JP2024052317A - Carrier device, and in-line type vacuum processing device with the carrier device - Google Patents

Carrier device, and in-line type vacuum processing device with the carrier device Download PDF

Info

Publication number
JP2024052317A
JP2024052317A JP2022158963A JP2022158963A JP2024052317A JP 2024052317 A JP2024052317 A JP 2024052317A JP 2022158963 A JP2022158963 A JP 2022158963A JP 2022158963 A JP2022158963 A JP 2022158963A JP 2024052317 A JP2024052317 A JP 2024052317A
Authority
JP
Japan
Prior art keywords
transport
axis direction
carrier
tray
conveying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022158963A
Other languages
Japanese (ja)
Inventor
万里 深尾
Mari Fukao
朗 沢森
Akira Sawamori
隼 久保
Hayato Kubo
茂 遠藤
Shigeru Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2022158963A priority Critical patent/JP2024052317A/en
Priority to CN202310907147.8A priority patent/CN117800088A/en
Priority to KR1020230126938A priority patent/KR20240046037A/en
Publication of JP2024052317A publication Critical patent/JP2024052317A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • B65G49/064Transporting devices for sheet glass in a horizontal position
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0208Control or detection relating to the transported articles
    • B65G2203/0233Position of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/042Sensors
    • B65G2203/044Optical

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Structure Of Belt Conveyors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To configure a carrier device for carrying a carrier tray, where a substrate can be installed with its processed surface open, in one direction within a vacuum chamber so that reduction effect on running costs is high.SOLUTION: A carrier device TM comprises a pair of carrier units Tm1, Tm2, and the respective carrier units have carrier belts 23a, 23b wound around two rotary members 21a, 21b and 22a, 22b provided at intervals in a carrying direction of the carrier tray Tc, and revolving to travel, and a plurality of support rollers 24 supporting parts of the carrier belts where the carrier tray is mounted. The carrier belts are so configured that when the carrier belts are revolved synchronously to travel to repeatedly carry the carrier tray mounted straddling those carrier belts in an X-axial direction, the carrier belts deform preferentially to the carrier tray.SELECTED DRAWING: Figure 1

Description

本発明は、真空チャンバ内で被処理基板がその処理面を開放した状態で設置できる搬送トレイを一方向に搬送するための搬送装置及びインライン式の真空処理装置に関する。 The present invention relates to a transport device for transporting in one direction a transport tray on which a substrate to be processed can be placed with its processing surface open within a vacuum chamber, and an in-line vacuum processing device.

例えば、フラットパネルディスプレイの製造工程には、ガラス基板等の被処理基板(以下、「基板」という)の片面(成膜面)に有機膜や金属膜を真空蒸着法にて順次成膜する工程がある。このような工程には、一般にインライン式の真空成膜装置が利用される。このような真空処理装置としての真空成膜装置は、一方向に長手な真空チャンバを有し、その内部には、複数個の成膜源が列設されていると共に、各成膜源が列設された方向に基板を搬送する搬送装置が設けられている(例えば、特許文献1参照)。この場合、基板はその処理面を開放した状態で搬送トレイに設置された状態で搬送される。なお、近年の基板の大面積に伴い、基板と搬送トレイとを含めた総重量は数百キロに及ぶ場合がある。 For example, the manufacturing process of flat panel displays includes a process of sequentially depositing organic and metal films on one side (film-forming surface) of a substrate to be processed such as a glass substrate (hereinafter referred to as "substrate") by vacuum deposition. In this process, an in-line vacuum film-forming apparatus is generally used. Such a vacuum film-forming apparatus as a vacuum processing apparatus has a vacuum chamber that is long in one direction, and inside the chamber, multiple film-forming sources are arranged in a row, and a transport device is provided that transports the substrate in the direction in which the film-forming sources are arranged (see, for example, Patent Document 1). In this case, the substrate is transported while placed on a transport tray with its processing surface open. Note that, due to the large area of substrates in recent years, the total weight including the substrate and transport tray can reach several hundred kilograms.

上記搬送装置は、基板面内で互いに直交する方向をX軸方向及びY軸方向とし、Y軸方向に間隔を存して配置される一対の搬送ユニットを備える。各搬送ユニットは、真空チャンバの互いに対峙する側壁にX軸方向に所定間隔で設けられる回転部材としての複数個の駆動ローラを有する。そして、一対の搬送ユニットの各駆動ローラを同期して回転駆動させて、これらの駆動ローラに跨って載置される搬送トレイが各駆動ローラを乗り継ぎながらX軸方向下流側へと搬送される。このような搬送装置では、例えば、各駆動ローラを乗り継ぐ際の搬送トレイと駆動ローラとの衝突や搬送トレイと駆動ローラとの摺動面での摩耗などは避けられない。このとき、駆動ローラの外周面が、摩耗などで優先的に変形するように設計すると、搬送トレイの搬送時の振動が大きくなって搬送トレイ内で基板が位置ずれを起こし易く、または、搬送トレイの搬送速度がバラツキ易くなってくる。このような搬送不良は、各搬送トレイに設置される基板の成膜面に精度よく一定の膜厚で成膜することを阻害してしまう。このことから、通常は、搬送トレイが駆動ローラと比較して優先的に変形するように設計される(つまり、搬送トレイを消耗品としている)。 The above-mentioned transport device has a pair of transport units arranged at an interval in the Y-axis direction, with the X-axis direction and the Y-axis direction being mutually orthogonal to each other in the substrate plane. Each transport unit has a plurality of drive rollers as rotating members provided at a predetermined interval in the X-axis direction on the side walls facing each other of the vacuum chamber. Then, each drive roller of the pair of transport units is rotated and driven synchronously, and the transport tray placed across these drive rollers is transported downstream in the X-axis direction while changing over each drive roller. In such a transport device, for example, collision between the transport tray and the drive roller when changing over each drive roller, wear on the sliding surface between the transport tray and the drive roller, etc. are unavoidable. At this time, if the outer peripheral surface of the drive roller is designed to deform preferentially due to wear, etc., the vibration during transport of the transport tray becomes large, making it easy for the substrate to be displaced in the transport tray, or the transport speed of the transport tray becomes easy to vary. Such transport defects hinder the film formation with a constant thickness with precision on the film formation surface of the substrate placed on each transport tray. For this reason, the transport tray is usually designed to deform preferentially compared to the drive roller (i.e., the transport tray is considered a consumable item).

ところで、インライン式の真空処理装置に利用される搬送トレイは、複数枚の搬送トレイを1セットとし、メンテナンスのために複数セットで準備される。そして、製品歩留まりを高く維持するために、各セットの搬送トレイが予め設定される時間だけ使用されると、セット毎交換することが一般である。このように搬送トレイを消耗品として定期的に交換するのでは、ランニングコストが多大となるという問題がある。 The transport trays used in in-line vacuum processing equipment consist of multiple transport trays in one set, and multiple sets are prepared for maintenance purposes. In order to maintain a high product yield, it is common for each set of transport trays to be replaced after they have been used for a preset period of time. If the transport trays are replaced periodically in this way as consumables, there is a problem in that running costs become very high.

特許6179908号公報Patent No. 6179908

本発明は、以上の点に鑑み、ランニングコストの削減効果が高い搬送装置及びこの搬送装置を備える真空処理装置を提供することをその課題とするものである。 In view of the above, the present invention aims to provide a conveying device that is highly effective in reducing running costs and a vacuum processing device equipped with this conveying device.

上記課題を解決するために、真空チャンバ内で被処理基板がその処理面を開放した状態で設置できる搬送トレイを一方向に搬送するための本発明の搬送装置は、被処理基板面内で互いに直交する方向をX軸方向及びY軸方向とし、Y軸方向に間隔を存して配置される一対の搬送ユニットを備え、各搬送ユニットが、X軸方向に間隔を存して設けられる2個の回転部材の間に巻き掛けられて周回走行する搬送ベルトと、X軸方向に間隔を存して設けられて前記搬送トレイが載置される前記搬送ベルトの部分を支持する複数個の支持ローラとを夫々有し、前記一対の搬送ユニットの各搬送ベルトを同期して周回走行させて、これらの搬送ベルトに跨って載置される前記搬送トレイのX軸方向への搬送を繰り返したときに、搬送トレイと比較して優先的に変形するように前記搬送ベルトが構成されることを特徴とする。 To solve the above problem, the transport device of the present invention for transporting in one direction a transport tray on which a substrate to be processed can be placed with its processing surface open in a vacuum chamber is provided with the X-axis direction and the Y-axis direction being mutually orthogonal to each other in the surface of the substrate to be processed, and the transport device includes a pair of transport units arranged at a distance in the Y-axis direction, each of which has a transport belt that runs around and is wound around two rotating members arranged at a distance in the X-axis direction, and a plurality of support rollers arranged at a distance in the X-axis direction to support the portion of the transport belt on which the transport tray is placed, and the transport belt is configured to deform preferentially compared to the transport tray when the transport belts of the pair of transport units are made to run around in a synchronous manner and the transport tray placed across the transport belts is repeatedly transported in the X-axis direction.

本発明によれば、真空チャンバ内で搬送トレイを搬送する際に、回転部材や支持ローラと搬送トレイの裏面との間に緩衝材として機能する例えばスチール製の搬送ベルトを介在させ、この搬送ベルトを優先的に変形する消耗品とし、必要に応じて2枚の搬送ベルトを交換するようにした。このため、上記従来例のように搬送トレイ自体を消耗品として定期的に交換するものと比較してランニングコストを大幅に削減することができる。しかも、駆動ローラを用いる従来例のものと比較して搬送時の振動が可及的に抑制されると共に、搬送速度のばらつきも小さくできる。その結果、被処理基板の成膜面に単層膜や多層膜を成膜する場合に、精度よく一定の膜厚で成膜処理を施すことが可能になる。 According to the present invention, when the transport tray is transported in the vacuum chamber, a transport belt made of, for example, steel is interposed between the rotating member or support roller and the back surface of the transport tray to function as a buffer material, and this transport belt is a consumable item that deforms preferentially, and the two transport belts are replaced as necessary. This allows for a significant reduction in running costs compared to the above-mentioned conventional example in which the transport tray itself is a consumable item that is replaced periodically. Moreover, compared to the conventional example using a drive roller, vibration during transport is suppressed as much as possible, and the variation in transport speed can also be reduced. As a result, when a single layer film or a multilayer film is formed on the film formation surface of the substrate to be processed, it becomes possible to perform the film formation process with a constant film thickness with high precision.

ところで、X軸方向上流側にて一対の搬送ベルトの間に跨るように搬送トレイを載置し、各搬送ベルトを同期して周回走行させて、搬送トレイをX軸方向下流側へと搬送することを繰り返す場合、搬送ベルトに生じる変形には、搬送トレイと搬送ベルトとの間の摩耗(例えば、スリップ痕)だけでなく、伸びによるものがある。そして、搬送ベルトが伸びてくると、搬送速度のバラツキが生じてくる。本発明では、前記回転部材の少なくとも一方をX軸方向で互いに離間する方向に付勢する付勢手段を備え、前記搬送ベルトが(弾性)変形したときに前記付勢手段の付勢力で前記回転部材の少なくとも一方がX軸方向に変位されて前記搬送ベルトに付与されるテンションが維持される構成を採用することができる。これにより、殊更真空チャンバ内を大気開放して搬送ベルトのテンションを再調整するといった作業を不要にでき、常時、搬送速度のバラツキを小さく維持することができる。 When a transport tray is placed between a pair of transport belts on the upstream side in the X-axis direction, and the transport belts are rotated in synchronism with each other to repeatedly transport the transport tray downstream in the X-axis direction, the deformation of the transport belt is caused not only by wear between the transport tray and the transport belt (for example, slip marks) but also by stretching. When the transport belt stretches, the transport speed varies. In the present invention, a biasing means is provided to bias at least one of the rotating members in a direction away from each other in the X-axis direction, and when the transport belt is (elastically) deformed, at least one of the rotating members is displaced in the X-axis direction by the biasing force of the biasing means, so that the tension applied to the transport belt is maintained. This makes it possible to eliminate the need to open the vacuum chamber to the atmosphere and readjust the tension of the transport belt, and to constantly maintain small variations in the transport speed.

他方で、搬送ベルトが所定範囲を超えた伸びにより(塑性)変形すると、搬送ベルトに付与されるテンションを維持することができない。このような場合、搬送ベルトを定期的に交換することも考えられるが、搬送ベルトに生じる伸びは、搬送トレイの重量や搬送速度といった搬送条件で異なる。このため、不要なベルト交換を防止できることが好ましい。本発明では、前記回転部材の少なくとも一方の変位量を検出する検出器を更に備える構成を採用することができる。これによれば、例えば、検出器での検知値を真空処理装置または搬送装置の制御ユニットに取り込み、その取り込んだ値が予め設定した閾値を超えた場合に、ベルト交換を報知するようにすれば、搬送ベルトの交換時期が適切に判断でき、不要なベルト交換を防止できる。なお、搬送ベルトに生じるスリップ痕などの摩耗状態を監視するために、CCDカメラなどの撮像素子を設け、その画像解析からもベルト交換を判断すれば、搬送ベルトの変形に伴う搬送不良を確実に防止できてよい。 On the other hand, if the conveyor belt is deformed (plastically) by elongation exceeding a predetermined range, the tension applied to the conveyor belt cannot be maintained. In such a case, it is possible to periodically replace the conveyor belt, but the elongation occurring in the conveyor belt differs depending on the conveying conditions, such as the weight of the conveyor tray and the conveying speed. For this reason, it is preferable to be able to prevent unnecessary belt replacement. In the present invention, a configuration can be adopted in which a detector for detecting the amount of displacement of at least one of the rotating members is further provided. According to this, for example, if the detection value of the detector is input to the control unit of the vacuum processing device or the conveying device, and if the input value exceeds a preset threshold value, a belt replacement is notified, the timing of replacement of the conveyor belt can be appropriately determined and unnecessary belt replacement can be prevented. In addition, in order to monitor the wear state of the conveyor belt, such as slip marks, an imaging element such as a CCD camera can be provided, and belt replacement can be determined from the image analysis, thereby reliably preventing conveying defects due to deformation of the conveyor belt.

また、上記課題を解決するために、本発明のインライン式の真空処理装置は、上記搬送装置に加え、前記真空チャンバ内で前記被処理基板に対して所定の真空処理を施すための真空処理ユニットを備える。そして、前記搬送装置及び前記真空処理ユニットの少なくとも一方の作動を制御する制御ユニットを更に備え、前記制御ユニットが前記検出器に通信自在に接続されて、前記検出器の検出値に応じてベルト交換に関する情報を報知するように構成される。 To solve the above problem, the in-line vacuum processing apparatus of the present invention includes, in addition to the above-mentioned transport device, a vacuum processing unit for performing a predetermined vacuum processing on the substrate to be processed within the vacuum chamber. The apparatus further includes a control unit for controlling the operation of at least one of the transport device and the vacuum processing unit, and the control unit is communicatively connected to the detector and configured to notify information regarding belt replacement according to the detection value of the detector.

本実施形態の搬送装置を備えるインライン式の真空成膜装置の構成を説明する断面図。FIG. 2 is a cross-sectional view illustrating a configuration of an in-line type vacuum film forming apparatus including the transfer device of the present embodiment. 図1のII-II線に沿う断面図。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 図2のIII-III線に沿う断面図。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2 . 図3の一点鎖線で囲う部分の拡大断面図。FIG. 4 is an enlarged cross-sectional view of a portion surrounded by a dashed line in FIG. 3 . 図4のV-V線に沿う断面図。5 is a cross-sectional view taken along line VV in FIG. 4 .

以下、図面を参照して、インライン式の真空処理装置を真空成膜装置とし、また、被処理基板を矩形の輪郭を持つガラス基板(以下、「基板Sg」という)として、基板Sgを搬送トレイTcに設置した状態で搬送して、基板Sgの片面(成膜面Sg1)に真空蒸着法にて多層膜を成膜する場合を例に、本発明の搬送装置TM及びこの搬送装置TMを備えるインライン式の成膜装置CMの実施形態を説明する。以下では、基板Sg面内で互いに直交する方向をX軸方向及びY軸方向とし、また、後述の成膜源側から基板Sgに向かう方向をZ軸方向上方とし、また、基板Sgは、図1中、左側から右側に移動するものとし、これを基準に方向を示す用語を用いるものとする。 Below, with reference to the drawings, an embodiment of the transport device TM of the present invention and an inline type film forming device CM equipped with this transport device TM will be described using an example in which an inline type vacuum processing device is a vacuum film forming device, the substrate to be processed is a glass substrate (hereinafter referred to as "substrate Sg") having a rectangular outline, the substrate Sg is transported while placed on a transport tray Tc, and a multilayer film is formed on one side (film forming surface Sg1) of the substrate Sg by a vacuum deposition method. Below, the directions perpendicular to each other within the surface of the substrate Sg are defined as the X-axis direction and the Y-axis direction, the direction from the film forming source side described below toward the substrate Sg is defined as the Z-axis direction upward, and the substrate Sg moves from the left side to the right side in FIG. 1, and terms indicating directions will be used based on this.

図1及び図2を参照して、本実施形態の搬送装置TMを備える真空成膜装置CMは、互いに連設されてX軸方向に長手の第1~第3の各成膜チャンバPc1,Pc2,Pc3を備える。第1~第3の各成膜チャンバPc1,Pc2,Pc3には真空ポンプ(図示せず)が接続され、その内部の成膜空間を所定圧力の真空雰囲気を形成することができる。第1~第3の各成膜チャンバPc1,Pc2,Pc3内にはまた、X軸方向同一軸線上に位置させて、各成膜源1a,1b,1cが夫々設けられている。各成膜源1a,1b,1cは、同一の構成を有し、成膜材料Vmを収容する坩堝11と、坩堝11の成膜材料Vmを加熱する加熱手段12とを備える。成膜材料Vmとしては、基板Sgに積層しようとする各薄膜の組成に応じて適宜選択される。加熱手段12としては、成膜材料Vmの種類に応じて抵抗加熱方式、誘導加熱方式や電子銃方式のものが用いられる。各成膜源1a,1b,1cはまた、坩堝11の上面放出口11aを覆って基板Sgへの成膜材料Vmの到達を防止する回動自在なシャッタ13を備える。 Referring to FIG. 1 and FIG. 2, the vacuum film-forming apparatus CM equipped with the transport device TM of this embodiment includes first to third film-forming chambers Pc1, Pc2, and Pc3 that are connected to each other and are elongated in the X-axis direction. A vacuum pump (not shown) is connected to each of the first to third film-forming chambers Pc1, Pc2, and Pc3, and a vacuum atmosphere of a predetermined pressure can be formed in the film-forming space inside. Each of the first to third film-forming chambers Pc1, Pc2, and Pc3 is also provided with each film-forming source 1a, 1b, and 1c positioned on the same axis in the X-axis direction. Each of the film-forming sources 1a, 1b, and 1c has the same configuration and includes a crucible 11 that contains a film-forming material Vm and a heating means 12 that heats the film-forming material Vm in the crucible 11. The film-forming material Vm is appropriately selected according to the composition of each thin film to be laminated on the substrate Sg. The heating means 12 may be a resistance heating method, an induction heating method, or an electron gun method, depending on the type of film-forming material Vm. Each film-forming source 1a, 1b, and 1c also includes a rotatable shutter 13 that covers the top discharge port 11a of the crucible 11 to prevent the film-forming material Vm from reaching the substrate Sg.

第1の成膜チャンバPc1のX軸方向上流側及び第3の成膜チャンバPc3のX軸方向下流側には、ロードロックチャンバLc1,Lc2がゲートバルブGV1,Gv2を介して夫々連設されている。各ロードロックチャンバLc1,Lc2には、特に図示して説明しないが、真空ポンプとベントバルブとが夫々接続され、その内部を大気雰囲気と真空雰囲気とに速やかに切換ることができる。そして、上流側のロードロックチャンバLc1に予め処理前の基板Sgを設置した搬送トレイTcが搬入され、下流側のロードロックチャンバLc2から処理済み基板Sgが搬送トレイTcと共に搬出されるようになっている。 Load lock chambers Lc1, Lc2 are connected to the upstream side of the first film formation chamber Pc1 in the X-axis direction and the downstream side of the third film formation chamber Pc3 in the X-axis direction via gate valves GV1, Gv2, respectively. Although not specifically shown or described, a vacuum pump and a vent valve are connected to each of the load lock chambers Lc1, Lc2, and the interior can be quickly switched between air and vacuum atmosphere. A transport tray Tc on which unprocessed substrates Sg are placed is carried into the upstream load lock chamber Lc1, and the processed substrates Sg are carried out together with the transport tray Tc from the downstream load lock chamber Lc2.

搬送トレイTcは、真空雰囲気で使用しても成膜処理に影響を与えない材料、例えば、ステンレス鋼やインバー、アルミニウム製の板材で構成され、基板Sgの成膜面Sg1が臨む矩形の開口Tc1が形成され(図2参照)、基板Sgがその処理面Sg1を下方に向けた姿勢で搬送トレイTcの上面に設置される。そして、基板Sgが設置された搬送トレイTcを上流側のロードロックチャンバLc1から、各成膜チャンバPc1,Pc2,Pc3内を順次通って下流側のロードロックチャンバLc2まで搬送するため各成膜チャンバPc1,Pc2,Pc3には、本実施形態の搬送装置TMが夫々設けられている。 The transport tray Tc is made of a material that does not affect the film formation process even when used in a vacuum atmosphere, such as a plate made of stainless steel, invar, or aluminum, and has a rectangular opening Tc1 that faces the film formation surface Sg1 of the substrate Sg (see FIG. 2). The substrate Sg is placed on the upper surface of the transport tray Tc with its processing surface Sg facing downward. A transport device TM of this embodiment is provided in each of the film formation chambers Pc1, Pc2, and Pc3 to transport the transport tray Tc on which the substrate Sg is placed from the upstream load lock chamber Lc1 through each of the film formation chambers Pc1, Pc2, and Pc3 in sequence to the downstream load lock chamber Lc2.

搬送装置TMは、図3~図5も参照して、Y軸方向で互いに向かい合う各成膜チャンバPc1,Pc2,Pc3の両側壁に夫々配置される一対の搬送ユニットTm1,Tm2を備える。各搬送ユニットTm1,Tm2は、同一の構成を有し、第1~第3の各成膜チャンバPc1,Pc2,Pc3のX軸方向両端部に夫々設けられる回転部材としての駆動プーリ21a,21b及び従動プーリ22a,22bと、駆動プーリ21a,21bと従動プーリ22a,22bとの間に巻き掛けられる搬送ベルト23a、23bと、X軸方向に間隔を存して設けられて搬送トレイTcが載置される搬送ベルト23a、23bの部分を支持する複数個の支持ローラ24とを夫々を備えている。そして、一対の搬送ベルトト23a、23bの間に跨るように、Y軸方向に沿う搬送トレイTcの両外端部が各搬送ベルト23a、23bに夫々設置される。駆動プーリ21a,21b及び従動プーリ22a,22bより小径の各支持ローラ24は、各成膜チャンバPc1,Pc2,Pc3の側壁に軸支され、搬送ベルト23a、23bの周回走行に伴って回転自在である。支持ローラ24としては、各成膜チャンバPc1,Pc2,Pc3内で成膜処理に悪影響を与えないように、例えば、ステンレス鋼、または炭素鋼(S45C:焼き入れ材)製のもの、或いはハードクロムメッキ等の表面処理を施したものが用いられる。また、互いに隣接する各支持ローラ24のX軸方向の間隔は、搬送トレイTcのX軸方向長さに応じて適宜設定される。 3 to 5, the transport device TM includes a pair of transport units Tm1 and Tm2 arranged on both side walls of each of the deposition chambers Pc1, Pc2, and Pc3 facing each other in the Y-axis direction. Each transport unit Tm1 and Tm2 has the same configuration and includes a driving pulley 21a, 21b and a driven pulley 22a, 22b as rotating members provided at both ends of the X-axis direction of each of the first to third deposition chambers Pc1, Pc2, and Pc3, transport belts 23a, 23b wound between the driving pulleys 21a, 21b and the driven pulleys 22a, 22b, and a plurality of support rollers 24 provided at intervals in the X-axis direction to support the portions of the transport belts 23a and 23b on which the transport tray Tc is placed. Then, both outer ends of the transport tray Tc along the Y-axis direction are installed on each of the transport belts 23a and 23b so as to straddle the pair of transport belts 23a and 23b. Each support roller 24, which has a smaller diameter than the driving pulleys 21a and 21b and the driven pulleys 22a and 22b, is supported on the side walls of each film-forming chamber Pc1, Pc2, and Pc3 and can rotate freely with the rotation of the transport belts 23a and 23b. The support rollers 24 are made of, for example, stainless steel or carbon steel (S45C: hardened material), or are surface-treated, such as hard chrome plating, so as not to adversely affect the film-forming process in each film-forming chamber Pc1, Pc2, and Pc3. The distance between adjacent support rollers 24 in the X-axis direction is appropriately set according to the length of the transport tray Tc in the X-axis direction.

X軸方向下流端側に設けられる駆動プーリ21a,21bには、内部気密性を確保した状態で各成膜チャンバPc1,Pc2,Pc3の側壁に挿設されるモータ3a,3bの駆動軸31a,31bが接続されている。従動プーリ22a,22bは、X軸方向で駆動プーリ21a,21bから離間する方向(図4中、左方向)に付勢する付勢手段4を介して各成膜チャンバPc1,Pc2,Pc3の側壁に取り付けられている。この場合、各成膜チャンバPc1,Pc2,Pc3の側壁には、X軸方向に長手のベース板51が設けられ、ベース板51の内面には、X軸方向にのびるように2本のレール部材52がZ軸方向に間隔を置いて取り付けられ、レール部材52に可動板53がX軸方向に摺動自在に係合している。そして、レール部材52に立設した軸体54の先端部に軸受55を介して従動プーリ22a,22bが夫々外挿されている。ベース板51の内面にはまた、可動板53からX軸方向下流側に間隔を存して固定板56が設けられている。 Drive pulleys 21a and 21b are provided at the downstream end in the X-axis direction, and drive shafts 31a and 31b of motors 3a and 3b are connected to the side walls of the deposition chambers Pc1, Pc2, and Pc3 while ensuring internal airtightness. The driven pulleys 22a and 22b are attached to the side walls of the deposition chambers Pc1, Pc2, and Pc3 via biasing means 4 that biases them in the X-axis direction away from the drive pulleys 21a and 21b (leftward in FIG. 4). In this case, a base plate 51 long in the X-axis direction is provided on the side walls of each deposition chamber Pc1, Pc2, and Pc3, and two rail members 52 are attached to the inner surface of the base plate 51 at an interval in the Z-axis direction so as to extend in the X-axis direction, and a movable plate 53 is engaged with the rail members 52 so as to be freely slidable in the X-axis direction. The driven pulleys 22a and 22b are fitted via bearings 55 to the tip of the shaft 54 erected on the rail member 52. A fixed plate 56 is also provided on the inner surface of the base plate 51, spaced apart from the movable plate 53 downstream in the X-axis direction.

可動板53に向かい合う固定板56の部分には、X軸方向にのびる収容孔56aが凹設されると共に、固定板56に向かい合う可動板53の部分にはバネ座53aが取り付けられている。そして、バネ座53aと収容孔56aとの間に付勢手段4としてのコイルバネが縮設されている。コイルバネ4の付勢力は、搬送ベルト23a,23bに付与する張力が所定の範囲に常時維持されるように設定される。この場合、固定板56に設けた調整ボルト6によりコイルバネ4の付勢力が調整できるようにしている。また、可動板53の上面には、ベース板51よりZ軸方向上方にのびる長さを持つ検出片53bが設けられ、検出片53bの部分に対峙させてベース板51上には検出器としての反射型のレーザセンサ7が取り付けられている。そして、レーザセンサ7から検出片53bに向けてレーザ光を照射し、その反射光量から従動プーリ22a,22bのX軸方向の変位量を検出することができる。 The portion of the fixed plate 56 facing the movable plate 53 is recessed with a receiving hole 56a extending in the X-axis direction, and a spring seat 53a is attached to the portion of the movable plate 53 facing the fixed plate 56. A coil spring as the biasing means 4 is compressed between the spring seat 53a and the receiving hole 56a. The biasing force of the coil spring 4 is set so that the tension applied to the conveyor belts 23a and 23b is always maintained within a predetermined range. In this case, the biasing force of the coil spring 4 can be adjusted by an adjustment bolt 6 provided on the fixed plate 56. In addition, a detection piece 53b having a length extending upward in the Z-axis direction from the base plate 51 is provided on the upper surface of the movable plate 53, and a reflective laser sensor 7 as a detector is attached on the base plate 51 facing the detection piece 53b. A laser beam is irradiated from the laser sensor 7 toward the detection piece 53b, and the amount of displacement of the driven pulleys 22a and 22b in the X-axis direction can be detected from the amount of reflected light.

搬送ベルト23a,23bとしては、搬送装置TMによって搬送トレイTcのX軸方向への搬送を繰り返したときに、搬送トレイTcと比較して優先的に変形するように構成され、真空雰囲気で使用しても真空処理に悪影響を与えない材料が適宜選択される。例えば、基板Sgを設置した状態の搬送トレイTcの総重量が50kg~1200kgの範囲である場合、幅が40mm~60mmの範囲且つ厚さが0.15mm~0.30mmの範囲のスチール製のもので搬送ベルト23a、23bを構成することができる。搬送ベルト23a、23bに生じる変形としては、搬送トレイTcの支持板部Tc3との面接触に伴う摩耗(例えば、スリップ痕)だけでなく、特に駆動プーリ21a,21b、従動プーリ22a,22bまたは支持ローラ24と搬送トレイTcとの間に挟まれた際の圧延同様の事象に伴う伸びによるものがある。そして、搬送ベルト23a、23bが伸びるように変形とした場合は、コイルバネ4の付勢力により固定板56に対して可動板53が、ひいては、従動プーリ22a,22bがX軸方向で駆動プーリ21a,21bから離間する方向に相対変位して搬送ベルト23a、23bに付与されるテンションが維持され、このときの変位量がレーザセンサ7で検出される。なお、図中、Ppは、搬送装置TMの各構成部品への着膜を防止する防着板である。 The conveyor belts 23a and 23b are configured to deform preferentially compared to the conveyor tray Tc when the conveyor device TM repeatedly conveys the conveyor tray Tc in the X-axis direction, and materials that do not adversely affect vacuum processing even when used in a vacuum atmosphere are appropriately selected. For example, when the total weight of the conveyor tray Tc with the substrate Sg placed thereon is in the range of 50 kg to 1200 kg, the conveyor belts 23a and 23b can be made of steel with a width in the range of 40 mm to 60 mm and a thickness in the range of 0.15 mm to 0.30 mm. Deformations that occur in the conveyor belts 23a and 23b include not only wear (e.g., slip marks) caused by surface contact with the support plate portion Tc3 of the conveyor tray Tc, but also elongation caused by an event similar to rolling when the conveyor belts 23a and 23b are sandwiched between the drive pulleys 21a and 21b, the driven pulleys 22a and 22b, or the support rollers 24 and the conveyor tray Tc. When the conveyor belts 23a and 23b are deformed to extend, the force of the coil spring 4 causes the movable plate 53 and thus the driven pulleys 22a and 22b to be displaced relative to the fixed plate 56 in the X-axis direction away from the drive pulleys 21a and 21b, maintaining the tension applied to the conveyor belts 23a and 23b, and the amount of displacement at this time is detected by the laser sensor 7. In the figure, Pp is an adhesion prevention plate that prevents adhesion to each component of the conveyor device TM.

真空成膜装置CMは、コンピューター、メモリやシーケンサ等を備える制御ユニットCuを備える。制御ユニットCuは、各成膜源1a,1b,1cや真空ポンプといった成膜時に作動する部品だけでなく、搬送装置TMの作動も統括制御する。この場合、制御ユニットCuは、特に図示して説明しないが、各部品や搬送装置TMの作動状態を表示するディスプレイを備える。制御ユニットCuはまた、レーザセンサ7に通信自在に接続されて検出された変位量が入力される。そして、入力された変位量が予め制御ユニットCuに設定される閾値を超えると、制御ユニットCuのディスプレイに搬送ベルト23a、23bの交換時期が到来したことを音声や画像で報知できるようにしている。 The vacuum film-forming apparatus CM is equipped with a control unit Cu that includes a computer, memory, sequencer, etc. The control unit Cu not only controls the components that operate during film formation, such as the film-forming sources 1a, 1b, 1c and the vacuum pump, but also the operation of the transport device TM. In this case, the control unit Cu is equipped with a display that displays the operating status of each component and the transport device TM, although this is not specifically shown or described. The control unit Cu is also communicatively connected to the laser sensor 7, and the detected displacement amount is input. When the input displacement amount exceeds a threshold value that is preset in the control unit Cu, the display of the control unit Cu is configured to notify by voice or image that it is time to replace the transport belts 23a and 23b.

上記真空成膜装置CMにより基板Sgの処理面Sg1に多層膜を成膜する場合には、大気雰囲気の上流側のロードロックチャンバLc1に、予め処理前の基板Sgを設置した搬送トレイTcが搬入される。この場合、各成膜チャンバPc1,Pc2,Pc3内は真空ポンプにより真空排気されて所定圧力に維持されると共に、各成膜源1a,1b,1cにて坩堝11の成膜材料Vmが加熱手段12により加熱される。このとき、シャッタ13により坩堝11上面の放出開口11aが遮蔽されている。上流側のロードロックチャンバLc1が所定圧力まで真空排気されると、ゲートバルブGv1が開放され、上流側のロードロックチャンバLc1から第1の成膜チャンバPc1内の搬送装置TMへと、つまり、搬送トレイTcが一対の搬送ユニットTm1,Tm2の各搬送ベルト23a,23bに跨るように受け渡される。モータ3a,3bにより各駆動プーリ21a,21bを同期して回転駆動させて搬送ベルト23a,23bを周回走行させると、搬送トレイTcがX軸方向下流側へと搬送され、引き続き、第2及び第3の成膜チャンバPc2,Pc3内の搬送装置TMを夫々乗り継ぎながら搬送される。搬送中には、シャッタ13を適宜退避させることで、気化または昇華により坩堝11から所定の余弦則に従い放出される成膜材料Vmが開口Tc4を通して基板Sgの成膜面Sg1が付着、堆積することで処理面Sg1に多層膜が成膜される。そして、第3の成膜チャンバPc3内で搬送トレイTcが最下流側まで搬送されてくると、ゲートバルブGv2が開放され、処理済みの基板Sgのある搬送トレイTcが下流側のロードロックチャンバLc2へと搬送され、ゲートバルブGv2が閉じた後、大気開放して回収される。 When a multilayer film is formed on the processing surface Sg1 of the substrate Sg by the vacuum film-forming device CM, a transport tray Tc on which the unprocessed substrate Sg is placed is transported into the upstream load lock chamber Lc1 in the atmospheric air. In this case, the insides of the film-forming chambers Pc1, Pc2, and Pc3 are evacuated by a vacuum pump and maintained at a predetermined pressure, and the film-forming material Vm in the crucible 11 is heated by the heating means 12 in each film-forming source 1a, 1b, and 1c. At this time, the discharge opening 11a on the top surface of the crucible 11 is blocked by the shutter 13. When the upstream load lock chamber Lc1 is evacuated to a predetermined pressure, the gate valve Gv1 is opened, and the transport tray Tc is transferred from the upstream load lock chamber Lc1 to the transport device TM in the first film-forming chamber Pc1, that is, the transport tray Tc is transferred so as to straddle the transport belts 23a and 23b of the pair of transport units Tm1 and Tm2. When the motors 3a and 3b rotate the drive pulleys 21a and 21b in synchronism with each other to rotate the transport belts 23a and 23b, the transport tray Tc is transported downstream in the X-axis direction, and is then transported by changing between the transport devices TM in the second and third film-forming chambers Pc2 and Pc3. During transport, the shutter 13 is appropriately retracted, so that the film-forming material Vm released from the crucible 11 according to a predetermined cosine law by vaporization or sublimation adheres to and accumulates on the film-forming surface Sg1 of the substrate Sg through the opening Tc4, forming a multilayer film on the processing surface Sg1. Then, when the transport tray Tc is transported to the most downstream side in the third film-forming chamber Pc3, the gate valve Gv2 is opened, and the transport tray Tc with the processed substrate Sg is transported to the downstream load lock chamber Lc2, where the gate valve Gv2 is closed and the transport tray Tc is opened to the atmosphere and collected.

以上の実施形態によれば、各搬送装置TMの一対の搬送ベルト23a,23bの間に跨るように搬送トレイTcを載置し、各搬送ベルト23a,23bを同期して周回走行させて、搬送トレイTcをX軸方向下流側へと搬送することを繰り返す際に、駆動プーリ21a,21b、従動プーリ22a,22b及び支持ローラ24と搬送トレイTcの支持板部Tc3の裏面との間に緩衝材として機能するスチール製の搬送ベルト23a,23bが介在され、搬送ベルト23a,23bが優先的に変形する消耗品とした。これにより、必要に応じて2枚の搬送ベルト23a,23bを交換すればよいため、上記従来例のように搬送トレイTc自体を消耗品として定期的に交換するものと比較してランニングコストを大幅に削減することができる。しかも、駆動ローラを用いる従来例のものと比較して搬送時の振動が可及的に抑制されると共に、搬送速度のばらつきも小さくできる。その結果、成膜面Sg1に多層膜を成膜する場合に、精度よく一定の膜厚で成膜処理を施すことが可能になる。 According to the above embodiment, the transport tray Tc is placed between the pair of transport belts 23a, 23b of each transport device TM, and the transport belts 23a, 23b are synchronously rotated to repeatedly transport the transport tray Tc downstream in the X-axis direction. In this case, the steel transport belts 23a, 23b functioning as buffer materials are interposed between the drive pulleys 21a, 21b, the driven pulleys 22a, 22b, and the support roller 24 and the back surface of the support plate portion Tc3 of the transport tray Tc, and the transport belts 23a, 23b are consumables that deform preferentially. As a result, the two transport belts 23a, 23b only need to be replaced as needed, and the running costs can be significantly reduced compared to the above conventional example in which the transport tray Tc itself is a consumable item and is replaced periodically. Moreover, compared to the conventional example using a drive roller, vibration during transport is suppressed as much as possible, and the variation in transport speed can also be reduced. As a result, when forming a multilayer film on the film-forming surface Sg1, it is possible to perform the film-forming process with a precise and consistent film thickness.

また、搬送ベルト23a,23bが伸びた場合、コイルバネ4の付勢力で従動プーリ22a,22bがX軸方向に相対変位されて搬送ベルト23a,23bに付与されるテンションが維持されるため、殊更各成膜チャンバPc1,Pc2,Pc3を大気開放して搬送ベルト23a,23bのテンションを再調整するといった作業を不要にでき、常時、搬送速度のばらつきを可及的に小さく維持することができる。しかも、従動プーリ22a,22bの変位量を検出する検出器7を更に備え、検出器7での検知値を制御ユニットCuに取り込み、その取り込んだ値が予め設定した閾値を超えた場合に、ベルト交換を報知できるため、搬送ベルト23a,23bの交換時期が適切に判断でき、不要なベルト交換を防止できる。なお、特に図示して説明しないが、搬送ベルト23a、23bに生じるスリップ痕などの摩耗状態を監視するために、CCDカメラなどの撮像素子を各成膜チャンバPc1,Pc2,Pc3内に設け、その画像解析からもベルト交換を判断すれば、搬送ベルト23a,23bの変形に伴う搬送不良を確実に防止できてよい。 In addition, when the conveyor belts 23a and 23b stretch, the driven pulleys 22a and 22b are displaced relative to each other in the X-axis direction by the biasing force of the coil spring 4, and the tension applied to the conveyor belts 23a and 23b is maintained, so that it is not necessary to open each deposition chamber Pc1, Pc2, and Pc3 to the atmosphere to readjust the tension of the conveyor belts 23a and 23b, and the conveyor speed variation can be always kept as small as possible. Moreover, a detector 7 is further provided to detect the displacement amount of the driven pulleys 22a and 22b, and the detection value of the detector 7 is input to the control unit Cu, and when the input value exceeds a preset threshold value, a belt replacement is notified, so that the replacement time of the conveyor belts 23a and 23b can be appropriately determined and unnecessary belt replacement can be prevented. Although not specifically illustrated or described, imaging elements such as CCD cameras can be installed in each deposition chamber Pc1, Pc2, and Pc3 to monitor the wear condition of the conveyor belts 23a and 23b, such as slip marks, and the need for belt replacement can be determined from image analysis, which can reliably prevent conveyor failures due to deformation of the conveyor belts 23a and 23b.

以上、本発明の実施形態について説明したが、本発明の技術思想の範囲を逸脱しない限り、種々の変形が可能である。上記実施形態では、真空処理として真空蒸着法による成膜処理を例に説明したが、これに限定されるものではない。スパッタリング法やCVD法による成膜処理やドライエッチング処理を実施するものにも本発明は適用することができる。また、付勢手段としてコイルバネ4を用いるものを例に説明したが、搬送ベルト23a,23bが変形に応じて従動プーリ22a,22bをX軸方向に相対変位できるものであれば、これに限定されるものではなく、板バネなどの他の付勢手段を利用することができ、また、従動プーリ22a,22bに代えてまたはこれに加えて駆動プーリ21a,21bがX軸方向に相対変位するように構成してもよい。更に、従動プーリ22a,22bの変位量を検出する検出器7としてレーザセンサ7を用いるものを例に説明したが、これに限定されるものではなく、マイクロスイッチなどの他のものを用いることもできる。 Although the embodiment of the present invention has been described above, various modifications are possible without departing from the scope of the technical concept of the present invention. In the above embodiment, the vacuum deposition method is used as an example of the vacuum processing, but the present invention is not limited to this. The present invention can also be applied to a film formation process using a sputtering method or a CVD method, or a dry etching process. In addition, the coil spring 4 is used as the biasing means, but as long as the conveyor belts 23a and 23b can relatively displace the driven pulleys 22a and 22b in the X-axis direction in response to deformation, other biasing means such as a leaf spring can be used, and the drive pulleys 21a and 21b may be configured to relatively displace in the X-axis direction instead of or in addition to the driven pulleys 22a and 22b. Furthermore, the laser sensor 7 is used as the detector 7 for detecting the displacement of the driven pulleys 22a and 22b, but the present invention is not limited to this, and other devices such as a microswitch can be used.

また、上記実施形態では、一対の搬送ベルトト23a、23bの間に跨るように、Y軸方向に沿う搬送トレイTcの両外端部を直接各搬送ベルト23a、23bに夫々設置するものを例に説明したが、これに限定されるものではない。搬送トレイTcの各搬送ベルト23a、23bへの設置面(接触面)は、特に摩耗し易いため、当該面のみに、例えば、硬度の高い(耐摩耗性の高い材料である)SUS440Cなどのステンレス鋼製のシート材を取り付けるようにしてもよい。そして、何等かの原因で傷付いたようなときには、当該シート材のみを交換するようにすれば、ランニングコスト削減の効果をより向上させることができる(即ち、搬送トレイ自体を消耗品としない)。 In the above embodiment, both outer ends of the transport tray Tc along the Y-axis direction are directly placed on each of the transport belts 23a, 23b so as to straddle the pair of transport belts 23a, 23b, respectively, but this is not limited to the above. The installation surface (contact surface) of the transport tray Tc on each of the transport belts 23a, 23b is particularly susceptible to wear, so a sheet material made of stainless steel such as SUS440C, which has high hardness (high wear resistance), may be attached only to this surface. If only this sheet material is replaced when it is damaged for some reason, the effect of reducing running costs can be further improved (i.e., the transport tray itself is not a consumable item).

CM…インライン式の真空成膜装置(真空処理装置)、TM…搬送装置、Cu…制御ユニット、Tc…搬送トレイ、Tm1,Tm2…搬送ユニット、21a,21b…駆動プーリ(回転部材)、22a,22b…従動プーリ(回転部材)、23a,23b…搬送ベルト、24…支持ローラ、4…コイルバネ(付勢手段)、7…レーザセンサ(検出器)。

CM...in-line vacuum film forming apparatus (vacuum processing apparatus), TM...transport apparatus, Cu...control unit, Tc...transport tray, Tm1, Tm2...transport units, 21a, 21b...driving pulleys (rotating members), 22a, 22b...driven pulleys (rotating members), 23a, 23b...transport belts, 24...support roller, 4...coil spring (urging means), 7...laser sensor (detector).

Claims (5)

被処理基板がその処理面を開放した状態で設置できる搬送トレイを真空チャンバ内で一方向に搬送するための搬送装置において、
被処理基板面内で互いに直交する方向をX軸方向及びY軸方向とし、Y軸方向に間隔を存して配置される一対の搬送ユニットを備え、各搬送ユニットが、X軸方向に間隔を存して設けられる2個の回転部材の間に巻き掛けられて周回走行する搬送ベルトと、X軸方向に間隔を存して設けられて前記搬送トレイが載置される前記搬送ベルトの部分を支持する複数個の支持ローラとを夫々有し、
前記一対の搬送ユニットの各搬送ベルトを同期して周回走行させてこれらの搬送ベルトに跨って載置される前記搬送トレイのX軸方向への搬送を繰り返したときに、搬送トレイと比較して優先的に変形するように前記搬送ベルトが構成されることを特徴とする搬送装置。
1. A transport device for transporting a transport tray, on which a substrate to be processed can be placed with its processing surface open, in one direction within a vacuum chamber, comprising:
The X-axis direction and the Y-axis direction are mutually orthogonal directions in the plane of the substrate to be processed, and the apparatus is provided with a pair of transport units arranged at an interval in the Y-axis direction, and each transport unit has a transport belt that is wound around two rotating members arranged at an interval in the X-axis direction and runs in a circumferential direction, and a plurality of support rollers that are arranged at an interval in the X-axis direction and support a portion of the transport belt on which the transport tray is placed,
A conveying device characterized in that the conveying belts are configured to deform preferentially compared to the conveying tray when the conveying belts of the pair of conveying units are rotated in a synchronous manner to repeatedly convey the conveying tray placed across the conveying belts in the X-axis direction.
前記回転部材の少なくとも一方をX軸方向で互いに離間する方向に付勢する付勢手段を備え、前記搬送ベルトが変形したときに前記付勢手段の付勢力で前記回転部材の少なくとも一方がX軸方向に変位されて前記搬送ベルトに付与されるテンションが維持されることを特徴とする請求項1記載の搬送装置。 The conveying device according to claim 1, further comprising a biasing means for biasing at least one of the rotating members in a direction away from each other in the X-axis direction, and when the conveying belt is deformed, the biasing force of the biasing means displaces at least one of the rotating members in the X-axis direction, thereby maintaining the tension applied to the conveying belt. 前記回転部材の少なくとも一方の変位量を検出する検出器を更に備えることを特徴とする請求項2記載の搬送装置。 The conveying device according to claim 2, further comprising a detector that detects the amount of displacement of at least one of the rotating members. 請求項3記載の搬送装置と、前記真空チャンバ内で前記被処理基板に対して所定の真空処理を施すための真空処理ユニットとを備えるインライン式の真空処理装置。 An in-line vacuum processing apparatus comprising the transfer device according to claim 3 and a vacuum processing unit for performing a predetermined vacuum processing on the substrate to be processed in the vacuum chamber. 前記搬送装置及び前記真空処理ユニットの少なくとも一方の作動を制御する制御ユニットを更に備え、前記制御ユニットが前記検出器に通信自在に接続されて、前記検出器の検出値に応じてベルト交換に関する情報を報知するように構成されることを特徴とする請求項4記載のインライン式の真空処理装置。 The in-line vacuum processing apparatus according to claim 4, further comprising a control unit for controlling the operation of at least one of the conveying device and the vacuum processing unit, the control unit being communicatively connected to the detector and configured to notify information regarding belt replacement according to the detection value of the detector.
JP2022158963A 2022-09-30 2022-09-30 Carrier device, and in-line type vacuum processing device with the carrier device Pending JP2024052317A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022158963A JP2024052317A (en) 2022-09-30 2022-09-30 Carrier device, and in-line type vacuum processing device with the carrier device
CN202310907147.8A CN117800088A (en) 2022-09-30 2023-07-24 Transport device and in-line vacuum processing device with same
KR1020230126938A KR20240046037A (en) 2022-09-30 2023-09-22 Transfer device and in-line vacuum processing device equipped with this transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022158963A JP2024052317A (en) 2022-09-30 2022-09-30 Carrier device, and in-line type vacuum processing device with the carrier device

Publications (1)

Publication Number Publication Date
JP2024052317A true JP2024052317A (en) 2024-04-11

Family

ID=90419147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022158963A Pending JP2024052317A (en) 2022-09-30 2022-09-30 Carrier device, and in-line type vacuum processing device with the carrier device

Country Status (3)

Country Link
JP (1) JP2024052317A (en)
KR (1) KR20240046037A (en)
CN (1) CN117800088A (en)

Also Published As

Publication number Publication date
CN117800088A (en) 2024-04-02
KR20240046037A (en) 2024-04-08

Similar Documents

Publication Publication Date Title
US20070137568A1 (en) Reciprocating aperture mask system and method
JP6509696B2 (en) Vacuum processing unit
US8821977B2 (en) Transporting device, in particular for transporting sheet-like substrates through a coating installation
US20110155063A1 (en) Conveyor Assembly with Removable Rollers for a Vapor Deposition System
TW201346050A (en) Film-forming apparatus and film-forming method
US8673777B2 (en) In-line deposition system and process for deposition of a thin film layer
JP2005285576A (en) Manufacturing device of in-line type organic electroluminescent element
EP2518178A1 (en) Tooling carrier for inline coating machine, method of operating thereof and process of coating a substrate
JP3390601B2 (en) Semiconductor manufacturing equipment
JP2024052317A (en) Carrier device, and in-line type vacuum processing device with the carrier device
JPWO2011070960A1 (en) Flexible substrate transfer device
JP6227757B2 (en) Film forming apparatus and film forming method
KR20090117785A (en) Vacuum device and method of conveying substrate
JP2014141706A (en) Film deposition apparatus and film deposition method
KR20180138400A (en) The Non-Contact Transportation and Control Device based on Roll to Roll Process
KR20140005761A (en) Film forming apparatus and carrier tray for the same
US20140110225A1 (en) Conveyor assembly with geared, removable rollers for a vapor deposition system
KR101374664B1 (en) Sputtering apparatus
JP2014107412A (en) Transport system and deposition device
WO2019121289A1 (en) Surface treatment chamber transport system
JP2020527195A (en) Heat treatment equipment for vacuum chambers, deposition equipment for depositing materials on flexible substrates, heat treatment methods for flexible substrates in vacuum chambers, and methods for processing flexible substrates.
JP2018031066A (en) Mask material running unit
JP2015182879A (en) Substrate transportation processing device
JP2005256094A (en) Film-forming apparatus
KR20220170561A (en) Roller and substrate processing apparatus