JP2009150091A - Sand basin - Google Patents

Sand basin Download PDF

Info

Publication number
JP2009150091A
JP2009150091A JP2007327843A JP2007327843A JP2009150091A JP 2009150091 A JP2009150091 A JP 2009150091A JP 2007327843 A JP2007327843 A JP 2007327843A JP 2007327843 A JP2007327843 A JP 2007327843A JP 2009150091 A JP2009150091 A JP 2009150091A
Authority
JP
Japan
Prior art keywords
sand
opening
pipe
depth
vortex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007327843A
Other languages
Japanese (ja)
Other versions
JP5042001B2 (en
Inventor
Yuichi Kawachi
友一 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007327843A priority Critical patent/JP5042001B2/en
Publication of JP2009150091A publication Critical patent/JP2009150091A/en
Application granted granted Critical
Publication of JP5042001B2 publication Critical patent/JP5042001B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

<P>PROBLEM TO BE SOLVED: To sort out the earth and sand flowing into a sand basin according to the particle sizes and materialize efficient discharge of the sand through a sand discharging pipe. <P>SOLUTION: The sand basin 1 includes a bottom structure 20 having larger depths toward the lower stream of a flow passage 4, and sand discharging pipes 7 respectively installed on predetermined different depth positions of the bottom structure 20. The sand discharging pipes 7 respectively have openings 5 having larger diameters as the positions get shallower. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水力発電所の取水口等から流入した土砂を沈降させる沈砂池に関し、特に、沈砂池底部に堆積する土砂等を粒径に応じて分級し、効率的に排出するための技術に関する。   The present invention relates to a sand settling basin that sinks earth and sand flowing in from a water intake of a hydroelectric power plant, and in particular, relates to a technique for classifying and efficiently discharging earth and sand accumulated at the bottom of a sand settling basin according to particle size. .

河川水を水力発電所に供給する水路には土砂等が流入するために、水路の途中に水路の一部分を拡幅して水の流速を低下させ、流水中の土砂等を沈下させるための沈砂池が設けられている。この沈砂池の底部に堆積した土砂等を排出するための排砂技術として、本発明者らは、例えば、特許文献1にて、スリットを有する渦動排砂管を沈砂池の底部に設置する方法を開示した。これは、沈砂池の底部に設置した渦動排砂管に所定の配置間隔で複数のスリットを設け、このスリットを介して渦動排砂管上に堆積した土砂等を渦動排砂管内に吸い込み、管下流へ排出するものである。このとき、渦動排砂管上に堆積した土砂は図12に示すように、水中の安息角θにしたがってすり鉢状に排砂される。
特開2005−146603号公報
Sand and sand etc. flow into the waterway that supplies the river water to the hydroelectric power plant, so a part of the waterway is widened in the middle of the waterway to reduce the flow rate of the water and sink the sand and sand in the running water. Is provided. As a sand discharging technique for discharging the earth and sand accumulated at the bottom of the sand basin, the present inventors, for example, in Patent Document 1, a method of installing a vortex sand pipe having a slit at the bottom of the sand basin Disclosed. This is because the vortex sand pipe installed at the bottom of the sand settling basin is provided with a plurality of slits at predetermined intervals, and the sediment accumulated on the vortex sand pipe is sucked into the vortex sand pipe through the slits. It is discharged downstream. At this time, as shown in FIG. 12, the earth and sand deposited on the vortex sand discharge pipe is discharged in a mortar shape according to the angle of repose θ in water.
JP 2005-146603 A

沈砂池に設置される排砂管は、例えば、沈砂池に堆積する土砂の平均粒径を基準に開口の口径が設定されていた。しかしながら、実際に沈砂池に流入してくる土砂の粒径は様々であり、設定より大きな粒径の土砂が沈砂池に流入すると、これを吸入出来ない排砂管の開口が詰まってしまう場合があった。一方、この開口の詰まりを防ごうと、前記開口の口径を大きくしすぎると、排砂管の管内から開口に作用する負圧が弱まり、排砂管による排砂範囲が狭くなってしまうという問題が生じる。   For example, the diameter of the opening of the sand discharge pipe installed in the sand basin is set based on the average particle size of the sediment deposited in the sand basin. However, the particle size of the earth and sand actually flowing into the sand basin varies, and if sand with a particle size larger than the setting flows into the sand basin, the opening of the sand discharge pipe that cannot suck it will be clogged. there were. On the other hand, in order to prevent the clogging of the opening, if the diameter of the opening is too large, the negative pressure acting on the opening from the inside of the sand discharging pipe is weakened, and the sand discharging range by the sand discharging pipe is narrowed. Occurs.

そこで本発明は上記の問題点を鑑みてなされたものであり、沈砂池に流入する土砂を粒径に応じて分級し、排砂管による効率的な排砂を実現することを目的としている。   Therefore, the present invention has been made in view of the above-described problems, and an object of the present invention is to classify the earth and sand flowing into the sand settling basin according to the particle size and to realize efficient sand removal using a sand discharging pipe.

上記問題を解決する本発明の沈砂池は、流路中に設けられた沈砂池であって、前記流路の下流に向けて深度を大きくした底部構造を有し、前記底部構造における異なる深度の所定箇所に、各所定箇所の深度が浅いほど口径の大きな開口を備えた排砂管を設置したことを特徴とする。   A sand basin of the present invention that solves the above problem is a sand basin provided in a flow path, and has a bottom structure with a depth increasing toward the downstream of the flow path, and has different depths in the bottom structure. It is characterized in that a sand discharge pipe having an opening having a larger diameter is installed at a predetermined location as the depth of each predetermined location is shallower.

また、前記沈砂池において、前記底部構造は、前記深度を前記流路の下流に向けて段階的に大きくし、複数のステップからなる階段構造をなすものであり、前記排砂管を、前記階段構造を構成し、互いに深度が異なる複数のステップに設置したものとしてもよい。   Further, in the sand basin, the bottom structure increases the depth stepwise toward the downstream of the flow path to form a staircase structure including a plurality of steps, and the sand discharge pipe is connected to the staircase. The structure may be configured and installed at a plurality of steps having different depths.

また、前記沈砂池において、前記底部構造は、異なる深度の所定箇所に凹部を備えるものであり、前記排砂管を、互いに深度が異なる複数の前記凹部に設置したものとしてもよい。   Moreover, the said sand basin WHEREIN: The said bottom part structure is provided with a recessed part in the predetermined location of different depth, and it is good also as what installed the said sand removal pipe | tube in the said several recessed part from which a depth mutually differs.

また、前記沈砂池において、前記底部構造は、前記排砂管の下流側において、前記排砂管の設置箇所の深度が浅いほど開口幅の大きなスリットを複数備えたスクリーンを立設しているものである、としてもよい。   Further, in the sand basin, the bottom structure is provided with a screen provided with a plurality of slits having a larger opening width as the depth of the installation location of the sand discharge pipe is shallower on the downstream side of the sand discharge pipe. It is good also as.

また、前記沈砂池において、前記排砂管は、前記開口を開閉する開閉材を備えるものである、としてもよい。   In the sand basin, the sand removal pipe may include an opening / closing material that opens and closes the opening.

なお、流速測定器を前記流路中に設置し、流路を流れる水流の流速を測定し、前記流速測定器が出力する流速値に応じて前記渦動排砂管の開口の口径を拡大縮小させる制御を行うとしてもよい。この場合、前記渦動排砂管における前記制御装置が前記測定値を前記流速測定器から取得し、ここで取得した測定値(=流速)が所定上限値を超えた場合に前記開口の口径を所定分だけ拡大し、一方、前記測定値(=流速)が所定下限値を下回った場合に前記開口の口径を所定分だけ縮小するといった制御を前記開閉材に対し行う。   In addition, a flow velocity measuring device is installed in the flow channel, the flow velocity of the water flow flowing through the flow channel is measured, and the aperture diameter of the vortex sand pipe is enlarged or reduced according to the flow velocity value output from the flow velocity measuring device. Control may be performed. In this case, the control device in the vortex sand pipe obtains the measured value from the flow velocity measuring device, and when the obtained measured value (= flow velocity) exceeds a predetermined upper limit value, the aperture diameter is predetermined. On the other hand, when the measured value (= flow velocity) falls below a predetermined lower limit, the opening / closing material is controlled to reduce the aperture diameter by a predetermined amount.

また、前記流速測定器を前記渦動排砂管の設置箇所毎に設置し、該当渦動排砂管周辺の流速を測定し、前記流速測定器が出力する該当渦動排砂管周辺の流速値に応じて該当渦動排砂管毎に、開口の口径を拡大縮小させる制御を行うとしてもよい。この場合、各渦動排砂管における前記制御装置が、自身に接続された流速測定器から前記測定値を取得し、ここで取得した測定値(=流速)が所定上限値を超えた場合に前記開口の口径を所定分だけ拡大し、一方、前記測定値(=流速)が所定下限値を下回った場合に前記開口の口径を所定分だけ縮小するといった制御を前記開閉材に対し行う。   In addition, the flow velocity measuring device is installed at each installation location of the vortex sand removal pipe, the flow velocity around the vortex sand removal tube is measured, and the flow velocity around the vortex sand removal tube output by the flow velocity measurement device is measured. Therefore, control may be performed to enlarge or reduce the aperture diameter for each vortex sand pipe. In this case, the control device in each vortex sand pipe acquires the measurement value from the flow velocity measuring instrument connected to itself, and the measurement value (= flow velocity) acquired here exceeds the predetermined upper limit value. The opening / closing material is controlled to enlarge the opening diameter by a predetermined amount, and when the measured value (= flow velocity) falls below a predetermined lower limit, the opening diameter is reduced by a predetermined amount.

更に、前記スクリーンが、前記スリット背面(スリットの下流側の面)に配設され、スリットを開閉する開閉材と、前記開閉材の開閉動作を制御する制御装置とを備えるものであるとしてもよい。この場合、上述した渦動排砂管の口径制御と同様に、流速測定器の測定値(=流速)に応じて、スクリーン毎に、開口の口径を拡大縮小させる制御を行うことが想定できる(各スクリーンにおける前記制御装置が、自身に接続された流速測定器から前記測定値を取得し、ここで取得した測定値(=流速)が所定上限値を超えた場合に前記開口の口径を所定分だけ拡大し、一方、前記測定値(=流速)が所定下限値を下回った場合に前記開口の口径を所定分だけ縮小するといった制御を前記開閉材に対し行う)。   Furthermore, the screen may be provided on the back surface of the slit (a surface on the downstream side of the slit), and may include an opening / closing material that opens and closes the slit, and a control device that controls the opening / closing operation of the opening / closing material. . In this case, similarly to the above-described caliber control of the vortex sand pipe, it can be assumed that control is performed to enlarge or reduce the aperture diameter for each screen according to the measurement value (= flow velocity) of the flow velocity measuring device (each The control device in the screen acquires the measurement value from a flow velocity measuring instrument connected to the screen, and when the acquired measurement value (= flow velocity) exceeds a predetermined upper limit value, the aperture diameter is set to a predetermined amount. On the other hand, when the measured value (= flow velocity) falls below a predetermined lower limit, the opening / closing material is controlled to reduce the aperture diameter by a predetermined amount).

その他、本願が開示する課題、及びその解決方法は、発明の実施の形態の欄、及び図面により明らかにされる。   In addition, the problems disclosed by the present application and the solutions thereof will be clarified by the embodiments of the present invention and the drawings.

本発明によれば、沈砂池に流入する土砂を粒径に応じて分級し、排砂管による効率的な排砂が実現される。   According to the present invention, the earth and sand flowing into the sand settling basin are classified according to the particle diameter, and efficient sand removal by the sand discharge pipe is realized.

−−−沈砂池の構造−−−
以下、本発明に係る好ましい実施形態について図面を用いて詳細に説明する。図1は本実施形態に係る沈砂池を示す図である。本実施形態における沈砂池1は、例えば、水力発電所の取水口から流入する水流を発電機まで導く流路4に設けられるものである。こうした沈砂池1は、前記流路4を流れる水流の流速を適宜抑制して土砂2の沈降を促す作用を発現するものであるから、その底部には土砂2が堆積することとなる。水流の流速を抑制するためには、流路4よりも沈砂池1の水深を深くすればよいから、沈砂池1に接続する流路4より底部の深度が大きくなっている。
--- Structure of sand basin ---
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a view showing a sand basin according to this embodiment. The sand basin 1 in this embodiment is provided in the flow path 4 which guides the water flow which flows in from the intake port of a hydroelectric power station to a generator, for example. Since such a sand basin 1 expresses the effect | action which suppresses the flow velocity of the water flow which flows through the said flow path 4 suitably, and promotes sedimentation of the earth and sand 2, the earth and sand 2 will accumulate on the bottom part. In order to suppress the flow velocity of the water flow, the depth of the sand basin 1 should be deeper than that of the channel 4, so that the depth of the bottom portion is larger than the channel 4 connected to the sand basin 1.

また、前記土砂2を粒径毎に分級する本実施形態の沈砂池1は、前記深度が前記流路4の下流に向けて大きくなった底部構造20を有する。図1の例では、前記深度を前記流路4の下流に向けて段階的に大きくし、複数のステップ22からなる階段構造21なす底部構造20を想定している。こうした底部構造20における異なる深度の所定箇所、つまり図1の例におけるステップ22には、各ステップ22の深度が浅いほど口径の大きな開口5を備えた排砂管たる渦動排砂管7(以後、渦動排砂管)を設置している。   The sedimentation basin 1 according to this embodiment that classifies the earth and sand 2 for each particle diameter has a bottom structure 20 in which the depth increases toward the downstream side of the flow path 4. In the example of FIG. 1, the depth is increased stepwise toward the downstream side of the flow path 4, and a bottom structure 20 formed by a staircase structure 21 including a plurality of steps 22 is assumed. In the predetermined portion of the bottom structure 20 at different depths, that is, in the step 22 in the example of FIG. A vortex sand pipe is installed.

例えば、階段構造21の中で最も深度が浅いステップ22aは、3つのステップ間で流速が最大となり、前記ステップ22aより深度が深くて下流のステップ22cより深度が浅いステップ22bは、3つのステップ間で流速が中間となり、階段構造21の中で最も深度が深いステップ22cは、3つのステップ間で流速が最小となる。このことは、各ステップ22において堆積する土砂2の粒径に影響し、各ステップでの堆積土砂の粒径は、ステップ22a(深度最小で流速最大)>ステップ22b(深度中間で流速中間)>ステップ22c(深度最大で流速最小)、といった関係になる。   For example, the step 22a having the shallowest depth in the staircase structure 21 has the maximum flow velocity between three steps, and the step 22b having a depth deeper than the step 22a and shallower than the downstream step 22c is between the three steps. In step 22c having the deepest depth in the staircase structure 21, the flow velocity is minimum between the three steps. This affects the particle size of the sediment 2 deposited in each step 22, and the particle size of the sediment in each step is: step 22a (minimum depth and maximum flow velocity)> step 22b (intermediate depth and intermediate flow velocity)> The relationship is step 22c (maximum depth and minimum flow velocity).

そこで、この各ステップでの堆積土砂の粒径の関係を、前記渦動排砂管7における開口5の口径にも反映させ、各ステップでの開口5の口径は、ステップ22a(深度最小で流速最大)>ステップ22b(深度中間で流速中間)>ステップ22c(深度最大で流速最小)、と設定する。   Therefore, the relationship between the particle size of the sediment in each step is also reflected in the diameter of the opening 5 in the vortex sand pipe 7, and the diameter of the opening 5 in each step is the step 22a (minimum depth and maximum flow velocity). )> Step 22b (Intermediate depth and flow velocity intermediate)> Step 22c (Maximum depth and minimum flow velocity).

次に、前記渦動排砂管7について説明する。図2は、本実施形態に係る渦動排砂管7の全体構造を示す平面図であり、図3は、図2のA−A'矢視図である。また、図4は、本実施形態に係る渦動排砂管7の管構造を示す図であり、図5は、本実施形態に係る開閉材9を示す図である。図2及び図3に示すように、前記沈砂池1に堆積する土砂2を排出する前記渦動排砂管7は、沈砂池1の底部構造20に設置され、土砂2を流入させる開口5を複数有し、当該渦動排砂管7内に摺動可能に挿通され、開口5を開閉自在とする開閉材9を備えている。また、前記開口5が開閉自在となるように、前記開閉材9を渦動排砂管7に対して摺動させる制御装置11が、沈砂池1の躯体構造などに備わる(勿論、前記渦動排砂管7が前記制御装置11を一体に備えるとしてもよい)。   Next, the vortex sand pipe 7 will be described. FIG. 2 is a plan view showing the overall structure of the vortex sand pipe 7 according to the present embodiment, and FIG. 3 is a view taken along the line AA ′ of FIG. Moreover, FIG. 4 is a figure which shows the pipe structure of the vortex sand removal pipe 7 which concerns on this embodiment, and FIG. 5 is a figure which shows the opening / closing material 9 which concerns on this embodiment. As shown in FIGS. 2 and 3, the vortex sand pipe 7 for discharging the sediment 2 deposited in the sand basin 1 is installed in the bottom structure 20 of the sand basin 1 and has a plurality of openings 5 through which the sand 2 flows. And an opening / closing member 9 that is slidably inserted into the vortex sand pipe 7 and that allows the opening 5 to be opened and closed. Further, a control device 11 for sliding the opening / closing member 9 against the vortex sand discharge pipe 7 is provided in a housing structure of the sand basin 1 so that the opening 5 can be opened and closed (of course, the vortex sand removal). The tube 7 may include the control device 11 integrally).

また図4に示すように、前記渦動排砂管7は管構造として、軸方向に複数の開口5を有する円筒管であり、本実施形態においては例えば鋼管を用いる。本実施形態において、渦動排砂管7の開口5は、予め設計により算出された、例えば、所定の幅W:5cm、所定の長さL:20cm、中心間の距離:所定の間隔P(後述する)の半分の100cm、所定の直径D:20cmといったサイズを設定されている。   As shown in FIG. 4, the vortex sand discharge pipe 7 is a cylindrical pipe having a plurality of openings 5 in the axial direction as a pipe structure. For example, a steel pipe is used in this embodiment. In the present embodiment, the opening 5 of the vortex sand pipe 7 is calculated by design in advance, for example, a predetermined width W: 5 cm, a predetermined length L: 20 cm, a distance between centers: a predetermined interval P (described later) The size is set such that 100 cm, which is half of the above, and a predetermined diameter D: 20 cm.

こうした管構造の内空に挿入されるのが前記開閉材9である。この開閉材9は図5に示すように、軸方向に複数のスリット10を有する円筒管であり、本実施形態においては、例えば鋼管を用いる。本実施形態において、開閉材9のスリット10の長さ及び幅は渦動排砂管7の開口5と同一であり、例えば、中心間の距離は所定の間隔Pの200cmとする。なお、前記渦動排砂管7及び開閉材9の各開口5、10の所定の長さL、所定の幅W、及び所定の間隔Pは、渦動排砂管7の直径、排砂可能な土砂量、土砂2の粒径等に基づいて予め設計により算出され、各現場条件に応じて適宜変更される。   The opening / closing material 9 is inserted into the inner space of such a tube structure. As shown in FIG. 5, the opening / closing member 9 is a cylindrical tube having a plurality of slits 10 in the axial direction. In the present embodiment, for example, a steel tube is used. In the present embodiment, the length and width of the slit 10 of the opening / closing material 9 are the same as the opening 5 of the vortex sand removal pipe 7, and the distance between the centers is, for example, a predetermined interval P of 200 cm. The predetermined length L, the predetermined width W, and the predetermined interval P of the openings 5 and 10 of the vortex sand pipe 7 and the opening / closing material 9 are the diameter of the vortex sand pipe 7 and the sand that can be discharged. It is calculated by design based on the amount, the particle size of the earth and sand 2 and the like, and is appropriately changed according to each site condition.

また、前記渦動排砂管7の開閉材9を制御する前記制御装置11は、一端が開閉材9の端部に接続され、この開閉材9を渦動排砂管7に対して軸方向に摺動する摺動手段13と、摺動手段13を駆動する駆動手段15とを備える。本実施形態において、前記摺動手段13は油圧にて伸縮可能なシリンダを用い、駆動手段15はこのシリンダの作動圧を発生させる油圧ポンプを用いる。そして、前記開閉材9を軸方向に摺動し、開閉材9のスリット10の位置と渦動排砂管7の開口5の位置とを一致させて、渦動排砂管7周辺に堆積した土砂等2を渦動排砂管7内に流入させて排出する。   The control device 11 for controlling the opening / closing material 9 of the vortex sand discharging pipe 7 has one end connected to the end of the opening / closing material 9 and slides the opening / closing material 9 in the axial direction with respect to the vortex sand discharging pipe 7. A sliding means 13 that moves and a driving means 15 that drives the sliding means 13 are provided. In the present embodiment, the sliding means 13 uses a hydraulically extendable cylinder, and the driving means 15 uses a hydraulic pump that generates an operating pressure of the cylinder. Then, the opening / closing material 9 is slid in the axial direction, and the position of the slit 10 of the opening / closing material 9 and the position of the opening 5 of the vortex sand removal pipe 7 are matched to each other. 2 is allowed to flow into the vortex sand pipe 7 and discharged.

−−−他の構造例−−−
沈砂池1の構造としては、上述した形態の他、次のようなものも想定できる。図6は、沈砂池の他の構造例1を示す図である。ここで例えば、前記沈砂池1の底部構造20が、前記流路4の下流に向けて深度が徐々に大きくなる傾斜構造30をなすものとする。この時、沈砂池1は、前記傾斜構造30中における異なる深度の所定箇所に、凹部23を備える。この凹部23は、前記傾斜構造30の上を傾斜のままに流れ下る土砂2を引き留めて堆積させる役割を果たす。ここで堆積した土砂2については、該当凹部23に前記渦動排砂管7を設置して排出する。そのため、各凹部23には渦動排砂管7が備わっている。
---- Other structural examples ---
As the structure of the sand basin 1, the following can be assumed in addition to the above-described form. FIG. 6 is a view showing another structural example 1 of the sand basin. Here, for example, it is assumed that the bottom structure 20 of the sand basin 1 forms an inclined structure 30 in which the depth gradually increases toward the downstream of the flow path 4. At this time, the sand basin 1 is provided with recesses 23 at predetermined locations at different depths in the inclined structure 30. The concave portion 23 serves to retain and deposit the earth and sand 2 flowing down on the inclined structure 30 while being inclined. The sediment 2 deposited here is discharged by installing the vortex sand pipe 7 in the corresponding recess 23. Therefore, each recess 23 is provided with a vortex sand removal pipe 7.

また、更に他の構造例としては、前記渦動排砂管7の下流側にスクリーン26を設置した沈砂池1を想定できる。図7は、沈砂池の他の構造例2を示す図である。この場合、前記沈砂池1の前記底部構造20には、前記渦動排砂管7の下流側であるステップ22aの後縁21dにおいてスクリーン26aが立設されている。このスクリーン26aは、上流から前記底部構造20の傾斜にそって流れ下ってきた土砂2のうち、前記ステップ22aでの流速に応じて沈降する粒径分の更なる移動をスリット25aで留める。そのため、このスリット25aの開口幅24aは、前記ステップ22aの深度に応じた流速(ステップ22a〜ステップ22cの間では最速)に対応させて、ステップ間で最大のものとなっている。   As still another structural example, a sand basin 1 in which a screen 26 is installed on the downstream side of the vortex sand pipe 7 can be assumed. FIG. 7 is a view showing another structural example 2 of the sand basin. In this case, the bottom structure 20 of the sand basin 1 is provided with a screen 26a at the rear edge 21d of the step 22a on the downstream side of the vortex sand pipe 7. The screen 26a keeps the movement of the sediment 2 flowing down along the slope of the bottom structure 20 from the upstream by the slit 25a for the particle size that settles according to the flow velocity in the step 22a. Therefore, the opening width 24a of the slit 25a is the maximum between steps corresponding to the flow velocity (the fastest between steps 22a to 22c) according to the depth of the step 22a.

一方、前記スクリーン26aのスリット25aを通過した粒径分の土砂2のうち、下流側のステップ22bでの流速に応じて沈降する粒径分が、当該ステップ22bの後縁に立設したスクリーン26bのスリット25bで留められる。そのため、このスリット25bの開口幅24bは、前記ステップ22bの深度に応じた流速(ステップ22a〜ステップ22cの間では中間)に対応させて、ステップ間で中間のものとなっている。   On the other hand, among the earth and sand 2 having a particle diameter that has passed through the slit 25a of the screen 26a, the particle diameter that settles according to the flow velocity at the downstream step 22b is set up on the rear edge of the step 22b. The slit 25b is used. Therefore, the opening width 24b of the slit 25b is intermediate between steps corresponding to the flow velocity according to the depth of the step 22b (intermediate between steps 22a to 22c).

同様に、前記スクリーン26bのスリット25bを通過した粒径分の土砂2のうち、より下流側のステップ22cでの流速に応じて沈降する粒径分が、当該ステップ22cの後縁に立設したスクリーン26cのスリット25cで留められる。そのため、このスリット25cの開口幅24cは、前記ステップ22cの深度に応じた流速(ステップ22a〜ステップ22cの間では最小)に対応させて、ステップ間で最小のものとなっている。   Similarly, among the earth and sand 2 having a particle size that has passed through the slit 25b of the screen 26b, the particle size that settles in accordance with the flow velocity at the downstream step 22c is erected on the trailing edge of the step 22c. It is fastened by a slit 25c of the screen 26c. Therefore, the opening width 24c of the slit 25c is the minimum between steps corresponding to the flow velocity (minimum between steps 22a to 22c) according to the depth of the step 22c.

また、前記スクリーン26は、前記スリット背面(スリットの下流側の面)に配設され、スリット25を開閉する開閉材28と、前記開閉材29を前記スリット背面に沿って横方向(図中の矢印の方向)にスライドさせ前記スリットの開閉動作を制御する制御装置29とを備えるものであるとしてもよい。この時、前記開閉材28は、スリット25と同じ開口を備えるものであり、スリット背面をスライドすることでスリット25の開口を自身の非開口部で適宜狭めることができる。また、前記制御装置29は、スクリーン26の上端に設置され、開閉材28の上端を把持しつつ前記スライドをさせるためのレールを自身の底面に備える。このレール内面には、例えば滑車やボールベアリングが備わっていて、前記開閉材上端の適宜な突起片を前記滑車やボールベアリングで噛みつつ把持する。また、この滑車やボールベアリングを駆動するためのモータ等の駆動装置も前記制御装置29には備わる。   The screen 26 is disposed on the rear surface of the slit (the surface on the downstream side of the slit), and an opening / closing member 28 for opening and closing the slit 25, and the opening / closing member 29 in the lateral direction (in the drawing). And a controller 29 that controls the opening / closing operation of the slit by sliding in the direction of the arrow). At this time, the opening / closing material 28 has the same opening as the slit 25, and the opening of the slit 25 can be appropriately narrowed by its own non-opening portion by sliding the back surface of the slit. Further, the control device 29 is provided at the upper end of the screen 26 and has a rail on its bottom surface for allowing the slide to slide while gripping the upper end of the opening / closing material 28. For example, a pulley or a ball bearing is provided on the inner surface of the rail, and an appropriate protruding piece at the upper end of the opening / closing material is gripped while being bitten by the pulley or the ball bearing. The control device 29 is also provided with a drive device such as a motor for driving the pulley and the ball bearing.

こうしたスクリーン26を底部構造20に設置することで、各深度毎の所定箇所(ステップ22や凹部23)における分級がさらに効率的に行われることとなる。   By installing such a screen 26 on the bottom structure 20, classification at a predetermined location (step 22 or recess 23) for each depth is performed more efficiently.

−−−排砂処理−−−
次に、上述した沈砂池1における渦動排砂管7を用いた排砂方法について説明する。図8は、本実施形態に係る排砂方法の例1を示す図である。例えば、延長は10m、幅は2m、水深は2mの沈砂池1における所定のステップ22において、厚さ30cmの土砂2が堆積し、排砂する土砂の平均粒径を1mmとした場合について説明する。
---- Sand removal treatment ---
Next, a sand discharging method using the vortex sand discharging pipe 7 in the sand basin 1 described above will be described. FIG. 8 is a diagram illustrating Example 1 of the sand removal method according to the present embodiment. For example, a case will be described in which, in a predetermined step 22 in the sand basin 1 having an extension of 10 m, a width of 2 m, and a water depth of 2 m, the sediment 2 having a thickness of 30 cm is deposited and the average particle size of the sediment is 1 mm. .

まず、有効渦動管長を次の算定式により算出する。
連続の式より、
dQ/dx=q ・・・(式1)
運動方程式より、
β/gA2・dQ2/dx+d(p/w+z)/dx−U/gA・dQ/dx+fQ2/2gDA2=0 ・・・(式2)

ここで、Q:渦動管内の流量(m3/s)、q:渦動管内へ流入する単位長さ当たりの流入量(m2/s)、U:渦動管内の断面平均流速(m/s)、A:渦動管の断面積(m2)、x:渦動排砂管7軸に沿った流下方向の距離(m)、g:重力加速度(m2/s)、P:管中心の圧力(Pa)、w:流体の単位体積重量(kg/m3)、z:基準面から管中心軸の高さ(m)、D:管の直径(m)、f:摩擦係数である。
First, the effective vortex tube length is calculated by the following formula.
From the continuity formula:
dQ / dx = q (Formula 1)
From the equation of motion,
β / gA2 · dQ2 / dx + d (p / w + z) / dx−U / gA · dQ / dx + fQ2 / 2gDA2 = 0 (Formula 2)

Here, Q: flow rate in the vortex tube (m3 / s), q: inflow per unit length flowing into the vortex tube (m2 / s), U: cross-sectional average flow velocity (m / s) in the vortex tube, A : Cross-sectional area of vortex tube (m2), x: Downstream distance (m) along vortex sand pipe 7 axis, g: Gravitational acceleration (m2 / s), P: Pressure at center of tube (Pa), w : Unit volume weight of fluid (kg / m3), z: height of tube center axis from reference plane (m), D: tube diameter (m), f: coefficient of friction.

式1及び式2より算出された本実施形態における有効渦動管長は8.2mとなり、スリットは所定の長さL、所定の間隔Pに基づいて、渦動排砂管7、開閉材9にそれぞれ9個、5個ずつ設けられる。   The effective vortex tube length in this embodiment calculated from Equation 1 and Equation 2 is 8.2 m, and the slit is 9 for each of the vortex sand discharge tube 7 and the opening / closing material 9 based on the predetermined length L and the predetermined interval P. And 5 each.

次に、制御装置11を作動させて開閉材9を軸方向に摺動させ、開閉材9のスリット10の位置と渦動排砂管7の開口5aの位置とを一致させる。このとき、開放された開口5aに隣接する開口5bはすべて閉鎖された状態となる。そして、開口5aの上方の土砂等2は渦動排砂管7内に排砂される。この1回目の排砂により、スリット上向きで水中安息角θが30°〜40°のすり鉢状の範囲の土砂等2が約0.25m排砂される。 Next, the control device 11 is operated to slide the opening / closing member 9 in the axial direction, so that the position of the slit 10 of the opening / closing member 9 and the position of the opening 5a of the vortex sand pipe 7 are matched. At this time, all the openings 5b adjacent to the opened opening 5a are closed. Then, the earth and sand 2 above the opening 5 a is discharged into the vortex sand discharge pipe 7. By this first sand removal, approximately 0.25 m 3 of sand and sand 2 in a mortar-like range with the angle of repose θ underwater of 30 ° to 40 ° facing upward is removed.

図9は、本実施形態に係る排砂方法の例2を示す図である。図9に示すように、再び、制御装置11を作動させて開閉材9を軸方向(図中右方向)に摺動させ、開閉材9のスリット10の位置と上述した1回目の排砂にて開放した渦動排砂管7の開口5aの位置に隣接する開口5bの位置とを一致させる。このとき、1回目の排砂時に開放した渦動排砂管7の開口5aはすべて閉鎖された状態となる。そして、今回開放された開口5bの上方の土砂等2は渦動排砂管7内に排砂される。この2回目の排砂により、1回目と同様に、スリット上向きで水中安息角θが30°〜40°のすり鉢状の範囲の土砂等2が排砂され、1回目と2回目との排砂量の合計は約0.5m3となる。これら2回の排砂にて、渦動排砂管7の上方に堆積した土砂等2のほとんどが開口5、10を介して渦動排砂管7内に流入し、排砂される。   FIG. 9 is a diagram illustrating Example 2 of the sand removal method according to the present embodiment. As shown in FIG. 9, the control device 11 is operated again to slide the opening / closing material 9 in the axial direction (right direction in the drawing), and the position of the slit 10 of the opening / closing material 9 and the first sand removal described above are performed. The position of the opening 5b adjacent to the position of the opening 5a of the vortex sand pipe 7 that has been opened is made coincident. At this time, all the openings 5a of the vortex sand pipe 7 opened at the time of the first sand removal are closed. And the earth and sand 2 etc. above the opening 5b opened this time are discharged into the vortex sand pipe 7. As in the first time, sand removal in the mortar-shaped range with an angle of repose θ underwater of 30 ° to 40 °, etc. 2 is removed by the second sand removal, and sand removal is performed in the first and second times. The total amount is about 0.5 m3. In these two times of sand removal, most of the earth and sand 2 accumulated above the vortex sand pipe 7 flows into the vortex sand pipe 7 through the openings 5 and 10 and is discharged.

こうして、本実施形態によれば、沈砂池に流入する土砂を粒径に応じて分級し、排砂管による効率的な排砂が実現される。   Thus, according to this embodiment, the earth and sand flowing into the sand settling basin are classified according to the particle diameter, and efficient sand removal by the sand discharge pipe is realized.

以上、本発明の実施の形態について、その実施の形態に基づき具体的に説明したが、これに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   As mentioned above, although embodiment of this invention was described concretely based on the embodiment, it is not limited to this and can be variously changed in the range which does not deviate from the summary.

本実施形態に係る沈砂池を示す図である。It is a figure which shows the sand basin which concerns on this embodiment. 本実施形態に係る渦動排砂管の全体構造を示す平面図である。It is a top view which shows the whole structure of the eddy sand pipe which concerns on this embodiment. 図1のA−A'矢視図である。It is an AA 'arrow line view of FIG. 本実施形態に係る渦動排砂管の管構造を示す図である。It is a figure which shows the pipe structure of the vortex sand removal pipe concerning this embodiment. 本実施形態に係る開閉材を示す図である。It is a figure which shows the opening / closing material which concerns on this embodiment. 沈砂池の他の構造例1を示す図である。It is a figure which shows the other structural example 1 of a sand basin. 沈砂池の他の構造例2を示す図である。It is a figure which shows the other structural example 2 of a sand basin. 本実施形態に係る排砂方法の例1を示す図である。It is a figure which shows Example 1 of the sand removal method which concerns on this embodiment. 本実施形態に係る排砂方法の例2を示す図である。It is a figure which shows Example 2 of the sand removal method which concerns on this embodiment.

符号の説明Explanation of symbols

1 沈砂池
2 土砂等
3 渦動排砂装置
4 流路
5 (渦動排砂管の)開口
7 渦動排砂管
9 開閉材
10 (開閉材の)開口
11 制御装置
13 摺動手段
15 駆動手段
20 底部構造
21 階段構造
22 ステップ
23 凹部
24 (スリットの)開口幅
25 スリット
26 スクリーン
30 傾斜構造
W 所定の幅
L 所定の長さ
P 所定の間隔
D 所定の直径
DESCRIPTION OF SYMBOLS 1 Sedimentation basin 2 Sediment etc. 3 Eddy sand removal apparatus 4 Flow path 5 Opening (of vortex sand removal pipe) 7 Eddy sand removal pipe 9 Opening and closing material 10 Opening material (of opening and closing material) 11 Control device 13 Sliding means 15 Driving means 20 Bottom Structure 21 Step structure 22 Step 23 Recess 24 Opening width 25 (slit) Slit 26 Screen 30 Inclined structure W Predetermined width L Predetermined length P Predetermined distance D Predetermined diameter

Claims (5)

流路中に設けられた沈砂池であって、
前記流路の下流に向けて深度を大きくした底部構造を有し、
前記底部構造における異なる深度の所定箇所に、各所定箇所の深度が浅いほど口径の大きな開口を備えた排砂管を設置したことを特徴とする沈砂池。
A sand basin provided in the flow path,
Having a bottom structure with an increased depth toward the downstream of the flow path;
A sand basin characterized in that a sand discharge pipe having an opening having a larger diameter is installed at a predetermined location at a different depth in the bottom structure as the depth of each predetermined location is shallower.
前記底部構造は、前記深度を前記流路の下流に向けて段階的に大きくし、複数のステップからなる階段構造をなすものであり、
前記排砂管を、前記階段構造を構成し、互いに深度が異なる複数のステップに設置したことを特徴とする請求項1に記載の沈砂池。
The bottom structure increases the depth stepwise toward the downstream of the flow path, and forms a step structure composed of a plurality of steps.
2. The sand basin according to claim 1, wherein the sand discharge pipe is installed in a plurality of steps that form the staircase structure and have different depths.
前記底部構造は、異なる深度の所定箇所に凹部を備えるものであり、
前記排砂管を、互いに深度が異なる複数の前記凹部に設置したことを特徴とする請求項1または2に記載の沈砂池。
The bottom structure is provided with a recess at a predetermined location at a different depth,
The sand settling basin according to claim 1 or 2, wherein the sand discharge pipe is installed in the plurality of concave portions having different depths.
前記底部構造は、前記排砂管の下流側において、前記排砂管の設置箇所の深度が浅いほど開口幅の大きなスリットを複数備えたスクリーンを立設しているものであることを特徴とする請求項1〜3のいずれかに記載の沈砂池。   The bottom structure is characterized in that, on the downstream side of the sand removal pipe, a screen having a plurality of slits having a large opening width is erected as the depth of the installation location of the sand removal pipe is shallower. The sand basin according to any one of claims 1 to 3. 前記排砂管は、前記開口を開閉する開閉材を備えるものであることを特徴とする、請求項1〜4のいずれかに記載の沈砂池。   The sand basin according to any one of claims 1 to 4, wherein the sand discharge pipe includes an opening / closing material that opens and closes the opening.
JP2007327843A 2007-12-19 2007-12-19 Sand basin Expired - Fee Related JP5042001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007327843A JP5042001B2 (en) 2007-12-19 2007-12-19 Sand basin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007327843A JP5042001B2 (en) 2007-12-19 2007-12-19 Sand basin

Publications (2)

Publication Number Publication Date
JP2009150091A true JP2009150091A (en) 2009-07-09
JP5042001B2 JP5042001B2 (en) 2012-10-03

Family

ID=40919511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007327843A Expired - Fee Related JP5042001B2 (en) 2007-12-19 2007-12-19 Sand basin

Country Status (1)

Country Link
JP (1) JP5042001B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493478B1 (en) * 2012-12-21 2015-02-16 한국해양과학기술원 Non - point pollution decrease apparatus using screen array
JP2015158089A (en) * 2014-02-24 2015-09-03 株式会社大林組 sediment discharge system and sediment discharge method
CN110952507A (en) * 2019-12-12 2020-04-03 兰州理工大学 Improved generation is hierarchical desilting pond suitable for flush before mountain plain

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139535A (en) * 1974-04-26 1975-11-07
JPH09141007A (en) * 1995-11-17 1997-06-03 Hitachi Kiden Kogyo Ltd Grit lifting device of sewage basin
JP2005146603A (en) * 2003-11-13 2005-06-09 Chugoku Electric Power Co Inc:The Sand pumping apparatus for hydraulic power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139535A (en) * 1974-04-26 1975-11-07
JPH09141007A (en) * 1995-11-17 1997-06-03 Hitachi Kiden Kogyo Ltd Grit lifting device of sewage basin
JP2005146603A (en) * 2003-11-13 2005-06-09 Chugoku Electric Power Co Inc:The Sand pumping apparatus for hydraulic power plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493478B1 (en) * 2012-12-21 2015-02-16 한국해양과학기술원 Non - point pollution decrease apparatus using screen array
JP2015158089A (en) * 2014-02-24 2015-09-03 株式会社大林組 sediment discharge system and sediment discharge method
CN110952507A (en) * 2019-12-12 2020-04-03 兰州理工大学 Improved generation is hierarchical desilting pond suitable for flush before mountain plain
CN110952507B (en) * 2019-12-12 2021-06-18 兰州理工大学 Improved generation is hierarchical desilting pond suitable for flush before mountain plain

Also Published As

Publication number Publication date
JP5042001B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
CN106605027B (en) For the adjustable overflow system of hopper-type dredger and relevant ship and method
CN105951947A (en) Anti-blocking sink pipe device
EP2995735A1 (en) Rainwater discharge chamber capable of discharging rainwater and soil
JP5042001B2 (en) Sand basin
JP4803389B2 (en) Sediment slurry processing equipment
JP2006070537A (en) Right-angled v-shaped energy dissipator, cascade work using the same, and stepped-down waterway using them
JP4999629B2 (en) Eddy sand removal device and sand removal method using this vortex sand removal device
RU2550421C1 (en) Water outlet from channel with steep slope
JP2007032036A (en) Horizontal pump, pump gate facility, and drainage pumping station
JP2008214948A (en) Structure of inflow section of riser with spiral guide passage
KR101371321B1 (en) Sedimentation apparatus for sewage and wastewater treatment
EP3380679B1 (en) Panflute overflow system for a suction hopper dredger
JP5318188B2 (en) Solid separation apparatus and solid separation method
SE526791C2 (en) Swirl chamber with variable backrest and air injector for preventing sedimentation in day and waste water wells
JP4347789B2 (en) Rainwater spout chamber
KR101675310B1 (en) Multi-stage spiral basement inlet
JP2009148679A (en) Grit chamber and sand removing method in grit chamber
JP2014180615A (en) Solids separating apparatus and solids separating method
KR101464204B1 (en) Screw Basement-inlet
US20140311993A1 (en) Apparatus and method for separating a liquid from other substances
JP2006009241A (en) Fishway exit equipment
JP5113690B2 (en) Air valve device
JP2017206837A (en) Method to move deposit
JP2005023630A (en) Structure of suction water tank
JP2015208709A (en) Vertical sand sedimentation pond

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Ref document number: 5042001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees