JP2022179679A - Transfer device - Google Patents

Transfer device Download PDF

Info

Publication number
JP2022179679A
JP2022179679A JP2022163775A JP2022163775A JP2022179679A JP 2022179679 A JP2022179679 A JP 2022179679A JP 2022163775 A JP2022163775 A JP 2022163775A JP 2022163775 A JP2022163775 A JP 2022163775A JP 2022179679 A JP2022179679 A JP 2022179679A
Authority
JP
Japan
Prior art keywords
flow path
water
forming member
path forming
partition member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022163775A
Other languages
Japanese (ja)
Other versions
JP7440959B2 (en
Inventor
智也 増田
Tomoya Masuda
利隆 大原
Toshitaka Ohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquaintec Corp
Original Assignee
Aquaintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquaintec Corp filed Critical Aquaintec Corp
Priority to JP2022163775A priority Critical patent/JP7440959B2/en
Publication of JP2022179679A publication Critical patent/JP2022179679A/en
Priority to JP2024018092A priority patent/JP2024059682A/en
Application granted granted Critical
Publication of JP7440959B2 publication Critical patent/JP7440959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Floating Material (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transfer device capable of transferring an object floating on a water surface with a simple structure while suppressing an amount of fluid to be discharged.
SOLUTION: There is provided a transfer device including: a flow path forming member 5 provided with a suction port 5a connected to a flow path S and submerged in water; a discharge port 7a for discharging fluid into the flow path S; and a partition member 3 provided with an inflow port 3a submerged in water and surrounding the flow path forming member 5. The inflow port 3a is an opening that allows a scum Sc floating on a water surface to flow into a peripheral region R1 between the partition member 3 and the flow path forming member 5 as a result of the fluid being discharged into the flow path S, and the suction port 5a is an opening that sucks into the flow path S the scum Sc flowed into the peripheral region R1 as a result of the fluid being discharged into the flow path S, and the flow path S is a path along which the scum Sc sucked into the flow path S moves toward a downstream side in a fluid discharge direction as a result of the fluid being discharged into the flow path S, and a radial distance Di between the partition member 3 and the flow path forming member 5 narrows toward the suction port 5a.
SELECTED DRAWING: Figure 4
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は、水面に浮遊した被移送物を移送する移送装置に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transfer device for transferring an object floating on the surface of water.

下水処理場の導水渠や沈殿池等には、水面に浮遊したスカム等の被移送物を、スカムピット等に向けて移送する移送装置が設けられている(例えば、特許文献1等参照)。 2. Description of the Related Art Conveyance culverts, sedimentation tanks, and the like of sewage treatment plants are provided with transfer devices that transfer objects to be transferred, such as scum floating on the surface of the water, toward a scum pit or the like (see, for example, Patent Document 1, etc.).

図13は、特許文献1記載の移送装置を上方から見た様子の模式図である。特許文献1に記載された移送装置6は、図の左側から右側に向けて汚水が流れていく導水渠9において、汚水の水面から100mm~200mm程度上方に設けられた複数のスプレーノズル61を備えている。これら複数のスプレーノズル61は、導水渠9の幅方向(図13では上下方向)に所定の間隔で配置されるとともに、スカムSc(被移送物)の移送方向(図13では左側から右側に向かう方向)にも所定の間隔で複数列配置されている。特許文献1に記載された移送装置6では、複数のスプレーノズル61から、不図示のスカムピット等に向かう移送方向に略水平に圧力水やエアーが吐出される。これにより、水面上にスカムピットに向かう気流や吹送流を発生させ、この気流等によって、水面に浮遊したスカムをスカムピット等に向けて移送するものである。 FIG. 13 is a schematic view of the transfer device described in Patent Document 1 as viewed from above. The transfer device 6 described in Patent Document 1 includes a plurality of spray nozzles 61 provided about 100 mm to 200 mm above the surface of the sewage in the conduit 9 through which the sewage flows from the left side to the right side of the figure. ing. The plurality of spray nozzles 61 are arranged at predetermined intervals in the width direction (the vertical direction in FIG. 13) of the conduit 9, and the scum Sc (object to be transferred) is transferred in the direction (from the left side to the right side in FIG. 13). direction) are also arranged in multiple rows at predetermined intervals. In the transfer device 6 described in Patent Literature 1, pressurized water or air is discharged from a plurality of spray nozzles 61 substantially horizontally in the transfer direction toward a scum pit (not shown) or the like. As a result, an air current or blowing current directed toward the scum pit is generated on the water surface, and the scum floating on the water surface is transported toward the scum pit or the like by the air current or the like.

特開平7-303883号公報JP-A-7-303883

しかしながら、特許文献1に記載された移送装置6では、スプレーノズル61から吐出される圧力水等が拡散してしまい、被移送物を移送できる気流等を水面上の広い範囲に発生させることは難しい。このため、図13では、スプレーノズル61から吐出される圧力水等が効力を及ぼすことができる範囲を一点鎖線で囲んだ白抜きで示すように、一つのスプレーノズル61によって被移送物(スカムSc)を移送できる水面上の範囲は限定的になってしまう。この結果、スカムScが浮遊する水面上(図では、水面上にまとまった状態で浮遊しているスカムにSc0の符号を付している)に、それぞれ間隔をあけて多数のスプレーノズル61を配置しなければならず、さらに、これら多数のスプレーノズル61に圧力水等を供給する多数の配管62も必要になる等、装置が大掛りになってしまう。その上、多数のスプレーノズル61から吐出させる圧力水等も大量に必要になる。また、スプレーノズル61からエアーを吐出する態様では、吐出したエアーによってスカムScが乾燥して固まってしまう場合がある。このように固まってしまったスカムScは水面上を動きにくくなるため、さらに多くのエアーを吐出させなければならないという問題もある。 However, in the transfer device 6 described in Patent Document 1, the pressure water or the like discharged from the spray nozzle 61 spreads, and it is difficult to generate an air current or the like capable of transferring the object to be transferred over a wide area above the water surface. . For this reason, in FIG. 13 , as shown by the outline surrounding the range where the pressure water or the like discharged from the spray nozzle 61 can exert its effect with the dashed-dotted line, one spray nozzle 61 is applied to the object to be transferred (scum Sc). ) can be transferred on the surface of the water is limited. As a result, on the surface of the water where the scum Sc floats (in the figure, the scum floating on the surface of the water in a lump is denoted by Sc0), a large number of spray nozzles 61 are arranged at intervals. Furthermore, a large number of pipes 62 for supplying pressurized water or the like to the large number of spray nozzles 61 are required, resulting in a large-scale apparatus. In addition, a large amount of pressurized water or the like to be discharged from a large number of spray nozzles 61 is also required. Further, in a mode in which air is ejected from the spray nozzle 61, the scum Sc may be dried and solidified by the ejected air. Since the solidified scum Sc becomes difficult to move on the water surface, there is also a problem that more air must be discharged.

本発明は上記事情に鑑み、吐出させる流体の量を抑え、かつ、簡易な構造により、水面に浮遊した被移送物を移送することができる移送装置を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide a transfer device capable of reducing the amount of fluid to be discharged and transferring an object floating on the water surface with a simple structure.

上記目的を解決する本発明の移送装置は、流路を形成するものであって、該流路につながり水中に没する吸込口が設けられた流路形成部材と、
前記流路内に流体を吐出する吐出口と、
水面に対して略平行に延在し水中に没する流入口が設けられ、前記流路形成部材を囲う仕切部材とを備え、
前記流入口は、水面に浮遊した被移送物を、前記流路内に流体が吐出されることで前記仕切部材と前記流路形成部材との間の領域に流入させる開口として機能するものであり、
前記吸込口は、前記流路内に流体が吐出されることで、前記仕切部材と前記流路形成部材との間の領域に流入した前記被移送物を該流路内に吸い込む開口として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されることで該流体の吐出方向下流側に向かって移動する経路として機能するものであり、
前記仕切部材と前記流路形成部材との間隔は、前記吸込口に向かうにつれて狭くなっていることを特徴とする。
A transfer device of the present invention for solving the above object is a flow path forming member that forms a flow path and is provided with a suction port connected to the flow path and submerged in water;
a discharge port for discharging a fluid into the channel;
a partition member that is provided with an inlet that extends substantially parallel to the water surface and is submerged in water, and surrounds the flow path forming member;
The inflow port functions as an opening that allows an object to be transferred floating on the surface of the water to flow into the region between the partition member and the flow path forming member as the fluid is discharged into the flow path. ,
The suction port functions as an opening that sucks into the channel the object to be transferred that has flowed into the region between the partition member and the channel forming member by discharging the fluid into the channel. is a
The flow path functions as a path along which the object to be transferred that has been sucked into the flow path moves downstream in the discharge direction of the fluid as the fluid is discharged into the flow path. ,
A space between the partition member and the flow path forming member is characterized by narrowing toward the suction port.

本発明によれば、吐出させる流体の量を抑え、かつ、簡易な構造により、水面に浮遊した被移送物を移送することができる移送装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the transfer apparatus which can transfer the to-be-transferred object which floated on the water surface by suppressing the quantity of the fluid to discharge, and is simple by a structure can be provided.

本発明の一実施形態の移送装置が設けられた導水渠を上方から見た平面図で ある。1 is a top plan view of a conduit provided with a transfer device according to an embodiment of the present invention; FIG. 図1に示す導水渠のA-A線断面図である。FIG. 2 is a cross-sectional view of the conduit shown in FIG. 1 taken along the line AA. 図1に示す移送装置のB-B線断面図である。FIG. 2 is a cross-sectional view of the transfer device shown in FIG. 1 taken along the line BB; (a)は、第1変形例の移送装置を示す図であり、(b)は、第2変形例の 移送装置を示す図である。(a) is a diagram showing a transfer device of a first modification, and (b) is a diagram showing a transfer device of a second modification. (a)は、第3変形例の移送装置を示す図であり、(b)は、第4変形例の 移送装置を示す図である。(a) is a diagram showing a transfer device of a third modification, and (b) is a diagram showing a transfer device of a fourth modification. (a)は、第5変形例の移送装置を示す図であり、(b)は、第6変形例の 移送装置を示す図である。(a) is a diagram showing a transfer device of a fifth modification, and (b) is a diagram showing a transfer device of a sixth modification. (a)は、第7変形例の移送装置を示す図であり、(b)は、第8変形例の 移送装置を示す図である。(a) is a diagram showing a transfer device of a seventh modification, and (b) is a diagram showing a transfer device of an eighth modification. 第9変形例の移送装置を示す図である。It is a figure which shows the transfer apparatus of a 9th modification. 第10変形例の移送装置を示す図である。It is a figure which shows the transfer apparatus of a tenth modification. 第11変形例の移送装置を示す図である。It is a figure which shows the transfer apparatus of the 11th modification. 本発明の第2実施形態の移送装置が設けられた伏せ越し構造の概略構成図 である。FIG. 10 is a schematic configuration diagram of a lay-down structure provided with a transfer device according to a second embodiment of the present invention; 図11に示す伏せ越し管のC-C線断面図である。FIG. 12 is a cross-sectional view taken along the line CC of the lay-over pipe shown in FIG. 11; 特許文献1記載の移送装置を上方から見た様子の模式図である。It is a schematic diagram of a state that the transfer device described in Patent Document 1 is viewed from above.

以下、図面を参照して本発明の実施の形態を説明する。本発明の移送装置は、水面に浮遊する被移送物を移送する様々な設備や構造等に採用することができ、例えば、下水処理場における導水渠や沈殿池、あるいは下水管の伏せ越し構造等に好適に適用することができる。本実施形態では、最初沈殿池や最終沈殿池の導水渠に設けられ、水面に浮遊するスカムを移送する移送装置を例に挙げて説明する。すなわち、本実施形態では、スカムが被移送物の一例に相当する。導水渠は、下水処理場における、沈砂池やばっ気槽等から受け入れた汚水を、複数の沈殿池に分配する水路であり、水面に浮遊するスカムは、スカムピットに回収される。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. INDUSTRIAL APPLICABILITY The transfer device of the present invention can be employed in various facilities and structures for transferring objects floating on the surface of water. can be suitably applied to In this embodiment, a transfer device that is provided in a conduit of a primary sedimentation tank or a final sedimentation tank and that transfers scum floating on the water surface will be described as an example. That is, in this embodiment, the scum corresponds to an example of the object to be transferred. A water conduit is a channel for distributing sewage received from a settling tank, an aeration tank, etc., to a plurality of sedimentation tanks in a sewage treatment plant, and scum floating on the water surface is collected in a scum pit.

図1は、本発明の一実施形態の移送装置が設けられた導水渠を上方から見た平面図であり、図2は、図1に示す導水渠のA-A線断面図である。なお、図1では、導水渠9から汚水が分配される複数の沈殿池Pの一部も示している。 FIG. 1 is a top plan view of a conduit provided with a transfer device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the conduit shown in FIG. 1 taken along the line AA. In addition, FIG. 1 also shows a part of a plurality of sedimentation tanks P to which sewage is distributed from the conduit 9 .

図1に示すように、導水渠9は、上方から見て左右方向に長い長方形状の水路であり、不図示の沈砂池等から送られてきた汚水を受け入れる流水部91と、この流水部91とは塞止壁93で仕切られたスカムピット92を有している。流水部91は、汚水を図の左側から受け入れるものであり、受け入れた汚水は、図の右側に設けられたスカムピット92に向けて流れ、塞止壁93で塞き止められる。また、流水部91には、汚水が流水部91を流れる方向に並設された複数の沈殿池Pが、連通口94を介して接続されている。流水部91を流れていく汚水は、それぞれの連通口94からそれぞれの沈殿池Pに流れ込むことで分配され、それぞれの沈殿池Pに流れ込んだ汚水は、図の下方に向かって流れていく。 As shown in FIG. 1, the conduit 9 is a rectangular waterway that is long in the left-right direction when viewed from above. and has a scum pit 92 partitioned by a blocking wall 93 . The flowing water part 91 receives sewage from the left side of the drawing, and the received sewage flows toward a scum pit 92 provided on the right side of the drawing, where it is blocked by a blocking wall 93 . A plurality of sedimentation basins P arranged side by side in the direction in which sewage flows through the water flowing portion 91 are connected to the water flowing portion 91 via communication ports 94 . The sewage flowing through the water flow part 91 is distributed by flowing into each sedimentation basin P from each communication port 94, and the sewage flowing into each sedimentation basin P flows downward in the figure.

図1および図2に示すように、流水部91には移送装置1が設けられている。この移送装置1を駆動させる前は、流水部91の汚水Wの水面WL(図2参照)には、その全域にスカムScが浮遊している。図1および図2では、詳しくは後述するように、移送装置1の吐出口7aから水が吐出されることによってスカムScが図の右側に移送され、塞止壁93の近傍に集められている様子を示している。すなわち、スカムScは、流水部91の長手方向に移送され、図1および図2では、左側から右側に向かう方向が、流体が吐出される吐出方向に相当し、スカムScが移送される移送方向にも相当する。なお、流水部91の短手方向、すなわち、吐出方向と水平面内で直交する方向を、以下、幅方向と称する場合がある。 As shown in FIGS. 1 and 2, the water flow section 91 is provided with the transfer device 1 . Before the transfer device 1 is driven, the scum Sc floats all over the water surface WL (see FIG. 2) of the sewage W in the flowing water portion 91 . 1 and 2, as will be described later in detail, the scum Sc is transferred to the right side of the drawing by discharging water from the discharge port 7a of the transfer device 1, and is collected near the blocking wall 93. showing the situation. That is, the scum Sc is transported in the longitudinal direction of the flowing water portion 91, and in FIGS. 1 and 2, the direction from left to right corresponds to the ejection direction in which the fluid is ejected, and the transport direction in which the scum Sc is transported. Also equivalent to In addition, the lateral direction of the water flowing portion 91, that is, the direction orthogonal to the discharge direction in the horizontal plane may be hereinafter referred to as the width direction.

塞止壁93には、スカムピット92に連通した開口部93aが形成され、この開口部93aを閉塞するゲート931が設けられている。ゲート931は、例えば上下方向にスライドし、開口部93aを開閉可能なものである。このゲート931を、その上端が、塞止壁93で塞き止められた汚水Wの水面WLよりも下方に位置するようにスライドさせると、塞止壁93の近傍に集められたスカムScが汚水とともに、開口部93aからゲート931を乗り越えてスカムピット92に流れ込む。なお、スカムピット92に回収されたスカムは、不図示のスカム処理機に送られ、脱水処理などの所定の処理が行われる。 The blocking wall 93 is formed with an opening 93a that communicates with the scum pit 92, and is provided with a gate 931 that closes the opening 93a. The gate 931 can slide vertically, for example, to open and close the opening 93a. When the gate 931 is slid so that its upper end is positioned below the water surface WL of the sewage W blocked by the blocking wall 93, the scum Sc collected in the vicinity of the blocking wall 93 is removed from the sewage. At the same time, it climbs over the gate 931 from the opening 93 a and flows into the scum pit 92 . The scum collected in the scum pit 92 is sent to a scum processor (not shown) and subjected to a predetermined treatment such as dehydration.

続いて、図1~図3を用いて、移送装置1を詳細に説明する。 Next, the transfer device 1 will be described in detail with reference to FIGS. 1 to 3. FIG.

図3は、図1に示す移送装置1のB-B線断面図である。この図3では、紙面手前側に向かう方向が吐出方向になり、左右方法が幅方向になる。 FIG. 3 is a cross-sectional view of the transfer device 1 shown in FIG. 1 taken along the line BB. In FIG. 3, the direction toward the front side of the paper surface is the discharge direction, and the left-to-right direction is the width direction.

図1~図3に示すように、移送装置1は、仕切部材3、流路形成部材5および吐出部材7を備えている。仕切部材3は、図1および図2に示すように、流水部91において、吐出方向に延在したものであり、全長が、流水部91の長手方向の長さよりも僅かに短く形成されている。また、仕切部材3は、図1に示すように、吐出方向と平行あるいは略平行に延在し、図2に示すように、水平あるいは略水平に延在したものである。この仕切部材3は、図3に示すように、流水部91を流れる汚水W中において、流路形成部材5周辺の周辺領域R1と、他の領域R2とを、周辺領域R1が内側になるように仕切るものであり、周辺領域R1につながり、汚水W中に没する流入口3aを有している。本実施形態の仕切部材3は、径が300mm以上400mm以下のステンレス製の円筒体の上方の略1/3を切り欠いた断面円弧状のものであり、切り欠いた部分に、上方に向かって開口した流入口3aが形成されている。この流入口3aの幅方向の開口長L3(図4(a)参照)は、275mm以上375mm以下に設定されている。また、仕切部材3は、上端部分に幅方向の中央側へ入り込んだ湾曲部31を有しており、周辺領域R1は、流入口3a側の部分が、流入口3aに近づくほど狭くなっている。 As shown in FIGS. 1 to 3, the transfer device 1 includes a partition member 3, a flow path forming member 5 and a discharge member . As shown in FIGS. 1 and 2, the partition member 3 extends in the discharge direction in the water flow portion 91 and has a total length slightly shorter than the length of the water flow portion 91 in the longitudinal direction. . The partition member 3 extends parallel or substantially parallel to the ejection direction as shown in FIG. 1, and extends horizontally or substantially horizontally as shown in FIG. As shown in FIG. 3, the partition member 3 separates a peripheral region R1 around the flow path forming member 5 and another region R2 in the sewage W flowing through the water flowing portion 91 so that the peripheral region R1 is inside. It has an inflow port 3a connected to the peripheral region R1 and submerged in the sewage W. The partition member 3 of the present embodiment has an arcuate cross-section obtained by notching approximately one-third of the upper portion of a stainless steel cylinder having a diameter of 300 mm or more and 400 mm or less. An open inlet 3a is formed. An opening length L3 (see FIG. 4A) of the inlet 3a in the width direction is set to 275 mm or more and 375 mm or less. In addition, the partition member 3 has a curved portion 31 at the upper end portion thereof, which extends toward the center in the width direction. .

図1および図2に示すように、流路形成部材5も、仕切部材3と同様に、流水部91において、吐出方向に延在したものであり、その全長が、仕切部材3と略同じ長さに形成されている。また、流路形成部材5も、図1に示すように、吐出方向と平行あるいは略平行に延在し、図2に示すように、水平あるいは略水平に延在したものである。この流路形成部材5は、図3に示すように、流路Sを形成するものであり、この流路Sと周辺領域R1とを仕切っている。また、流路形成部材5は、流路Sにつながり、汚水W中に没する吸込口5aを有している。本実施形態の流路形成部材5は、径が150mm以上200mm以下のステンレス製の円筒体の下方の略1/6を切り欠いた断面円弧状のものであり、切り欠いた部分に、下方に向かって開口した吸込口5aが形成されている。流路形成部材5は、吸込口5aが周辺領域R1内で開口し、上端部分51が、流入口3aと略同じ高さになるように、不図示の取付部材によって仕切部材3に取り付けられている。なお、本実施形態では、流路形成部材5の径方向の中心(図では符号Oを付して概念的に示している)を、仕切部材3の径方向の中心に一致させている。したがって、仕切部材3と流路形成部材5との径方向の間隔Di(本実施形態では75mm程度)はいずれの箇所においても略同じになる。 1 and 2, like the partition member 3, the flow path forming member 5 also extends in the discharge direction in the flowing water portion 91, and the total length thereof is substantially the same as that of the partition member 3. It is formed The flow path forming member 5 also extends parallel or substantially parallel to the discharge direction as shown in FIG. 1, and extends horizontally or substantially horizontally as shown in FIG. As shown in FIG. 3, the flow path forming member 5 forms the flow path S and partitions the flow path S from the peripheral region R1. Further, the flow path forming member 5 has a suction port 5a connected to the flow path S and submerged in the sewage W. As shown in FIG. The flow path forming member 5 of the present embodiment has an arcuate cross section obtained by notching approximately 1/6 of the lower portion of a stainless steel cylindrical body having a diameter of 150 mm or more and 200 mm or less. A suction port 5a is formed which is open toward. The flow path forming member 5 is attached to the partition member 3 by an attachment member (not shown) so that the suction port 5a opens in the peripheral region R1 and the upper end portion 51 is substantially at the same height as the inlet 3a. there is Note that in the present embodiment, the radial center of the flow path forming member 5 (notionally indicated by a symbol O in the drawing) is aligned with the radial center of the partition member 3 . Therefore, the radial distance Di (approximately 75 mm in this embodiment) between the partition member 3 and the flow path forming member 5 is substantially the same everywhere.

吐出部材7は、その後端部分に給水管70が接続され、その先端部分に吐出口7aを備えたものであり、図2に示すように、吐出口7aが、吐出方向の上流側から流路形成部材5内(流路S)に挿入されている。給水管70から吐出部材7に供給された水は、水平方向あるいは略水平方向に吐出口7aから吐出される(図2における実線の右向きの矢印参照)。本実施形態では、吐出口7aから吐出される水の吐出圧は、0.3MPa以下に設定されている。なお、詳しくは後述するように、流路S内に水の流れが一旦生じればよいため、吐出口7aから吐出される水の圧力は、0.1MPa以下であっても十分な場合がある。また、吐出口7aから吐出される水の流量は、毎分300リットル以上3000リットル以下に調整される。ここで、吐出口7aから吐出する水は、汚水処理場に受け入れた汚水や水道水を使用してもよい。また、水以外の気体や気液混合体等の流体を、吐出口7aから吐出させてもよい。 The discharge member 7 has a water supply pipe 70 connected to its rear end portion and a discharge port 7a provided at its distal end portion. As shown in FIG. It is inserted into the forming member 5 (channel S). The water supplied to the discharge member 7 from the water supply pipe 70 is discharged from the discharge port 7a in a horizontal direction or a substantially horizontal direction (see a solid rightward arrow in FIG. 2). In this embodiment, the discharge pressure of water discharged from the discharge port 7a is set to 0.3 MPa or less. As will be described later in detail, it is sufficient if the flow of water is once generated in the flow path S, so the pressure of the water discharged from the discharge port 7a may be sufficient even if it is 0.1 MPa or less. . Further, the flow rate of water discharged from the discharge port 7a is adjusted to 300 liters or more and 3000 liters or less per minute. Here, the water discharged from the discharge port 7a may be sewage received at a sewage treatment plant or tap water. Alternatively, a gas other than water or a fluid such as a gas-liquid mixture may be discharged from the discharge port 7a.

本実施形態の吐出部材7は、丸パイプ状の給水管の先端部分を扁平状につぶすことで、その先端に長孔形状の吐出口7aが形成されたものである。このように丸パイプを扁平状につぶして吐出口7aを形成する態様を採用すれば、その作製が容易になる。また、図3に示すように、吐出口7aの幅方向の開口長L1を、吸込口5aの幅方向の開口長L2よりも長く設定している。具体的には、本実施形態では、吸込口5aの幅方向の開口長L2は100mm程度、吐出口7aの幅方向の開口長L1は120mm程度、また、吐出口7aの高さH1は20mm程度である。吐出口7aをこのような扁平な形状にすることで、真円の形状のものよりも、流速を高めた範囲を広く確保することができる。なお、丸パイプ状の給水管の先端部分をつぶさず、この丸パイプ状の給水管をそのまま用いることで、真円状の吐出口7aを採用する態様の方が好ましい場合もある。 The discharge member 7 of this embodiment is formed by flattening the end portion of a round pipe-shaped water supply pipe to form an elongated discharge port 7a at the end thereof. Adopting a mode in which the discharge port 7a is formed by flattening the round pipe in this way facilitates the production thereof. Further, as shown in FIG. 3, the widthwise opening length L1 of the discharge port 7a is set longer than the widthwise opening length L2 of the suction port 5a. Specifically, in this embodiment, the widthwise opening length L2 of the suction port 5a is about 100 mm, the widthwise opening length L1 of the discharge port 7a is about 120 mm, and the height H1 of the discharge port 7a is about 20 mm. is. By forming the discharge port 7a into such a flat shape, it is possible to ensure a wider range in which the flow velocity is increased than when the discharge port 7a has a perfect circular shape. In some cases, it is preferable to use the round pipe-shaped water supply pipe as it is without crushing the tip portion of the round pipe-shaped water supply pipe, thereby adopting the perfect circular discharge port 7a.

ここで、流水部91の水面WLの高さは、沈砂池から受け入れる汚水の量等によって変動するため、この水面WLの高さの変動を考慮し、移送装置1を設ける高さ位置が設定される。具体的には、流水部91の水面WLの高さが変動した場合であっても、仕切部材3の流入口3aは、水面WLよりも低い位置であって、水面WLからの深さDp1が200mm以内、吐出口7aの高さ方向の中心は、水面WLからの深さDp2が50mm以上300mm以内、流路形成部材5の吸込口5aは、水面WLからの深さDp3が100mm以上400mm以内に収まるように設定されている。また、仕切部材3の流入口3aは、図2に一点鎖線で示す、塞止壁93における開口部93aの下端部分よりも、上方に位置している。 Here, since the height of the water surface WL of the water flowing portion 91 varies depending on the amount of sewage received from the settling basin, etc., the height position of the transfer device 1 is set in consideration of the variation in the height of the water surface WL. be. Specifically, even if the height of the water surface WL of the water flowing portion 91 fluctuates, the inlet 3a of the partition member 3 is positioned lower than the water surface WL, and the depth Dp1 from the water surface WL is 200 mm or less, the center of the height direction of the discharge port 7a has a depth Dp2 of 50 mm or more and 300 mm or less from the water surface WL, and the suction port 5a of the flow path forming member 5 has a depth Dp3 of 100 mm or more and 400 mm or less from the water surface WL. is set to fit in In addition, the inlet 3a of the partition member 3 is located above the lower end portion of the opening 93a of the blocking wall 93, which is indicated by the dashed line in FIG.

移送装置1は、その位置を固定してもよいが、水面WLの高さの変動に合わせて、図2および図3の両矢印で示すように、移送装置1全体、あるいは、仕切部材3と流路形成部材5のうちのいずれか一方を、鉛直方向に移動させる態様としてもよい。こうすることで、流入口3aや吸込口5aの位置を水面WLの高さの変動に追従させ、水面WLから一定の深さに維持することができる。なお、吐出口7aは、流路形成部材5の鉛直方向の移動に合わせて鉛直方向に移動させてもよいし、吐出口7aは固定し、流路形成部材5だけを鉛直方向に移動させる態様としてもよい。また、移送装置1を固定し、流入口3aや吸込口5aの位置が、水面WLから一定の深さに維持されるように、流水部91が受け入れる汚水の量を制御する態様としてもよい。 The position of the transfer device 1 may be fixed, but in accordance with changes in the height of the water surface WL, as indicated by the double-headed arrows in FIGS. Either one of the flow path forming members 5 may be moved in the vertical direction. By doing so, the positions of the inflow port 3a and the suction port 5a can be made to follow changes in the height of the water surface WL, and can be maintained at a constant depth from the water surface WL. The discharge port 7a may be moved in the vertical direction in accordance with the vertical movement of the flow path forming member 5. Alternatively, the discharge port 7a may be fixed and only the flow path forming member 5 may be moved in the vertical direction. may be Alternatively, the transfer device 1 may be fixed, and the amount of sewage received by the water flow section 91 may be controlled such that the positions of the inlet 3a and the suction port 5a are maintained at a constant depth from the water surface WL.

以上のように構成された移送装置1では、図1および図2に示すように、吐出口7aから水を吐出させることで、スカムScが移送される。具体的には、吐出口7aから流路形成部材5の流路S内に水が吐出されることで、吐出された水の流れに引き込まれて、図3に示すように、吸込口5aから流路S内に吸い込まれる方向の水の流れが生じる。これにより、流入口3aから周辺領域R1内に流れ込む水の流れが生じるとともに、周辺領域R1内では吸込口5aに向かう水の流れが生じる。この結果、流水部91の水面WLには、仕切部材3の流入口3aに集まる方向の流れ(流入口3a付近の水面WLには、流入口3aに向かう方向の流れが生じ、他の場所の水がこれを補うことで生じる流れ)が生じる。 In the transfer device 1 configured as described above, as shown in FIGS. 1 and 2, the scum Sc is transferred by discharging water from the discharge port 7a. Specifically, when water is discharged into the flow path S of the flow path forming member 5 from the discharge port 7a, it is drawn into the flow of the discharged water and, as shown in FIG. A flow of water in the direction of being sucked into the flow path S is generated. As a result, water flows into the peripheral region R1 from the inlet 3a, and water flows toward the suction port 5a within the peripheral region R1. As a result, on the water surface WL of the water flowing portion 91, a flow is generated in a direction that gathers at the inlet 3a of the partition member 3 (on the water surface WL in the vicinity of the inlet 3a, a flow is generated in a direction toward the inlet 3a; The flow caused by water compensating for this occurs.

図1および図2では、スカムScの流れを模式的に示しており、水面上にまとまった状態で浮遊するスカムに符号Sc0を付すとともに薄い網掛けを付し、このスカムのまとまりSc0から分離したスカムScを一点鎖線で囲むとともに濃い網掛けを付している。流水部91の水面WL(図2および図3参照)の全域にまとまりとなって浮遊しているスカムは、水面に生じた、流入口3aに集まる方向の流れによって、その一部が崩れて小さな塊のスカムScとなって流入口3aから周辺領域R1内に流入する。これが繰り返されることによって、図1に示すように、水面WL上には、スカムが除去された領域(水面上の除去領域)が、仕切部材3の延在方向、すなわち移送方向に沿って生じる。また、スカムのまとまりSc0から分離したスカムScは、水面上の除去領域を移送方向に流れ、塞止壁93の近傍に集まる。また、スカムScは、水面上の除去領域を流れていく過程で、スカムのまとまりSc0に接触することでその一部を崩し、崩されたスカムScも、流入口3aから周辺領域R1内に流入し、あるいは水面上の除去領域を移送方向に流れていくといった作用が繰り返される。 1 and 2 schematically show the flow of the scum Sc. The scum floating on the water surface in a lumped state is denoted by Sc0 and lightly shaded, and separated from the lumped scum Sc0 The scum Sc is surrounded by a dashed-dotted line and shaded. A part of the scum floating on the entire water surface WL (see FIGS. 2 and 3) of the flowing water portion 91 collapses and becomes small due to the flow generated on the water surface in the direction of gathering at the inlet 3a. It becomes a mass of scum Sc and flows into the peripheral region R1 from the inlet 3a. By repeating this, as shown in FIG. 1, a region where the scum is removed (removed region on the water surface) is generated along the extending direction of the partition member 3, that is, along the transfer direction. Moreover, the scum Sc separated from the scum cluster Sc0 flows in the transfer direction in the removal area on the water surface and gathers near the blocking wall 93 . In addition, in the process of flowing through the removal area on the water surface, the scum Sc comes into contact with the lump of scum Sc0 and is partially broken, and the broken scum Sc also flows into the peripheral area R1 from the inlet 3a. Alternatively, the action of flowing in the transfer direction in the removal area on the water surface is repeated.

流入口3aに集まってきたスカムScは、図3にスカムScの流れを概念的に示すように、流入口3aから周辺領域R1内に流入し、周辺領域R1内を吸込口5aに向かって流れた後、吸込口5aから流路S内に吸い込まれる。ここで、吸込口5aの、水面WLからの深さを20mm以上に設定すると、スカムScを吸込口5aから、より円滑に流入させることができ好ましい。 The scum Sc gathered at the inlet 3a flows into the peripheral region R1 from the inlet 3a and flows toward the suction port 5a through the peripheral region R1, as shown conceptually in FIG. After that, it is sucked into the channel S from the suction port 5a. Here, setting the depth of the suction port 5a from the water surface WL to 20 mm or more is preferable because the scum Sc can flow more smoothly from the suction port 5a.

汚水W中において、周辺領域R1は、仕切部材3によって他の領域R2と仕切られているため、流入口3aから周辺領域R1内へのスカムScの流入が促進され、水面WLに浮遊したスカムScを効率的に周辺領域R1内に流入させることができる。さらに、周辺領域R1が他の領域R2と仕切部材3で仕切られることによって、周辺領域R1内を流入口3aから吸込口5aへ向かう水の流れが妨げられることがなくなり、周辺領域R1内に流入したスカムScは、周辺領域R1内を流れて円滑に吸込口5aから吸い込まれる。 In the sewage W, the peripheral region R1 is separated from the other region R2 by the partition member 3, so that the inflow of the scum Sc from the inlet 3a into the peripheral region R1 is promoted, and the scum Sc floating on the water surface WL can efficiently flow into the peripheral region R1. Furthermore, by partitioning the peripheral region R1 from the other region R2 by the partition member 3, the flow of water from the inlet 3a to the suction port 5a in the peripheral region R1 is not hindered, and the water flows into the peripheral region R1. The scum Sc flows through the peripheral region R1 and is smoothly sucked from the suction port 5a.

さらに、図1および図2に示すように、流路S内では、吸い込まれたスカムScが、吐出口7aから吐出された水の流れによってスカムピット92に向かって移動し、流路形成部材5における吐出方向の下流端52から吹き出される。流路形成部材5の下流端52から吹き出されたスカムScは、前述したように、塞止壁93の近傍に集まり、ゲート931を開放することで、塞止壁93の近傍に集められたスカムScが、汚水とともにスカムピット92に回収される。ここで、吐出口7aから水を吐出することで流路S内に一旦生じた水の流れは、流路Sが流路形成部材5によって囲まれているため減衰しにくく、スカムScを長い距離移送することができる。これらによって、吐出口7aや、吐出口7aに水を供給する供給管7a等の個数が少なくて済み、簡易な構造を採用することができる。さらに、吐出口7aから吐出される水量も抑えることができる。 Further, as shown in FIGS. 1 and 2, in the flow path S, the sucked scum Sc moves toward the scum pit 92 due to the flow of water discharged from the discharge port 7a, and the flow path forming member 5 It is blown out from the downstream end 52 in the discharge direction. The scum Sc blown out from the downstream end 52 of the flow path forming member 5 gathers near the blocking wall 93 as described above, and by opening the gate 931, the scum collected near the blocking wall 93 Sc is collected in the scum pit 92 together with the sewage. Here, since the flow path S is surrounded by the flow path forming member 5, the flow of water once generated in the flow path S by discharging the water from the discharge port 7a is less likely to attenuate, and the scum Sc flows over a long distance. can be transported. As a result, the number of discharge ports 7a and supply pipes 7a for supplying water to the discharge ports 7a can be reduced, and a simple structure can be adopted. Furthermore, the amount of water discharged from the discharge port 7a can also be suppressed.

なお、流路形成部材5が長い場合には、図1の一点鎖線で示すように、流路形成部材5の延在方向における途中部分にも、吐出部材7を設けてもよい。さらに、流水部91の幅方向の長さが長い場合には、流路形成部材5および仕切部材3を流水部91の幅方向に複数並置し、それぞれの流路形成部材5の流路S内に水を吐出する吐出部材7を設けてもよいが、図1の両矢印で示すように、移送装置1を幅方向に移動可能とする態様としてもよい。 If the flow path forming member 5 is long, the ejection member 7 may also be provided in the middle of the flow path forming member 5 in the extending direction, as indicated by the dashed line in FIG. Furthermore, when the length of the water flowing portion 91 in the width direction is long, a plurality of the flow path forming members 5 and the partition members 3 are arranged side by side in the width direction of the water flowing portion 91, and the flow paths S of the respective flow path forming members 5 Alternatively, as indicated by the double arrow in FIG. 1, the transfer device 1 may be movable in the width direction.

また、図2の二点鎖線で示すように、流路形成部材5と仕切部材3を、吐出方向の下流側に向かうに従い水面WLに近づくように傾斜した姿勢(吐出方向の下流側が高くなるように傾斜した姿勢)で配置し、流路形成部材5の傾斜した姿勢に沿って、吐出口7aから流路S内に水を吐出する態様としてもよい。この態様を採用すれば、吐出口7aから水を吐出することで流路S内に生じた水の流れがより減衰しにくくなり、スカムScをより長い距離移送することができる。なお、流路Sにおける、吐出口7aに近い部分は、相対的に強い水の流れが生じているため、流入口3aの位置が水面WLから多少深くなっても、水面WLに浮遊するスカムScが流入口3aから流入しにくくなるといった不具合は生じにくい。 Further, as indicated by the two-dot chain line in FIG. 2, the flow path forming member 5 and the partition member 3 are inclined toward the water surface WL toward the downstream side in the discharge direction (the downstream side in the discharge direction is higher). ), and water is discharged into the flow path S from the discharge port 7a along the tilted attitude of the flow path forming member 5 . By adopting this mode, the flow of water generated in the flow path S is less likely to be attenuated by discharging water from the discharge port 7a, and the scum Sc can be transported over a longer distance. In addition, since a relatively strong water flow occurs in a portion of the flow path S near the discharge port 7a, even if the position of the inflow port 3a is slightly deeper than the water surface WL, the scum Sc floating on the water surface WL It is difficult to cause a problem such that it becomes difficult for the air to flow in from the inflow port 3a.

次に、図1~図3に示す移送装置の変形例について、図4~図10を用いて説明する。以下に説明する変形例においては、図1~図3に示す実施形態との相違点を中心に説明し、図1~図3に示す実施形態における構成要素の名称と同じ名称の構成要素には、これまで用いた符号を付して説明し、重複する説明は省略することがある。また、図4~図10では、図3に対応した状態を示すとともに、図面を簡略化するため、吐出部材7については、吐出口7aのみを示し、仕切部材3および流路形成部材5については、断面形状を模式的に示している。 Next, modified examples of the transfer device shown in FIGS. 1 to 3 will be described with reference to FIGS. 4 to 10. FIG. In the modifications described below, differences from the embodiment shown in FIGS. 1 to 3 will be mainly described. , will be described with the reference numerals that have been used so far, and overlapping descriptions may be omitted. 4 to 10 show the state corresponding to FIG. 3, and for the sake of simplification of the drawing, only the ejection port 7a of the ejection member 7 is shown, and the partition member 3 and the flow path forming member 5 are shown. , schematically shows the cross-sectional shape.

図4(a)は、第1変形例の移送装置を示す図である。この変形例では、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも低くなるように、すなわち、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも、水面WLから深くなるように流路形成部材5と仕切部材3を配置している。これにより、仕切部材3と流路形成部材5との径方向の間隔Diは、吸込口5aに向かうにつれて狭くなり、周辺領域R1内を流れる水の流速は、吸込口5aに向かうにつれて速くなる。この結果、吸込口5aからスカムScをより確実に吸い込むことができる。 FIG. 4(a) is a diagram showing a transfer device of a first modified example. In this modification, the upper end portion 51 of the flow path forming member 5 is lower than the inlet 3 a of the partition member 3 , that is, the upper end portion 51 of the flow path forming member 5 is positioned closer to the inlet 3 a of the partition member 3 . The flow path forming member 5 and the partition member 3 are arranged so as to be deeper than the water surface WL. As a result, the radial distance Di between the partition member 3 and the flow path forming member 5 becomes narrower toward the suction port 5a, and the flow velocity of water flowing in the peripheral region R1 becomes faster toward the suction port 5a. As a result, the scum Sc can be more reliably sucked from the suction port 5a.

また、一点鎖線で示すように、流路形成部材5に径の小さなパイプ材を用い、その上部側部分を切り欠いて形成した流入口3aの幅方向の開口長L3が、吸込口5aの幅方向の開口長L2よりも短い態様としてもよい。こうすることで、流入口3aに流入する水の流速が速くなり、流入口3aからスカムScをより円滑に流入させることができる。なお、図4(a)において一点鎖線で示す仕切部材3は、その径方向の中心を、流路形成部材5の径方向の中心に一致させているため、仕切部材3と流路形成部材5との径方向の間隔Diはいずれの箇所においても略同じになる。ただし、実線で示す仕切部材3と同様に、流路形成部材5の位置を下げ、間隔Diが、吸込口5aに向かうにつれて狭くなる態様としてもよい。 Further, as indicated by the dashed line, a small-diameter pipe material is used for the flow path forming member 5, and the opening length L3 in the width direction of the inlet 3a formed by notching the upper portion thereof is equal to the width of the suction port 5a. It may be shorter than the opening length L2 in the direction. By doing so, the flow velocity of the water flowing into the inlet 3a is increased, and the scum Sc can be flowed more smoothly from the inlet 3a. 4(a), the center of the partition member 3 indicated by the dashed line is aligned with the center of the channel forming member 5 in the radial direction. is substantially the same at any point. However, like the partition member 3 indicated by the solid line, the position of the flow path forming member 5 may be lowered so that the interval Di becomes narrower toward the suction port 5a.

図4(b)は、第2変形例の移送装置を示す図である。この変形例では、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも高くなるように、流路形成部材5と仕切部材3を配置している。これにより、流路Sにおける上部側部分S1は、流入口3aよりも上方に位置し、仕切部材3と流路形成部材5との径方向の間隔Diは、吸込口5aに向かうにつれて広くなる。この第2変形例では、周辺領域R1を広く確保することができる。 FIG.4(b) is a figure which shows the transfer apparatus of a 2nd modification. In this modification, the flow path forming member 5 and the partition member 3 are arranged such that the upper end portion 51 of the flow path forming member 5 is higher than the inlet 3 a of the partition member 3 . As a result, the upper portion S1 of the flow path S is located above the inlet 3a, and the radial distance Di between the partition member 3 and the flow path forming member 5 increases toward the suction port 5a. In this second modification, a wide peripheral region R1 can be ensured.

また、一点鎖線で示すように、径の小さなパイプ材を用いて仕切部材3を形成し、その径方向の中心を、流路形成部材5の径方向の中心に一致させることで、仕切部材3と流路形成部材5との径方向の間隔Diをいずれの箇所においても同じになる態様としてもよい。なお、流路形成部材5を、その上端部分51が水面WL上に位置するように配置してもよいが、流路形成部材5における、水面WL上に突出した部分によって、水面WLにおける、幅方向の水の流れが遮られてしまうため、上端部分51が水中に没する位置に流路形成部材5を配置する態様が好ましい。さらに、流路形成部材5における上端部分51の、水面WLからの深さを、20mm以上に設定すれば、上端部分51にスカムScが載りにくくなり好ましい。 In addition, as indicated by the dashed line, the partition member 3 is formed using a pipe material with a small diameter, and the radial center of the partition member 3 is aligned with the radial center of the flow path forming member 5 . and the flow path forming member 5 may be the same at any point. Although the flow path forming member 5 may be arranged so that its upper end portion 51 is positioned above the water surface WL, the portion of the flow path forming member 5 that protrudes above the water surface WL causes the width of the water surface WL to increase. Since the flow of water in the direction is blocked, it is preferable to dispose the flow path forming member 5 at a position where the upper end portion 51 is submerged in water. Furthermore, if the depth of the upper end portion 51 of the flow path forming member 5 from the water surface WL is set to 20 mm or more, the scum Sc is less likely to be placed on the upper end portion 51, which is preferable.

図5(a)は、第3変形例の移送装置を示す図である。この第3変形例の移送装置1は、ともに扁平な形状の仕切部材3と流路形成部材5を備えている点が、図3に示す移送装置1と相違する。具体的には、仕切部材3は、その幅寸法W1の、1/2程度の高さ寸法を有するパイプの上端部分を切り欠いて形成したものである。また、流路形成部材5は、その幅寸法W2の、1/2程度の高さ寸法を有するパイプの下端部分を切り欠いて形成したものである。すなわち、本変形例における、仕切部材3と流路形成部材5は、吐出方向と水平面内で直交する幅方向の寸法が高さ方向の寸法よりも長い扁平な形状のものである。このように、扁平な形状の仕切部材3を採用すれば、流入口3aを幅方向に広くとることが容易になる。流入口3aを幅方向に広くすれば、水面WLのより広い範囲に浮遊したスカムScを、周辺領域R1内に流入させることができる。また、ともに扁平な形状の仕切部材3と流路形成部材5を採用することで、流水部91(図1参照)の汚水Wの流れを妨げにくくなり、汚水Wの流れに対する抵抗を軽減することも可能になる。 FIG. 5(a) is a diagram showing a transfer device of a third modification. The transfer device 1 of this third modification differs from the transfer device 1 shown in FIG. 3 in that it includes a flat partition member 3 and a flow path forming member 5 . Specifically, the partition member 3 is formed by notching the upper end portion of a pipe having a height about 1/2 of its width W1. The flow path forming member 5 is formed by notching the lower end portion of a pipe having a height about 1/2 of its width W2. That is, the partition member 3 and the flow path forming member 5 in this modification have a flat shape in which the dimension in the width direction perpendicular to the discharge direction in the horizontal plane is longer than the dimension in the height direction. By adopting the partition member 3 having a flat shape in this way, it becomes easy to widen the inlet 3a in the width direction. If the inlet 3a is widened in the width direction, the scum Sc floating over a wider range of the water surface WL can flow into the peripheral region R1. In addition, by adopting the partition member 3 and the flow path forming member 5, both of which are flat, the flow of the sewage W in the running water section 91 (see FIG. 1) is less likely to be hindered, and the resistance to the flow of the sewage W can be reduced. is also possible.

なお、一点鎖線で示すように、流路形成部材5の位置を下げ、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも低くなるように配置してもよい。また、扁平な形状の仕切部材3に代えて、二点鎖線で示すように、前述した、図3に示す仕切部材3を用いてもよい。 In addition, as indicated by the dashed line, the position of the flow path forming member 5 may be lowered so that the upper end portion 51 of the flow path forming member 5 is lower than the inlet 3 a of the partition member 3 . Further, instead of the flat-shaped partition member 3, the partition member 3 described above and shown in FIG. 3 may be used as indicated by the two-dot chain line.

図5(b)は、第4変形例の移送装置を示す図である。この変形例の移送装置1は、図5(a)に示す第3変形例の移送装置1において、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも高くなるように、流路形成部材5と仕切部材3を配置している。これにより、流路Sにおける上部側部分S1は、流入口3aよりも上方に位置している。なお、扁平な形状の流路形成部材5に代えて、一点鎖線で示すように、前述した、図3に示す流路形成部材5を用いてもよい。 FIG.5(b) is a figure which shows the transfer apparatus of a 4th modification. The transfer device 1 of this modification is different from the transfer device 1 of the third modification shown in FIG. , the flow path forming member 5 and the partition member 3 are arranged. As a result, the upper portion S1 of the flow path S is located above the inlet 3a. Instead of the flat flow path forming member 5, the flow path forming member 5 shown in FIG. 3 may be used as indicated by the dashed line.

図6(a)は、第5変形例の移送装置を示す図である。この変形例の移送装置1は、仕切部材3の形状が、図3に示す移送装置1と相違する。図6(a)に示すように、仕切部材3は、鉛直に立設した一対の壁部32と、これら一対の壁部32の下端部分を水平方向に連結する底部33とを有し、上方が開放された断面コ字状のものである。ここで、図3に示す実施形態や、図4や図5に示す変形例のように、仕切部材3の内周面が円弧状のものであると、仕切部材3と流路形成部材5との大小関係や、仕切部材3における流入口3aの開口長L3(図4(a)参照)によっては、仕切部材3と流路形成部材5のうちの一方を鉛直方向に移動させる際に、仕切部材3と流路形成部材5が干渉してしまう場合がある。本変形例によれば、流路形成部材5の側方に、鉛直に立設した壁部32が位置するため、図の両矢印に示すように、仕切部材3と流路形成部材5のうちの一方を鉛直方向に移動させる際に、仕切部材3と流路形成部材5が干渉しにくくなる。これによって、仕切部材3と流路形成部材5のうちの一方を鉛直方向に移動させる際の自由度が向上する。また、仕切部材3の作製も容易になる。 FIG. 6(a) is a diagram showing a transfer device of a fifth modification. The transfer device 1 of this modified example differs from the transfer device 1 shown in FIG. 3 in the shape of the partition member 3 . As shown in FIG. 6(a), the partition member 3 has a pair of vertically erected walls 32 and a bottom 33 horizontally connecting the lower ends of the pair of walls 32. is open and has a U-shaped cross section. Here, if the inner peripheral surface of the partition member 3 is arc-shaped as in the embodiment shown in FIG. 3 or the modified examples shown in FIGS. and the opening length L3 of the inlet 3a of the partition member 3 (see FIG. 4A), when moving one of the partition member 3 and the flow path forming member 5 in the vertical direction, the partition The member 3 and the flow path forming member 5 may interfere with each other. According to this modification, the wall portion 32 standing vertically is positioned on the side of the flow path forming member 5, so that the partition member 3 and the flow path forming member 5 are separated from each other as indicated by the double arrow in the figure. When moving one of them in the vertical direction, the partition member 3 and the flow path forming member 5 are less likely to interfere with each other. This improves the degree of freedom when moving one of the partition member 3 and the flow path forming member 5 in the vertical direction. Also, the partition member 3 can be easily manufactured.

仕切部材3と流路形成部材5は、流路形成部材5の上端部分51が、仕切部材3の流入口3aと同じ高さになるように配置してもよいが、一点鎖線で示すように、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも低い位置に設定してもよい。なお、二点鎖線で示すように、仕切部材3は、壁部32の上端側部分321を、幅方向の外側に拡がるように湾曲させて形成してもよいし、壁部32と底部33との連結部分に、円弧状の隅部34を設けてもよい。 The partition member 3 and the flow path forming member 5 may be arranged so that the upper end portion 51 of the flow path forming member 5 is at the same height as the inlet 3a of the partition member 3. , the upper end portion 51 of the flow path forming member 5 may be set at a position lower than the inlet 3 a of the partition member 3 . As indicated by the two-dot chain line, the partition member 3 may be formed by curving the upper end portion 321 of the wall portion 32 so as to expand outward in the width direction, or the wall portion 32 and the bottom portion 33 may be formed. An arc-shaped corner portion 34 may be provided at the connecting portion of the .

図6(b)は、第6変形例の移送装置を示す図である。この変形例の移送装置1は、図6(a)に示す第5変形例の移送装置1において、仕切部材3の流入口3aが、流路形成部材5の上端部分51よりも低くなるように、流路形成部材5と仕切部材3を配置している。なお、一点鎖線で示すように、仕切部材3の底部33を、下方に凸となる円弧状に形成してもよい。 FIG.6(b) is a figure which shows the transfer apparatus of a 6th modification. The transfer device 1 of this modification is different from the transfer device 1 of the fifth modification shown in FIG. , the flow path forming member 5 and the partition member 3 are arranged. Note that the bottom portion 33 of the partition member 3 may be formed in an arcuate shape that protrudes downward, as indicated by the dashed line.

図7(a)は、第7変形例の移送装置を示す図である。この変形例では、仕切部材3の形状が、図3に示す移送装置1と相違する。図7(a)に示すように、本変形例の仕切部材3は、上端部分に、幅方向の外側に拡がるように湾曲した第2湾曲部35を有している。これにより、仕切部材3の流入口3aが広がり、水面WLのより広い範囲に浮遊したスカムScを、流入口3aから周辺領域R1内に流入させることができる。また、一点鎖線で示すように、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも、低くなる位置に流路形成部材5を配置してもよい。 FIG. 7(a) is a diagram showing a transfer device of a seventh modification. In this modification, the shape of the partition member 3 is different from that of the transfer device 1 shown in FIG. As shown in FIG. 7(a), the partition member 3 of this modified example has a second curved portion 35 that curves outward in the width direction at the upper end portion. As a result, the inlet 3a of the partition member 3 is widened, and the scum Sc floating over a wider range of the water surface WL can flow from the inlet 3a into the peripheral region R1. Alternatively, the flow path forming member 5 may be arranged at a position where the upper end portion 51 of the flow path forming member 5 is lower than the inlet 3a of the partition member 3, as indicated by the dashed line.

図7(b)は、第8変形例の移送装置を示す図である。この変形例の移送装置1は、図7(a)に示す第7変形例の移送装置1において、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも高くなるように、仕切部材3と流路形成部材5を配置している。また、本変形例では、仕切部材3と流路形成部材5との径方向の間隔Diが最も狭い部分を、吸込口5aの幅方向の開口長L2と略同じに設定している。なお、一点鎖線で示すように、径の小さな仕切部材3を採用し、第2湾曲部35と流路形成部材5との径方向の間隔Diを、吸込口5aの幅方向の開口長L2よりも短くして、この間隔Diを通過する水の流速を速めるようにしてもよい。 FIG. 7(b) is a diagram showing a transfer device according to an eighth modification. The transfer device 1 of this modification is the transfer device 1 of the seventh modification shown in FIG. , the partition member 3 and the flow path forming member 5 are arranged. In addition, in this modified example, the portion where the radial distance Di between the partition member 3 and the flow path forming member 5 is the narrowest is set substantially equal to the widthwise opening length L2 of the suction port 5a. As indicated by the dashed line, the partition member 3 having a small diameter is employed, and the radial distance Di between the second curved portion 35 and the flow path forming member 5 is set to be less than the widthwise opening length L2 of the suction port 5a. may also be shortened to increase the flow velocity of water through this interval Di.

図8は、第9変形例の移送装置を示す図である。この変形例は、流路形成部材5の上端部分51と吐出口7aの水面WLからの深さを一定にした状態で、流入口3aにおける、水面WLからの深さDp1と開口長L3、および吸込口5aにおける、水面WLからの深さDp3と開口長L2を調整できるものである。 FIG. 8 is a diagram showing a transfer device of a ninth modification. In this modification, the depth Dp1 from the water surface WL and the opening length L3, and The depth Dp3 from the water surface WL and the opening length L2 of the suction port 5a can be adjusted.

図8(a)において、二点鎖線の四角で囲んで示すように、仕切部材3は、1/2円弧状の一対の仕切部材構成体30を有し、図8(a)および同図(b)に示すように、これら一対の仕切部材構成体30を、互いの一部を重ねることで仕切部材3が構成されている。図8(a)および同図(b)では、一対の仕切部材構成体30が重なる部分を、βの符号で示している。これら一対の仕切部材構成体30は、径方向の中心Oを回動中心として回動し、重なる部分βの大きさを変更することができる。 In FIG. 8(a), the partition member 3 has a pair of 1/2 arc-shaped partition member structures 30, as shown enclosed by a two-dot chain line square. As shown in b), the partition member 3 is configured by partially overlapping the pair of partition member structures 30 . In FIGS. 8(a) and 8(b), the portion where the pair of partition member structures 30 overlap is indicated by the symbol β. The pair of partition member structures 30 can rotate about the center O in the radial direction to change the size of the overlapping portion β.

図8(a)に示す仕切部材3の状態から、図8(b)に示すように、重なる部分βを小さくすると、流入口3aの、水面WLからの深さDp1が浅くなり、流入口3aの開口長L3が狭くなる。図示は省略するが、反対に、重なる部分βを大きくすると、流入口3aの、水面WLからの深さDp1が深くなり、流入口3aの開口長L3は広くなる。このように、一対の仕切部材構成体30が重なる部分βの大きさを変更することで、流入口3aの、水面WLからの深さDp1と開口長L3を調整することができる。なお、図8では、水面WLの高さが一定の場合に、流入口3aの、水面WLからの深さDp1を調整する態様を例に挙げて説明したが、水面WLの高さの変動に追従させて、流入口3aの、水面WLからの深さDp1が一定になるように調整する態様としてもよい。 From the state of the partition member 3 shown in FIG. 8(a), when the overlapping portion β is reduced as shown in FIG. 8(b), the depth Dp1 of the inlet 3a from the water surface WL becomes shallower, becomes narrower. Conversely, although not shown, if the overlapping portion β is increased, the depth Dp1 of the inlet 3a from the water surface WL is increased, and the opening length L3 of the inlet 3a is increased. Thus, by changing the size of the portion β where the pair of partition member structures 30 overlap, the depth Dp1 from the water surface WL and the opening length L3 of the inlet 3a can be adjusted. In FIG. 8, an example of adjusting the depth Dp1 from the water surface WL of the inlet 3a when the height of the water surface WL is constant has been described. It may be adjusted so that the depth Dp1 of the inlet 3a from the water surface WL is constant.

また、図8(a)および同図(b)に示すように、流路形成部材5は、円筒体の下方の略1/3を切り欠いた断面円弧状の流路形成部材本体50と、この流路形成部材本体50の切り欠いた部分の両端部分にそれぞれ設けられた、一対のスライド片53とを備えている。一対のスライド片53それぞれは、1/5円弧状のものであり、下端部分は、流路形成部材本体50から下方に突出し、これら下端部分の間に吸込口5aが形成されている。また、一対のスライド片53それぞれは、流路形成部材本体50の内周面50aに沿ってスライドし、これによって、吸込口5aの、水面WLからの深さDp3と開口長L2を調整することができる。 As shown in FIGS. 8A and 8B, the flow path forming member 5 includes a flow path forming member main body 50 having an arcuate cross section obtained by cutting out approximately one-third of the lower portion of the cylindrical body, A pair of slide pieces 53 are provided at both end portions of the notched portion of the flow path forming member main body 50 . Each of the pair of slide pieces 53 has a ⅕ arc shape, the lower end portion of which protrudes downward from the flow path forming member body 50, and the suction port 5a is formed between these lower end portions. Further, the pair of slide pieces 53 slide along the inner peripheral surface 50a of the passage forming member main body 50, thereby adjusting the depth Dp3 from the water surface WL and the opening length L2 of the suction port 5a. can be done.

具体的には、図8(a)に示す、流路形成部材5の状態から、図8(b)に、点線の円弧状の矢印で示すように、一対のスライド片53それぞれを、流路形成部材本体50の内側(上方)にスライドさせると、吸込口5aの、水面WLからの深さDp3が浅くなり、吸込口5aの開口長L2が広くなる。図示は省略するが、反対に、一対のスライド片53それぞれを、流路形成部材本体50の外側(下方)にスライドさせると、吸込口5aの、水面WLからの深さDp3が深くなり、吸込口5aの開口長L2が狭くなる。 Specifically, from the state of the flow path forming member 5 shown in FIG. 8( a ), each of the pair of slide pieces 53 is moved to the flow path as indicated by the dotted arc-shaped arrows in FIG. 8( b ). When the forming member main body 50 is slid inside (upward), the depth Dp3 of the suction port 5a from the water surface WL becomes shallower, and the opening length L2 of the suction port 5a becomes wider. Although not shown, on the contrary, when each of the pair of slide pieces 53 is slid to the outside (downward) of the flow path forming member main body 50, the depth Dp3 of the suction port 5a from the water surface WL increases, and the suction port 5a increases. The opening length L2 of the mouth 5a is narrowed.

なお、図8に示す変形例における、仕切部材3の構成を、流路形成部材5に適用してもよいし、流路形成部材5の構成を、仕切部材3に適用してもよい。また、一対の仕切部材構成体30やスライド片53を、吐出方向において複数に分割し、それぞれ調整することで、例えば、流入口3aの、水面WLからの深さDp1や、吸込口5aの開口長L2等を、吐出方向の上流側と、吐出方向の下流側とで異ならせることもできる。 Note that the configuration of the partition member 3 in the modified example shown in FIG. Further, by dividing the pair of partition member structures 30 and the slide piece 53 into a plurality of pieces in the discharge direction and adjusting each of them, for example, the depth Dp1 of the inlet 3a from the water surface WL and the opening of the suction port 5a The length L2 and the like can be made different between the upstream side in the ejection direction and the downstream side in the ejection direction.

図9は、第10変形例の移送装置を示す図である。この変形例の移送装置1は、流路形成部材5が、仕切部材3の、幅方向における一端(図では左側の端部)に接続した、いわゆる片持ち状態で仕切部材3に支持されたものである。二点鎖線の四角で囲んで示すように、概念的には、流路形成部材5と仕切部材3それぞれは、一部を互いに共通にした、点線で示す共通部4を有している。これにより、仕切部材3と流路形成部材5との径方向の間隔Diが確保しやすくなる。また、本変形例では、仕切部材3から流路形成部材5にかけて、内周面4aが連続した曲面で構成されている。これにより、仕切部材3の流入口3aから吸込口5aに向かう水の流れが内周面4aに沿ったスムーズな流れになり、流路形成部材5の吸込口5aからスカムScを円滑に吸い込むことができる。なお、流路形成部材5の上端部分51の高さ(水面WLからの深さ)を、仕切部材3の、幅方向における他端(図では右側の端部)の高さ(水面WLからの深さ)と異ならせてもよいが、図9に示すように、流路形成部材5の上端部分51の高さと、仕切部材3の、幅方向における他端の高さを同じにすれば、スカムScが、幅方向の両側から流入口3aに流入しやすくなり好ましい。 FIG. 9 is a diagram showing a transfer device of a tenth modification. In the transfer device 1 of this modified example, the flow path forming member 5 is connected to one end (the left end in the drawing) of the partition member 3 in the width direction, and is supported by the partition member 3 in a so-called cantilevered state. is. Conceptually, each of the flow path forming member 5 and the partitioning member 3 has a common portion 4 indicated by a dotted line, which is partly shared with each other, as indicated by a two-dot chain box. This makes it easier to secure the radial distance Di between the partition member 3 and the flow path forming member 5 . In addition, in this modified example, the inner peripheral surface 4a is configured as a continuous curved surface from the partition member 3 to the flow path forming member 5 . As a result, the flow of water from the inlet 3a of the partition member 3 toward the suction port 5a becomes a smooth flow along the inner peripheral surface 4a, and the scum Sc is smoothly sucked from the suction port 5a of the flow path forming member 5. can be done. The height of the upper end portion 51 of the flow path forming member 5 (the depth from the water surface WL) is the height of the other end (the right end in the drawing) of the partition member 3 in the width direction (the depth from the water surface WL). depth), but as shown in FIG. It is preferable because the scum Sc easily flows into the inlet 3a from both sides in the width direction.

図10は、第11変形例の移送装置を示す図である。この変形例では、仕切部材3を省略し、流路形成部材5を、その吸込口5aが上方を向く姿勢に配置している。本変形例では、流路形成部材5の流路S内に吐出口7aから水が吐出されると、吐出された水の流れに引き込まれて、図10に示すように、吸込口5aから流路S内に吸い込まれる方向の水の流れが生じる。これにより、図10にスカムScの流れを概念的に示すように、流水部91の水面WLに浮遊しているスカムScが吸込口5aに向かって集まり、吸込口5aから流路S内に吸い込まれる。流路S内に吸い込まれたスカムScは、吐出口7aから吐出された水の流れによって移送方向に移動する。 FIG. 10 is a diagram showing a transfer device of an eleventh modification. In this modification, the partition member 3 is omitted, and the flow path forming member 5 is arranged in a posture in which the suction port 5a thereof faces upward. In this modification, when water is discharged from the discharge port 7a into the flow channel S of the flow channel forming member 5, it is drawn into the flow of the discharged water and flows from the suction port 5a as shown in FIG. A flow of water is generated in the direction of being sucked into the channel S. As a result, as conceptually shown in FIG. 10, the scum Sc floating on the water surface WL of the flowing water portion 91 gathers toward the suction port 5a and is sucked into the flow path S from the suction port 5a. be The scum Sc sucked into the flow path S moves in the transfer direction due to the flow of water discharged from the discharge port 7a.

なお、円弧状の両矢印で示すように、径方向の中心Oを回動中心として流路形成部材5を回動させ、直線の矢印で示す、吸込口5aが開口する方向を、角度αの範囲で変更できる態様としてもよい。また、流路形成部材5として、一点鎖線で示すように、図5(a)の第3変形例の移送装置1における、扁平状の流路形成部材5を用いてもよい。なお、図3に示す実施形態や、図4等に示す、仕切部材3を有する変形例においては、径方向の中心を回動中心として仕切部材3を回動させる態様を採用してもよい。 As shown by the circular double-headed arrow, the flow path forming member 5 is rotated around the center O in the radial direction, and the direction in which the suction port 5a is opened, shown by the straight arrow, is set at the angle α. It is good also as the aspect which can be changed in a range. Further, as the flow path forming member 5, as indicated by the dashed line, the flat flow path forming member 5 in the transfer device 1 of the third modified example of FIG. 5(a) may be used. In addition, in the embodiment shown in FIG. 3 and the modified example having the partition member 3 shown in FIG. 4 and the like, a mode in which the partition member 3 is rotated about the center of rotation in the radial direction may be employed.

次いで、設置する設備が異なる、本発明の移送装置の第2実施形態について説明する。以下に説明する第2実施形態においても、図1~図3に示す実施形態における構成要素の名称と同じ名称の構成要素には、これまで用いた符号を付して説明し、重複する説明は省略することがある。 Next, a second embodiment of the transfer device of the present invention, which is different in installed equipment, will be described. Also in the second embodiment described below, the same reference numerals as those used in the embodiments shown in FIGS. may be omitted.

図11は、本発明の第2実施形態の移送装置が設けられた伏せ越し構造の概略構成図である。伏せ越し構造とは、下水管が河川や鉄道等を横切る場合、これら河川等よりも低い位置に伏せ越し管を設け、上流側管路と下流側管路との水位差によって下水を流す構造をいう。 FIG. 11 is a schematic configuration diagram of a lying down structure provided with a transfer device according to a second embodiment of the present invention. An overpass structure is a structure in which, when a sewage pipe crosses a river or railway, the overpass pipe is installed at a position lower than the river, etc., and the sewage flows due to the water level difference between the upstream and downstream pipes. Say.

伏せ越し構造8は、図11において、河川Riの左側から右側に下水DRを流すものであり、図では白抜きの矢印で示すように、左から右に向かう方向が下水DRの流れる方向になる。この伏せ越し構造8は、図11に示すように、下水DRの流れの上流側から下流側にかけて記載順に、上流側管路81、上流側マンホール82、伏せ越し管83、下流側マンホール84および下流側管路85が設けられている。上流側管路81は、上流側マンホール82に接続しており、伏せ越し管83は、河川Riよりも低い位置において、上流側マンホール82と、下流側マンホール84とに接続している。下流側管路85は、上流側管路81が上流側マンホール82に接続した位置よりも低い位置において、下流側マンホール84に接続している。なお、上流側マンホール82の底と下流側マンホール84の底には、それぞれ土砂溜まり821,841が形成されている。 In FIG. 11, the overpass structure 8 allows the sewage DR to flow from the left side to the right side of the river Ri. . As shown in FIG. 11 , the overpass structure 8 includes an upstream pipeline 81, an upstream manhole 82, a overpass pipe 83, a downstream manhole 84, and a downstream manhole 84 in the order described from the upstream side to the downstream side of the flow of sewage DR. A side conduit 85 is provided. The upstream pipeline 81 is connected to the upstream manhole 82, and the overpass pipe 83 is connected to the upstream manhole 82 and the downstream manhole 84 at a position lower than the river Ri. The downstream pipeline 85 is connected to the downstream manhole 84 at a position lower than the position where the upstream pipeline 81 is connected to the upstream manhole 82 . At the bottom of the upstream manhole 82 and the bottom of the downstream manhole 84, sediment pits 821 and 841 are formed, respectively.

上流側管路81を流れてきた下水DRは、上流側管路81と下流側管路85との水位差によって生じる、いわゆる逆サイホン作用によって、上流側マンホール82から、伏せ越し管83を流れ、さらに、下流側マンホール84から下流側管路85を流れていく。 The sewage DR that has flowed through the upstream pipeline 81 flows from the upstream manhole 82 through the overhanging pipe 83 by a so-called reverse siphon effect caused by the water level difference between the upstream pipeline 81 and the downstream pipeline 85, Further, it flows from the downstream manhole 84 through the downstream pipeline 85 .

ここで、上流側管路81には、図1~図3に示す移送装置1と同じ構成の移送装置1が設けられている。この移送装置1は、上流側管路81が上流側マンホール82に接続する領域付近に、流路形成部材5の下流端52が位置している。前述した図1~図3に示す移送装置1と同様に、吐出口7aから水を吐出させると、下水DRの水面WLに浮遊したスカムScは、流路形成部材5に吸い込まれた後、上流側マンホール82に向かって移送され、流路形成部材5の下流端52から吹き出されることで、上流側マンホール82内の下水DRの水面WLに集められる。 Here, the upstream pipeline 81 is provided with a transfer device 1 having the same configuration as the transfer device 1 shown in FIGS. In the transfer device 1 , the downstream end 52 of the flow path forming member 5 is positioned near the region where the upstream pipe line 81 connects to the upstream manhole 82 . 1 to 3 described above, when water is discharged from the discharge port 7a, the scum Sc floating on the water surface WL of the sewage DR is sucked into the flow path forming member 5, and then flows upstream. The sewage is transferred toward the side manhole 82 and blown out from the downstream end 52 of the flow path forming member 5 to be collected on the water surface WL of the sewage DR in the upstream side manhole 82 .

上流側マンホール82内の下水DRの水面WLに集められたスカムScは、上流側マンホール82の鉄蓋を開けて除去され、また、その一部は、下水DRの流れに引き込まれて伏せ越し管83に流入する。なお、土砂溜まり821に沈降した砂等も、下水DRの流れによって伏せ越し管83に流入する。伏せ越し管83には、図1~図3に示す移送装置1と同じ構成の移送装置1と、沈降する砂等の沈降物を移送する沈降物移送装置2が設けられている。 The scum Sc collected on the water surface WL of the sewage DR in the upstream manhole 82 is removed by opening the iron cover of the upstream manhole 82, and part of it is drawn into the flow of the sewage DR and is discharged into the down pipe. Flow into 83. In addition, sand or the like that has settled in the earth and sand pool 821 also flows into the overhanging pipe 83 due to the flow of the sewage DR. The down pipe 83 is provided with a transfer device 1 having the same configuration as the transfer device 1 shown in FIGS. 1 to 3 and a sediment transfer device 2 for transferring sediment such as sand.

図12は、図11に示す伏せ越し管のC-C線断面図である。なお、図12では、伏せ越し管83における、幅方向の両側領域と、上下方向における中間領域は、省略している。 FIG. 12 is a cross-sectional view taken along the line CC of the lay-over pipe shown in FIG. 11. FIG. Note that FIG. 12 omits both side regions in the width direction and an intermediate region in the vertical direction of the down pipe 83 .

図12に示すように、伏せ越し管83内は下水DRで満たされており、下水DRの水面WLは、伏せ越し管83の天井面831に接する状態になっている。移送装置1は、仕切部材3の流入口3a、および流路形成部材5の上端部分51における、水面WLすなわち天井面831からの深さDp1が、20mm以上に設定されている。水面WLからの深さDp1が、20mm未満であると、伏せ越し管83の天井面831と仕切部材3の流入口3aとの間や、伏せ越し管83の天井面831と流路形成部材5の上端部分51との間にスカムScが引っ掛かりやすくなり、好ましくない。 As shown in FIG. 12 , the down pipe 83 is filled with sewage DR, and the water surface WL of the sewage DR is in contact with the ceiling surface 831 of the down pipe 83 . In the transfer device 1, the depth Dp1 of the inlet 3a of the partition member 3 and the upper end portion 51 of the flow path forming member 5 from the water surface WL, that is, the ceiling surface 831 is set to 20 mm or more. When the depth Dp1 from the water surface WL is less than 20 mm, there is a gap between the ceiling surface 831 of the downhill pipe 83 and the inlet 3a of the partition member 3, or between the ceiling surface 831 of the downhill pipe 83 and the flow path forming member 5. The scum Sc is likely to be caught between the upper end portion 51 of the and is not preferable.

吐出部材7の吐出口7aから流路形成部材5の流路S内に水が吐出されると、吸込口5aから流路S内に吸い込まれる方向の水の流れが生じ、流入口3aから周辺領域R1内に流れ込む水の流れが生じるとともに、周辺領域R1内では吸込口5aに向かう水の流れが生じる。この結果、水面WL(天井面831付近)には、仕切部材3の流入口3aに集まる方向の流れが生じ、天井面831付近に浮遊しているスカムScが集まってきて、流入口3aから周辺領域R1内に流入する。周辺領域R1内に流入したスカムScは、吸込口5aから流路S内に吸い込まれ、吸い込まれたスカムScが、下流側マンホール84まで移送される。これにより、スカムScが、伏せ越し管83の天井面831に付着して伏せ越し管83内に留まってしまうといった問題を解消することができる。 When water is discharged from the discharge port 7a of the discharge member 7 into the flow channel S of the flow channel forming member 5, the water flows in the direction of being sucked into the flow channel S from the suction port 5a. A flow of water is generated in the region R1, and a flow of water toward the suction port 5a is generated in the peripheral region R1. As a result, on the water surface WL (in the vicinity of the ceiling surface 831), a flow is generated in a direction that gathers at the inlet 3a of the partition member 3, and the scum Sc floating in the vicinity of the ceiling surface 831 gathers and flows from the inlet 3a to the surroundings. It flows into region R1. The scum Sc that has flowed into the peripheral region R1 is sucked into the flow path S through the suction port 5a, and the sucked scum Sc is transported to the downstream manhole 84. As shown in FIG. As a result, the problem that the scum Sc adheres to the ceiling surface 831 of the lay down pipe 83 and stays in the lay down pipe 83 can be solved.

伏せ越し管83の底側には、沈降物を移送する沈降物移送装置2が底面832上に設けられている。また、伏せ越し管83の底は改修され、クロスハッチングで示す、コンクリートで改修された部分によって、沈降物移送装置2に向かって下方に傾斜した、一対の傾斜面833が設けられている。沈降物移送装置2は、トラフ21と、底側流路形成部材25と、底側吐出部材27とを備えたものである。トラフ21は、伏せ越し管83の底側において、上流側マンホール82から下流側マンホール84(図11参照)に向かう方向に延在した溝Mを形成するものである。トラフ21の上方に向けて開口した部分が、溝Mの開口21aになり、この溝Mの開口21aには、傾斜面833の下端が接続している。底側流路形成部材25は、トラフ21と同じ方向に延在し、その全長が、トラフ21と略同じ長さに形成されている。底側流路形成部材25は、底側流路S2を形成するものであり、この底側流路S2と溝Mとを仕切っている。また、底側流路形成部材25は、底側流路S2につながり溝M内に位置する溝内吸込口25aを有している。底側吐出部材27は、底側吐出口27aを備えたものであり、この底側吐出口27aから、底側流路S2内に水が吐出される。 A sediment transfer device 2 for transferring sediment is provided on the bottom surface 832 on the bottom side of the down pipe 83 . In addition, the bottom of the overpass pipe 83 is modified to provide a pair of sloping surfaces 833 sloping downward toward the sediment transporter 2 by a concrete modified portion indicated by cross-hatching. The sediment transfer device 2 includes a trough 21 , a bottom-side channel forming member 25 and a bottom-side discharge member 27 . The trough 21 forms a groove M extending in the direction from the upstream side manhole 82 toward the downstream side manhole 84 (see FIG. 11) on the bottom side of the downspout pipe 83 . The upwardly opening portion of the trough 21 serves as the opening 21a of the groove M, and the opening 21a of the groove M is connected to the lower end of the inclined surface 833 . The bottom-side flow path forming member 25 extends in the same direction as the trough 21 and has substantially the same length as the trough 21 . The bottom-side channel forming member 25 forms the bottom-side channel S2 and partitions the bottom-side channel S2 and the groove M. As shown in FIG. Further, the bottom-side flow path forming member 25 has an in-groove suction port 25a located in the groove M connected to the bottom-side flow path S2. The bottom-side discharge member 27 has a bottom-side discharge port 27a, and water is discharged into the bottom-side channel S2 from the bottom-side discharge port 27a.

伏せ越し管83に流れ込んだ下水DRに含まれている砂等の沈降物は、下水DRが下流側へ流れていく課程において沈降していき、傾斜面833に沿ってトラフ21に向かって流れ落ちる。傾斜面833から流れ落ちた沈降物は、トラフ21の開口21aから溝M内に入り込む。また、図11に示す、上流側マンホール82の土砂溜まり821に堆積した砂等も溝M内に入り込む場合もある。 Sediments such as sand contained in the sewage DR that has flowed into the downspout pipe 83 settle while the sewage DR flows downstream, and flow down toward the trough 21 along the inclined surface 833 . Sediment that has flowed down from the inclined surface 833 enters the groove M through the opening 21 a of the trough 21 . In addition, sand or the like accumulated in the sediment pool 821 of the upstream manhole 82 shown in FIG.

底側吐出口27aから底側流路S2内に水が吐出されると、吐出された水の流れに引き込まれて、溝Mの底に堆積した沈降物は、図12に示す曲線の矢印のように、溝内吸込口25aから底側流路S2内に吸い込まれる。さらに、その底側流路形成部材25の底側流路S2内では、吸い込まれた沈降物が、底側吐出口27aから吐出された水の流れによって吐出方向下流側(下流側マンホール84側)に向かって移動する。これにより、砂等の沈降物を伏せ越し管83内に残留させることなく、下流側マンホール84の土砂溜まり841等に移送することができる。 When water is discharged into the bottom channel S2 from the bottom discharge port 27a, sediment deposited on the bottom of the groove M by being drawn into the flow of the discharged water is formed by the curved arrow shown in FIG. As shown in FIG. Furthermore, in the bottom-side flow passage S2 of the bottom-side flow-path forming member 25, the sucked sediment is moved downstream in the discharge direction (downstream manhole 84 side) by the flow of water discharged from the bottom-side discharge port 27a. move towards As a result, sediments such as sand can be transferred to the earth and sand pool 841 of the downstream manhole 84 without remaining in the downspout pipe 83 .

本発明は上述の実施の形態に限られることなく特許請求の範囲に記載した範囲で種々の変更を行うことが出来る。 The present invention is not limited to the above-described embodiments, and can be modified in various ways within the scope of the claims.

なお、以上説明した各実施形態や各変形例の記載それぞれにのみ含まれている構成要件であっても、その構成要件を他の実施形態や他の変形例に適用してもよい。 In addition, even if the constituent elements are included only in the description of each of the embodiments and modifications described above, the constituent elements may be applied to other embodiments and other modifications.

また、これまでに説明した移送装置は、流路を形成するものであって、該流路につながり水中に没する吸込口が設けられた流路形成部材と、
前記流路内に流体を吐出する吐出口とを備え、
前記吸込口は、水面に浮遊した被移送物を、前記流路内に流体が吐出されることで該流路内に吸い込む開口として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されることで該流体の吐出方向下流側に向かって移動する経路として機能するものであることを特徴とする。
Further, the transfer device described so far includes a flow path forming member that forms a flow path and is provided with a suction port connected to the flow path and submerged in water;
a discharge port for discharging a fluid into the flow path,
The suction port functions as an opening for sucking an object floating on the surface of the water into the flow channel by discharging fluid into the flow channel,
The flow path functions as a path along which the object to be transferred that has been sucked into the flow path moves downstream in the discharge direction of the fluid as the fluid is discharged into the flow path. It is characterized by

さらに、この移送装置において、水中における、前記流路形成部材周辺の周辺領域と他の領域とを、該周辺領域が内側となるように仕切り、該周辺領域につながった流入口が設けられた仕切部材を備え、
前記流入口は、水面に浮遊した前記被移送物を、前記流路内に流体が吐出されることで前記周辺領域内に流入させる開口として機能するものであり、
前記吸込口は、前記流路内に流体が吐出されることで、前記周辺領域内に流入した前記被移送物を該流路内に吸い込む開口として機能するものであってもよい。
Further, in this transfer device, a partition is provided in which a peripheral area around the flow path forming member and another area in the water are partitioned so that the peripheral area is inside, and an inlet connected to the peripheral area is provided. Equipped with components,
The inflow port functions as an opening that allows the object to be transferred floating on the surface of the water to flow into the peripheral area by discharging fluid into the flow path,
The suction port may function as an opening that sucks into the channel the object to be transferred that has flowed into the peripheral area by discharging fluid into the channel.

また、これまでに説明した移送装置は、流路を形成するものであって、該流路につながり水中に没する吸込口が設けられ、水面に対して略平行に延在したパイプ状の流路形成部材と、
前記流路内に、前記流路形成部材の軸方向に向かって流体を吐出する吐出口とを備え、
前記吸込口は、前記流路形成部材の延在方向に延在し、水面に浮遊した被移送物を、前記流路内に流体が吐出されることで該流路内に吸い込む開口として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されることで該流体の吐出方向下流側に向かって移動する経路として機能するものであることを特徴とする。
Further, the transfer device described so far forms a flow path, and is provided with a suction port that connects to the flow path and is submerged in water. a passage forming member;
a discharge port in the flow path for discharging a fluid in the axial direction of the flow path forming member;
The suction port extends in the direction in which the flow path forming member extends, and functions as an opening for sucking an object floating on the surface of the water into the flow path by discharging fluid into the flow path. is a
The flow path functions as a path along which the object to be transferred that has been sucked into the flow path moves downstream in the discharge direction of the fluid as the fluid is discharged into the flow path. It is characterized by

さらに、この移送装置において、水中における、前記流路形成部材周辺の周辺領域と他の領域とを、該周辺領域が内側となるように仕切り、該周辺領域につながった流入口が設けられ、水面に対して略平行に延在したパイプ状の仕切部材を備え、
前記流入口は、上方に向くように構成され、水面に浮遊した前記被移送物を、前記流路内に流体が吐出されることで前記周辺領域内に流入させる開口として機能するものであり、
前記吸込口は、前記周辺領域内で開口し、前記流路内に流体が吐出されることで、該周辺領域内に流入した前記被移送物を該流路内に吸い込む開口として機能するものであってもよい。
Further, in this transfer device, a peripheral area around the flow path forming member and other areas in the water are partitioned so that the peripheral area is located inside, and an inlet connected to the peripheral area is provided to provide a water surface. A pipe-shaped partition member extending substantially parallel to the
The inflow port is configured to face upward and functions as an opening that allows the object to be transferred floating on the surface of the water to flow into the peripheral area by discharging fluid into the flow path,
The suction port is opened in the peripheral area and functions as an opening for sucking the transferred object flowing into the peripheral area into the flow path by discharging the fluid into the flow path. There may be.

さらに、この移送装置は、前記流体の吐出方向と水平面内で直交する方向に移動可能なものであってもよい。 Further, the transfer device may be movable in a direction perpendicular to the ejection direction of the fluid in a horizontal plane.

こうすることで、前記移送装置の数を増やすことなく、前記水面における、より広い範囲に浮遊する被移送物を前記流入口から前記周辺領域内に流入させ、移送することができる。 By doing so, the objects to be transferred floating in a wider range on the water surface can be caused to flow into the peripheral area from the inlet and be transferred without increasing the number of transfer devices.

また、これまでに説明した移送装置は、流路を形成するものであって、該流路につな
がり水中に没する吸込口が設けられ、水面に対して略平行に延在したパイプ状の流路形成
部材と、該流路内に、該流路形成部材の軸方向に向かって流体を吐出する吐出口とを備え
た移送装置であって、
前記吸込口は、上方を向くように構成され、前記流路形成部材の延在方向に延在し、水
面に浮遊した被移送物を、前記流路内に流体が吐出されることで該流路内に吸い込む開口
として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されるこ
とで該流体の吐出方向下流側に向かって移動する経路として機能するものであることを特
徴とする。
Further, the transfer device described so far forms a flow path, and is provided with a suction port that connects to the flow path and is submerged in water. A transfer device comprising a path forming member and a discharge port in the flow path for discharging a fluid in the axial direction of the flow path forming member,
The suction port is configured to face upward, and extends in the direction in which the flow path forming member extends. It functions as an opening that sucks into the road,
The flow path functions as a path along which the object to be transferred that has been sucked into the flow path moves downstream in the discharge direction of the fluid as the fluid is discharged into the flow path. It is characterized by

ここで、前記流路形成部材は、前記吸込口が前記水面より低い位置から該水面に向かって開口し、該水面から200mm以内の深さに位置するものであってもよい。なお、前記流路形成部材は、前記吸込口が前記水面以外の方向に向かって開口したものであってもよい。また、前記水面の高さが変化する場合には、前記流路形成部材は、鉛直方向に移動し、前記吸込口の高さを変更できるものであってもよい。さらに、前記流路は、前記吸込口側の部分が、該吸込口に近づくほど狭くなったものであってもよい。また、前記流路形成部材は、円筒体の一部を切り欠いた形状のものであってもよい。さらに、前記吐出口は、真円のものであってもよいし、扁平な形状のものであってもよく、また、該吐出口を、吐出方向に間隔をあけて複数設ける態様としてもよい。さらに、前記吐出口から吐出される前記流体は、液体であってもよいし気体であってもよく、気液混合体であってもよい。また、前記吐出口は、毎分300リットル以上3000リットル以下の流体を、0.3MPa以下の圧力で吐出するものであってもよい。 Here, in the flow path forming member, the suction port may open toward the water surface from a position lower than the water surface, and may be positioned at a depth of 200 mm or less from the water surface. In addition, the flow path forming member may have the suction port opening in a direction other than the water surface. Moreover, when the height of the water surface changes, the flow path forming member may move in a vertical direction to change the height of the suction port. Furthermore, the flow path may have a portion on the side of the suction port that narrows as it approaches the suction port. Further, the flow path forming member may have a shape obtained by cutting out part of a cylindrical body. Furthermore, the ejection port may be of a perfect circle or of a flat shape, and a plurality of the ejection ports may be provided at intervals in the ejection direction. Furthermore, the fluid ejected from the ejection port may be a liquid, a gas, or a gas-liquid mixture. Further, the ejection port may eject a fluid of 300 liters or more and 3000 liters or less per minute at a pressure of 0.3 MPa or less.

この移送装置によれば、前記吐出口から前記流路内に流体が吐出されることで、吐出された流体の流れに引き込まれて、前記水面に浮遊した前記被移送物が、前記吸込口から該流路内に吸い込まれる。さらに、前記流路内では、吸い込まれた前記被移送物が、前記流体で生じた水の流れによって吐出方向下流側に向かって移動する。このように前記流路内に一旦生じた水の流れは、該流路が前記流路形成部材によって囲われているため、特許文献1記載の移送装置における、気流や吹送流と比べ、はるかに減衰しにくく、被移送物を長い距離移送することができる。さらに、水面上には、前記吸込口に吸い込まれる方向の流れが生じ、水面に浮遊した前記移送物を、広い範囲で前記流路内に吸い込むことができる。 According to this transfer device, the fluid is discharged from the discharge port into the flow path, and the object to be transferred that floats on the water surface is drawn into the flow of the discharged fluid, and is transferred from the suction port. sucked into the channel. Furthermore, in the flow path, the sucked object to be transferred moves toward the downstream side in the discharge direction due to the flow of water generated by the fluid. Thus, the flow of water once generated in the flow path is much more powerful than the air flow or blowing flow in the transfer device described in Patent Document 1, because the flow path is surrounded by the flow path forming member. It is hard to attenuate, and the object to be transferred can be transferred over a long distance. Furthermore, a flow is generated on the water surface in the direction of being sucked into the suction port, so that the transfer substance floating on the water surface can be sucked into the flow path over a wide range.

またさらに、水面上における、前記吸込口に吸い込まれる方向の流れによって、水面上に、前記被移送物が除去された領域が移送方向に延在した状態で生じる場合がある。以下、前記被移送物が除去された水面上の領域を、水面の除去領域と称する場合がある。受け入れた汚水を移送方向に流す、例えば導水渠等に前記移送装置を設けた場合には、受け入れた汚水の流れによって水面には移送方向に向かう流れも生じ、この流れによって、スカム(被移送物)が、水面の除去領域を移送方向にも流れる。また、水面の除去領域を流れるスカムが、水面上にまとまった状態で浮遊しているスカムに接触することでその一部が崩れ、崩れた部分は、前記吸込口から吸い込まれて前記流路内を移動し、あるいは、水面の除去領域を流れて移送方向に移動する。この結果、水面上にまとまった状態で浮遊しているスカムを、少しずつ崩しながら効率的に移送することができる。 Furthermore, due to the flow on the water surface in the direction of being sucked into the suction port, there are cases where the area from which the object to be transferred is removed extends in the transfer direction on the water surface. Hereinafter, the area on the water surface from which the object to be transferred has been removed may be referred to as a removal area on the water surface. For example, when the transfer device is provided in a conduit or the like, in which the received sewage flows in the transfer direction, a flow in the transfer direction is also generated on the surface of the water due to the flow of the received sewage, and this flow causes scum (objects to be transferred). ) flows in the removal area of the water surface also in the transport direction. In addition, when the scum flowing in the removal area on the water surface comes into contact with the scum floating on the water surface in a collected state, a part of the scum collapses, and the collapsed part is sucked into the flow path through the suction port. or flow through the removal area of the water surface and move in the transport direction. As a result, the scum floating on the surface of the water in a mass can be efficiently transported while being broken up little by little.

これらによって、前記吐出口や、該吐出口に流体を供給する配管等の個数が少なくて済み、簡易な構造を採用することができる。さらに、前記吐出口から吐出される流体の量も抑えることができる。なお、前述したように、前記流路内に水の流れが一旦生じればよいため、前記吐出口から吐出させる流体の圧力は、0.1MPa以下の弱い圧力であっても十分な場合がある。 As a result, the number of discharge ports and pipes for supplying fluid to the discharge ports can be reduced, and a simple structure can be adopted. Furthermore, the amount of fluid ejected from the ejection port can also be suppressed. In addition, as described above, since it is sufficient that the water flow is once generated in the flow path, even a weak pressure of 0.1 MPa or less may be sufficient for the pressure of the fluid to be discharged from the discharge port. .

また、これまでに説明した移送装置は、流路を形成するものであって、該流路につながり水中に没する吸込口が設けられ、水面に対して略平行に延在したパイプ状の流路形成部材と、
前記流路内に、前記流路形成部材の軸方向に向かって流体を吐出する吐出口と、
水中における、前記流路形成部材周辺の周辺領域と他の領域とを、該周辺領域が内側となるように仕切り、該周辺領域につながった流入口が設けられ、水面に対して略平行に延在したパイプ状の仕切部材とを備え、
前記流入口は、上方に向くように構成され、水面に浮遊した被移送物を、前記流路内に流体が吐出されることで前記周辺領域内に流入させる開口として機能するものであり、
前記吸込口は、前記周辺領域内で下方を向いて開口し、前記流路内に流体が吐出されることで、該周辺領域内に流入した前記被移送物を該流路内に吸い込む開口として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されることで該流体の吐出方向下流側に向かって移動する経路として機能するものであることを特徴とする。
Further, the transfer device described so far forms a flow path, and is provided with a suction port that connects to the flow path and is submerged in water. a passage forming member;
a discharge port for discharging a fluid in the flow path in the axial direction of the flow path forming member;
A peripheral area around the flow path forming member and other areas in water are partitioned so that the peripheral area is inside, and an inlet connected to the peripheral area is provided and extends substantially parallel to the water surface. and a pipe-shaped partition member located in the
The inflow port is configured to face upward and functions as an opening for allowing an object to be transferred floating on the surface of the water to flow into the peripheral area by discharging fluid into the flow path,
The suction port opens downward in the peripheral area, and serves as an opening for sucking the object that has flowed into the peripheral area into the flow path by discharging the fluid into the flow path. It works and
The flow path functions as a path along which the object to be transferred that has been sucked into the flow path moves downstream in the discharge direction of the fluid as the fluid is discharged into the flow path. It is characterized by

ここで、前記仕切部材は、前記流入口が前記水面より低い位置から該水面に向かって開口し、該水面から200mm以内の深さに位置するものであってもよい。また、前記水面の高さが変化する場合には、前記仕切部材は、鉛直方向に移動し、前記吸込口の高さを変更できるものであってもよい。さらに、前記周辺領域は、前記流入口側の部分が、該流入口に近づくほど狭くなったものであってもよい。また、前記仕切部材は、上端部分に前記幅方向の中央側へ入り込んだ湾曲部を有するものであってもよい。さらに、前記流路形成部材は、前記吸込口が前記周辺領域内で開口し、上端部分が、前記流入口と略同じ高さに位置したもの、該流入口よりも下方に位置したもの、あるいは該流入口よりも上方に位置したもののいずれかであってもよい。また、前記仕切部材は、円筒体の上端部分を切り欠いた形状のものであってもよい。さらに、前記仕切部材と前記流路形成部材は、該仕切部材から該流路形成部材にかけて、内周面が連続した曲面で構成されているものであってもよい。また、前記流路形成部材は、前記仕切部材の、前記幅方向における一端側と他端側とのうち、該他端側と離間した状態で、一部を該仕切部材の一部と共通にして該一端側に接続したものであってもよい。 Here, the partition member may be such that the inlet opens toward the water surface from a position lower than the water surface, and is positioned at a depth of 200 mm or less from the water surface. Moreover, when the height of the water surface changes, the partition member may move in a vertical direction to change the height of the suction port. Furthermore, the peripheral region may have a portion on the side of the inflow port that narrows as it approaches the inflow port. Further, the partition member may have a curved portion that enters the center side in the width direction at the upper end portion. Further, the flow path forming member has the suction port opened in the peripheral region, and the upper end portion is positioned at substantially the same height as the inlet, or positioned below the inlet. Any one positioned above the inlet may be used. Further, the partition member may have a shape obtained by notching the upper end portion of a cylindrical body. Further, the partitioning member and the flow path forming member may be configured by curved surfaces having continuous inner peripheral surfaces from the partitioning member to the flow path forming member. In addition, the flow path forming member shares a portion with a portion of the partition member while being spaced apart from the other end of the partition member in the width direction. may be connected to the one end side.

前記仕切部材を備える態様を採用すれば、水中において、前記周辺領域が、該仕切部材によって他の領域と仕切られているため、前記流入口から前記周辺領域内への前記被移送物の流入が促進され、水面に浮遊した該被移送物を効率的に該周辺領域内に流入させることができる。さらに、前記周辺領域は、他の領域と前記仕切部材に仕切られることによって、前記流入口から前記吸込口へ向かう水の流れが妨げられることがなくなり、該周辺領域内に流入した前記被移送物は、該周辺領域内を流れて円滑に該吸込口から吸い込まれる。 By adopting the aspect including the partition member, the peripheral area is separated from other areas by the partition member in the water, so that the material to be transferred cannot flow into the peripheral area from the inlet. Accelerated, the object to be transferred floating on the surface of the water can be efficiently flowed into the peripheral area. Furthermore, since the peripheral area is partitioned from other areas by the partition member, the flow of water from the inflow port to the suction port is not obstructed, and the object to be transferred that has flowed into the peripheral area is not blocked. flows through the peripheral area and is smoothly sucked from the suction port.

また、受け入れた水を移送方向に流す、例えば導水渠等に前記移送装置を設けた場合には、受け入れた水の流れによってスカム(被移送物)が、水面の除去領域を移送方向にも流れる。また、水面の除去領域を流れるスカムが、水面上にまとまった状態で滞留しているスカムに接触することでその一部が崩れ、崩れた部分は、前記流入口から前記周辺領域に流入した後、前記吸込口から吸い込まれて前記流路内を移動し、あるいは、水面の除去領域を流れて移送方向に移動する。この結果、水面上にまとまった状態で滞留しているスカムを、少しずつ崩しながら効率的に移送することができる。 In addition, when the transfer device is provided in a conduit or the like that allows the received water to flow in the transfer direction, the flow of the received water causes the scum (object to be transferred) to flow in the removal area of the water surface in the transfer direction. . In addition, when the scum flowing through the removed area on the water surface comes into contact with the scum that remains in a lump on the water surface, a part of the scum collapses, and the collapsed part flows into the peripheral area from the inlet. , and moves in the flow path after being sucked through the suction port, or moves in the transfer direction while flowing through the removal area of the water surface. As a result, the scum that has accumulated on the surface of the water can be efficiently transported while being broken up little by little.

また、この移送装置において、前記流路形成部材は、前記流体の吐出方向と水平面内で直交する幅方向の寸法が高さ方向の寸法よりも長い扁平な形状のものであってもよい。 Further, in this transfer device, the flow path forming member may have a flat shape in which the dimension in the width direction perpendicular to the discharge direction of the fluid in the horizontal plane is longer than the dimension in the height direction.

このように、扁平な形状の流路形成部材を採用すれば、前記吸込口を前記幅方向に広くとることが容易になる。前記吸込口を前記幅方向に広くすれば、前記水面のより広い範囲に浮遊した前記被移送物を、前記流路内に吸い込むことができる。また、前記流路形成部材を扁平な形状にすることで装置全体を薄く構成し、浅い水路等にも好適に用いることができる。さらに、前記流路形成部材を扁平な形状にすることで、前記移送装置が設けられた導水渠等の汚水等の流れを妨げにくくなり、汚水等の流れに対する抵抗を軽減することも可能になる。 By adopting a flat-shaped flow path forming member in this way, it becomes easy to widen the suction port in the width direction. By widening the suction port in the width direction, the object to be transferred floating in a wider range on the water surface can be sucked into the flow path. In addition, by forming the flow path forming member into a flat shape, the entire device can be made thin, and can be suitably used for shallow water channels and the like. Furthermore, by forming the flow path forming member into a flat shape, it becomes difficult to block the flow of sewage, etc., such as a culvert provided with the transfer device, and it is possible to reduce the resistance to the flow of sewage, etc. .

また、この移送装置において、前記仕切部材は、前記流体の吐出方向と水平面内で直交する幅方向の寸法が高さ方向の寸法よりも長い扁平な形状のものであってもよい。 Further, in this transfer device, the partition member may have a flat shape in which the dimension in the width direction perpendicular to the discharge direction of the fluid in the horizontal plane is longer than the dimension in the height direction.

このように、扁平な形状の仕切部材を採用すれば、前記流入口を前記幅方向に広くとることが容易になる。前記流入口を前記幅方向に広くすれば、前記水面のより広い範囲に浮遊した前記被移送物を、前記周辺領域内に流入させることができる。また、前記仕切部材を扁平な形状にすることで装置全体を薄く構成することができ、浅い水路等にも好適に用いることができる。さらに、前記仕切部材を扁平な形状にすることで、前記移送装置が設けられた導水渠等の汚水等の流れを妨げにくくなり、汚水等の流れに対する抵抗を軽減することも可能になる。 By adopting a flat-shaped partition member in this way, it becomes easy to widen the inlet in the width direction. By widening the inlet in the width direction, the object to be transferred that floats in a wider range on the water surface can flow into the peripheral area. In addition, by forming the partition member into a flat shape, the entire device can be made thin, and can be suitably used in a shallow water channel or the like. Furthermore, by forming the partition member into a flat shape, it becomes difficult to block the flow of sewage, etc., such as a culvert provided with the transfer device, and it is possible to reduce the resistance to the flow of sewage, etc.

1 移送装置
3 仕切部材
3a 流入口
5 流路形成部材
5a 吸込口
51 上端部分
7 吐出部材
7a 吐出口
9 導水渠
S 流路
Sc スカム
R1 周辺領域
W 汚水
Reference Signs List 1 Transfer device 3 Partition member 3a Inlet 5 Flow path forming member 5a Suction port 51 Upper end portion 7 Discharge member 7a Discharge port 9 Conduit S Flow path Sc Scum R1 Peripheral area W Sewage

Claims (1)

流路を形成するものであって、該流路につながり水中に没する吸込口が設けられた流路形成部材と、
前記流路内に流体を吐出する吐出口と、
水面に対して略平行に延在し水中に没する流入口が設けられ、前記流路形成部材を囲う仕切部材とを備え、
前記流入口は、水面に浮遊した被移送物を、前記流路内に流体が吐出されることで前記仕切部材と前記流路形成部材との間の領域に流入させる開口として機能するものであり、
前記吸込口は、前記流路内に流体が吐出されることで、前記仕切部材と前記流路形成部材との間の領域に流入した前記被移送物を該流路内に吸い込む開口として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されることで該流体の吐出方向下流側に向かって移動する経路として機能するものであり、
前記仕切部材と前記流路形成部材との間隔は、前記吸込口に向かうにつれて狭くなっていることを特徴とする移送装置。
a channel-forming member that forms a channel and is provided with a suction port connected to the channel and submerged in water;
a discharge port for discharging a fluid into the channel;
a partition member that is provided with an inlet that extends substantially parallel to the water surface and is submerged in water, and surrounds the flow path forming member;
The inflow port functions as an opening that allows an object to be transferred floating on the surface of the water to flow into the region between the partition member and the flow path forming member as the fluid is discharged into the flow path. ,
The suction port functions as an opening that sucks into the channel the object to be transferred that has flowed into the region between the partition member and the channel forming member by discharging the fluid into the channel. is a
The flow path functions as a path along which the object to be transferred that has been sucked into the flow path moves downstream in the discharge direction of the fluid as the fluid is discharged into the flow path. ,
The transfer device, wherein the distance between the partition member and the flow path forming member is narrowed toward the suction port.
JP2022163775A 2016-09-28 2022-10-12 Transfer device Active JP7440959B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022163775A JP7440959B2 (en) 2016-09-28 2022-10-12 Transfer device
JP2024018092A JP2024059682A (en) 2016-09-28 2024-02-08 Transport Equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016189180A JP2018051461A (en) 2016-09-28 2016-09-28 Transfer device
JP2021063950A JP7162924B2 (en) 2016-09-28 2021-04-05 Transfer device
JP2022163775A JP7440959B2 (en) 2016-09-28 2022-10-12 Transfer device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021063950A Division JP7162924B2 (en) 2016-09-28 2021-04-05 Transfer device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024018092A Division JP2024059682A (en) 2016-09-28 2024-02-08 Transport Equipment

Publications (2)

Publication Number Publication Date
JP2022179679A true JP2022179679A (en) 2022-12-02
JP7440959B2 JP7440959B2 (en) 2024-02-29

Family

ID=61834618

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2016189180A Pending JP2018051461A (en) 2016-09-28 2016-09-28 Transfer device
JP2021063950A Active JP7162924B2 (en) 2016-09-28 2021-04-05 Transfer device
JP2022163775A Active JP7440959B2 (en) 2016-09-28 2022-10-12 Transfer device
JP2024018092A Pending JP2024059682A (en) 2016-09-28 2024-02-08 Transport Equipment

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2016189180A Pending JP2018051461A (en) 2016-09-28 2016-09-28 Transfer device
JP2021063950A Active JP7162924B2 (en) 2016-09-28 2021-04-05 Transfer device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024018092A Pending JP2024059682A (en) 2016-09-28 2024-02-08 Transport Equipment

Country Status (1)

Country Link
JP (4) JP2018051461A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011167A (en) 2018-07-13 2020-01-23 アクアインテック株式会社 Sedimentation basin and sand collection method
JP7080479B2 (en) * 2018-07-13 2022-06-06 アクアインテック株式会社 Sand carry-out equipment
JP7235297B2 (en) * 2019-03-15 2023-03-08 アクアインテック株式会社 transport system
JP7473167B2 (en) 2019-04-22 2024-04-23 アクアインテック株式会社 Scum removal device
EP4206147A1 (en) * 2020-08-27 2023-07-05 Utsunomiya Kogyo Co., Ltd. Compressed air ejecting mechanism, and conduit and sedimentation tank using same
EP4215495A1 (en) * 2020-09-17 2023-07-26 Utsunomiya Kogyo Co., Ltd. Headrace system
JP7349744B2 (en) * 2021-09-30 2023-09-25 ユキエンジニアリング株式会社 Scum collection device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2247116A (en) 1937-03-13 1941-06-24 Josam Mfg Company Inlet fitting for swimming pools
GB1309737A (en) 1969-07-05 1973-03-14 Kearney T J Dispersal of materials in liquids
JPS513268U (en) * 1974-06-24 1976-01-10
JPS5348000B2 (en) * 1974-07-01 1978-12-25
DE2904326C3 (en) * 1979-02-05 1982-05-13 Naamloze Vennootschap Papierfabriek Gennep, Gennep Process and device for deinking pulp suspensions
US4608165A (en) * 1985-04-08 1986-08-26 Samdor Engineering Limited Liquid surface skimming trough assembly
US5389250A (en) 1991-09-26 1995-02-14 Baker Hughes Incorporated Self diluting feedwell for thickener dilution
DE19730464A1 (en) * 1997-07-16 1999-01-21 Voith Sulzer Stoffaufbereitung Method and flotation device for removing contaminants from an aqueous fiber suspension
JP3341135B2 (en) * 1994-09-08 2002-11-05 前澤工業株式会社 Scum removal and treatment equipment
JPH10249337A (en) * 1997-03-13 1998-09-22 Suido Kiko Kaisha Ltd Scum removing device
US6287460B1 (en) * 1997-10-13 2001-09-11 Suparator Usa, Inc. Device for continuously skimming off a top layer
JP2002086146A (en) * 2000-09-13 2002-03-26 Sekisui Chem Co Ltd Device for preventing generation of scum
US7384548B2 (en) * 2002-07-01 2008-06-10 Terrien Richard J Manually controlled skimming of industrial oil contaminants
US7988865B2 (en) 2009-12-04 2011-08-02 Flsmidth A/S Feedwell dilution system for thickeners in oil sands
US8114296B2 (en) 2009-04-23 2012-02-14 Fang Chao Method and apparatus for skimming floated sludge
CA2821398C (en) 2010-12-13 2018-07-17 Flsmidth A/S Open-channel feed dilution system for a thickener or settling tank
US20150014235A1 (en) 2013-07-12 2015-01-15 Michael Empey Systems and methods for providing a feedwell
JP6391350B2 (en) * 2014-08-01 2018-09-19 宇都宮工業株式会社 Scum removing device and scum removing method
JP6481851B2 (en) 2015-01-30 2019-03-13 アクアインテック株式会社 Solid-liquid separation system

Also Published As

Publication number Publication date
JP7440959B2 (en) 2024-02-29
JP2024059682A (en) 2024-05-01
JP2021100761A (en) 2021-07-08
JP7162924B2 (en) 2022-10-31
JP2018051461A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP7162924B2 (en) Transfer device
JP3895505B2 (en) Equipment for collecting and transferring sediment
JP4803389B2 (en) Sediment slurry processing equipment
JP2004216215A (en) Sand collecting apparatus
KR101588627B1 (en) Even moving beam is formed
US1777491A (en) Method of desilting channels
KR101365028B1 (en) Apparatus and method for distributing gas and liquid during backwash in filter underdrain flumes using dual separation
JP2006198571A (en) Precipitator
RU2505337C2 (en) Tank fed and distribute system for fluid processing
JP2009150091A (en) Sand basin
JP2018118251A (en) Sand sedimentation pond
JP5536693B2 (en) Sand covering device and sand covering method
JP3893479B2 (en) Underwater sediment suction transport device and suction transport method thereof
JP2018118252A (en) Transfer device
JP2012179577A (en) Sand sedimentation basin and sand collection method for the same
CN207829061U (en) Water-fetching head suitable for fully-loaded stream
JPH1015306A (en) Discharge device for precipitate
JP6744287B2 (en) Sediment transfer device
SU1572998A1 (en) Arrangement for catching sand
KR101700252B1 (en) Crushing and Preventing from Congestion Apparatus for Floating Matter of Settling Pond using Air
JP7235297B2 (en) transport system
JP2003170163A (en) Scum crushing apparatus
JP6057307B2 (en) Sand basin
JP6335706B2 (en) Sand basin
JP2005111382A (en) Sand collector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240208

R150 Certificate of patent or registration of utility model

Ref document number: 7440959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150