream side to the downstream side of the flow of the sewage DR. The upstream pipeline 81 is connected to the upstream manhole 82, and the overpass pipe 83 is connected to the upstream manhole 82 and the downstream manhole 84 at a position lower than the river Ri. The downstream pipeline 85 is connected to the downstream manhole 84 at a position lower than the position where the upstream pipeline 81 is connected to the upstream manhole 82. Note that soil and sand pools 821 and 841 are formed at the bottom of the upstream manhole 82 and the bottom of the downstream manhole 84, respectively.

上流側管路81を流れてきた下水DRは、上流側管路81と下流側管路85との水位差によって生じる、いわゆる逆サイホン作用によって、上流側マンホール82から、伏せ越し管83を流れ、さらに、下流側マンホール84から下流側管路85を流れていく。 The sewage DR that has flowed through the upstream pipeline 81 flows through the upstream manhole 82, the overflow pipe 83, and further through the downstream manhole 84 and the downstream pipeline 85 due to the so-called reverse siphon effect caused by the difference in water level between the upstream pipeline 81 and the downstream pipeline 85.

ここで、上流側管路81には、図1~図3に示す移送装置1と同じ構成の移送装置1が設けられている。この移送装置1は、上流側管路81が上流側マンホール82に接続する領域付近に、流路形成部材5の下流端52が位置している。前述した図1~図3に示す移送装置1と同様に、吐出口7aから水を吐出させると、下水DRの水面WLに浮遊したスカムScは、流路形成部材5に吸い込まれた後、上流側マンホール82に向かって移送され、流路形成部材5の下流端52から吹き出されることで、上流側マンホール82内の下水DRの水面WLに集められる。 Here, the upstream pipeline 81 is provided with a transfer device 1 having the same configuration as the transfer device 1 shown in Figures 1 to 3. In this transfer device 1, the downstream end 52 of the flow path forming member 5 is located near the area where the upstream pipeline 81 connects to the upstream manhole 82. As with the transfer device 1 shown in Figures 1 to 3 described above, when water is discharged from the discharge port 7a, the scum Sc floating on the water surface WL of the sewage DR is sucked into the flow path forming member 5, then transported toward the upstream manhole 82, and blown out from the downstream end 52 of the flow path forming member 5, where it is collected on the water surface WL of the sewage DR inside the upstream manhole 82.

上流側マンホール82内の下水DRの水面WLに集められたスカムScは、上流側マンホール82の鉄蓋を開けて除去され、また、その一部は、下水DRの流れに引き込まれて伏せ越し管83に流入する。なお、土砂溜まり821に沈降した砂等も、下水DRの流れによって伏せ越し管83に流入する。伏せ越し管83には、図1~図3に示す移送装置1と同じ構成の移送装置1と、沈降する砂等の沈降物を移送する沈降物移送装置2が設けられている。 The scum Sc that has collected on the water surface WL of the sewage DR inside the upstream manhole 82 is removed by opening the iron cover of the upstream manhole 82, and some of it is drawn into the flow of the sewage DR and flows into the overflow pipe 83. Sand and other materials that have settled in the soil and sand pit 821 also flow into the overflow pipe 83 with the flow of the sewage DR. The overflow pipe 83 is provided with a transfer device 1 having the same configuration as the transfer device 1 shown in Figures 1 to 3, and a sediment transfer device 2 that transfers the settling sediment, such as sand.

図12は、図11に示す伏せ越し管のC-C線断面図である。なお、図12では、伏せ越し管83における、幅方向の両側領域と、上下方向における中間領域は、省略している。 Figure 12 is a cross-sectional view of the hidden overpass pipe shown in Figure 11 taken along line C-C. Note that in Figure 12, the two side regions in the width direction and the middle region in the up-down direction of the hidden overpass pipe 83 are omitted.

図12に示すように、伏せ越し管83内は下水DRで満たされており、下水DRの水面WLは、伏せ越し管83の天井面831に接する状態になっている。移送装置1は、仕切部材3の流入口3a、および流路形成部材5の上端部分51における、水面WLすなわち天井面831からの深さDp1が、20mm以上に設定されている。水面WLからの深さDp1が、20mm未満であると、伏せ越し管83の天井面831と仕切部材3の流入口3aとの間や、伏せ越し管83の天井面831と流路形成部材5の上端部分51との間にスカムScが引っ掛かりやすくなり、好ましくない。 As shown in FIG. 12, the inverted overpass pipe 83 is filled with sewage DR, and the water surface WL of the sewage DR is in contact with the ceiling surface 831 of the inverted overpass pipe 83. In the transfer device 1, the depth Dp1 from the water surface WL, i.e., the ceiling surface 831, at the inlet 3a of the partition member 3 and the upper end portion 51 of the flow path forming member 5 is set to 20 mm or more. If the depth Dp1 from the water surface WL is less than 20 mm, scum Sc will be easily caught between the ceiling surface 831 of the inverted overpass pipe 83 and the inlet 3a of the partition member 3, or between the ceiling surface 831 of the inverted overpass pipe 83 and the upper end portion 51 of the flow path forming member 5, which is not preferable.

吐出部材7の吐出口7aから流路形成部材5の流路S内に水が吐出されると、吸込口5aから流路S内に吸い込まれる方向の水の流れが生じ、流入口3aから周辺領域R1内に流れ込む水の流れが生じるとともに、周辺領域R1内では吸込口5aに向かう水の流れが生じる。この結果、水面WL(天井面831付近)には、仕切部材3の流入口3aに集まる方向の流れが生じ、天井面831付近に浮遊しているスカムScが集まってきて、流入口3aから周辺領域R1内に流入する。周辺領域R1内に流入したスカムScは、吸込口5aから流路S内に吸い込まれ、吸い込まれたスカムScが、下流側マンホール84まで移送される。これにより、スカムScが、伏せ越し管83の天井面831に付着して伏せ越し管83内に留まってしまうといった問題を解消することができる。 When water is discharged from the discharge port 7a of the discharge member 7 into the flow path S of the flow path forming member 5, a water flow occurs in the direction of being sucked into the flow path S from the suction port 5a, a water flow occurs into the peripheral region R1 from the inlet 3a, and a water flow occurs in the peripheral region R1 toward the suction port 5a. As a result, a flow occurs on the water surface WL (near the ceiling surface 831) in the direction of gathering at the inlet 3a of the partition member 3, and scum Sc floating near the ceiling surface 831 gathers and flows into the peripheral region R1 from the inlet 3a. The scum Sc that flows into the peripheral region R1 is sucked into the flow path S from the suction port 5a, and the sucked scum Sc is transported to the downstream manhole 84. This can solve the problem of scum Sc adhering to the ceiling surface 831 of the overpass pipe 83 and remaining in the overpass pipe 83.

伏せ越し管83の底側には、沈降物を移送する沈降物移送装置2が底面832上に設けられている。また、伏せ越し管83の底は改修され、クロスハッチングで示す、コンクリートで改修された部分によって、沈降物移送装置2に向かって下方に傾斜した、一対の傾斜面833が設けられている。沈降物移送装置2は、トラフ21と、底側流路形成部材25と、底側吐出部材27とを備えたものである。トラフ21は、伏せ越し管83の底側において、上流側マンホール82から下流側マンホール84(図11参照)に向かう方向に延在した溝Mを形成するものである。トラフ21の上方に向けて開口した部分が、溝Mの開口21aになり、この溝Mの開口21aには、傾斜面833の下端が接続している。底側流路形成部材25は、トラフ21と同じ方向に延在し、その全長が、トラフ21と略同じ長さに形成されている。底側流路形成部材25は、底側流路S2を形成するものであり、この底側流路S2と溝Mとを仕切っている。また、底側流路形成部材25は、底側流路S2につながり溝M内に位置する溝内吸込口25aを有している。底側吐出部材27は、底側吐出口27aを備えたものであり、この底側吐出口27aから、底側流路S2内に水が吐出される。 At the bottom side of the overhanging pipe 83, a sediment transfer device 2 for transferring sediment is provided on the bottom surface 832. The bottom of the overhanging pipe 83 is repaired, and a pair of inclined surfaces 833 inclined downward toward the sediment transfer device 2 are provided by the parts repaired with concrete, shown by cross-hatching. The sediment transfer device 2 includes a trough 21, a bottom-side flow path forming member 25, and a bottom-side discharge member 27. The trough 21 forms a groove M extending in a direction from the upstream manhole 82 toward the downstream manhole 84 (see FIG. 11) at the bottom side of the overhanging pipe 83. The part of the trough 21 that opens upward becomes the opening 21a of the groove M, and the lower end of the inclined surface 833 is connected to the opening 21a of the groove M. The bottom-side flow path forming member 25 extends in the same direction as the trough 21, and its total length is formed to be approximately the same length as the trough 21. The bottom side flow path forming member 25 forms the bottom side flow path S2 and separates the bottom side flow path S2 from the groove M. The bottom side flow path forming member 25 also has a groove suction port 25a that is connected to the bottom side flow path S2 and is located in the groove M. The bottom side discharge member 27 has a bottom side discharge port 27a, and water is discharged from the bottom side discharge port 27a into the bottom side flow path S2.

伏せ越し管83に流れ込んだ下水DRに含まれている砂等の沈降物は、下水DRが下流側へ流れていく課程において沈降していき、傾斜面833に沿ってトラフ21に向かって流れ落ちる。傾斜面833から流れ落ちた沈降物は、トラフ21の開口21aから溝M内に入り込む。また、図11に示す、上流側マンホール82の土砂溜まり821に堆積した砂等も溝M内に入り込む場合もある。 Sediment such as sand contained in the sewage DR that has flowed into the overflow pipe 83 settles as the sewage DR flows downstream, and flows down along the inclined surface 833 toward the trough 21. The sediment that flows down from the inclined surface 833 enters the groove M through the opening 21a of the trough 21. In addition, sand and the like that has accumulated in the soil and sand pit 821 of the upstream manhole 82, as shown in FIG. 11, may also enter the groove M.

底側吐出口27aから底側流路S2内に水が吐出されると、吐出された水の流れに引き込まれて、溝Mの底に堆積した沈降物は、図12に示す曲線の矢印のように、溝内吸込口25aから底側流路S2内に吸い込まれる。さらに、その底側流路形成部材25の底側流路S2内では、吸い込まれた沈降物が、底側吐出口27aから吐出された水の流れによって吐出方向下流側(下流側マンホール84側)に向かって移動する。これにより、砂等の沈降物を伏せ越し管83内に残留させることなく、下流側マンホール84の土砂溜まり841等に移送することができる。 When water is discharged from the bottom discharge port 27a into the bottom flow path S2, the sediment that has accumulated at the bottom of the groove M is drawn into the flow of the discharged water and is sucked into the bottom flow path S2 from the groove suction port 25a, as shown by the curved arrow in Figure 12. Furthermore, in the bottom flow path S2 of the bottom flow path forming member 25, the sucked sediment moves toward the downstream side of the discharge direction (the downstream manhole 84 side) due to the flow of the water discharged from the bottom discharge port 27a. This allows sediment such as sand to be transported to the sediment pool 841 of the downstream manhole 84 without remaining in the overpass pipe 83.

本発明は上述の実施の形態に限られることなく特許請求の範囲に記載した範囲で種々の変更を行うことが出来る。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims.

なお、以上説明した各実施形態や各変形例の記載それぞれにのみ含まれている構成要件であっても、その構成要件を他の実施形態や他の変形例に適用してもよい。 Note that even if a component is included only in the description of each of the embodiments and variations described above, that component may be applied to other embodiments or other variations.

また、これまでに説明した移送装置は、流路を形成するものであって、該流路につながり水中に没する吸込口が設けられた流路形成部材と、
前記流路内に流体を吐出する吐出口とを備え、
前記吸込口は、水面に浮遊した被移送物を、前記流路内に流体が吐出されることで該流路内に吸い込む開口として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されることで該流体の吐出方向下流側に向かって移動する経路として機能するものであることを特徴とする。
The transfer device described above includes a flow path forming member having a suction port connected to the flow path and submerged in water;
a discharge port that discharges a fluid into the flow path,
the suction port functions as an opening that sucks an object to be transferred floating on the water surface into the flow path by discharging a fluid into the flow path,
The flow path is characterized in that it functions as a path along which the object to be transported, sucked into the flow path, moves toward the downstream side in the discharge direction of the fluid as the fluid is discharged into the flow path.

さらに、この移送装置において、水中における、前記流路形成部材周辺の周辺領域と他の領域とを、該周辺領域が内側となるように仕切り、該周辺領域につながった流入口が設けられた仕切部材を備え、
前記流入口は、水面に浮遊した前記被移送物を、前記流路内に流体が吐出されることで前記周辺領域内に流入させる開口として機能するものであり、
前記吸込口は、前記流路内に流体が吐出されることで、前記周辺領域内に流入した前記被移送物を該流路内に吸い込む開口として機能するものであってもよい。
Further, in the transfer device, a partition member is provided which separates a peripheral area around the flow path forming member in water from another area so that the peripheral area is on the inside, and which has an inlet connected to the peripheral area,
the inlet functions as an opening that allows the object to be transferred, floating on the water surface, to flow into the peripheral region by discharging a fluid into the flow path;
The suction port may function as an opening that sucks the transported object that has flowed into the peripheral area into the flow path by discharging a fluid into the flow path.

また、これまでに説明した移送装置は、流路を形成するものであって、該流路につながり水中に没する吸込口が設けられ、水面に対して略平行に延在したパイプ状の流路形成部材と、
前記流路内に、前記流路形成部材の軸方向に向かって流体を吐出する吐出口とを備え、
前記吸込口は、前記流路形成部材の延在方向に延在し、水面に浮遊した被移送物を、前記流路内に流体が吐出されることで該流路内に吸い込む開口として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されることで該流体の吐出方向下流側に向かって移動する経路として機能するものであることを特徴とする。
The transfer device described above forms a flow path, and includes a pipe-shaped flow path forming member that is connected to the flow path and has an inlet port that is submerged in water and extends approximately parallel to the water surface;
a discharge port disposed within the flow path, the discharge port discharging a fluid in an axial direction of the flow path forming member,
the suction port extends in an extending direction of the flow path forming member, and functions as an opening that sucks a transported object floating on the water surface into the flow path by discharging a fluid into the flow path,
The flow path is characterized in that it functions as a path along which the object to be transported, sucked into the flow path, moves toward the downstream side in the discharge direction of the fluid as the fluid is discharged into the flow path.

さらに、この移送装置において、水中における、前記流路形成部材周辺の周辺領域と他の領域とを、該周辺領域が内側となるように仕切り、該周辺領域につながった流入口が設けられ、水面に対して略平行に延在したパイプ状の仕切部材を備え、
前記流入口は、上方に向くように構成され、水面に浮遊した前記被移送物を、前記流路内に流体が吐出されることで前記周辺領域内に流入させる開口として機能するものであり、
前記吸込口は、前記周辺領域内で開口し、前記流路内に流体が吐出されることで、該周辺領域内に流入した前記被移送物を該流路内に吸い込む開口として機能するものであってもよい。
Further, in the transfer device, a peripheral area around the flow path forming member in water is partitioned from other areas so that the peripheral area is on the inside, and a pipe-shaped partition member is provided which has an inlet connected to the peripheral area and extends approximately parallel to the water surface,
the inlet is configured to face upward and functions as an opening that allows the object to be transferred floating on the water surface to flow into the peripheral region by discharging a fluid into the flow path;
The suction port may open within the peripheral region and function as an opening that sucks the transported object that has flowed into the peripheral region into the flow path by discharging a fluid into the flow path.

さらに、この移送装置は、前記流体の吐出方向と水平面内で直交する方向に移動可能なものであってもよい。 Furthermore, the transfer device may be movable in a direction perpendicular to the discharge direction of the fluid in a horizontal plane.

こうすることで、前記移送装置の数を増やすことなく、前記水面における、より広い範囲に浮遊する被移送物を前記流入口から前記周辺領域内に流入させ、移送することができる。 In this way, the objects to be transferred that are floating over a wider area on the water surface can be transported by flowing them into the surrounding area from the inlet without increasing the number of transport devices.

また、これまでに説明した移送装置は、流路を形成するものであって、該流路につな
がり水中に没する吸込口が設けられ、水面に対して略平行に延在したパイプ状の流路形成部材と、該流路内に、該流路形成部材の軸方向に向かって流体を吐出する吐出口とを備えた移送装置であって、
前記吸込口は、上方を向くように構成され、前記流路形成部材の延在方向に延在し、水面に浮遊した被移送物を、前記流路内に流体が吐出されることで該流路内に吸い込む開口として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されることで該流体の吐出方向下流側に向かって移動する経路として機能するものであることを特徴とする。
The transfer device described above is a transfer device that forms a flow path, has a suction port that is connected to the flow path and is submerged in water, and is equipped with a pipe-shaped flow path forming member that extends approximately parallel to the water surface, and a discharge port that discharges a fluid into the flow path in the axial direction of the flow path forming member,
the suction port is configured to face upward, extends in an extending direction of the flow path forming member, and functions as an opening that sucks an object to be transferred floating on the water surface into the flow path by discharging a fluid into the flow path,
The flow path is characterized in that it functions as a path along which the object to be transported, sucked into the flow path, moves toward the downstream side in the discharge direction of the fluid as the fluid is discharged into the flow path.

ここで、前記流路形成部材は、前記吸込口が前記水面より低い位置から該水面に向かって開口し、該水面から200mm以内の深さに位置するものであってもよい。なお、前記流路形成部材は、前記吸込口が前記水面以外の方向に向かって開口したものであってもよい。また、前記水面の高さが変化する場合には、前記流路形成部材は、鉛直方向に移動し、前記吸込口の高さを変更できるものであってもよい。さらに、前記流路は、前記吸込口側の部分が、該吸込口に近づくほど狭くなったものであってもよい。また、前記流路形成部材は、円筒体の一部を切り欠いた形状のものであってもよい。さらに、前記吐出口は、真円のものであってもよいし、扁平な形状のものであってもよく、また、該吐出口を、吐出方向に間隔をあけて複数設ける態様としてもよい。さらに、前記吐出口から吐出される前記流体は、液体であってもよいし気体であってもよく、気液混合体であってもよい。また、前記吐出口は、毎分300リットル以上3000リットル以下の流体を、0.3MPa以下の圧力で吐出するものであってもよい。 Here, the flow path forming member may be one in which the suction port opens toward the water surface from a position lower than the water surface and is located at a depth of 200 mm or less from the water surface. The flow path forming member may be one in which the suction port opens toward a direction other than the water surface. Furthermore, when the height of the water surface changes, the flow path forming member may be one that can move vertically and change the height of the suction port. Furthermore, the flow path may be one in which the portion on the suction port side becomes narrower as it approaches the suction port. Furthermore, the flow path forming member may be one in which a part of a cylinder is cut out. Furthermore, the discharge port may be one that is a perfect circle or one that is flat, and the discharge port may be provided in a plurality of spaces in the discharge direction. Furthermore, the fluid discharged from the discharge port may be a liquid or a gas, or may be a gas-liquid mixture. Furthermore, the discharge port may be one that discharges 300 liters or more and 3000 liters or less of fluid per minute at a pressure of 0.3 MPa or less.

この移送装置によれば、前記吐出口から前記流路内に流体が吐出されることで、吐出された流体の流れに引き込まれて、前記水面に浮遊した前記被移送物が、前記吸込口から該流路内に吸い込まれる。さらに、前記流路内では、吸い込まれた前記被移送物が、前記流体で生じた水の流れによって吐出方向下流側に向かって移動する。このように前記流路内に一旦生じた水の流れは、該流路が前記流路形成部材によって囲われているため、特許文献1記載の移送装置における、気流や吹送流と比べ、はるかに減衰しにくく、被移送物を長い距離移送することができる。さらに、水面上には、前記吸込口に吸い込まれる方向の流れが生じ、水面に浮遊した前記移送物を、広い範囲で前記流路内に吸い込むことができる。 According to this transfer device, when fluid is discharged from the discharge port into the flow path, the object to be transferred, which is drawn into the flow of the discharged fluid and floats on the water surface, is sucked into the flow path from the suction port. Furthermore, within the flow path, the object to be transferred that has been sucked in moves toward the downstream side in the discharge direction due to the water flow generated by the fluid. As the flow path is surrounded by the flow path forming member, the water flow once generated in this way is much less likely to attenuate compared to the air flow or wind current in the transfer device described in Patent Document 1, and the object to be transferred can be transported a long distance. Furthermore, a flow is generated on the water surface in a direction that is sucked into the suction port, and the object to be transferred that floats on the water surface can be sucked into the flow path over a wide area.

またさらに、水面上における、前記吸込口に吸い込まれる方向の流れによって、水面上に、前記被移送物が除去された領域が移送方向に延在した状態で生じる場合がある。以下、前記被移送物が除去された水面上の領域を、水面の除去領域と称する場合がある。受け入れた汚水を移送方向に流す、例えば導水渠等に前記移送装置を設けた場合には、受け入れた汚水の流れによって水面には移送方向に向かう流れも生じ、この流れによって、スカム(被移送物)が、水面の除去領域を移送方向にも流れる。また、水面の除去領域を流れるスカムが、水面上にまとまった状態で浮遊しているスカムに接触することでその一部が崩れ、崩れた部分は、前記吸込口から吸い込まれて前記流路内を移動し、あるいは、水面の除去領域を流れて移送方向に移動する。この結果、水面上にまとまった状態で浮遊しているスカムを、少しずつ崩しながら効率的に移送することができる。 Furthermore, due to the flow on the water surface in the direction of being sucked into the suction port, an area on the water surface from which the transferred material has been removed may be generated in a state extending in the transfer direction. Hereinafter, the area on the water surface from which the transferred material has been removed may be referred to as the removal area on the water surface. When the transfer device is installed in, for example, a conduit that flows the received wastewater in the transfer direction, a flow in the transfer direction is also generated on the water surface due to the flow of the received wastewater, and this flow causes scum (transferred material) to flow in the transfer direction through the removal area on the water surface. In addition, when the scum flowing through the removal area on the water surface comes into contact with scum floating in a consolidated state on the water surface, part of it breaks down, and the broken part is sucked in from the suction port and moves within the flow path, or flows through the removal area on the water surface and moves in the transfer direction. As a result, the scum floating in a consolidated state on the water surface can be efficiently transferred while breaking down little by little.

これらによって、前記吐出口や、該吐出口に流体を供給する配管等の個数が少なくて済み、簡易な構造を採用することができる。さらに、前記吐出口から吐出される流体の量も抑えることができる。なお、前述したように、前記流路内に水の流れが一旦生じればよいため、前記吐出口から吐出させる流体の圧力は、0.1MPa以下の弱い圧力であっても十分な場合がある。 As a result, the number of outlets and the number of pipes that supply fluid to the outlets can be reduced, allowing a simple structure to be adopted. Furthermore, the amount of fluid discharged from the outlets can be reduced. As mentioned above, it is sufficient to create a water flow in the flow path once, so in some cases a weak pressure of 0.1 MPa or less may be sufficient for the fluid to be discharged from the outlets.

また、これまでに説明した移送装置は、流路を形成するものであって、該流路につながり水中に没する吸込口が設けられ、水面に対して略平行に延在したパイプ状の流路形成部材と、
前記流路内に、前記流路形成部材の軸方向に向かって流体を吐出する吐出口と、
水中における、前記流路形成部材周辺の周辺領域と他の領域とを、該周辺領域が内側となるように仕切り、該周辺領域につながった流入口が設けられ、水面に対して略平行に延在したパイプ状の仕切部材とを備え、
前記流入口は、上方に向くように構成され、水面に浮遊した被移送物を、前記流路内に流体が吐出されることで前記周辺領域内に流入させる開口として機能するものであり、
前記吸込口は、前記周辺領域内で下方を向いて開口し、前記流路内に流体が吐出されることで、該周辺領域内に流入した前記被移送物を該流路内に吸い込む開口として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されることで該流体の吐出方向下流側に向かって移動する経路として機能するものであることを特徴とする。
The transfer device described above forms a flow path, and includes a pipe-shaped flow path forming member that is connected to the flow path and has an inlet port that is submerged in water and extends approximately parallel to the water surface;
a discharge port that discharges a fluid into the flow passage in an axial direction of the flow passage forming member;
a pipe-shaped partition member that partitions a peripheral area around the flow path forming member and another area underwater so that the peripheral area is on the inside, has an inlet connected to the peripheral area, and extends approximately parallel to the water surface;
the inlet is configured to face upward and functions as an opening that allows a transport object floating on the water surface to flow into the peripheral area by discharging a fluid into the flow path;
the suction port is an opening facing downward within the peripheral region, and functions as an opening that sucks the transported object that has flowed into the peripheral region into the flow path by discharging a fluid into the flow path,
The flow path is characterized in that it functions as a path along which the object to be transported, sucked into the flow path, moves toward the downstream side in the discharge direction of the fluid as the fluid is discharged into the flow path.

ここで、前記仕切部材は、前記流入口が前記水面より低い位置から該水面に向かって開口し、該水面から200mm以内の深さに位置するものであってもよい。また、前記水面の高さが変化する場合には、前記仕切部材は、鉛直方向に移動し、前記吸込口の高さを変更できるものであってもよい。さらに、前記周辺領域は、前記流入口側の部分が、該流入口に近づくほど狭くなったものであってもよい。また、前記仕切部材は、上端部分に前記幅方向の中央側へ入り込んだ湾曲部を有するものであってもよい。さらに、前記流路形成部材は、前記吸込口が前記周辺領域内で開口し、上端部分が、前記流入口と略同じ高さに位置したもの、該流入口よりも下方に位置したもの、あるいは該流入口よりも上方に位置したもののいずれかであってもよい。また、前記仕切部材は、円筒体の上端部分を切り欠いた形状のものであってもよい。さらに、前記仕切部材と前記流路形成部材は、該仕切部材から該流路形成部材にかけて、内周面が連続した曲面で構成されているものであってもよい。また、前記流路形成部材は、前記仕切部材の、前記幅方向における一端側と他端側とのうち、該他端側と離間した状態で、一部を該仕切部材の一部と共通にして該一端側に接続したものであってもよい。 Here, the partition member may be one in which the inlet opens toward the water surface from a position lower than the water surface and is located at a depth of 200 mm or less from the water surface. In addition, when the height of the water surface changes, the partition member may be one that can move vertically and change the height of the suction port. Furthermore, the peripheral area may be one in which the part on the inlet side becomes narrower as it approaches the inlet. In addition, the partition member may have a curved part at the upper end part that enters the center side in the width direction. Furthermore, the flow path forming member may be one in which the suction port opens within the peripheral area and the upper end part is located at approximately the same height as the inlet, one located below the inlet, or one located above the inlet. In addition, the partition member may be a shape in which the upper end part of a cylinder is cut out. Furthermore, the partition member and the flow path forming member may be one in which the inner circumferential surface is configured with a continuous curved surface from the partition member to the flow path forming member. The flow path forming member may be connected to one end side of the partition member in the width direction, with a portion of the flow path forming member being shared with a portion of the partition member, while being spaced apart from the other end side.

前記仕切部材を備える態様を採用すれば、水中において、前記周辺領域が、該仕切部材によって他の領域と仕切られているため、前記流入口から前記周辺領域内への前記被移送物の流入が促進され、水面に浮遊した該被移送物を効率的に該周辺領域内に流入させることができる。さらに、前記周辺領域は、他の領域と前記仕切部材に仕切られることによって、前記流入口から前記吸込口へ向かう水の流れが妨げられることがなくなり、該周辺領域内に流入した前記被移送物は、該周辺領域内を流れて円滑に該吸込口から吸い込まれる。 By adopting an embodiment that includes the partition member, the peripheral area is separated from other areas underwater by the partition member, which promotes the inflow of the object to be transferred from the inlet into the peripheral area, and the object to be transferred floating on the water surface can be efficiently introduced into the peripheral area. Furthermore, by separating the peripheral area from other areas by the partition member, the flow of water from the inlet to the suction port is not impeded, and the object to be transferred that has flowed into the peripheral area flows through the peripheral area and is smoothly sucked in through the suction port.

また、受け入れた水を移送方向に流す、例えば導水渠等に前記移送装置を設けた場合には、受け入れた水の流れによってスカム(被移送物)が、水面の除去領域を移送方向にも流れる。また、水面の除去領域を流れるスカムが、水面上にまとまった状態で滞留しているスカムに接触することでその一部が崩れ、崩れた部分は、前記流入口から前記周辺領域に流入した後、前記吸込口から吸い込まれて前記流路内を移動し、あるいは、水面の除去領域を流れて移送方向に移動する。この結果、水面上にまとまった状態で滞留しているスカムを、少しずつ崩しながら効率的に移送することができる。 In addition, when the transfer device is installed in, for example, a water conduit that flows the received water in the transfer direction, the flow of the received water also causes the scum (transferred material) to flow in the transfer direction through the removal area on the water surface. When the scum flowing through the removal area on the water surface comes into contact with the scum that has accumulated on the water surface, part of it breaks down, and the broken part flows from the inlet into the surrounding area, after which it is sucked in through the suction port and moves within the flow path, or flows through the removal area on the water surface and moves in the transfer direction. As a result, the scum that has accumulated on the water surface can be efficiently transferred while breaking it down little by little.

また、この移送装置において、前記流路形成部材は、前記流体の吐出方向と水平面内で直交する幅方向の寸法が高さ方向の寸法よりも長い扁平な形状のものであってもよい。 In addition, in this transfer device, the flow path forming member may have a flat shape in which the dimension in the width direction perpendicular to the discharge direction of the fluid in a horizontal plane is longer than the dimension in the height direction.

このように、扁平な形状の流路形成部材を採用すれば、前記吸込口を前記幅方向に広くとることが容易になる。前記吸込口を前記幅方向に広くすれば、前記水面のより広い範囲に浮遊した前記被移送物を、前記流路内に吸い込むことができる。また、前記流路形成部材を扁平な形状にすることで装置全体を薄く構成し、浅い水路等にも好適に用いることができる。さらに、前記流路形成部材を扁平な形状にすることで、前記移送装置が設けられた導水渠等の汚水等の流れを妨げにくくなり、汚水等の流れに対する抵抗を軽減することも可能になる。 In this way, by adopting a flow path forming member with a flat shape, it becomes easy to make the suction port wider in the width direction. By making the suction port wider in the width direction, the transported object floating over a wider area of the water surface can be sucked into the flow path. In addition, by making the flow path forming member flat, the entire device can be made thin, and it can be suitably used in shallow waterways, etc. Furthermore, by making the flow path forming member flat, it becomes less likely to impede the flow of sewage, etc. in a water conduit in which the transport device is installed, and it is also possible to reduce resistance to the flow of sewage, etc.

また、この移送装置において、前記仕切部材は、前記流体の吐出方向と水平面内で直交する幅方向の寸法が高さ方向の寸法よりも長い扁平な形状のものであってもよい。 In addition, in this transfer device, the partition member may have a flat shape in which the dimension in the width direction perpendicular to the discharge direction of the fluid in a horizontal plane is longer than the dimension in the height direction.

このように、扁平な形状の仕切部材を採用すれば、前記流入口を前記幅方向に広くとることが容易になる。前記流入口を前記幅方向に広くすれば、前記水面のより広い範囲に浮遊した前記被移送物を、前記周辺領域内に流入させることができる。また、前記仕切部材を扁平な形状にすることで装置全体を薄く構成することができ、浅い水路等にも好適に用いることができる。さらに、前記仕切部材を扁平な形状にすることで、前記移送装置が設けられた導水渠等の汚水等の流れを妨げにくくなり、汚水等の流れに対する抵抗を軽減することも可能になる。 In this way, by adopting a partition member with a flat shape, it becomes easy to make the inlet wider in the width direction. By making the inlet wider in the width direction, the transferred objects floating over a wider area of the water surface can be made to flow into the peripheral area. In addition, by making the partition member flat, the entire device can be made thinner, and it can be suitably used in shallow waterways, etc. Furthermore, by making the partition member flat, it becomes less likely to impede the flow of sewage, etc. in the water conduit in which the transfer device is installed, and it is also possible to reduce resistance to the flow of sewage, etc.

また、これまでに説明した移送装置は、流路を形成するものであって、該流路につながり水中に没する吸込口が設けられた流路形成部材と、
前記流路内に流体を吐出する吐出口と、
水面に対して略平行に延在し水中に没する流入口が設けられ、前記流路形成部材を囲う仕切部材とを備え、
前記流入口は、水面に浮遊した被移送物を、前記流路内に流体が吐出されることで前記仕切部材と前記流路形成部材との間の領域に流入させる開口として機能するものであり、
前記吸込口は、前記流路内に流体が吐出されることで、前記仕切部材と前記流路形成部材との間の領域に流入した前記被移送物を該流路内に吸い込む開口として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されることで該流体の吐出方向下流側に向かって移動する経路として機能するものであり、
前記仕切部材と前記流路形成部材との間隔は、前記吸込口に向かうにつれて狭くなっていることを特徴とする。
The transfer device described above includes a flow path forming member having a suction port connected to the flow path and submerged in water;
a discharge port that discharges a fluid into the flow path;
an inlet extending substantially parallel to the water surface and submerged in the water is provided; and a partition member surrounding the flow path forming member;
the inlet functions as an opening that allows a transport object floating on the water surface to flow into a region between the partition member and the flow path forming member by discharging a fluid into the flow path,
the suction port functions as an opening that sucks the object to be transferred, which has flowed into a region between the partition member and the flow path forming member, into the flow path by discharging a fluid into the flow path,
the flow path functions as a path along which the object to be transferred, which has been sucked into the flow path, moves toward a downstream side in a discharge direction of the fluid as the fluid is discharged into the flow path,
The distance between the partition member and the flow path forming member is narrowed toward the suction port.

また、これまでに説明した移送装置は、流路を形成するものであって、該流路につながり水中に没する吸込口が下方に設けられた断面が円弧状の流路形成部材と、
前記流路内に流体を吐出する吐出口と、
水面に対して略平行に延在し水中に没する流入口が上方に設けられ、前記流路形成部材を囲う断面が円弧状の仕切部材とを備え、
前記流路形成部材は、前記仕切部材と略平行に延在したものであり、
前記流入口は、水面に浮遊した被移送物を、前記流路内に流体が吐出されることで前記仕切部材と前記流路形成部材との間の領域に流入させる開口として機能するものであり、
前記吸込口は、前記流路内に流体が吐出されることで、前記仕切部材と前記流路形成部材との間の領域に流入した前記被移送物を該流路内に吸い込む開口として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されることで該流体の吐出方向下流側に向かって移動する経路として機能するものであり、
前記仕切部材と前記流路形成部材との径方向の間隔は、前記吸込口に向かうにつれて狭くなっていることを特徴とする。
The transfer device described above forms a flow path, and includes a flow path forming member having an arc-shaped cross section and a suction port connected to the flow path and submerged in water provided at a lower portion thereof;
a discharge port that discharges a fluid into the flow path;
an inlet extending substantially parallel to the water surface and submerged in the water is provided at an upper portion; and a partition member having an arc-shaped cross section surrounding the flow path forming member;
the flow path forming member extends substantially parallel to the partition member,
the inlet functions as an opening that allows a transport object floating on the water surface to flow into a region between the partition member and the flow path forming member by discharging a fluid into the flow path,
the suction port functions as an opening for sucking the object to be transferred, which has flowed into a region between the partition member and the flow path forming member, into the flow path by discharging a fluid into the flow path,
the flow path functions as a path along which the object to be transferred, which has been sucked into the flow path, moves toward a downstream side in a discharge direction of the fluid as the fluid is discharged into the flow path,
The radial distance between the partition member and the flow passage forming member is narrowed toward the suction port.

1 移送装置
3 仕切部材
3a 流入口
5 流路形成部材
5a 吸込口
51 上端部分
7 吐出部材
7a 吐出口
9 導水渠
S 流路
Sc スカム
R1 周辺領域
W 汚水
REFERENCE SIGNS LIST 1 Transfer device 3 Partition member 3a Inlet 5 Flow path forming member 5a Suction port 51 Upper end portion 7 Discharge member 7a Discharge port 9 Water conduit S Flow path Sc Scum R1 Surrounding area W Wastewater

Claims (1)

流路を形成するものであって、該流路につながり水中に没する吸込口が設けられた流路形成部材と、
前記流路内に流体を吐出する吐出口と、
水中に没する流入口が設けられ、前記流路形成部材を囲う仕切部材とを備え、
前記流入口は、水面に浮遊した被移送物を、前記流路内に流体が吐出されることで前記仕切部材と前記流路形成部材との間の領域に流入させる開口として機能するものであり、
前記吸込口は、前記流路内に流体が吐出されることで、前記仕切部材と前記流路形成部材との間の領域に流入した前記被移送物を該流路内に吸い込む開口として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されることで該流体の吐出方向下流側に向かって移動する経路として機能するものであり、
前記流路形成部材と前記仕切部材は、前記吐出方向下流側に向かうに従い水面に近づくように傾斜した姿勢で配置されたものであり、
前記吐出口は、前記流路形成部材の傾斜した姿勢に沿って流体を吐出するものであることを特徴とする移送装置。
A flow path forming member that forms a flow path and has an inlet port that is connected to the flow path and is submerged in water;
a discharge port that discharges a fluid into the flow path;
a partition member that is provided with an inlet that is submerged in water and that surrounds the flow path forming member;
the inlet functions as an opening that allows a transport object floating on the water surface to flow into a region between the partition member and the flow path forming member by discharging a fluid into the flow path,
the suction port functions as an opening for sucking the object to be transferred, which has flowed into a region between the partition member and the flow path forming member, into the flow path by discharging a fluid into the flow path,
the flow path functions as a path along which the object to be transferred, which has been sucked into the flow path, moves toward a downstream side in a discharge direction of the fluid as the fluid is discharged into the flow path,
the flow passage forming member and the partition member are disposed in an inclined position so as to approach a water surface toward a downstream side in the discharge direction,
A transfer device, characterized in that the discharge port discharges the fluid along the inclined posture of the flow path forming member.
JP2024018092A 2016-09-28 2024-02-08 Transport Equipment Pending JP2024059682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024018092A JP2024059682A (en) 2016-09-28 2024-02-08 Transport Equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016189180A JP2018051461A (en) 2016-09-28 2016-09-28 Transfer device
JP2021063950A JP7162924B2 (en) 2016-09-28 2021-04-05 Transfer device
JP2022163775A JP7440959B2 (en) 2016-09-28 2022-10-12 Transfer device
JP2024018092A JP2024059682A (en) 2016-09-28 2024-02-08 Transport Equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022163775A Division JP7440959B2 (en) 2016-09-28 2022-10-12 Transfer device

Publications (1)

Publication Number Publication Date
JP2024059682A true JP2024059682A (en) 2024-05-01

Family

ID=61834618

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2016189180A Pending JP2018051461A (en) 2016-09-28 2016-09-28 Transfer device
JP2021063950A Active JP7162924B2 (en) 2016-09-28 2021-04-05 Transfer device
JP2022163775A Active JP7440959B2 (en) 2016-09-28 2022-10-12 Transfer device
JP2024018092A Pending JP2024059682A (en) 2016-09-28 2024-02-08 Transport Equipment

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2016189180A Pending JP2018051461A (en) 2016-09-28 2016-09-28 Transfer device
JP2021063950A Active JP7162924B2 (en) 2016-09-28 2021-04-05 Transfer device
JP2022163775A Active JP7440959B2 (en) 2016-09-28 2022-10-12 Transfer device

Country Status (1)

Country Link
JP (4) JP2018051461A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7080479B2 (en) * 2018-07-13 2022-06-06 アクアインテック株式会社 Sand carry-out equipment
JP2020011167A (en) 2018-07-13 2020-01-23 アクアインテック株式会社 Sedimentation basin and sand collection method
JP7235297B2 (en) * 2019-03-15 2023-03-08 アクアインテック株式会社 transport system
JP7473167B2 (en) 2019-04-22 2024-04-23 アクアインテック株式会社 Scum removal device
WO2022044564A1 (en) * 2020-08-27 2022-03-03 宇都宮工業株式会社 Compressed air ejecting mechanism, and conduit and sedimentation tank using same
EP4215495A1 (en) * 2020-09-17 2023-07-26 Utsunomiya Kogyo Co., Ltd. Headrace system
JP7349744B2 (en) * 2021-09-30 2023-09-25 ユキエンジニアリング株式会社 Scum collection device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2247116A (en) 1937-03-13 1941-06-24 Josam Mfg Company Inlet fitting for swimming pools
GB1309737A (en) 1969-07-05 1973-03-14 Kearney T J Dispersal of materials in liquids
JPS513268U (en) * 1974-06-24 1976-01-10
JPS5348000B2 (en) * 1974-07-01 1978-12-25
DE2904326C3 (en) * 1979-02-05 1982-05-13 Naamloze Vennootschap Papierfabriek Gennep, Gennep Process and device for deinking pulp suspensions
US4608165A (en) * 1985-04-08 1986-08-26 Samdor Engineering Limited Liquid surface skimming trough assembly
US5389250A (en) 1991-09-26 1995-02-14 Baker Hughes Incorporated Self diluting feedwell for thickener dilution
DE19730464A1 (en) * 1997-07-16 1999-01-21 Voith Sulzer Stoffaufbereitung Method and flotation device for removing contaminants from an aqueous fiber suspension
JP3341135B2 (en) * 1994-09-08 2002-11-05 前澤工業株式会社 Scum removal and treatment equipment
JPH10249337A (en) * 1997-03-13 1998-09-22 Suido Kiko Kaisha Ltd Scum removing device
AU9652798A (en) * 1997-10-13 1999-05-03 Suparator B.V. Device for continuously skimming off a floating toplayer
JP2002086146A (en) * 2000-09-13 2002-03-26 Sekisui Chem Co Ltd Device for preventing generation of scum
US7384548B2 (en) * 2002-07-01 2008-06-10 Terrien Richard J Manually controlled skimming of industrial oil contaminants
US7988865B2 (en) 2009-12-04 2011-08-02 Flsmidth A/S Feedwell dilution system for thickeners in oil sands
US8114296B2 (en) 2009-04-23 2012-02-14 Fang Chao Method and apparatus for skimming floated sludge
WO2012082530A1 (en) 2010-12-13 2012-06-21 Flsmidth A/S Open-channel feed dilution system for a thickener or settling tank
US20150014235A1 (en) 2013-07-12 2015-01-15 Michael Empey Systems and methods for providing a feedwell
JP6391350B2 (en) * 2014-08-01 2018-09-19 宇都宮工業株式会社 Scum removing device and scum removing method
JP6481851B2 (en) 2015-01-30 2019-03-13 アクアインテック株式会社 Solid-liquid separation system

Also Published As

Publication number Publication date
JP2021100761A (en) 2021-07-08
JP7162924B2 (en) 2022-10-31
JP2018051461A (en) 2018-04-05
JP2022179679A (en) 2022-12-02
JP7440959B2 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
JP2024059682A (en) Transport Equipment
US7485221B2 (en) System for treating wastewater
CN105923680A (en) Downward flow and upward flow inclined board air floatation-precipitation solid-liquid separating device
CN110478977B (en) Spiral flow is from arranging husky formula desilting filtering ponds
CN106563298A (en) Waste water sedimentation basin
CN105971097A (en) Floating slag intercepting system for regulating storage tank
CN105804200A (en) Sectioned intercepting and online treatment and discharging system
CN105863039A (en) Transverse floating residue-intercepting device of intercepting well
WO2013042197A1 (en) Waste water treatment equipment in flue gas desulfurization facility
KR101588627B1 (en) Even moving beam is formed
US1777491A (en) Method of desilting channels
JP2006198571A (en) Precipitator
KR101365028B1 (en) Apparatus and method for distributing gas and liquid during backwash in filter underdrain flumes using dual separation
JP5318188B2 (en) Solid separation apparatus and solid separation method
JP6718074B2 (en) Sand pond
CN207469412U (en) A kind of control well device of combined system pollutant
RU2301775C1 (en) Flotator
JP2008055361A (en) Oil separator
RU2151840C1 (en) System for automatic trapping and collecting contaminants floating on water surface
JP7473167B2 (en) Scum removal device
JP2005111383A (en) Sand collecting tank
SU1116133A1 (en) Arrangement for discharging waste water into water stream
JP5536693B2 (en) Sand covering device and sand covering method
KR102474115B1 (en) Pump-Integrated Sluice Gate For Disaster Prevention Facilities Having Foreign Matter Removal Part
JP3818550B2 (en) Scum sedimentation removal device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240208