JP2018051461A - Transfer device - Google Patents

Transfer device Download PDF

Info

Publication number
JP2018051461A
JP2018051461A JP2016189180A JP2016189180A JP2018051461A JP 2018051461 A JP2018051461 A JP 2018051461A JP 2016189180 A JP2016189180 A JP 2016189180A JP 2016189180 A JP2016189180 A JP 2016189180A JP 2018051461 A JP2018051461 A JP 2018051461A
Authority
JP
Japan
Prior art keywords
flow path
water
forming member
transfer device
path forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016189180A
Other languages
Japanese (ja)
Inventor
増田 智也
Tomoya Masuda
智也 増田
利隆 大原
Toshitaka Ohara
利隆 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquaintec Corp
Original Assignee
Aquaintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquaintec Corp filed Critical Aquaintec Corp
Priority to JP2016189180A priority Critical patent/JP2018051461A/en
Publication of JP2018051461A publication Critical patent/JP2018051461A/en
Priority to JP2021063950A priority patent/JP7162924B2/en
Priority to JP2022163775A priority patent/JP7440959B2/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a transfer device for transferring floating matters to be transferred on a water surface which can suppress a discharging amount of a fluid with a simple structure.SOLUTION: The transfer device comprises a channel forming member 5 which forms a channel S and in which a suction port 5a is disposed that is connected to the channel S and submerged in water, and a discharge port 7a which discharges the water into the channel S. The suction port 5a functions as an opening for suctioning floating scum Sc on a water surface WL into the channel S by discharging the water into the channel S. The channel forming member 5 functions as a channel in which the scum Sc suctioned into the channel S moves toward a downstream side in a discharge direction of the water by discharging water into the channel S. The transfer device may further comprise a partitioning member 3 which partitions a peripheral area R1 in the periphery of the channel forming member 5 from another area R2 in the water so that the peripheral area R1 becomes inside and in which an inflow port 3a is disposed that is connected to the peripheral area R1.SELECTED DRAWING: Figure 3

Description

本発明は、水面に浮遊した被移送物を移送する移送装置に関する。   The present invention relates to a transfer device for transferring an object to be transferred that has floated on a water surface.

下水処理場の導水渠や沈殿池等には、水面に浮遊したスカム等の被移送物を、スカムピット等に向けて移送する移送装置が設けられている(例えば、特許文献1等参照)。   A transfer device for transferring an object to be transferred such as scum floating on the water surface toward a scum pit or the like is provided in a water basin or a sedimentation basin of a sewage treatment plant (see, for example, Patent Document 1).

図13は、特許文献1記載の移送装置を上方から見た様子の模式図である。特許文献1に記載された移送装置6は、図の左側から右側に向けて汚水が流れていく導水渠9において、汚水の水面から100mm〜200mm程度上方に設けられた複数のスプレーノズル61を備えている。これら複数のスプレーノズル61は、導水渠9の幅方向(図13では上下方向)に所定の間隔で配置されるとともに、スカムSc(被移送物)の移送方向(図13では左側から右側に向かう方向)にも所定の間隔で複数列配置されている。特許文献1に記載された移送装置6では、複数のスプレーノズル61から、不図示のスカムピット等に向かう移送方向に略水平に圧力水やエアーが吐出される。これにより、水面上にスカムピットに向かう気流や吹送流を発生させ、この気流等によって、水面に浮遊したスカムをスカムピット等に向けて移送するものである。   FIG. 13 is a schematic view of the transfer device described in Patent Document 1 as viewed from above. The transfer device 6 described in Patent Document 1 includes a plurality of spray nozzles 61 provided about 100 mm to 200 mm above the surface of the sewage in the water conduit 9 in which the sewage flows from the left side to the right side of the drawing. ing. The plurality of spray nozzles 61 are arranged at a predetermined interval in the width direction (vertical direction in FIG. 13) of the water conduit 9 and are directed from the left side to the right side in the transfer direction of the scum Sc (object to be transferred). (Direction) is also arranged in a plurality of rows at a predetermined interval. In the transfer device 6 described in Patent Document 1, pressure water or air is discharged from a plurality of spray nozzles 61 substantially horizontally in the transfer direction toward a scum pit or the like (not shown). As a result, an air flow or blowing flow toward the scum pit is generated on the water surface, and the scum floating on the water surface is transferred toward the scum pit or the like by this air flow or the like.

特開平7−303883号公報Japanese Patent Laid-Open No. 7-303883

しかしながら、特許文献1に記載された移送装置6では、スプレーノズル61から吐出される圧力水等が拡散してしまい、被移送物を移送できる気流等を水面上の広い範囲に発生させることは難しい。このため、図13では、スプレーノズル61から吐出される圧力水等が効力を及ぼすことができる範囲を一点鎖線で囲んだ白抜きで示すように、一つのスプレーノズル61によって被移送物(スカムSc)を移送できる水面上の範囲は限定的になってしまう。この結果、スカムScが浮遊する水面上(図では、水面上にまとまった状態で浮遊しているスカムにSc0の符号を付している)に、それぞれ間隔をあけて多数のスプレーノズル61を配置しなければならず、さらに、これら多数のスプレーノズル61に圧力水等を供給する多数の配管62も必要になる等、装置が大掛りになってしまう。その上、多数のスプレーノズル61から吐出させる圧力水等も大量に必要になる。また、スプレーノズル61からエアーを吐出する態様では、吐出したエアーによってスカムScが乾燥して固まってしまう場合がある。このように固まってしまったスカムScは水面上を動きにくくなるため、さらに多くのエアーを吐出させなければならないという問題もある。   However, in the transfer device 6 described in Patent Document 1, the pressure water or the like discharged from the spray nozzle 61 diffuses, and it is difficult to generate an airflow or the like that can transfer the transfer object over a wide range on the water surface. . For this reason, in FIG. 13, as shown by the white circle surrounded by the one-dot chain line, the range in which the pressure water or the like discharged from the spray nozzle 61 can take effect is indicated by one spray nozzle 61 (the scum Sc). ) Will be limited on the water surface. As a result, a large number of spray nozzles 61 are arranged on the surface of the water where the scum Sc floats (in the figure, the scum floating on the surface of the water is marked with Sc0) at intervals. In addition, the apparatus becomes large because, for example, a large number of pipes 62 for supplying pressure water or the like to the large number of spray nozzles 61 are required. In addition, a large amount of pressure water or the like discharged from a large number of spray nozzles 61 is required. Moreover, in the aspect which discharges air from the spray nozzle 61, the scum Sc may be dried and hardened by the discharged air. Since the scum Sc that has been hardened in this way becomes difficult to move on the water surface, there is a problem that more air must be discharged.

本発明は上記事情に鑑み、吐出させる流体の量を抑え、かつ、簡易な構造により、水面に浮遊した被移送物を移送することができる移送装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a transfer device that can reduce the amount of fluid to be discharged and can transfer an object to be transferred suspended on a water surface with a simple structure.

上記目的を解決する本発明の移送装置は、流路を形成するものであって、該流路につながり水中に没する吸込口が設けられた流路形成部材と、
前記流路内に流体を吐出する吐出口とを備え、
前記吸込口は、水面に浮遊した被移送物を、前記流路内に流体が吐出されることで該流路内に吸い込む開口として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されることで該流体の吐出方向下流側に向かって移動する経路として機能するものであることを特徴とする。
The transfer device of the present invention that solves the above-mentioned object forms a flow path, and is provided with a flow path forming member provided with a suction port connected to the flow path and immersed in water,
A discharge port for discharging fluid into the flow path;
The suction port functions as an opening for sucking a transferred object floating on the water surface into the flow path by discharging a fluid into the flow path.
The flow path functions as a path through which the transferred object sucked into the flow path moves toward the downstream side in the fluid discharge direction when the fluid is discharged into the flow path. It is characterized by that.

ここで、前記流路形成部材は、前記吸込口が前記水面より低い位置から該水面に向かって開口し、該水面から200mm以内の深さに位置するものであってもよい。なお、前記流路形成部材は、前記吸込口が前記水面以外の方向に向かって開口したものであってもよい。また、前記水面の高さが変化する場合には、前記流路形成部材は、鉛直方向に移動し、前記吸込口の高さを変更できるものであってもよい。さらに、前記流路は、前記吸込口側の部分が、該吸込口に近づくほど狭くなったものであってもよい。また、前記流路形成部材は、円筒体の一部を切り欠いた形状のものであってもよい。さらに、前記吐出口は、真円のものであってもよいし、扁平な形状のものであってもよく、また、該吐出口を、吐出方向に間隔をあけて複数設ける態様としてもよい。さらに、前記吐出口から吐出される前記流体は、液体であってもよいし気体であってもよく、気液混合体であってもよい。また、前記吐出口は、毎分300リットル以上3000リットル以下の流体を、0.3MPa以下の圧力で吐出するものであってもよい。   Here, the flow path forming member may be one in which the suction port opens from a position lower than the water surface toward the water surface and is located at a depth within 200 mm from the water surface. In addition, the said flow path formation member may be what the said suction inlet opened toward directions other than the said water surface. Further, when the height of the water surface changes, the flow path forming member may move in a vertical direction and change the height of the suction port. Furthermore, the flow path may be such that a portion on the suction port side becomes narrower as it approaches the suction port. The flow path forming member may have a shape in which a part of a cylindrical body is cut out. Further, the discharge port may be a perfect circle or a flat shape, and a plurality of the discharge ports may be provided at intervals in the discharge direction. Furthermore, the fluid discharged from the discharge port may be a liquid, a gas, or a gas-liquid mixture. The discharge port may discharge a fluid of 300 liters to 3000 liters per minute at a pressure of 0.3 MPa or less.

本発明の移送装置によれば、前記吐出口から前記流路内に流体が吐出されることで、吐出された流体の流れに引き込まれて、前記水面に浮遊した前記被移送物が、前記吸込口から該流路内に吸い込まれる。さらに、前記流路内では、吸い込まれた前記被移送物が、前記流体で生じた水の流れによって吐出方向下流側に向かって移動する。このように前記流路内に一旦生じた水の流れは、該流路が前記流路形成部材によって囲われているため、特許文献1記載の移送装置における、気流や吹送流と比べ、はるかに減衰しにくく、被移送物を長い距離移送することができる。さらに、水面上には、前記吸込口に吸い込まれる方向の流れが生じ、水面に浮遊した前記移送物を、広い範囲で前記流路内に吸い込むことができる。   According to the transfer device of the present invention, when the fluid is discharged from the discharge port into the flow path, the transferred object drawn into the flow of the discharged fluid and floating on the water surface is It is sucked into the flow path from the mouth. Further, in the flow path, the sucked object to be transferred moves toward the downstream side in the discharge direction by the flow of water generated by the fluid. Thus, the flow of water once generated in the flow path is much more than the air flow and the blowing flow in the transfer device described in Patent Document 1 because the flow path is surrounded by the flow path forming member. It is difficult to attenuate, and the transferred object can be transferred for a long distance. Furthermore, a flow in the direction of being sucked into the suction port is generated on the water surface, and the transferred substance floating on the water surface can be sucked into the flow path in a wide range.

またさらに、水面上における、前記吸込口に吸い込まれる方向の流れによって、水面上に、前記被移送物が除去された領域が移送方向に延在した状態で生じる場合がある。以下、前記被移送物が除去された水面上の領域を、水面の除去領域と称する場合がある。受け入れた汚水を移送方向に流す、例えば導水渠等に前記移送装置を設けた場合には、受け入れた汚水の流れによって水面には移送方向に向かう流れも生じ、この流れによって、スカム(被移送物)が、水面の除去領域を移送方向にも流れる。また、水面の除去領域を流れるスカムが、水面上にまとまった状態で浮遊しているスカムに接触することでその一部が崩れ、崩れた部分は、前記吸込口から吸い込まれて前記流路内を移動し、あるいは、水面の除去領域を流れて移送方向に移動する。この結果、水面上にまとまった状態で浮遊しているスカムを、少しずつ崩しながら効率的に移送することができる。   Furthermore, the flow in the direction of being sucked into the suction port on the water surface may cause a region where the transferred object is removed on the water surface to extend in the transfer direction. Hereinafter, the region on the water surface from which the transferred object is removed may be referred to as a water surface removal region. When the transfer device is installed in a water conduit or the like, for example, when the received sewage flows in the transfer direction, a flow in the transfer direction is also generated on the water surface due to the flow of the received sewage. ) Also flows in the removal direction of the water surface in the transport direction. Further, when the scum flowing through the water surface removal area comes into contact with the scum floating on the water surface, a part of the scum collapses, and the collapsed part is sucked from the suction port and is absorbed in the flow path. Or move in the transfer direction by flowing through the removal area of the water surface. As a result, the scum that is floating on the surface of the water can be efficiently transferred while being broken little by little.

これらによって、前記吐出口や、該吐出口に流体を供給する配管等の個数が少なくて済み、簡易な構造を採用することができる。さらに、前記吐出口から吐出される流体の量も抑えることができる。なお、前述したように、前記流路内に水の流れが一旦生じればよいため、前記吐出口から吐出させる流体の圧力は、0.1MPa以下の弱い圧力であっても十分な場合がある。   Accordingly, the number of the discharge ports and the piping for supplying fluid to the discharge ports can be reduced, and a simple structure can be adopted. Furthermore, the amount of fluid discharged from the discharge port can also be suppressed. In addition, as described above, since the flow of water only has to be once generated in the flow path, the pressure of the fluid discharged from the discharge port may be sufficient even if it is a weak pressure of 0.1 MPa or less. .

また、本発明の移送装置において、前記流路形成部材は、前記流体の吐出方向と水平面内で直交する幅方向の寸法が高さ方向の寸法よりも長い扁平な形状のものであってもよい。   In the transfer device of the present invention, the flow path forming member may have a flat shape in which the dimension in the width direction orthogonal to the fluid discharge direction in the horizontal plane is longer than the dimension in the height direction. .

このように、扁平な形状の流路形成部材を採用すれば、前記吸込口を前記幅方向に広くとることが容易になる。前記吸込口を前記幅方向に広くすれば、前記水面のより広い範囲に浮遊した前記被移送物を、前記流路内に吸い込むことができる。また、前記流路形成部材を扁平な形状にすることで装置全体を薄く構成し、浅い水路等にも好適に用いることができる。さらに、前記流路形成部材を扁平な形状にすることで、前記移送装置が設けられた導水渠等の汚水等の流れを妨げにくくなり、汚水等の流れに対する抵抗を軽減することも可能になる。   As described above, when the flow path forming member having a flat shape is employed, the suction port can be easily widened in the width direction. If the suction port is widened in the width direction, the transferred object floating in a wider area of the water surface can be sucked into the flow path. Further, by forming the flow path forming member into a flat shape, the entire apparatus can be made thin, and can be suitably used for a shallow water channel or the like. Further, by making the flow path forming member flat, it becomes difficult to hinder the flow of sewage such as a waterway provided with the transfer device, and the resistance to the flow of sewage can be reduced. .

さらに、本発明の移送装置において、水中における、前記流路形成部材周辺の周辺領域と他の領域とを、該周辺領域が内側となるように仕切り、該周辺領域につながった流入口が設けられた仕切部材を備え、
前記流入口は、水面に浮遊した前記被移送物を、前記流路内に流体が吐出されることで前記周辺領域内に流入させる開口として機能するものであり、
前記吸込口は、前記流路内に流体が吐出されることで、前記周辺領域内に流入した前記被移送物を該流路内に吸い込む開口として機能するものであってもよい。
Furthermore, in the transfer device according to the present invention, in the water, a peripheral region around the flow path forming member and other regions are partitioned so that the peripheral region is on the inside, and an inflow port connected to the peripheral region is provided. A partition member,
The inflow port functions as an opening for allowing the transferred object floating on the water surface to flow into the peripheral region by discharging a fluid into the flow path.
The suction port may function as an opening for sucking the transferred object that has flowed into the peripheral region into the flow path by discharging a fluid into the flow path.

ここで、前記仕切部材は、前記流入口が前記水面より低い位置から該水面に向かって開口し、該水面から200mm以内の深さに位置するものであってもよい。また、前記水面の高さが変化する場合には、前記仕切部材は、鉛直方向に移動し、前記吸込口の高さを変更できるものであってもよい。さらに、前記周辺領域は、前記流入口側の部分が、該流入口に近づくほど狭くなったものであってもよい。また、前記仕切部材は、上端部分に前記幅方向の中央側へ入り込んだ湾曲部を有するものであってもよい。さらに、前記流路形成部材は、前記吸込口が前記周辺領域内で開口し、上端部分が、前記流入口と略同じ高さに位置したもの、該流入口よりも下方に位置したもの、あるいは該流入口よりも上方に位置したもののいずれかであってもよい。また、前記仕切部材は、円筒体の上端部分を切り欠いた形状のものであってもよい。さらに、前記仕切部材と前記流路形成部材は、該仕切部材から該流路形成部材にかけて、内周面が連続した曲面で構成されているものであってもよい。また、前記流路形成部材は、前記仕切部材の、前記幅方向における一端側と他端側とのうち、該他端側と離間した状態で、一部を該仕切部材の一部と共通にして該一端側に接続したものであってもよい。   Here, the partition member may be one in which the inflow port opens from a position lower than the water surface toward the water surface and is located at a depth within 200 mm from the water surface. Moreover, when the height of the said water surface changes, the said partition member may move to a perpendicular direction, and can change the height of the said suction inlet. Further, the peripheral area may be such that a portion on the inlet side becomes narrower as the inlet is closer to the inlet. Further, the partition member may have a curved portion that enters the center side in the width direction at the upper end portion. Further, in the flow path forming member, the suction port is opened in the peripheral region, and the upper end portion is located at substantially the same height as the inflow port, the lower position is lower than the inflow port, or Any of those located above the inlet may be used. Further, the partition member may have a shape in which the upper end portion of the cylindrical body is cut out. Furthermore, the partition member and the flow path forming member may be configured by a curved surface having an inner peripheral surface extending from the partition member to the flow path forming member. In addition, the flow path forming member has a part in common with a part of the partition member in a state of being separated from the other end side of the partition member at one end side and the other end side in the width direction. It may be connected to the one end side.

前記仕切部材を備える態様を採用すれば、水中において、前記周辺領域が、該仕切部材によって他の領域と仕切られているため、前記流入口から前記周辺領域内への前記被移送物の流入が促進され、水面に浮遊した該被移送物を効率的に該周辺領域内に流入させることができる。さらに、前記周辺領域は、他の領域と前記仕切部材に仕切られることによって、前記流入口から前記吸込口へ向かう水の流れが妨げられることがなくなり、該周辺領域内に流入した前記被移送物は、該周辺領域内を流れて円滑に該吸込口から吸い込まれる。   If the aspect provided with the partition member is adopted, since the peripheral region is partitioned from other regions by the partition member in water, the inflow of the transferred object from the inflow port into the peripheral region is prevented. The transferred object that is promoted and floated on the water surface can efficiently flow into the peripheral region. Furthermore, since the peripheral area is partitioned by the partition member with another area, the flow of water from the inflow port to the suction port is not hindered, and the transferred object that has flowed into the peripheral area Flows through the peripheral region and is smoothly sucked from the suction port.

また、受け入れた水を移送方向に流す、例えば導水渠等に前記移送装置を設けた場合には、受け入れた水の流れによってスカム(被移送物)が、水面の除去領域を移送方向にも流れる。また、水面の除去領域を流れるスカムが、水面上にまとまった状態で滞留しているスカムに接触することでその一部が崩れ、崩れた部分は、前記流入口から前記周辺領域に流入した後、前記吸込口から吸い込まれて前記流路内を移動し、あるいは、水面の除去領域を流れて移送方向に移動する。この結果、水面上にまとまった状態で滞留しているスカムを、少しずつ崩しながら効率的に移送することができる。   In addition, when the transfer device is provided in a water conduit or the like, the received water flows in the transfer direction. For example, the scum (transfer object) flows in the removal direction of the water surface in the transfer direction due to the flow of the received water. . In addition, the scum flowing through the water surface removal region collapses by contacting the scum staying in a state of being gathered on the water surface, and the collapsed portion flows into the peripheral region from the inflow port. Then, it is sucked from the suction port and moves in the flow path, or flows in the removal direction of the water surface and moves in the transfer direction. As a result, the scum staying on the surface of the water can be efficiently transferred while being gradually broken.

また、本発明の移送装置において、前記仕切部材は、前記流体の吐出方向と水平面内で直交する幅方向の寸法が高さ方向の寸法よりも長い扁平な形状のものであってもよい。   In the transfer device of the present invention, the partition member may have a flat shape in which the dimension in the width direction orthogonal to the fluid discharge direction in the horizontal plane is longer than the dimension in the height direction.

このように、扁平な形状の仕切部材を採用すれば、前記流入口を前記幅方向に広くとることが容易になる。前記流入口を前記幅方向に広くすれば、前記水面のより広い範囲に浮遊した前記被移送物を、前記周辺領域内に流入させることができる。また、前記仕切部材を扁平な形状にすることで装置全体を薄く構成することができ、浅い水路等にも好適に用いることができる。さらに、前記仕切部材を扁平な形状にすることで、前記移送装置が設けられた導水渠等の汚水等の流れを妨げにくくなり、汚水等の流れに対する抵抗を軽減することも可能になる。   As described above, when the flat partition member is employed, it is easy to widen the inflow port in the width direction. If the inlet is widened in the width direction, the object to be transported floating in a wider area of the water surface can be allowed to flow into the peripheral region. Moreover, the whole apparatus can be made thin by making the said partition member into a flat shape, It can use suitably also for a shallow water channel. Furthermore, by making the partition member into a flat shape, it becomes difficult to hinder the flow of sewage and the like in the water conduit provided with the transfer device, and the resistance to the flow of sewage and the like can be reduced.

さらに、本発明の移送装置は、前記流体の吐出方向と水平面内で直交する方向に移動可能なものであってもよい。   Furthermore, the transfer device of the present invention may be movable in a direction orthogonal to the fluid discharge direction in a horizontal plane.

こうすることで、前記移送装置の数を増やすことなく、前記水面における、より広い範囲に浮遊する被移送物を前記流入口から前記周辺領域内に流入させ、移送することができる。   By doing so, the object to be transported floating in a wider area on the water surface can be introduced into the peripheral region from the inflow port and transferred without increasing the number of the transfer devices.

本発明によれば、吐出させる流体の量を抑え、かつ、簡易な構造により、水面に浮遊した被移送物を移送することができる移送装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the transfer apparatus which can suppress the quantity of the fluid to discharge and can transfer the to-be-transferred object which floated on the water surface by simple structure can be provided.

本発明の一実施形態の移送装置が設けられた導水渠を上方から見た平面図である。It is the top view which looked at the water conduit provided with the transfer device of one embodiment of the present invention from the upper part. 図1に示す導水渠のA−A線断面図である。It is AA sectional view taken on the line of the water conduit shown in FIG. 図1に示す移送装置のB−B線断面図である。It is BB sectional drawing of the transfer apparatus shown in FIG. (a)は、第1変形例の移送装置を示す図であり、(b)は、第2変形例の移送装置を示す図である。(A) is a figure which shows the transfer apparatus of a 1st modification, (b) is a figure which shows the transfer apparatus of a 2nd modification. (a)は、第3変形例の移送装置を示す図であり、(b)は、第4変形例の移送装置を示す図である。(A) is a figure which shows the transfer apparatus of a 3rd modification, (b) is a figure which shows the transfer apparatus of a 4th modification. (a)は、第5変形例の移送装置を示す図であり、(b)は、第6変形例の移送装置を示す図である。(A) is a figure which shows the transfer apparatus of a 5th modification, (b) is a figure which shows the transfer apparatus of a 6th modification. (a)は、第7変形例の移送装置を示す図であり、(b)は、第8変形例の移送装置を示す図である。(A) is a figure which shows the transfer apparatus of a 7th modification, (b) is a figure which shows the transfer apparatus of an 8th modification. 第9変形例の移送装置を示す図である。It is a figure which shows the transfer apparatus of a 9th modification. 第10変形例の移送装置を示す図である。It is a figure which shows the transfer apparatus of a 10th modification. 第11変形例の移送装置を示す図である。It is a figure which shows the transfer apparatus of an 11th modification. 本発明の第2実施形態の移送装置が設けられた伏せ越し構造の概略構成図である。It is a schematic block diagram of the overturning structure in which the transfer apparatus of 2nd Embodiment of this invention was provided. 図11に示す伏せ越し管のC−C線断面図である。It is CC sectional view taken on the line of the overhang pipe shown in FIG. 特許文献1記載の移送装置を上方から見た様子の模式図である。It is the schematic diagram of a mode that the transfer apparatus of patent document 1 was seen from upper direction.

以下、図面を参照して本発明の実施の形態を説明する。本発明の移送装置は、水面に浮遊する被移送物を移送する様々な設備や構造等に採用することができ、例えば、下水処理場における導水渠や沈殿池、あるいは下水管の伏せ越し構造等に好適に適用することができる。本実施形態では、最初沈殿池や最終沈殿池の導水渠に設けられ、水面に浮遊するスカムを移送する移送装置を例に挙げて説明する。すなわち、本実施形態では、スカムが被移送物の一例に相当する。導水渠は、下水処理場における、沈砂池やばっ気槽等から受け入れた汚水を、複数の沈殿池に分配する水路であり、水面に浮遊するスカムは、スカムピットに回収される。   Embodiments of the present invention will be described below with reference to the drawings. The transfer device of the present invention can be adopted in various facilities and structures for transferring an object to be transported floating on the water surface, such as a diversion basin or a sedimentation basin in a sewage treatment plant, or an overhang structure of a sewage pipe. It can be suitably applied to. In the present embodiment, description will be made by taking as an example a transfer device that transfers scum that is provided in the water basin of the first sedimentation basin or the final sedimentation basin and floats on the water surface. That is, in the present embodiment, the scum corresponds to an example of the transferred object. The headrace is a water channel that distributes sewage received from a settling basin, an aeration tank, or the like at a sewage treatment plant to a plurality of settling basins, and scum floating on the water surface is collected in a scum pit.

図1は、本発明の一実施形態の移送装置が設けられた導水渠を上方から見た平面図であり、図2は、図1に示す導水渠のA−A線断面図である。なお、図1では、導水渠9から汚水が分配される複数の沈殿池Pの一部も示している。   FIG. 1 is a plan view of a water conduit provided with a transfer device according to an embodiment of the present invention as viewed from above, and FIG. 2 is a cross-sectional view of the water conduit shown in FIG. In addition, in FIG. 1, some of the several sedimentation basins P in which dirty water is distributed from the water conduit 9 are also shown.

図1に示すように、導水渠9は、上方から見て左右方向に長い長方形状の水路であり、不図示の沈砂池等から送られてきた汚水を受け入れる流水部91と、この流水部91とは塞止壁93で仕切られたスカムピット92を有している。流水部91は、汚水を図の左側から受け入れるものであり、受け入れた汚水は、図の右側に設けられたスカムピット92に向けて流れ、塞止壁93で塞き止められる。また、流水部91には、汚水が流水部91を流れる方向に並設された複数の沈殿池Pが、連通口94を介して接続されている。流水部91を流れていく汚水は、それぞれの連通口94からそれぞれの沈殿池Pに流れ込むことで分配され、それぞれの沈殿池Pに流れ込んだ汚水は、図の下方に向かって流れていく。   As shown in FIG. 1, the water conduit 9 is a rectangular water channel that is long in the left-right direction when viewed from above, and a water flow portion 91 that receives sewage sent from a sand basin (not shown), and the water flow portion 91. Has a scum pit 92 partitioned by a blocking wall 93. The flowing water portion 91 receives sewage from the left side of the figure, and the received sewage flows toward the scum pit 92 provided on the right side of the figure and is blocked by the blocking wall 93. In addition, a plurality of sedimentation basins P arranged in parallel in the direction in which sewage flows through the flowing water portion 91 are connected to the flowing water portion 91 through a communication port 94. The sewage flowing through the flowing water portion 91 is distributed by flowing into each sedimentation basin P from each communication port 94, and the sewage flowing into each sedimentation basin P flows downward in the figure.

図1および図2に示すように、流水部91には移送装置1が設けられている。この移送装置1を駆動させる前は、流水部91の汚水Wの水面WL(図2参照)には、その全域にスカムScが浮遊している。図1および図2では、詳しくは後述するように、移送装置1の吐出口7aから水が吐出されることによってスカムScが図の右側に移送され、塞止壁93の近傍に集められている様子を示している。すなわち、スカムScは、流水部91の長手方向に移送され、図1および図2では、左側から右側に向かう方向が、流体が吐出される吐出方向に相当し、スカムScが移送される移送方向にも相当する。なお、流水部91の短手方向、すなわち、吐出方向と水平面内で直交する方向を、以下、幅方向と称する場合がある。   As shown in FIG. 1 and FIG. 2, the water flow section 91 is provided with a transfer device 1. Before the transfer device 1 is driven, the scum Sc floats in the entire area of the water surface WL (see FIG. 2) of the sewage W in the flowing water portion 91. In FIGS. 1 and 2, as will be described in detail later, water is discharged from the discharge port 7 a of the transfer device 1, so that the scum Sc is transferred to the right side of the drawing and collected in the vicinity of the blocking wall 93. It shows a state. That is, the scum Sc is transferred in the longitudinal direction of the flowing water portion 91. In FIGS. 1 and 2, the direction from the left to the right corresponds to the discharge direction in which fluid is discharged, and the transfer direction in which the scum Sc is transferred. It corresponds to. In addition, the short direction of the flowing water part 91, that is, the direction orthogonal to the discharge direction in the horizontal plane may be hereinafter referred to as a width direction.

塞止壁93には、スカムピット92に連通した開口部93aが形成され、この開口部93aを閉塞するゲート931が設けられている。ゲート931は、例えば上下方向にスライドし、開口部93aを開閉可能なものである。このゲート931を、その上端が、塞止壁93で塞き止められた汚水Wの水面WLよりも下方に位置するようにスライドさせると、塞止壁93の近傍に集められたスカムScが汚水とともに、開口部93aからゲート931を乗り越えてスカムピット92に流れ込む。なお、スカムピット92に回収されたスカムは、不図示のスカム処理機に送られ、脱水処理などの所定の処理が行われる。   The blocking wall 93 is formed with an opening 93a communicating with the scum pit 92, and a gate 931 for closing the opening 93a is provided. The gate 931 can slide, for example, up and down and open and close the opening 93a. When the gate 931 is slid so that the upper end of the gate 931 is positioned below the water surface WL of the sewage W blocked by the blocking wall 93, the scum Sc collected in the vicinity of the blocking wall 93 becomes sewage. At the same time, it passes over the gate 931 from the opening 93a and flows into the scum pit 92. The scum collected in the scum pit 92 is sent to a scum processing machine (not shown) and subjected to predetermined processing such as dehydration processing.

続いて、図1〜図3を用いて、移送装置1を詳細に説明する。   Then, the transfer apparatus 1 is demonstrated in detail using FIGS. 1-3.

図3は、図1に示す移送装置1のB−B線断面図である。この図3では、紙面手前側に向かう方向が吐出方向になり、左右方法が幅方向になる。   FIG. 3 is a cross-sectional view of the transfer device 1 shown in FIG. In FIG. 3, the direction toward the front side of the paper is the ejection direction, and the left-right method is the width direction.

図1〜図3に示すように、移送装置1は、仕切部材3、流路形成部材5および吐出部材7を備えている。仕切部材3は、図1および図2に示すように、流水部91において、吐出方向に延在したものであり、全長が、流水部91の長手方向の長さよりも僅かに短く形成されている。また、仕切部材3は、図1に示すように、吐出方向と平行あるいは略平行に延在し、図2に示すように、水平あるいは略水平に延在したものである。この仕切部材3は、図3に示すように、流水部91を流れる汚水W中において、流路形成部材5周辺の周辺領域R1と、他の領域R2とを、周辺領域R1が内側になるように仕切るものであり、周辺領域R1につながり、汚水W中に没する流入口3aを有している。本実施形態の仕切部材3は、径が300mm以上400mm以下のステンレス製の円筒体の上方の略1/3を切り欠いた断面円弧状のものであり、切り欠いた部分に、上方に向かって開口した流入口3aが形成されている。この流入口3aの幅方向の開口長L3(図4(a)参照)は、275mm以上375mm以下に設定されている。また、仕切部材3は、上端部分に幅方向の中央側へ入り込んだ湾曲部31を有しており、周辺領域R1は、流入口3a側の部分が、流入口3aに近づくほど狭くなっている。   As shown in FIGS. 1 to 3, the transfer device 1 includes a partition member 3, a flow path forming member 5, and a discharge member 7. As shown in FIGS. 1 and 2, the partition member 3 extends in the discharge direction in the flowing water portion 91, and the total length is slightly shorter than the length of the flowing water portion 91 in the longitudinal direction. . Further, the partition member 3 extends in parallel or substantially parallel to the ejection direction as shown in FIG. 1, and extends horizontally or substantially horizontally as shown in FIG. As shown in FIG. 3, in the sewage W flowing through the flowing water portion 91, the partition member 3 includes the peripheral region R1 around the flow path forming member 5 and the other region R2 such that the peripheral region R1 is inside. It has an inflow port 3a that is connected to the peripheral region R1 and sinks into the sewage W. The partition member 3 of the present embodiment has a circular arc shape in which approximately 1/3 of the upper part of a stainless steel cylindrical body having a diameter of 300 mm or more and 400 mm or less is cut out. An open inflow port 3a is formed. The opening length L3 (see FIG. 4A) in the width direction of the inflow port 3a is set to 275 mm or more and 375 mm or less. Moreover, the partition member 3 has the curved part 31 which entered the center side of the width direction in the upper end part, and peripheral region R1 is so narrow that the part by the side of the inflow port 3a approaches the inflow port 3a. .

図1および図2に示すように、流路形成部材5も、仕切部材3と同様に、流水部91において、吐出方向に延在したものであり、その全長が、仕切部材3と略同じ長さに形成されている。また、流路形成部材5も、図1に示すように、吐出方向と平行あるいは略平行に延在し、図2に示すように、水平あるいは略水平に延在したものである。この流路形成部材5は、図3に示すように、流路Sを形成するものであり、この流路Sと周辺領域R1とを仕切っている。また、流路形成部材5は、流路Sにつながり、汚水W中に没する吸込口5aを有している。本実施形態の流路形成部材5は、径が150mm以上200mm以下のステンレス製の円筒体の下方の略1/6を切り欠いた断面円弧状のものであり、切り欠いた部分に、下方に向かって開口した吸込口5aが形成されている。流路形成部材5は、吸込口5aが周辺領域R1内で開口し、上端部分51が、流入口3aと略同じ高さになるように、不図示の取付部材によって仕切部材3に取り付けられている。なお、本実施形態では、流路形成部材5の径方向の中心(図では符号Oを付して概念的に示している)を、仕切部材3の径方向の中心に一致させている。したがって、仕切部材3と流路形成部材5との径方向の間隔Di(本実施形態では75mm程度)はいずれの箇所においても略同じになる。   As shown in FIG. 1 and FIG. 2, the flow path forming member 5 extends in the discharge direction in the flowing water portion 91, similarly to the partition member 3, and its entire length is substantially the same as that of the partition member 3. Is formed. Further, the flow path forming member 5 also extends in parallel or substantially parallel to the discharge direction as shown in FIG. 1, and extends horizontally or substantially horizontally as shown in FIG. As shown in FIG. 3, the flow path forming member 5 forms a flow path S, and partitions the flow path S and the peripheral region R1. Further, the flow path forming member 5 has a suction port 5 a that is connected to the flow path S and sinks into the sewage W. The flow path forming member 5 of the present embodiment has a circular arc shape in which approximately 1/6 of a lower portion of a stainless steel cylindrical body having a diameter of 150 mm or more and 200 mm or less is cut out. A suction port 5a that opens toward the top is formed. The flow path forming member 5 is attached to the partition member 3 by a mounting member (not shown) so that the suction port 5a is opened in the peripheral region R1 and the upper end portion 51 is substantially the same height as the inflow port 3a. Yes. In the present embodiment, the radial center of the flow path forming member 5 (conceptually shown with a symbol O in the drawing) is made to coincide with the radial center of the partition member 3. Therefore, the radial distance Di (about 75 mm in this embodiment) between the partition member 3 and the flow path forming member 5 is substantially the same at any location.

吐出部材7は、その後端部分に給水管70が接続され、その先端部分に吐出口7aを備えたものであり、図2に示すように、吐出口7aが、吐出方向の上流側から流路形成部材5内(流路S)に挿入されている。給水管70から吐出部材7に供給された水は、水平方向あるいは略水平方向に吐出口7aから吐出される(図2における実線の右向きの矢印参照)。本実施形態では、吐出口7aから吐出される水の吐出圧は、0.3MPa以下に設定されている。なお、詳しくは後述するように、流路S内に水の流れが一旦生じればよいため、吐出口7aから吐出される水の圧力は、0.1MPa以下であっても十分な場合がある。また、吐出口7aから吐出される水の流量は、毎分300リットル以上3000リットル以下に調整される。ここで、吐出口7aから吐出する水は、汚水処理場に受け入れた汚水や水道水を使用してもよい。また、水以外の気体や気液混合体等の流体を、吐出口7aから吐出させてもよい。   The discharge member 7 has a water supply pipe 70 connected to the rear end portion thereof, and has a discharge port 7a at a tip portion thereof. As shown in FIG. 2, the discharge port 7a is a flow path from the upstream side in the discharge direction. It is inserted into the forming member 5 (flow path S). The water supplied to the discharge member 7 from the water supply pipe 70 is discharged from the discharge port 7a in the horizontal direction or the substantially horizontal direction (refer to the solid line rightward arrow in FIG. 2). In this embodiment, the discharge pressure of the water discharged from the discharge port 7a is set to 0.3 MPa or less. As will be described in detail later, it is sufficient that the flow of water once occurs in the flow path S. Therefore, the pressure of the water discharged from the discharge port 7a may be sufficient even if it is 0.1 MPa or less. . The flow rate of water discharged from the discharge port 7a is adjusted to 300 liters or more and 3000 liters or less per minute. Here, the water discharged from the discharge port 7a may be sewage or tap water received in the sewage treatment plant. Further, a gas other than water or a fluid such as a gas-liquid mixture may be discharged from the discharge port 7a.

本実施形態の吐出部材7は、丸パイプ状の給水管の先端部分を扁平状につぶすことで、その先端に長孔形状の吐出口7aが形成されたものである。このように丸パイプを扁平状につぶして吐出口7aを形成する態様を採用すれば、その作製が容易になる。また、図3に示すように、吐出口7aの幅方向の開口長L1を、吸込口5aの幅方向の開口長L2よりも長く設定している。具体的には、本実施形態では、吸込口5aの幅方向の開口長L2は100mm程度、吐出口7aの幅方向の開口長L1は120mm程度、また、吐出口7aの高さH1は20mm程度である。吐出口7aをこのような扁平な形状にすることで、真円の形状のものよりも、流速を高めた範囲を広く確保することができる。なお、丸パイプ状の給水管の先端部分をつぶさず、この丸パイプ状の給水管をそのまま用いることで、真円状の吐出口7aを採用する態様の方が好ましい場合もある。   The discharge member 7 of the present embodiment is such that a long-hole-shaped discharge port 7a is formed at the tip of the round pipe-shaped water supply pipe by flattening the tip. Thus, if the aspect which crushes a round pipe into flat shape and forms the discharge outlet 7a is employ | adopted, the manufacture will become easy. Further, as shown in FIG. 3, the opening length L1 in the width direction of the discharge port 7a is set longer than the opening length L2 in the width direction of the suction port 5a. Specifically, in the present embodiment, the opening length L2 in the width direction of the suction port 5a is about 100 mm, the opening length L1 in the width direction of the discharge port 7a is about 120 mm, and the height H1 of the discharge port 7a is about 20 mm. It is. By making the discharge port 7a such a flat shape, it is possible to ensure a wider range in which the flow velocity is higher than that of a perfect circle shape. In some cases, it may be preferable to adopt a round discharge port 7a by using the round pipe-shaped water supply pipe as it is without crushing the tip portion of the round pipe-shaped water supply pipe.

ここで、流水部91の水面WLの高さは、沈砂池から受け入れる汚水の量等によって変動するため、この水面WLの高さの変動を考慮し、移送装置1を設ける高さ位置が設定される。具体的には、流水部91の水面WLの高さが変動した場合であっても、仕切部材3の流入口3aは、水面WLよりも低い位置であって、水面WLからの深さDp1が200mm以内、吐出口7aの高さ方向の中心は、水面WLからの深さDp2が50mm以上300mm以内、流路形成部材5の吸込口5aは、水面WLからの深さDp3が100mm以上400mm以内に収まるように設定されている。また、仕切部材3の流入口3aは、図2に一点鎖線で示す、塞止壁93における開口部93aの下端部分よりも、上方に位置している。   Here, since the height of the water surface WL of the flowing water portion 91 varies depending on the amount of sewage received from the sand basin, the height position where the transfer device 1 is provided is set in consideration of the variation in the height of the water surface WL. The Specifically, even when the height of the water surface WL of the flowing water portion 91 fluctuates, the inflow port 3a of the partition member 3 is located at a position lower than the water surface WL and has a depth Dp1 from the water surface WL. Within 200 mm, the center in the height direction of the discharge port 7a has a depth Dp2 from the water surface WL of 50 mm to 300 mm, and the suction port 5a of the flow path forming member 5 has a depth Dp3 of 100 mm to 400 mm from the water surface WL. Is set to fit. Moreover, the inflow port 3a of the partition member 3 is located above the lower end part of the opening part 93a in the blocking wall 93 shown with a dashed-dotted line in FIG.

移送装置1は、その位置を固定してもよいが、水面WLの高さの変動に合わせて、図2および図3の両矢印で示すように、移送装置1全体、あるいは、仕切部材3と流路形成部材5のうちのいずれか一方を、鉛直方向に移動させる態様としてもよい。こうすることで、流入口3aや吸込口5aの位置を水面WLの高さの変動に追従させ、水面WLから一定の深さに維持することができる。なお、吐出口7aは、流路形成部材5の鉛直方向の移動に合わせて鉛直方向に移動させてもよいし、吐出口7aは固定し、流路形成部材5だけを鉛直方向に移動させる態様としてもよい。また、移送装置1を固定し、流入口3aや吸込口5aの位置が、水面WLから一定の深さに維持されるように、流水部91が受け入れる汚水の量を制御する態様としてもよい。   Although the position of the transfer device 1 may be fixed, the transfer device 1 as a whole or the partitioning member 3 and the transfer member 1 may be fixed as shown by the double arrows in FIGS. Any one of the flow path forming members 5 may be moved in the vertical direction. By doing so, the position of the inlet 3a and the suction port 5a can be made to follow the fluctuation of the height of the water surface WL, and can be maintained at a certain depth from the water surface WL. The discharge port 7a may be moved in the vertical direction in accordance with the vertical movement of the flow path forming member 5, or the discharge port 7a is fixed and only the flow path forming member 5 is moved in the vertical direction. It is good. Moreover, it is good also as an aspect which fixes the transfer apparatus 1 and controls the quantity of the sewage which the flowing water part 91 receives so that the position of the inflow port 3a and the suction inlet 5a may be maintained to the fixed depth from the water surface WL.

以上のように構成された移送装置1では、図1および図2に示すように、吐出口7aから水を吐出させることで、スカムScが移送される。具体的には、吐出口7aから流路形成部材5の流路S内に水が吐出されることで、吐出された水の流れに引き込まれて、図3に示すように、吸込口5aから流路S内に吸い込まれる方向の水の流れが生じる。これにより、流入口3aから周辺領域R1内に流れ込む水の流れが生じるとともに、周辺領域R1内では吸込口5aに向かう水の流れが生じる。この結果、流水部91の水面WLには、仕切部材3の流入口3aに集まる方向の流れ(流入口3a付近の水面WLには、流入口3aに向かう方向の流れが生じ、他の場所の水がこれを補うことで生じる流れ)が生じる。   In the transfer device 1 configured as described above, as shown in FIGS. 1 and 2, the scum Sc is transferred by discharging water from the discharge port 7a. Specifically, when water is discharged from the discharge port 7a into the flow path S of the flow path forming member 5, it is drawn into the flow of the discharged water, and as shown in FIG. 3, from the suction port 5a. A flow of water in the direction of being sucked into the flow path S is generated. Thereby, the flow of water flowing into the peripheral region R1 from the inflow port 3a is generated, and the flow of water toward the suction port 5a is generated in the peripheral region R1. As a result, a flow in the direction of gathering at the inlet 3a of the partition member 3 on the water surface WL of the water flow portion 91 (a flow in the direction toward the inlet 3a occurs on the water surface WL in the vicinity of the inlet 3a. The water is made up by supplementing this).

図1および図2では、スカムScの流れを模式的に示しており、水面上にまとまった状態で浮遊するスカムに符号Sc0を付すとともに薄い網掛けを付し、このスカムのまとまりSc0から分離したスカムScを一点鎖線で囲むとともに濃い網掛けを付している。流水部91の水面WL(図2および図3参照)の全域にまとまりとなって浮遊しているスカムは、水面に生じた、流入口3aに集まる方向の流れによって、その一部が崩れて小さな塊のスカムScとなって流入口3aから周辺領域R1内に流入する。これが繰り返されることによって、図1に示すように、水面WL上には、スカムが除去された領域(水面上の除去領域)が、仕切部材3の延在方向、すなわち移送方向に沿って生じる。また、スカムのまとまりSc0から分離したスカムScは、水面上の除去領域を移送方向に流れ、塞止壁93の近傍に集まる。また、スカムScは、水面上の除去領域を流れていく過程で、スカムのまとまりSc0に接触することでその一部を崩し、崩されたスカムScも、流入口3aから周辺領域R1内に流入し、あるいは水面上の除去領域を移送方向に流れていくといった作用が繰り返される。   1 and 2 schematically show the flow of the scum Sc. The scum floating on the water surface is marked with a symbol Sc0 and thinly shaded, and separated from the scum group Sc0. The scum Sc is surrounded by a one-dot chain line and dark shaded. Part of the scum that floats in a collective manner on the entire surface of the water surface WL (see FIGS. 2 and 3) of the water flow portion 91 is collapsed due to the flow in the direction of gathering at the inflow port 3a. It becomes a lump scum Sc and flows into the peripheral region R1 from the inflow port 3a. By repeating this, as shown in FIG. 1, a region where the scum is removed (removal region on the water surface) is generated on the water surface WL along the extending direction of the partition member 3, that is, the transfer direction. In addition, the scum Sc separated from the scum group Sc0 flows in the removal region on the water surface in the transport direction and collects in the vicinity of the blocking wall 93. In addition, the scum Sc breaks a part of the scum Sc in contact with the scum unit Sc0 in the process of flowing through the removal area on the water surface, and the scum Sc collapsed also flows into the peripheral region R1 from the inflow port 3a. Alternatively, the action of flowing in the removal direction on the water surface in the transfer direction is repeated.

流入口3aに集まってきたスカムScは、図3にスカムScの流れを概念的に示すように、流入口3aから周辺領域R1内に流入し、周辺領域R1内を吸込口5aに向かって流れた後、吸込口5aから流路S内に吸い込まれる。ここで、吸込口5aの、水面WLからの深さを20mm以上に設定すると、スカムScを吸込口5aから、より円滑に流入させることができ好ましい。   The scum Sc gathered at the inflow port 3a flows into the peripheral region R1 from the inflow port 3a and flows in the peripheral region R1 toward the suction port 5a, as conceptually shown in FIG. Then, it is sucked into the flow path S from the suction port 5a. Here, when the depth of the suction port 5a from the water surface WL is set to 20 mm or more, it is preferable because the scum Sc can flow more smoothly from the suction port 5a.

汚水W中において、周辺領域R1は、仕切部材3によって他の領域R2と仕切られているため、流入口3aから周辺領域R1内へのスカムScの流入が促進され、水面WLに浮遊したスカムScを効率的に周辺領域R1内に流入させることができる。さらに、周辺領域R1が他の領域R2と仕切部材3で仕切られることによって、周辺領域R1内を流入口3aから吸込口5aへ向かう水の流れが妨げられることがなくなり、周辺領域R1内に流入したスカムScは、周辺領域R1内を流れて円滑に吸込口5aから吸い込まれる。   In the sewage W, since the peripheral region R1 is partitioned from the other region R2 by the partition member 3, the inflow of the scum Sc from the inflow port 3a into the peripheral region R1 is promoted and the scum Sc floating on the water surface WL is promoted. Can efficiently flow into the peripheral region R1. Furthermore, the peripheral region R1 is partitioned from the other region R2 by the partition member 3, so that the flow of water from the inlet 3a to the suction port 5a is not hindered in the peripheral region R1, and flows into the peripheral region R1. The scum Sc that has flowed through the peripheral region R1 is smoothly sucked from the suction port 5a.

さらに、図1および図2に示すように、流路S内では、吸い込まれたスカムScが、吐出口7aから吐出された水の流れによってスカムピット92に向かって移動し、流路形成部材5における吐出方向の下流端52から吹き出される。流路形成部材5の下流端52から吹き出されたスカムScは、前述したように、塞止壁93の近傍に集まり、ゲート931を開放することで、塞止壁93の近傍に集められたスカムScが、汚水とともにスカムピット92に回収される。ここで、吐出口7aから水を吐出することで流路S内に一旦生じた水の流れは、流路Sが流路形成部材5によって囲まれているため減衰しにくく、スカムScを長い距離移送することができる。これらによって、吐出口7aや、吐出口7aに水を供給する供給管7a等の個数が少なくて済み、簡易な構造を採用することができる。さらに、吐出口7aから吐出される水量も抑えることができる。   Further, as shown in FIGS. 1 and 2, in the flow path S, the sucked scum Sc moves toward the scum pit 92 due to the flow of water discharged from the discharge port 7 a, and in the flow path forming member 5. It blows out from the downstream end 52 in the discharge direction. As described above, the scum Sc blown from the downstream end 52 of the flow path forming member 5 gathers in the vicinity of the blocking wall 93 and opens the gate 931 to collect the scum in the vicinity of the blocking wall 93. Sc is collected in the scum pit 92 together with dirty water. Here, the flow of water once generated in the flow path S by discharging water from the discharge port 7a is not easily attenuated because the flow path S is surrounded by the flow path forming member 5, and the scum Sc has a long distance. Can be transported. Accordingly, the number of discharge ports 7a and supply pipes 7a for supplying water to the discharge ports 7a can be reduced, and a simple structure can be adopted. Furthermore, the amount of water discharged from the discharge port 7a can also be suppressed.

なお、流路形成部材5が長い場合には、図1の一点鎖線で示すように、流路形成部材5の延在方向における途中部分にも、吐出部材7を設けてもよい。さらに、流水部91の幅方向の長さが長い場合には、流路形成部材5および仕切部材3を流水部91の幅方向に複数並置し、それぞれの流路形成部材5の流路S内に水を吐出する吐出部材7を設けてもよいが、図1の両矢印で示すように、移送装置1を幅方向に移動可能とする態様としてもよい。   In addition, when the flow path forming member 5 is long, the discharge member 7 may be provided at an intermediate portion in the extending direction of the flow path forming member 5 as shown by a one-dot chain line in FIG. Furthermore, when the length of the flowing water portion 91 is long, a plurality of the flow path forming members 5 and the partition members 3 are juxtaposed in the width direction of the flowing water portion 91, and the flow path S of each flow path forming member 5 Although the discharge member 7 which discharges water may be provided in this, it is good also as an aspect which enables the transfer apparatus 1 to move to the width direction, as shown by the double arrow of FIG.

また、図2の二点鎖線で示すように、流路形成部材5と仕切部材3を、吐出方向の下流側に向かうに従い水面WLに近づくように傾斜した姿勢(吐出方向の下流側が高くなるように傾斜した姿勢)で配置し、流路形成部材5の傾斜した姿勢に沿って、吐出口7aから流路S内に水を吐出する態様としてもよい。この態様を採用すれば、吐出口7aから水を吐出することで流路S内に生じた水の流れがより減衰しにくくなり、スカムScをより長い距離移送することができる。なお、流路Sにおける、吐出口7aに近い部分は、相対的に強い水の流れが生じているため、流入口3aの位置が水面WLから多少深くなっても、水面WLに浮遊するスカムScが流入口3aから流入しにくくなるといった不具合は生じにくい。   Further, as shown by a two-dot chain line in FIG. 2, the flow path forming member 5 and the partition member 3 are inclined so as to approach the water surface WL toward the downstream side in the discharge direction (so that the downstream side in the discharge direction becomes higher). In a manner in which water is discharged from the discharge port 7 a into the flow path S along the inclined posture of the flow path forming member 5. If this aspect is adopted, the flow of water generated in the flow path S by discharging water from the discharge port 7a is less likely to be attenuated, and the scum Sc can be transported for a longer distance. In addition, since a relatively strong water flow is generated in the portion near the discharge port 7a in the flow path S, the scum Sc floating on the water surface WL even when the position of the inflow port 3a is slightly deeper than the water surface WL. Is less likely to flow in from the inlet 3a.

次に、図1〜図3に示す移送装置の変形例について、図4〜図10を用いて説明する。以下に説明する変形例においては、図1〜図3に示す実施形態との相違点を中心に説明し、図1〜図3に示す実施形態における構成要素の名称と同じ名称の構成要素には、これまで用いた符号を付して説明し、重複する説明は省略することがある。また、図4〜図10では、図3に対応した状態を示すとともに、図面を簡略化するため、吐出部材7については、吐出口7aのみを示し、仕切部材3および流路形成部材5については、断面形状を模式的に示している。   Next, modified examples of the transfer device shown in FIGS. 1 to 3 will be described with reference to FIGS. In the modified example described below, differences from the embodiment shown in FIGS. 1 to 3 will be mainly described, and the component having the same name as the component in the embodiment shown in FIGS. The description will be given with the reference numerals used so far, and redundant description may be omitted. 4 to 10 show the state corresponding to FIG. 3, and in order to simplify the drawing, for the discharge member 7, only the discharge port 7 a is shown, and the partition member 3 and the flow path forming member 5 are shown. The cross-sectional shape is typically shown.

図4(a)は、第1変形例の移送装置を示す図である。この変形例では、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも低くなるように、すなわち、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも、水面WLから深くなるように流路形成部材5と仕切部材3を配置している。これにより、仕切部材3と流路形成部材5との径方向の間隔Diは、吸込口5aに向かうにつれて狭くなり、周辺領域R1内を流れる水の流速は、吸込口5aに向かうにつれて速くなる。この結果、吸込口5aからスカムScをより確実に吸い込むことができる。   Fig.4 (a) is a figure which shows the transfer apparatus of a 1st modification. In this modification, the upper end portion 51 of the flow path forming member 5 is lower than the inflow port 3a of the partition member 3, that is, the upper end portion 51 of the flow path forming member 5 is the inflow port 3a of the partition member 3. The flow path forming member 5 and the partition member 3 are disposed so as to be deeper than the water surface WL. Thereby, the radial distance Di between the partition member 3 and the flow path forming member 5 becomes narrower toward the suction port 5a, and the flow rate of the water flowing in the peripheral region R1 becomes faster toward the suction port 5a. As a result, the scum Sc can be sucked more reliably from the suction port 5a.

また、一点鎖線で示すように、流路形成部材5に径の小さなパイプ材を用い、その上部側部分を切り欠いて形成した流入口3aの幅方向の開口長L3が、吸込口5aの幅方向の開口長L2よりも短い態様としてもよい。こうすることで、流入口3aに流入する水の流速が速くなり、流入口3aからスカムScをより円滑に流入させることができる。なお、図4(a)において一点鎖線で示す仕切部材3は、その径方向の中心を、流路形成部材5の径方向の中心に一致させているため、仕切部材3と流路形成部材5との径方向の間隔Diはいずれの箇所においても略同じになる。ただし、実線で示す仕切部材3と同様に、流路形成部材5の位置を下げ、間隔Diが、吸込口5aに向かうにつれて狭くなる態様としてもよい。   Further, as indicated by the alternate long and short dash line, a pipe material having a small diameter is used for the flow path forming member 5 and the opening length L3 in the width direction of the inflow port 3a formed by notching the upper side portion is the width of the suction port 5a. It is good also as an aspect shorter than the opening length L2 of a direction. By doing so, the flow rate of water flowing into the inflow port 3a is increased, and the scum Sc can be more smoothly flowed in from the inflow port 3a. In addition, since the partition member 3 shown by the alternate long and short dash line in FIG. 4A matches the center in the radial direction with the center in the radial direction of the flow path forming member 5, the partition member 3 and the flow path forming member 5. The radial distance Di is substantially the same at any location. However, similarly to the partition member 3 indicated by the solid line, the position of the flow path forming member 5 may be lowered so that the interval Di becomes narrower toward the suction port 5a.

図4(b)は、第2変形例の移送装置を示す図である。この変形例では、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも高くなるように、流路形成部材5と仕切部材3を配置している。これにより、流路Sにおける上部側部分S1は、流入口3aよりも上方に位置し、仕切部材3と流路形成部材5との径方向の間隔Diは、吸込口5aに向かうにつれて広くなる。この第2変形例では、周辺領域R1を広く確保することができる。   FIG.4 (b) is a figure which shows the transfer apparatus of a 2nd modification. In this modification, the flow path forming member 5 and the partition member 3 are disposed so that the upper end portion 51 of the flow path forming member 5 is higher than the inlet 3 a of the partition member 3. Thereby, the upper side part S1 in the flow path S is located above the inflow port 3a, and the radial distance Di between the partition member 3 and the flow path forming member 5 becomes wider toward the suction port 5a. In the second modification, the peripheral region R1 can be secured widely.

また、一点鎖線で示すように、径の小さなパイプ材を用いて仕切部材3を形成し、その径方向の中心を、流路形成部材5の径方向の中心に一致させることで、仕切部材3と流路形成部材5との径方向の間隔Diをいずれの箇所においても同じになる態様としてもよい。なお、流路形成部材5を、その上端部分51が水面WL上に位置するように配置してもよいが、流路形成部材5における、水面WL上に突出した部分によって、水面WLにおける、幅方向の水の流れが遮られてしまうため、上端部分51が水中に没する位置に流路形成部材5を配置する態様が好ましい。さらに、流路形成部材5における上端部分51の、水面WLからの深さを、20mm以上に設定すれば、上端部分51にスカムScが載りにくくなり好ましい。   Further, as shown by a one-dot chain line, the partition member 3 is formed using a pipe material having a small diameter, and the center in the radial direction is made to coincide with the center in the radial direction of the flow path forming member 5. It is good also as an aspect with which the space | interval Di of radial direction with the flow-path formation member 5 becomes the same in any location. The flow path forming member 5 may be arranged so that the upper end portion 51 is located on the water surface WL. However, the width of the water surface WL in the flow path forming member 5 is determined by the portion protruding on the water surface WL. Since the flow of water in the direction is blocked, a mode in which the flow path forming member 5 is disposed at a position where the upper end portion 51 is submerged in water is preferable. Furthermore, if the depth of the upper end portion 51 in the flow path forming member 5 from the water surface WL is set to 20 mm or more, it is preferable that the scum Sc is not easily placed on the upper end portion 51.

図5(a)は、第3変形例の移送装置を示す図である。この第3変形例の移送装置1は、ともに扁平な形状の仕切部材3と流路形成部材5を備えている点が、図3に示す移送装置1と相違する。具体的には、仕切部材3は、その幅寸法W1の、1/2程度の高さ寸法を有するパイプの上端部分を切り欠いて形成したものである。また、流路形成部材5は、その幅寸法W2の、1/2程度の高さ寸法を有するパイプの下端部分を切り欠いて形成したものである。すなわち、本変形例における、仕切部材3と流路形成部材5は、吐出方向と水平面内で直交する幅方向の寸法が高さ方向の寸法よりも長い扁平な形状のものである。このように、扁平な形状の仕切部材3を採用すれば、流入口3aを幅方向に広くとることが容易になる。流入口3aを幅方向に広くすれば、水面WLのより広い範囲に浮遊したスカムScを、周辺領域R1内に流入させることができる。また、ともに扁平な形状の仕切部材3と流路形成部材5を採用することで、流水部91(図1参照)の汚水Wの流れを妨げにくくなり、汚水Wの流れに対する抵抗を軽減することも可能になる。   Fig.5 (a) is a figure which shows the transfer apparatus of a 3rd modification. The transfer device 1 of the third modification is different from the transfer device 1 shown in FIG. 3 in that both have a flat partition member 3 and a flow path forming member 5. Specifically, the partition member 3 is formed by cutting out an upper end portion of a pipe having a height dimension of about ½ of the width dimension W1. The flow path forming member 5 is formed by cutting out the lower end portion of a pipe having a height dimension of about ½ of the width dimension W2. That is, the partition member 3 and the flow path forming member 5 in the present modification have a flat shape in which the dimension in the width direction orthogonal to the discharge direction in the horizontal plane is longer than the dimension in the height direction. Thus, if the flat partition member 3 is employed, the inflow port 3a can be easily widened in the width direction. If the inflow port 3a is widened in the width direction, the scum Sc floating in a wider area of the water surface WL can be caused to flow into the peripheral region R1. Further, by adopting the partition member 3 and the flow path forming member 5 that are both flat, the flow of the sewage W in the flowing water portion 91 (see FIG. 1) is less likely to be blocked, and the resistance to the flow of the sewage W is reduced. Is also possible.

なお、一点鎖線で示すように、流路形成部材5の位置を下げ、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも低くなるように配置してもよい。また、扁平な形状の仕切部材3に代えて、二点鎖線で示すように、前述した、図3に示す仕切部材3を用いてもよい。   Note that, as indicated by the alternate long and short dash line, the position of the flow path forming member 5 may be lowered so that the upper end portion 51 of the flow path forming member 5 is lower than the inlet 3 a of the partition member 3. Moreover, it may replace with the flat partition member 3 and may use the partition member 3 shown in FIG. 3 mentioned above as shown with a dashed-two dotted line.

図5(b)は、第4変形例の移送装置を示す図である。この変形例の移送装置1は、図5(a)に示す第3変形例の移送装置1において、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも高くなるように、流路形成部材5と仕切部材3を配置している。これにより、流路Sにおける上部側部分S1は、流入口3aよりも上方に位置している。なお、扁平な形状の流路形成部材5に代えて、一点鎖線で示すように、前述した、図3に示す流路形成部材5を用いてもよい。   FIG.5 (b) is a figure which shows the transfer apparatus of the 4th modification. The transfer device 1 of this modification is such that the upper end portion 51 of the flow path forming member 5 is higher than the inflow port 3a of the partition member 3 in the transfer device 1 of the third modification shown in FIG. The flow path forming member 5 and the partition member 3 are disposed. Thereby, the upper side part S1 in the flow path S is located above the inflow port 3a. Instead of the flat channel forming member 5, the channel forming member 5 shown in FIG. 3 described above may be used as indicated by a one-dot chain line.

図6(a)は、第5変形例の移送装置を示す図である。この変形例の移送装置1は、仕切部材3の形状が、図3に示す移送装置1と相違する。図6(a)に示すように、仕切部材3は、鉛直に立設した一対の壁部32と、これら一対の壁部32の下端部分を水平方向に連結する底部33とを有し、上方が開放された断面コ字状のものである。ここで、図3に示す実施形態や、図4や図5に示す変形例のように、仕切部材3の内周面が円弧状のものであると、仕切部材3と流路形成部材5との大小関係や、仕切部材3における流入口3aの開口長L3(図4(a)参照)によっては、仕切部材3と流路形成部材5のうちの一方を鉛直方向に移動させる際に、仕切部材3と流路形成部材5が干渉してしまう場合がある。本変形例によれば、流路形成部材5の側方に、鉛直に立設した壁部32が位置するため、図の両矢印に示すように、仕切部材3と流路形成部材5のうちの一方を鉛直方向に移動させる際に、仕切部材3と流路形成部材5が干渉しにくくなる。これによって、仕切部材3と流路形成部材5のうちの一方を鉛直方向に移動させる際の自由度が向上する。また、仕切部材3の作製も容易になる。   Fig.6 (a) is a figure which shows the transfer apparatus of the 5th modification. The transfer device 1 of this modification is different from the transfer device 1 shown in FIG. 3 in the shape of the partition member 3. As shown in FIG. 6A, the partition member 3 has a pair of vertically standing wall portions 32 and a bottom portion 33 that connects the lower end portions of the pair of wall portions 32 in the horizontal direction. Is a U-shaped cross-section opened. Here, as in the embodiment shown in FIG. 3 and the modification shown in FIGS. 4 and 5, if the inner peripheral surface of the partition member 3 is an arcuate shape, the partition member 3, the flow path forming member 5, When one of the partition member 3 and the flow path forming member 5 is moved in the vertical direction, depending on the magnitude relationship between the two and the opening length L3 of the inlet 3a in the partition member 3 (see FIG. 4A), The member 3 and the flow path forming member 5 may interfere with each other. According to this modification, since the vertically standing wall portion 32 is located on the side of the flow path forming member 5, as shown by the double arrows in the figure, the partition member 3 and the flow path forming member 5 When one of them is moved in the vertical direction, the partition member 3 and the flow path forming member 5 are less likely to interfere with each other. Thereby, the freedom degree at the time of moving one of the partition member 3 and the flow-path formation member 5 to a perpendicular direction improves. In addition, the partition member 3 can be easily manufactured.

仕切部材3と流路形成部材5は、流路形成部材5の上端部分51が、仕切部材3の流入口3aと同じ高さになるように配置してもよいが、一点鎖線で示すように、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも低い位置に設定してもよい。なお、二点鎖線で示すように、仕切部材3は、壁部32の上端側部分321を、幅方向の外側に拡がるように湾曲させて形成してもよいし、壁部32と底部33との連結部分に、円弧状の隅部34を設けてもよい。   The partition member 3 and the flow path forming member 5 may be arranged so that the upper end portion 51 of the flow path forming member 5 is at the same height as the inflow port 3a of the partition member 3, but as indicated by the alternate long and short dash line The upper end portion 51 of the flow path forming member 5 may be set at a position lower than the inflow port 3 a of the partition member 3. As indicated by a two-dot chain line, the partition member 3 may be formed by curving the upper end side portion 321 of the wall portion 32 so as to spread outward in the width direction, or the wall portion 32 and the bottom portion 33. An arcuate corner 34 may be provided at the connecting portion.

図6(b)は、第6変形例の移送装置を示す図である。この変形例の移送装置1は、図6(a)に示す第5変形例の移送装置1において、仕切部材3の流入口3aが、流路形成部材5の上端部分51よりも低くなるように、流路形成部材5と仕切部材3を配置している。なお、一点鎖線で示すように、仕切部材3の底部33を、下方に凸となる円弧状に形成してもよい。   FIG.6 (b) is a figure which shows the transfer apparatus of a 6th modification. The transfer device 1 of this modification is such that the inflow port 3a of the partition member 3 is lower than the upper end portion 51 of the flow path forming member 5 in the transfer device 1 of the fifth modification shown in FIG. The flow path forming member 5 and the partition member 3 are disposed. In addition, as shown with a dashed-dotted line, you may form the bottom part 33 of the partition member 3 in the circular arc shape which protrudes below.

図7(a)は、第7変形例の移送装置を示す図である。この変形例では、仕切部材3の形状が、図3に示す移送装置1と相違する。図7(a)に示すように、本変形例の仕切部材3は、上端部分に、幅方向の外側に拡がるように湾曲した第2湾曲部35を有している。これにより、仕切部材3の流入口3aが広がり、水面WLのより広い範囲に浮遊したスカムScを、流入口3aから周辺領域R1内に流入させることができる。また、一点鎖線で示すように、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも、低くなる位置に流路形成部材5を配置してもよい。   Fig.7 (a) is a figure which shows the transfer apparatus of the 7th modification. In this modification, the shape of the partition member 3 is different from the transfer device 1 shown in FIG. As shown in FIG. 7A, the partition member 3 of the present modification has a second curved portion 35 that is curved to expand outward in the width direction at the upper end portion. Thereby, the inflow port 3a of the partition member 3 spreads, and the scum Sc floating in a wider area of the water surface WL can be caused to flow into the peripheral region R1 from the inflow port 3a. Further, as indicated by the alternate long and short dash line, the flow path forming member 5 may be disposed at a position where the upper end portion 51 of the flow path forming member 5 is lower than the inlet 3 a of the partition member 3.

図7(b)は、第8変形例の移送装置を示す図である。この変形例の移送装置1は、図7(a)に示す第7変形例の移送装置1において、流路形成部材5の上端部分51が、仕切部材3の流入口3aよりも高くなるように、仕切部材3と流路形成部材5を配置している。また、本変形例では、仕切部材3と流路形成部材5との径方向の間隔Diが最も狭い部分を、吸込口5aの幅方向の開口長L2と略同じに設定している。なお、一点鎖線で示すように、径の小さな仕切部材3を採用し、第2湾曲部35と流路形成部材5との径方向の間隔Diを、吸込口5aの幅方向の開口長L2よりも短くして、この間隔Diを通過する水の流速を速めるようにしてもよい。   FIG.7 (b) is a figure which shows the transfer apparatus of the 8th modification. The transfer device 1 of this modification is such that the upper end portion 51 of the flow path forming member 5 is higher than the inlet 3a of the partition member 3 in the transfer device 1 of the seventh modification shown in FIG. The partition member 3 and the flow path forming member 5 are disposed. Moreover, in this modification, the part with the smallest radial distance Di between the partition member 3 and the flow path forming member 5 is set to be substantially the same as the opening length L2 in the width direction of the suction port 5a. In addition, as shown with a dashed-dotted line, the partition member 3 with a small diameter is employ | adopted, and the space | interval Di of the radial direction of the 2nd curved part 35 and the flow-path formation member 5 is based on the opening length L2 of the width direction of the suction inlet 5a. May be shortened to increase the flow rate of water passing through the interval Di.

図8は、第9変形例の移送装置を示す図である。この変形例は、流路形成部材5の上端部分51と吐出口7aの水面WLからの深さを一定にした状態で、流入口3aにおける、水面WLからの深さDp1と開口長L3、および吸込口5aにおける、水面WLからの深さDp3と開口長L2を調整できるものである。   FIG. 8 is a diagram illustrating a transfer device according to a ninth modification. In this modified example, the depth Dp1 and the opening length L3 from the water surface WL at the inlet 3a in a state where the upper end portion 51 of the flow path forming member 5 and the depth of the discharge port 7a from the water surface WL are constant, and The depth Dp3 and the opening length L2 from the water surface WL at the suction port 5a can be adjusted.

図8(a)において、二点鎖線の四角で囲んで示すように、仕切部材3は、1/2円弧状の一対の仕切部材構成体30を有し、図8(a)および同図(b)に示すように、これら一対の仕切部材構成体30を、互いの一部を重ねることで仕切部材3が構成されている。図8(a)および同図(b)では、一対の仕切部材構成体30が重なる部分を、βの符号で示している。これら一対の仕切部材構成体30は、径方向の中心Oを回動中心として回動し、重なる部分βの大きさを変更することができる。   8A, the partition member 3 has a pair of half-arc-shaped partition member structural bodies 30 as shown by being surrounded by a two-dot chain line, and FIG. 8A and FIG. As shown in b), the partition member 3 is configured by overlapping a part of the pair of partition member constituting bodies 30 with each other. In FIG. 8A and FIG. 8B, the portion where the pair of partition member constituting bodies 30 overlap is indicated by the symbol β. The pair of partition member constituting bodies 30 can rotate about the center O in the radial direction as the rotation center, and can change the size of the overlapping portion β.

図8(a)に示す仕切部材3の状態から、図8(b)に示すように、重なる部分βを小さくすると、流入口3aの、水面WLからの深さDp1が浅くなり、流入口3aの開口長L3が狭くなる。図示は省略するが、反対に、重なる部分βを大きくすると、流入口3aの、水面WLからの深さDp1が深くなり、流入口3aの開口長L3は広くなる。このように、一対の仕切部材構成体30が重なる部分βの大きさを変更することで、流入口3aの、水面WLからの深さDp1と開口長L3を調整することができる。なお、図8では、水面WLの高さが一定の場合に、流入口3aの、水面WLからの深さDp1を調整する態様を例に挙げて説明したが、水面WLの高さの変動に追従させて、流入口3aの、水面WLからの深さDp1が一定になるように調整する態様としてもよい。   When the overlapping portion β is reduced as shown in FIG. 8B from the state of the partition member 3 shown in FIG. 8A, the depth Dp1 of the inflow port 3a from the water surface WL becomes shallow, and the inflow port 3a. The opening length L3 is narrowed. Although illustration is omitted, on the contrary, when the overlapping portion β is increased, the depth Dp1 of the inflow port 3a from the water surface WL is increased, and the opening length L3 of the inflow port 3a is increased. Thus, the depth Dp1 and the opening length L3 of the inflow port 3a from the water surface WL can be adjusted by changing the size of the portion β where the pair of partition member structures 30 overlap. In addition, in FIG. 8, although the aspect which adjusts the depth Dp1 from the water surface WL of the inflow port 3a when the height of the water surface WL was constant was described as an example, the variation in the height of the water surface WL was described. It is good also as an aspect adjusted by making it follow and the depth Dp1 from the water surface WL of the inflow port 3a becomes fixed.

また、図8(a)および同図(b)に示すように、流路形成部材5は、円筒体の下方の略1/3を切り欠いた断面円弧状の流路形成部材本体50と、この流路形成部材本体50の切り欠いた部分の両端部分にそれぞれ設けられた、一対のスライド片53とを備えている。一対のスライド片53それぞれは、1/5円弧状のものであり、下端部分は、流路形成部材本体50から下方に突出し、これら下端部分の間に吸込口5aが形成されている。また、一対のスライド片53それぞれは、流路形成部材本体50の内周面50aに沿ってスライドし、これによって、吸込口5aの、水面WLからの深さDp3と開口長L2を調整することができる。   Further, as shown in FIGS. 8A and 8B, the flow path forming member 5 includes a flow path forming member main body 50 having a circular arc shape in which approximately 1/3 below the cylindrical body is cut off, The flow path forming member main body 50 includes a pair of slide pieces 53 provided at both ends of the notched portion. Each of the pair of slide pieces 53 has a 1/5 arc shape, and a lower end portion projects downward from the flow path forming member main body 50, and a suction port 5a is formed between these lower end portions. Each of the pair of slide pieces 53 slides along the inner peripheral surface 50a of the flow path forming member main body 50, thereby adjusting the depth Dp3 and the opening length L2 of the suction port 5a from the water surface WL. Can do.

具体的には、図8(a)に示す、流路形成部材5の状態から、図8(b)に、点線の円弧状の矢印で示すように、一対のスライド片53それぞれを、流路形成部材本体50の内側(上方)にスライドさせると、吸込口5aの、水面WLからの深さDp3が浅くなり、吸込口5aの開口長L2が広くなる。図示は省略するが、反対に、一対のスライド片53それぞれを、流路形成部材本体50の外側(下方)にスライドさせると、吸込口5aの、水面WLからの深さDp3が深くなり、吸込口5aの開口長L2が狭くなる。   Specifically, from the state of the flow path forming member 5 shown in FIG. 8A, each of the pair of slide pieces 53 is changed into a flow path as shown by a dotted arcuate arrow in FIG. 8B. When sliding inside the forming member main body 50 (upward), the depth Dp3 of the suction port 5a from the water surface WL becomes shallow, and the opening length L2 of the suction port 5a becomes wide. Although not shown, conversely, when each of the pair of slide pieces 53 is slid to the outside (downward) of the flow path forming member main body 50, the depth Dp3 of the suction port 5a from the water surface WL increases, The opening length L2 of the mouth 5a is narrowed.

なお、図8に示す変形例における、仕切部材3の構成を、流路形成部材5に適用してもよいし、流路形成部材5の構成を、仕切部材3に適用してもよい。また、一対の仕切部材構成体30やスライド片53を、吐出方向において複数に分割し、それぞれ調整することで、例えば、流入口3aの、水面WLからの深さDp1や、吸込口5aの開口長L2等を、吐出方向の上流側と、吐出方向の下流側とで異ならせることもできる。   The configuration of the partition member 3 in the modification shown in FIG. 8 may be applied to the flow path forming member 5, or the configuration of the flow path forming member 5 may be applied to the partition member 3. Further, by dividing the pair of partition member constituting bodies 30 and the slide piece 53 into a plurality of parts in the discharge direction and adjusting each of them, for example, the depth Dp1 of the inflow port 3a from the water surface WL and the opening of the suction port 5a The length L2 or the like can be made different between the upstream side in the discharge direction and the downstream side in the discharge direction.

図9は、第10変形例の移送装置を示す図である。この変形例の移送装置1は、流路形成部材5が、仕切部材3の、幅方向における一端(図では左側の端部)に接続した、いわゆる片持ち状態で仕切部材3に支持されたものである。二点鎖線の四角で囲んで示すように、概念的には、流路形成部材5と仕切部材3それぞれは、一部を互いに共通にした、点線で示す共通部4を有している。これにより、仕切部材3と流路形成部材5との径方向の間隔Diが確保しやすくなる。また、本変形例では、仕切部材3から流路形成部材5にかけて、内周面4aが連続した曲面で構成されている。これにより、仕切部材3の流入口3aから吸込口5aに向かう水の流れが内周面4aに沿ったスムーズな流れになり、流路形成部材5の吸込口5aからスカムScを円滑に吸い込むことができる。なお、流路形成部材5の上端部分51の高さ(水面WLからの深さ)を、仕切部材3の、幅方向における他端(図では右側の端部)の高さ(水面WLからの深さ)と異ならせてもよいが、図9に示すように、流路形成部材5の上端部分51の高さと、仕切部材3の、幅方向における他端の高さを同じにすれば、スカムScが、幅方向の両側から流入口3aに流入しやすくなり好ましい。   FIG. 9 is a view showing a transfer device of a tenth modification. In the transfer device 1 of this modification, the flow path forming member 5 is supported by the partition member 3 in a so-called cantilever state in which the partition member 3 is connected to one end in the width direction (the left end portion in the figure). It is. Conceptually, each of the flow path forming member 5 and the partition member 3 has a common portion 4 indicated by a dotted line that is partially shared with each other, as surrounded by a two-dot chain square. Thereby, it becomes easy to ensure the radial distance Di between the partition member 3 and the flow path forming member 5. In the present modification, the inner peripheral surface 4 a is a continuous curved surface from the partition member 3 to the flow path forming member 5. Thereby, the flow of water from the inlet 3a of the partition member 3 toward the suction port 5a becomes a smooth flow along the inner peripheral surface 4a, and the scum Sc is smoothly sucked from the suction port 5a of the flow path forming member 5. Can do. In addition, the height (depth from the water surface WL) of the upper end portion 51 of the flow path forming member 5 is set to the height (from the water surface WL) of the other end (right end portion in the drawing) of the partition member 3 in the width direction. (Depth), as shown in FIG. 9, if the height of the upper end portion 51 of the flow path forming member 5 and the height of the other end of the partition member 3 in the width direction are the same, The scum Sc is preferable because it easily flows into the inflow port 3a from both sides in the width direction.

図10は、第11変形例の移送装置を示す図である。この変形例では、仕切部材3を省略し、流路形成部材5を、その吸込口5aが上方を向く姿勢に配置している。本変形例では、流路形成部材5の流路S内に吐出口7aから水が吐出されると、吐出された水の流れに引き込まれて、図10に示すように、吸込口5aから流路S内に吸い込まれる方向の水の流れが生じる。これにより、図10にスカムScの流れを概念的に示すように、流水部91の水面WLに浮遊しているスカムScが吸込口5aに向かって集まり、吸込口5aから流路S内に吸い込まれる。流路S内に吸い込まれたスカムScは、吐出口7aから吐出された水の流れによって移送方向に移動する。   FIG. 10 is a diagram illustrating a transfer device according to an eleventh modification. In this modification, the partition member 3 is omitted, and the flow path forming member 5 is arranged in a posture in which the suction port 5a faces upward. In the present modification, when water is discharged from the discharge port 7a into the flow path S of the flow path forming member 5, it is drawn into the flow of the discharged water and flows from the suction port 5a as shown in FIG. A flow of water in the direction of being sucked into the path S is generated. Accordingly, as conceptually showing the flow of the scum Sc in FIG. 10, the scum Sc floating on the water surface WL of the water flow portion 91 gathers toward the suction port 5a and is sucked into the flow path S from the suction port 5a. It is. The scum Sc sucked into the flow path S moves in the transfer direction by the flow of water discharged from the discharge port 7a.

なお、円弧状の両矢印で示すように、径方向の中心Oを回動中心として流路形成部材5を回動させ、直線の矢印で示す、吸込口5aが開口する方向を、角度αの範囲で変更できる態様としてもよい。また、流路形成部材5として、一点鎖線で示すように、図5(a)の第3変形例の移送装置1における、扁平状の流路形成部材5を用いてもよい。なお、図3に示す実施形態や、図4等に示す、仕切部材3を有する変形例においては、径方向の中心を回動中心として仕切部材3を回動させる態様を採用してもよい。   In addition, as shown by the circular arc-shaped double arrow, the flow path forming member 5 is rotated with the center O in the radial direction as the rotation center, and the direction in which the suction port 5a is opened, which is indicated by the straight arrow, is the angle α. It is good also as an aspect which can be changed in the range. As the flow path forming member 5, a flat flow path forming member 5 in the transfer device 1 of the third modified example in FIG. In the embodiment shown in FIG. 3 and the modified example having the partition member 3 shown in FIG. 4 and the like, a mode in which the partition member 3 is rotated about the center in the radial direction may be adopted.

次いで、設置する設備が異なる、本発明の移送装置の第2実施形態について説明する。以下に説明する第2実施形態においても、図1〜図3に示す実施形態における構成要素の名称と同じ名称の構成要素には、これまで用いた符号を付して説明し、重複する説明は省略することがある。   Next, a description will be given of a second embodiment of the transfer device of the present invention in which the installation equipment is different. Also in the second embodiment described below, the components having the same names as the component names in the embodiment shown in FIGS. May be omitted.

図11は、本発明の第2実施形態の移送装置が設けられた伏せ越し構造の概略構成図である。伏せ越し構造とは、下水管が河川や鉄道等を横切る場合、これら河川等よりも低い位置に伏せ越し管を設け、上流側管路と下流側管路との水位差によって下水を流す構造をいう。   FIG. 11 is a schematic configuration diagram of the overturning structure provided with the transfer device according to the second embodiment of the present invention. The overhang structure is a structure in which when the sewer pipe crosses rivers, railways, etc., the overhang pipe is installed at a position lower than these rivers, and the sewage flows by the difference in water level between the upstream and downstream pipes. Say.

伏せ越し構造8は、図11において、河川Riの左側から右側に下水DRを流すものであり、図では白抜きの矢印で示すように、左から右に向かう方向が下水DRの流れる方向になる。この伏せ越し構造8は、図11に示すように、下水DRの流れの上流側から下流側にかけて記載順に、上流側管路81、上流側マンホール82、伏せ越し管83、下流側マンホール84および下流側管路85が設けられている。上流側管路81は、上流側マンホール82に接続しており、伏せ越し管83は、河川Riよりも低い位置において、上流側マンホール82と、下流側マンホール84とに接続している。下流側管路85は、上流側管路81が上流側マンホール82に接続した位置よりも低い位置において、下流側マンホール84に接続している。なお、上流側マンホール82の底と下流側マンホール84の底には、それぞれ土砂溜まり821,841が形成されている。   In the overhang structure 8, the sewage DR flows from the left side to the right side of the river Ri in FIG. 11, and the direction from the left to the right is the direction in which the sewage DR flows as shown by the white arrow in the figure. . As shown in FIG. 11, the overhang structure 8 includes an upstream pipe 81, an upstream manhole 82, an overhang pipe 83, a downstream manhole 84, and a downstream in the order from the upstream side to the downstream side of the sewage DR flow. A side conduit 85 is provided. The upstream pipe 81 is connected to the upstream manhole 82, and the overpass pipe 83 is connected to the upstream manhole 82 and the downstream manhole 84 at a position lower than the river Ri. The downstream pipe 85 is connected to the downstream manhole 84 at a position lower than the position where the upstream pipe 81 is connected to the upstream manhole 82. Sediment reservoirs 821 and 841 are formed at the bottom of the upstream manhole 82 and the bottom of the downstream manhole 84, respectively.

上流側管路81を流れてきた下水DRは、上流側管路81と下流側管路85との水位差によって生じる、いわゆる逆サイホン作用によって、上流側マンホール82から、伏せ越し管83を流れ、さらに、下流側マンホール84から下流側管路85を流れていく。   The sewage DR that has flowed through the upstream side pipe 81 flows from the upstream manhole 82 through the overlying pipe 83 by a so-called reverse siphon action caused by a water level difference between the upstream side pipe 81 and the downstream side pipe 85. Furthermore, the downstream side manhole 84 flows through the downstream side pipe 85.

ここで、上流側管路81には、図1〜図3に示す移送装置1と同じ構成の移送装置1が設けられている。この移送装置1は、上流側管路81が上流側マンホール82に接続する領域付近に、流路形成部材5の下流端52が位置している。前述した図1〜図3に示す移送装置1と同様に、吐出口7aから水を吐出させると、下水DRの水面WLに浮遊したスカムScは、流路形成部材5に吸い込まれた後、上流側マンホール82に向かって移送され、流路形成部材5の下流端52から吹き出されることで、上流側マンホール82内の下水DRの水面WLに集められる。   Here, the upstream side pipe line 81 is provided with the transfer device 1 having the same configuration as the transfer device 1 shown in FIGS. In the transfer device 1, the downstream end 52 of the flow path forming member 5 is located in the vicinity of a region where the upstream pipe line 81 is connected to the upstream manhole 82. As in the transfer device 1 shown in FIGS. 1 to 3 described above, when water is discharged from the discharge port 7a, the scum Sc floating on the water surface WL of the sewage DR is sucked into the flow path forming member 5 and then upstream. By being transferred toward the side manhole 82 and blown out from the downstream end 52 of the flow path forming member 5, the water is collected on the water surface WL of the sewage DR in the upstream manhole 82.

上流側マンホール82内の下水DRの水面WLに集められたスカムScは、上流側マンホール82の鉄蓋を開けて除去され、また、その一部は、下水DRの流れに引き込まれて伏せ越し管83に流入する。なお、土砂溜まり821に沈降した砂等も、下水DRの流れによって伏せ越し管83に流入する。伏せ越し管83には、図1〜図3に示す移送装置1と同じ構成の移送装置1と、沈降する砂等の沈降物を移送する沈降物移送装置2が設けられている。   The scum Sc collected on the water surface WL of the sewage DR in the upstream manhole 82 is removed by opening the iron lid of the upstream manhole 82, and a part of the scum Sc is drawn into the flow of the sewage DR and the overpass pipe 83. In addition, the sand etc. which settled in the earth and sand reservoir 821 also flows into the overburden pipe 83 by the flow of the sewage DR. The overhead pipe 83 is provided with a transfer device 1 having the same configuration as the transfer device 1 shown in FIGS. 1 to 3 and a sediment transfer device 2 for transferring sediment such as sedimented sand.

図12は、図11に示す伏せ越し管のC−C線断面図である。なお、図12では、伏せ越し管83における、幅方向の両側領域と、上下方向における中間領域は、省略している。   FIG. 12 is a cross-sectional view taken along the line CC of the overhang pipe shown in FIG. In FIG. 12, the both side regions in the width direction and the intermediate region in the vertical direction in the overturn pipe 83 are omitted.

図12に示すように、伏せ越し管83内は下水DRで満たされており、下水DRの水面WLは、伏せ越し管83の天井面831に接する状態になっている。移送装置1は、仕切部材3の流入口3a、および流路形成部材5の上端部分51における、水面WLすなわち天井面831からの深さDp1が、20mm以上に設定されている。水面WLからの深さDp1が、20mm未満であると、伏せ越し管83の天井面831と仕切部材3の流入口3aとの間や、伏せ越し管83の天井面831と流路形成部材5の上端部分51との間にスカムScが引っ掛かりやすくなり、好ましくない。   As shown in FIG. 12, the inside of the overhang pipe 83 is filled with sewage DR, and the water surface WL of the sewage DR is in contact with the ceiling surface 831 of the overhang pipe 83. In the transfer device 1, the depth Dp1 from the water surface WL, that is, the ceiling surface 831 in the inlet 3a of the partition member 3 and the upper end portion 51 of the flow path forming member 5 is set to 20 mm or more. When the depth Dp1 from the water surface WL is less than 20 mm, it is between the ceiling surface 831 of the overhanging pipe 83 and the inlet 3a of the partition member 3, or the ceiling surface 831 of the overhanging pipe 83 and the flow path forming member 5 It is not preferable because the scum Sc is easily caught between the upper end portion 51 and the scum Sc.

吐出部材7の吐出口7aから流路形成部材5の流路S内に水が吐出されると、吸込口5aから流路S内に吸い込まれる方向の水の流れが生じ、流入口3aから周辺領域R1内に流れ込む水の流れが生じるとともに、周辺領域R1内では吸込口5aに向かう水の流れが生じる。この結果、水面WL(天井面831付近)には、仕切部材3の流入口3aに集まる方向の流れが生じ、天井面831付近に浮遊しているスカムScが集まってきて、流入口3aから周辺領域R1内に流入する。周辺領域R1内に流入したスカムScは、吸込口5aから流路S内に吸い込まれ、吸い込まれたスカムScが、下流側マンホール84まで移送される。これにより、スカムScが、伏せ越し管83の天井面831に付着して伏せ越し管83内に留まってしまうといった問題を解消することができる。   When water is discharged from the discharge port 7a of the discharge member 7 into the flow path S of the flow path forming member 5, a flow of water in the direction of being sucked into the flow path S from the suction port 5a is generated, and from the inflow port 3a to the periphery A flow of water flowing into the region R1 is generated, and a water flow toward the suction port 5a is generated in the peripheral region R1. As a result, on the water surface WL (in the vicinity of the ceiling surface 831), a flow in the direction of collecting at the inflow port 3a of the partition member 3 is generated, and the scum Sc floating in the vicinity of the ceiling surface 831 is collected. It flows into region R1. The scum Sc flowing into the peripheral region R1 is sucked into the flow path S from the suction port 5a, and the sucked scum Sc is transferred to the downstream manhole 84. Thereby, the problem that the scum Sc adheres to the ceiling surface 831 of the overhanging pipe 83 and remains in the overhanging pipe 83 can be solved.

伏せ越し管83の底側には、沈降物を移送する沈降物移送装置2が底面832上に設けられている。また、伏せ越し管83の底は改修され、クロスハッチングで示す、コンクリートで改修された部分によって、沈降物移送装置2に向かって下方に傾斜した、一対の傾斜面833が設けられている。沈降物移送装置2は、トラフ21と、底側流路形成部材25と、底側吐出部材27とを備えたものである。トラフ21は、伏せ越し管83の底側において、上流側マンホール82から下流側マンホール84(図11参照)に向かう方向に延在した溝Mを形成するものである。トラフ21の上方に向けて開口した部分が、溝Mの開口21aになり、この溝Mの開口21aには、傾斜面833の下端が接続している。底側流路形成部材25は、トラフ21と同じ方向に延在し、その全長が、トラフ21と略同じ長さに形成されている。底側流路形成部材25は、底側流路S2を形成するものであり、この底側流路S2と溝Mとを仕切っている。また、底側流路形成部材25は、底側流路S2につながり溝M内に位置する溝内吸込口25aを有している。底側吐出部材27は、底側吐出口27aを備えたものであり、この底側吐出口27aから、底側流路S2内に水が吐出される。   A sediment transfer device 2 that transfers sediment is provided on the bottom surface 832 on the bottom side of the overhang pipe 83. Further, the bottom of the overhang pipe 83 is modified, and a pair of inclined surfaces 833 inclined downward toward the sediment transfer device 2 are provided by a portion modified by concrete shown by cross hatching. The sediment transfer device 2 includes a trough 21, a bottom-side flow path forming member 25, and a bottom-side discharge member 27. The trough 21 forms a groove M extending in the direction from the upstream manhole 82 toward the downstream manhole 84 (see FIG. 11) on the bottom side of the overhang pipe 83. The portion opened upward of the trough 21 becomes the opening 21a of the groove M, and the lower end of the inclined surface 833 is connected to the opening 21a of the groove M. The bottom-side flow path forming member 25 extends in the same direction as the trough 21, and its entire length is formed to be approximately the same length as the trough 21. The bottom-side flow path forming member 25 forms the bottom-side flow path S2, and partitions the bottom-side flow path S2 and the groove M from each other. Further, the bottom-side flow path forming member 25 has an in-groove suction port 25a connected to the bottom-side flow path S2 and positioned in the groove M. The bottom discharge member 27 is provided with a bottom discharge port 27a, and water is discharged from the bottom discharge port 27a into the bottom flow path S2.

伏せ越し管83に流れ込んだ下水DRに含まれている砂等の沈降物は、下水DRが下流側へ流れていく課程において沈降していき、傾斜面833に沿ってトラフ21に向かって流れ落ちる。傾斜面833から流れ落ちた沈降物は、トラフ21の開口21aから溝M内に入り込む。また、図11に示す、上流側マンホール82の土砂溜まり821に堆積した砂等も溝M内に入り込む場合もある。   Sediment such as sand contained in the sewage DR that has flowed into the overlying pipe 83 sinks in the course of the sewage DR flowing downstream, and flows down toward the trough 21 along the inclined surface 833. The sediment flowing down from the inclined surface 833 enters the groove M from the opening 21a of the trough 21. Also, sand or the like accumulated in the sediment reservoir 821 of the upstream manhole 82 shown in FIG.

底側吐出口27aから底側流路S2内に水が吐出されると、吐出された水の流れに引き込まれて、溝Mの底に堆積した沈降物は、図12に示す曲線の矢印のように、溝内吸込口25aから底側流路S2内に吸い込まれる。さらに、その底側流路形成部材25の底側流路S2内では、吸い込まれた沈降物が、底側吐出口27aから吐出された水の流れによって吐出方向下流側(下流側マンホール84側)に向かって移動する。これにより、砂等の沈降物を伏せ越し管83内に残留させることなく、下流側マンホール84の土砂溜まり841等に移送することができる。   When water is discharged from the bottom discharge port 27a into the bottom flow path S2, the sediment that is drawn into the flow of the discharged water and accumulates at the bottom of the groove M is indicated by the curved arrow shown in FIG. As described above, the air is sucked into the bottom channel S2 from the in-groove suction port 25a. Further, in the bottom channel S2 of the bottom channel forming member 25, the sucked sediment is discharged downstream in the discharge direction (downstream manhole 84 side) by the flow of water discharged from the bottom discharge port 27a. Move towards. Accordingly, sediment such as sand can be transferred to the earth and sand reservoir 841 and the like of the downstream manhole 84 without remaining in the overpass pipe 83.

本発明は上述の実施の形態に限られることなく特許請求の範囲に記載した範囲で種々の変更を行うことが出来る。   The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope described in the claims.

なお、以上説明した各実施形態や各変形例の記載それぞれにのみ含まれている構成要件であっても、その構成要件を他の実施形態や他の変形例に適用してもよい。   In addition, even if it is a structural requirement contained only in each description of each embodiment and each modification demonstrated above, you may apply the structural requirement to another embodiment and another modification.

1 移送装置
3 仕切部材
3a 流入口
5 流路形成部材
5a 吸込口
51 上端部分
7 吐出部材
7a 吐出口
9 導水渠
S 流路
Sc スカム
R1 周辺領域
W 汚水
DESCRIPTION OF SYMBOLS 1 Transfer device 3 Partition member 3a Inlet 5 Flow path forming member 5a Suction port 51 Upper end part 7 Discharge member 7a Discharge port 9 Water conduit S Flow path Sc Scum R1 Surrounding area W Sewage

Claims (5)

流路を形成するものであって、該流路につながり水中に没する吸込口が設けられた流路形成部材と、
前記流路内に流体を吐出する吐出口とを備え、
前記吸込口は、水面に浮遊した被移送物を、前記流路内に流体が吐出されることで該流路内に吸い込む開口として機能するものであり、
前記流路は、該流路内に吸い込まれた前記被移送物が、該流路内に流体が吐出されることで該流体の吐出方向下流側に向かって移動する経路として機能するものであることを特徴とする移送装置。
A flow path forming member that forms a flow path and is provided with a suction port connected to the flow path and immersed in water;
A discharge port for discharging fluid into the flow path;
The suction port functions as an opening for sucking a transferred object floating on the water surface into the flow path by discharging a fluid into the flow path.
The flow path functions as a path through which the transferred object sucked into the flow path moves toward the downstream side in the fluid discharge direction when the fluid is discharged into the flow path. A transfer device characterized by that.
前記流路形成部材は、前記流体の吐出方向と水平面内で直交する幅方向の寸法が高さ方向の寸法よりも長い扁平な形状のものであることを特徴とする請求項1記載の移送装置。   2. The transfer device according to claim 1, wherein the flow path forming member has a flat shape in which a dimension in a width direction orthogonal to a discharge direction of the fluid in a horizontal plane is longer than a dimension in a height direction. . 水中における、前記流路形成部材周辺の周辺領域と他の領域とを、該周辺領域が内側となるように仕切り、該周辺領域につながった流入口が設けられた仕切部材を備え、
前記流入口は、水面に浮遊した前記被移送物を、前記流路内に流体が吐出されることで前記周辺領域内に流入させる開口として機能するものであり、
前記吸込口は、前記流路内に流体が吐出されることで、前記周辺領域内に流入した前記被移送物を該流路内に吸い込む開口として機能するものであることを特徴とする請求項1または2記載の移送装置。
In water, the peripheral region around the flow path forming member and other regions are partitioned so that the peripheral region is on the inside, and provided with a partition member provided with an inflow port connected to the peripheral region,
The inflow port functions as an opening for allowing the transferred object floating on the water surface to flow into the peripheral region by discharging a fluid into the flow path.
The suction port functions as an opening for sucking the transferred object that has flowed into the peripheral region into the flow channel by discharging a fluid into the flow channel. 3. The transfer device according to 1 or 2.
前記仕切部材は、前記流体の吐出方向と水平面内で直交する幅方向の寸法が高さ方向の寸法よりも長い扁平な形状のものであることを特徴とする請求項3記載の移送装置。   The transfer device according to claim 3, wherein the partition member has a flat shape in which a dimension in a width direction orthogonal to a discharge direction of the fluid in a horizontal plane is longer than a dimension in a height direction. 前記流体の吐出方向と水平面内で直交する方向に移動可能なものであることを特徴とする請求項1から4のうちいずれか1項記載の移送装置。   The transfer device according to any one of claims 1 to 4, wherein the transfer device is movable in a direction orthogonal to the discharge direction of the fluid in a horizontal plane.
JP2016189180A 2016-09-28 2016-09-28 Transfer device Pending JP2018051461A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016189180A JP2018051461A (en) 2016-09-28 2016-09-28 Transfer device
JP2021063950A JP7162924B2 (en) 2016-09-28 2021-04-05 Transfer device
JP2022163775A JP7440959B2 (en) 2016-09-28 2022-10-12 Transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016189180A JP2018051461A (en) 2016-09-28 2016-09-28 Transfer device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021063950A Division JP7162924B2 (en) 2016-09-28 2021-04-05 Transfer device

Publications (1)

Publication Number Publication Date
JP2018051461A true JP2018051461A (en) 2018-04-05

Family

ID=61834618

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016189180A Pending JP2018051461A (en) 2016-09-28 2016-09-28 Transfer device
JP2021063950A Active JP7162924B2 (en) 2016-09-28 2021-04-05 Transfer device
JP2022163775A Active JP7440959B2 (en) 2016-09-28 2022-10-12 Transfer device

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021063950A Active JP7162924B2 (en) 2016-09-28 2021-04-05 Transfer device
JP2022163775A Active JP7440959B2 (en) 2016-09-28 2022-10-12 Transfer device

Country Status (1)

Country Link
JP (3) JP2018051461A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020146657A (en) * 2019-03-15 2020-09-17 アクアインテック株式会社 Transfer system
WO2022044564A1 (en) * 2020-08-27 2022-03-03 宇都宮工業株式会社 Compressed air ejecting mechanism, and conduit and sedimentation tank using same
WO2022059308A1 (en) * 2020-09-17 2022-03-24 宇都宮工業株式会社 Headrace system
JP2022107650A (en) * 2018-07-13 2022-07-22 アクアインテック株式会社 Sand sedimentation pond
JP2023050812A (en) * 2021-09-30 2023-04-11 ユキエンジニアリング株式会社 Scum recovery apparatus
JP7473167B2 (en) 2019-04-22 2024-04-23 アクアインテック株式会社 Scum removal device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513268U (en) * 1974-06-24 1976-01-10
JPH0871551A (en) * 1994-09-08 1996-03-19 Maezawa Ind Inc Scum removing apparatus and scum removing-treating facility
JPH10249337A (en) * 1997-03-13 1998-09-22 Suido Kiko Kaisha Ltd Scum removing device
JP2002086146A (en) * 2000-09-13 2002-03-26 Sekisui Chem Co Ltd Device for preventing generation of scum
JP2016034615A (en) * 2014-08-01 2016-03-17 宇都宮工業株式会社 Device and method for removing scum

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2247116A (en) 1937-03-13 1941-06-24 Josam Mfg Company Inlet fitting for swimming pools
GB1309737A (en) 1969-07-05 1973-03-14 Kearney T J Dispersal of materials in liquids
JPS5348000B2 (en) * 1974-07-01 1978-12-25
DE2904326C3 (en) * 1979-02-05 1982-05-13 Naamloze Vennootschap Papierfabriek Gennep, Gennep Process and device for deinking pulp suspensions
US4608165A (en) * 1985-04-08 1986-08-26 Samdor Engineering Limited Liquid surface skimming trough assembly
US5389250A (en) 1991-09-26 1995-02-14 Baker Hughes Incorporated Self diluting feedwell for thickener dilution
DE19730464A1 (en) * 1997-07-16 1999-01-21 Voith Sulzer Stoffaufbereitung Method and flotation device for removing contaminants from an aqueous fiber suspension
US6287460B1 (en) * 1997-10-13 2001-09-11 Suparator Usa, Inc. Device for continuously skimming off a top layer
US7384548B2 (en) * 2002-07-01 2008-06-10 Terrien Richard J Manually controlled skimming of industrial oil contaminants
US7988865B2 (en) 2009-12-04 2011-08-02 Flsmidth A/S Feedwell dilution system for thickeners in oil sands
US8114296B2 (en) * 2009-04-23 2012-02-14 Fang Chao Method and apparatus for skimming floated sludge
PE20140602A1 (en) 2010-12-13 2014-05-13 Smidth As F L OPEN CHANNEL FEED DISSOLUTION SYSTEM FOR A THICKENER OR SEDIMENTATION TANK
US20150014235A1 (en) 2013-07-12 2015-01-15 Michael Empey Systems and methods for providing a feedwell
JP6481851B2 (en) 2015-01-30 2019-03-13 アクアインテック株式会社 Solid-liquid separation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513268U (en) * 1974-06-24 1976-01-10
JPH0871551A (en) * 1994-09-08 1996-03-19 Maezawa Ind Inc Scum removing apparatus and scum removing-treating facility
JPH10249337A (en) * 1997-03-13 1998-09-22 Suido Kiko Kaisha Ltd Scum removing device
JP2002086146A (en) * 2000-09-13 2002-03-26 Sekisui Chem Co Ltd Device for preventing generation of scum
JP2016034615A (en) * 2014-08-01 2016-03-17 宇都宮工業株式会社 Device and method for removing scum

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022107650A (en) * 2018-07-13 2022-07-22 アクアインテック株式会社 Sand sedimentation pond
JP7359471B2 (en) 2018-07-13 2023-10-11 アクアインテック株式会社 sand pond
JP2020146657A (en) * 2019-03-15 2020-09-17 アクアインテック株式会社 Transfer system
JP7235297B2 (en) 2019-03-15 2023-03-08 アクアインテック株式会社 transport system
JP7437084B2 (en) 2019-03-15 2024-02-22 アクアインテック株式会社 transfer system
JP7473167B2 (en) 2019-04-22 2024-04-23 アクアインテック株式会社 Scum removal device
WO2022044564A1 (en) * 2020-08-27 2022-03-03 宇都宮工業株式会社 Compressed air ejecting mechanism, and conduit and sedimentation tank using same
JP7112794B1 (en) * 2020-08-27 2022-08-04 宇都宮工業株式会社 Conduit and sedimentation pond
WO2022059308A1 (en) * 2020-09-17 2022-03-24 宇都宮工業株式会社 Headrace system
JP7112795B1 (en) * 2020-09-17 2022-08-04 宇都宮工業株式会社 Conduit system
JP2023050812A (en) * 2021-09-30 2023-04-11 ユキエンジニアリング株式会社 Scum recovery apparatus
JP7349744B2 (en) 2021-09-30 2023-09-25 ユキエンジニアリング株式会社 Scum collection device

Also Published As

Publication number Publication date
JP2021100761A (en) 2021-07-08
JP2022179679A (en) 2022-12-02
JP7162924B2 (en) 2022-10-31
JP7440959B2 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
JP7440959B2 (en) Transfer device
JP4668290B2 (en) Separation device
KR101053995B1 (en) Oil / water separator
JP5944682B2 (en) Oil separation tank
CN102089483A (en) Method and apparatus for diverting flowing liquid from a conduit
KR101365028B1 (en) Apparatus and method for distributing gas and liquid during backwash in filter underdrain flumes using dual separation
JP2008214948A (en) Structure of inflow section of riser with spiral guide passage
JP7072776B2 (en) Separator
JP6718074B2 (en) Sand pond
JP5318188B2 (en) Solid separation apparatus and solid separation method
JP2008055361A (en) Oil separator
KR100913526B1 (en) Water Treatment Apparatus for Separating Floating Matters
RU2301775C1 (en) Flotator
US1192569A (en) Apparatus for clarifying waste waters.
KR20160048501A (en) Floating scum scraper and dissolved air flotation type water treatment apparatus using the same
KR102476064B1 (en) Apparatus for reducing nonpoint pollution
SU1572998A1 (en) Arrangement for catching sand
JP2892284B2 (en) Blower for liquid suspended matter
JP5536693B2 (en) Sand covering device and sand covering method
JPH1015306A (en) Discharge device for precipitate
KR101236216B1 (en) Increasing device of dissolved oxygen and a river structure having it
KR101700252B1 (en) Crushing and Preventing from Congestion Apparatus for Floating Matter of Settling Pond using Air
KR101909417B1 (en) Mobile grit chamber
SU1116133A1 (en) Arrangement for discharging waste water into water stream
US448988A (en) mcgowan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210105