JP2024051498A - 基板処理装置の評価方法 - Google Patents

基板処理装置の評価方法 Download PDF

Info

Publication number
JP2024051498A
JP2024051498A JP2022157703A JP2022157703A JP2024051498A JP 2024051498 A JP2024051498 A JP 2024051498A JP 2022157703 A JP2022157703 A JP 2022157703A JP 2022157703 A JP2022157703 A JP 2022157703A JP 2024051498 A JP2024051498 A JP 2024051498A
Authority
JP
Japan
Prior art keywords
substrate
evaluation
processing apparatus
mold
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022157703A
Other languages
English (en)
Inventor
雅見 米川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2022157703A priority Critical patent/JP2024051498A/ja
Publication of JP2024051498A publication Critical patent/JP2024051498A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 基板を処理する処理装置内の清浄度を適切に評価する評価方法が求められている。【解決手段】 基板処理装置に搬入された評価基板と当該評価基板に対向する部材との間の空間に、評価基板の表面温度が対向する部材の表面温度よりも相対的に低くなるような温度勾配を発生させた状態で、評価基板を前記基板処理装置内で移動させる。そして移動させることにより評価基板に付着したパーティクルの数に基づいて、基板処理装置の状態を評価する評価する。【選択図】 図2

Description

本発明は、基板処理装置の評価方法に関するものである。
半導体デバイスやMEMSなどの微細化の要求が進み、従来のフォトリソグラフィー技術に加えて、基板上に数ナノメートルオーダーの微細なパターン(構造体)を形成することができるインプリント技術が注目されている。インプリント技術は、基板上に未硬化のインプリント材を供給(塗布)し、かかるインプリント材とモールド(型)とを接触させて、モールドに形成された微細な凹凸パターンに対応するインプリント材のパターンを基板上に形成する微細加工技術である。
このようなインプリント技術では、基板上やモールドにパーティクル(異物)が付着している状態で型と基板上のインプリント材を接触させると、所望の形状の構造物を形成することができないばかりか型や基板を破損してしまう可能性がある。そのため、インプリント装置といった基板処理装置内のパーティクルが極力少ない状態でインプリント処理を行う必要がある。
特許文献1には、装置停止後に再稼働させた際には、送風機で装置内にフィルターを介した大気を送り込むパーティクル除去運転を所定時間行うことで、パーティクルの数を許容できるレベルまで減らした状態でインプリント処理を行うことが開示されている。
特開2019-125745公報
更に信頼性高く装置状態を判断するための方法としては、処理装置内のパーティクルの状態を判定することで装置の性能評価を行う方法があり、その方法も二つの手法が知られている。一つ目は、装置内のエアを吸引し、エアに含まれるパーティクルをパーティクル検査装置で数値化する方法である。この方法は、簡便にリアルタイムでパーティクルの発生状況を計測できる。しかし装置内の決められた場所のエアを吸引することになるため、吸気箇所付近で発生するパーティクルは計測できるが、吸気箇所から離れた位置で発生するパーティクルは計測することができない。すなわちパーティクル発生源があらかじめ予測できる箇所の測定では有効に機能するが、予測できない場合は有効ではないといえる。
二つ目は、加工前のウエハであるベアウエハ(Bare Wafer)を装置内で搬送し、搬送動作によりベアウエハへ付着したパーティクル数を計測することで装置内のパーティクルを数値化する方法である。この方法は、装置内でベアウエハを搬送するので、実際の装置稼働動作に近い状態をモニタすることができるため、実施のインプリント処理におけるパーティクルの状態を評価することができる。
しかしながら、インプリント装置は半導体露光装置に比べさらに高い清浄度が求められている。そのため、評価の段階ですでに一定レベルの清浄度を保っている場合もあり、このような装置の場合には、そもそも装置内に存在するパーティクル個数は極僅かであり短時間のベアウエハの装置内搬送では評価できない可能性がある。正確に評価するために長時間のベアウエハ搬送を行うこともできるが、処理装置の評価時間に膨大な時間がかかることになるため、現実的ではない。
本発明は、上記課題を鑑みてなされたものであり、装置内の清浄度を適切に評価することができる評価方法を提供することを目的としている。
上記課題を鑑み、本願発明は、基板を処理する処理部を有する基板処理装置の評価方法は、前記基板処理装置に評価基板に搬入する工程と、前記評価基板と当該評価基板に対向する部材との間の空間に、前記評価基板の表面温度が前記対向する部材の表面温度よりも相対的に低くなるような温度勾配を発生させる工程と、前記温度勾配が発生している状態で、前記評価基板を前記基板処理装置内で移動させる工程と、前記移動させる工程により前記評価基板に付着したパーティクルの数に基づいて、前記基板処理装置の状態を評価する評価工程と、
を有することを特徴とする。
本発明によれば、装置内の清浄度を適切に評価するために有利な構成を提供することができる。
インプリント装置の構成を示す概略図。 装置のパーティクル評価を行う際の流れを説明するフローチャート。 温度勾配を生じさせることでパーティクル付着頻度を上げる方法を説明する図。 インプリント処理の流れを説明するフローチャート。 加速評価動作の流れを説明するフローチャート。 温度勾配を生じさせることでパーティクル付着頻度を上げる方法を説明する図。 加速評価動作の流れを説明するフローチャート。 物品の製造方法を説明するための図である。
以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。
<第1実施形態>
本発明に係る評価方法を適用することができる基板処理装置の一例として、インプリント装置の例を用いて以下説明するが、インプリント装置以外の基板処理装置にも適用してもよい。図1は、インプリント装置1の構成を示す概略図である。インプリント装置1は、半導体デバイスなどの製造プロセスで使用されるリソグラフィ装置であって、基板上のインプリント材にモールドを用いてパターンを形成するインプリント処理を行う。インプリント装置1は、パターンが形成されたモールドと基板に供給(塗布)されたインプリント材とを接触させた状態でインプリント材を硬化させ、硬化したインプリント材からモールドを引き離すことで基板上にパターンを転写する。
インプリント材には、硬化用のエネルギーが与えられることによって硬化する硬化性組成物(未硬化状態の樹脂と呼ぶこともある)が用いられる。硬化用のエネルギーとしては、電磁波、熱などが用いられる。電磁波としては、例えば、その波長が10nm以上1mm以下の範囲から選択される、赤外線、可視光線、紫外線などの光を用いる。
硬化性組成物は、光の照射によって、或いは、加熱によって硬化する組成物である。光の照射によって硬化する光硬化性組成物は、重合性化合物と光重合開始剤とを少なくとも含有し、必要に応じて、非重合性化合物又は溶剤を含有してもよい。非重合性化合物は、増感剤、水素供与体、内添型離型剤、界面活性剤、酸化防止剤、ポリマー成分などの群から選択される少なくとも一種である。
インプリント材は、スピンコーターやスリットコーターによって基板上に膜状に付与されてもよい。また、インプリント材は、液体噴射ヘッドによって、液滴状、或いは、複数の液滴が繋がって形成された島状又は膜状で基板上に付与されてもよい。インプリント材の粘度(25℃における粘度)は、例えば、1mPa・s以上100mPa・s以下である。
基板は、ガラス、セラミックス、金属、樹脂等が用いられ、必要に応じて、その表面に基板とは別の材料からなる部材が形成されていてもよい。基板としては、具体的に、シリコンウエハ、化合物半導体ウエハ、石英を材料に含むガラスウエハなどである。以後、基板はウエハと称する。
モールド100(型、接触部材とも称する)は、矩形の外周形状を有し、基板101に対向する面(パターン面)に3次元状に形成されたパターン(回路パターンなどの基板101に転写すべき凹凸パターン)を備えたパターン部を有する。モールド100は、光を透過させることが可能な材料、例えば、石英で構成される。
本実施形態では、光の照射によりインプリント材を硬化させる光硬化法を採用する例を用いて説明する。また、以下では、基板上のインプリント材に対して光を照射する、後述の照射光学系の光軸に平行な方向をZ軸方向とし、Z軸方向に垂直な平面内で互いに直交する2方向をX軸方向及びY軸方向とする。
次に、図1を参照しながら、インプリント装置1の各部について説明する。モールドチャック117(部材保持部)は、真空吸着力や静電力によってモールド100を引き付けて保持する。モールド駆動機構116は、モールドチャック117を保持してモールド100を移動させる。モールド駆動機構116は、基板101の上のインプリント材(不図示)へのモールド100の押し付け(押印)、又は、基板101の上のインプリント材からのモールド100の引き離し(離型)を選択的に行うように、モールド100をZ軸方向に移動させる。モールド駆動機構116に適用可能なアクチュエータは、例えば、リニアモータやエアシリンダを用いることができる。モールド駆動機構116は、モールド100を高精度に位置決めするために、粗動駆動系や微動駆動系などの複数の駆動系から構成されていても良い。また、モールド駆動機構116は、Z軸方向だけではなく、X軸方向やY軸方向にモールド100を移動可能に構成されていても良い。更に、モールド駆動機構116は、モールド100のθ(Z軸周りの回転)方向の位置やモールド100の傾きを調整するためのチルト機能を有するように構成されていても良い。更に、モールド100が基板101に押印・離型した際に、基板101とモールド駆動機構116との間にパーティクル(異物)が存在していると、帯電したモールド100にパーティクルが付着することがある。この場合、静電気力を利用してパーティクルを引き寄せる帯電プレートをモールド駆動機構116に構成しておいても良い。
光照射部115は、インプリント処理において、モールド100を介して、基板101の上のインプリント材に光(例えば、紫外線)を照射するための処理部として用いられる。光照射部115は、光源と、光源からの光をインプリント処理に適切な光の状態(光の強度分布、照明領域など)に調整するための光学素子(レンズ、ミラー、遮光板など)とを有している。また、光照射部115は、インプリント装置1内部のパーティクル状態の評価に用いるテストモールド103に光を照射することにも用いられ、テストモールドを温調することが可能な機能を有する。
なお光硬化法に代わり熱硬化法を採用する場合には、インプリント装置1は、光照射部115に代えて、インプリント材(熱硬化性インプリント材)を硬化させるための熱源を硬化部として採用することができる。
アライメントスコープ(不図示)は、基板101に形成されたアライメントマークと、モールド100に形成されたアライメントマークとのX軸及びY軸の各方向への位置ずれを計測でき、基板101とモールド100の位置合わせに用いられる。
液体吐出装置122は、予め設定されている供給量情報に基づいて、基板101の上にインプリント材を供給する処理部として用いられる。液体吐出装置122から供給されるインプリント材の供給量(即ち、供給量情報)は、基板101に形成されるインプリント材のパターンの厚さ(残膜の厚さ)やインプリント材のパターンの密度などに応じて設定することができる。
気体供給機構(不図示)は、インプリント装置1の内部で発生したパーティクルをモールド100、及び基板101の周辺に進入させないために、気体を供給する機能を有する。
基板チャック118(基板保持部)は、真空吸着力や静電力によって基板101を引き付けて保持する。基板チャック118には、基板101を温調することが可能な機構が構成されている。基板チャック118は基板ステージ119上に搭載され、XY面内で移動可能である。モールド100を基板101の上のインプリント材に押し付ける際にアライメントスコープの計測結果を用いて基板ステージ119の位置を調整することでモールド100の位置と基板101の位置とを互いに整合させることができる。
基板ステージに適用可能なアクチュエータは、例えば、リニアモータやエアシリンダを用いることができる。また、基板ステージ119は、X軸方向やY軸方向だけではなく、Z軸方向に基板101を移動可能に構成されていても良い。なお、インプリント装置1におけるモールド100の押印及び離型は、モールド100をZ軸方向に移動させることで実現できるが、基板101をZ軸方向に移動させることで実現させても良い。また、モールド100と基板101の双方を相対的にZ軸方向に移動させることで、モールド100の押印及び離型を実現しても良い。
基板搬送容器106は、基板101をミニエンバイロメント方式で搬送、保管するFOUP(Front Opening Unified Pod)を用いることができる。基板搬送ロボット112a、112bは基板を搬送するロボットであり、基板搬送ロボット112aは基板搬送容器106内の基板を取出し、基板のプリアライメント・温調ステーション114に搬送することができる。プリアライメント・温調ステーション114は基板101のラフな位置合わせと基板101の温調を行う。基板搬送ロボット112bはプリアライメント・温調ステーション114から基板101を取出し、基板チャック118に搬送する機能を有する。
基板は搬送の際、各種部材に吸着、剥離されるため、摩擦、剥離帯電しやすい。そのため基板搬送経路にはイオナイザ113a、113bが設置されており、イオンを空間に生成することでウエハが必要以上に帯電することを防いでいる。
モールド搬送容器105は、モールドをミニエンバイロメント方式で搬送、保管するSMIF(Standard Mechanical Interface)ポッドであり、インプリント処理に用いるモールド100や後述するテストモールド103を保管する。
モールド搬送ロボット109a、109bはモールドを搬送するロボットである。モールド搬送ロボット109aはモールド搬送容器105内のモールドを取出し、一時保管してモールド交換を可能にする際に用いられるストッカ111にモールドを搬送することができる。搬送ロボット109bはストッカ111のモールドを取出し、モールドチャック117に搬送する機能を有する。
モールド100は搬送の際、各種部材に吸着、剥離されるため、摩擦、剥離帯電しやすい。そのためモールド搬送経路にはイオナイザ110が設置されており、イオンを空間に生成することでモールドが必要以上に帯電することを防いでいる。
制御部50は、CPUやメモリなどを含み、インプリント装置1の各部を制御してインプリント処理や基板/モールドの搬入や搬出制御、さらに後述のインプリント装置のパーティクル付着の加速評価が行われるように制御することができる。
インプリント処理に用いられるモールド100の使用可能期間、いわゆるモールドの寿命を左右する大きな要因の一つは、基板101やモールド100に付着するパーティクル(異物)である。基板101やモールド100にパーティクルが付着した状態でインプリント処理(パターン形成)を行うと、半導体デバイスの不良が発生するばかりでなく、モールド100の微細なパターン構造が破損し、モールド100自体が使用できなくなってしまう。
想定されるパーティクルとしては、装置動作すなわち、上述のステージ、搬送ロボット、各種アクチュエータの動作など、摺動、摩擦により発生するパーティクルが考えられる。基板101上にインプリント材を塗布する方式が、インクジェット方式の場合、液滴が吐出された際に、ミストとして樹脂が漂い乾燥、固化してパーティクルに変化することが考えられる。また、装置組立時に各部材、ユニット表面に弱く付着したパーティクルが、装置稼働後、わずかな状態変化をきっかけとして表面から離脱しパーティクルとなる可能性もある。また、装置停止して装置メンテナンスのために空調設備を停止した場合には、パーティクルが混入することも考えられる。
そのため、インプリント処理等を行う際には、当該装置が稼働に耐えうる清浄度であることを確認してから行う必要があり、装置内のパーティクルの状態を判定し装置の性能評価を行うことが求められている。具体的には加工前のウエハであるベアウエハ(Bare Wafer)を装置内で搬送し、搬送動作によりベアウエハへ付着したパーティクル数をパーティクル検査装置等で計測することで装置内のパーティクルを数値化して判断する方法を用いることができる。このとき行われるベアウエハの装置内搬送は、通常のインプリント動作を極力模擬した装置内動作(ダミー動作)とすることにより、より信頼性の高い評価とすることができる。
しかしながら、インプリント装置は半導体露光装置に比べさらに高い清浄度が求められる。そのため、評価の段階ですでに一定レベルの清浄度を保っているような装置の場合には、そもそも装置内に存在するパーティクル個数は極僅かであり短時間のベアウエハの装置内搬送では装置の状態を評価できない可能性がある。正確に評価するために長時間のベアウエハ搬送を行うこともできるが、処理装置の評価時間に膨大な時間がかかることになるため、装置のダウンタイムが長くなり現実的ではなかった。
このような評価時間を短縮、すなわちインプリント装置のような高レベルの清浄度が求められる処理装置において、装置内の清浄度が装置稼働可能な状態であるかを短時間で判断するためには、基板101へのパーティクルの付着頻度を上げることが必要である。
パーティクルの付着頻度は、以下のような式(1)で表すことができると考えられる。
[パーティクル付着頻度]=[発塵頻度]×[輸送効率]×[付着確率]…式(1)
ここで[発塵頻度]は、装置内の発塵部からの発塵頻度を意味している。装置の発塵箇所が分からない状態では、この項目をコントロールすることは難しい。また[輸送効率]は発塵箇所から基板までパーティクルが輸送(移動)される際の効率を示している。通常のこの項目は装置の設計、構造で決まってしまうため、一旦装置が組み立てられた後は、これをコントロールすることは難しい。
従って、[パーティクル付着頻度]を上げるためには、発塵箇所から発生したパーティクルが、基板近傍まで移動した後に、基板に付着する[付着確率]を上げることが必要であるといえる。
この[付着確率]を上げる方法として、基板101とこれと対向する部材との間に形成される空間に進入するパーティクルに熱泳動力を作用させる方法を用いることができる。
つまり、通常のインプリント動作を極力模擬した装置内動作(ダミー動作)を行う際に、基板(ベアウエハ)と対向する部材との間に温度勾配を発生させて装置内に存在するパーティクルに熱泳動力を作用させることができる。これによりパーティクルが基板側に移動しやすい状態を作り、基板へのパーティクルの付着確率を上げることができる。すなわち温度勾配が発生している状況でダミー動作を行った後の基板のパーティクル付着数をパーティクル検査装置等で計測することで、装置内のパーティクルの状態を短時間で評価(加速評価)することができる。
このような短時間の評価を実現するためには、予め温度勾配を設けることにより、どの程度付着確率が上がるのかを把握しておくことが好ましい。このような付着確率の変化を確認する方法について説明する。
付着確率の変化を把握するためには、次の3つのステップを実施することになる。第一のステップとして、温度勾配を発生させずに基板(ベアウエハ)にパーティクルを付着させるダミー動作を行う。具体的には、ダミー動作では、通常の基板へのレジスト供給(ディスペンス動作と称する)、及び押印・離型してパターン形成する動作(インプリント動作と称する)は行わない。しかしこの動作以外は、デバイス製造時の装置動作と同じ動作(ダミーディスペンス動作、ダミーインプリント動作と称する)を行う。このようなダミー動作は1回のダミーインプリント処理動作でもよいし、複数回のダミーインプリント動作を繰り返してもよい。このようなダミー動作後のウエハに付着しているパーティクル付着数を検査し、一動作当たりのパーティクル付着個数:N0[個/動作]を算出する。このような第一のステップで行われるダミー動作を、標準評価動作と称する。
第二のステップとして、温度勾配を発生させた状態で基板(ベアウエハ)にパーティクルを付着させるダミー動作を行う。温度勾配の発生のさせ方についての詳細は後述するが温度勾配の方向としては、相対的に対向する部材側よりもウエハ側が低くなるように設定する。この状態を維持して、上記と同じダミーディスペンス動作、ダミーインプリント動作といったダミー動作を行う。ダミー動作の内容としては、温度勾配を発生させている以外は、第一ステップのダミー動作と同じとすることが好ましい。このようなダミー動作後のウエハに付着しているパーティクル付着数を検査し、温度勾配を発生させた状態での、一動作当たりのパーティクル付着個数:N1[個/動作]を算出する。このような第二ステップで行われるダミー動作を、加速評価動作と称する。
第三のステップは、このように得られた検査結果N0,N1を用いて、加速係数K=N1/N0を算出する。この値はウエハへのパーティクルの付着がどれだけ加速されているかを示す指標として用いることができる。すなわち加速評価動作は、装置のパーティクルの状態をモニタする時間を通常評価動作に比べて1/K1に短縮することになるといえる。
このような加速係数Kを一度取得しておけば、これ以降の加速評価動作を行った際に、装置内のパーティクル状態を標準評価動作の状態に換算して、装置内のパーティクル状態を推定することができる。具体的には装置稼働判断の清浄度の判断を、標準評価動作によるパーティクルの数で定めているような場合に加速係数Kを用いることで加速評価動作であっても判断することが可能となる。
なお、加速係数Kは装置の製造ばらつきに依存し固有の値であることも考えられるため上記のデータは装置毎に取得することが好ましい。しかし装置間の製造ばらつきが少ないような場合は、装置共通データとして加速係数Kを設定してもよい。
図2のフローチャートを用いて、清浄度の判断を、標準評価動作によるパーティクルの数M0(基準値)と比較して行うよう定めているような場合に、加速係数Kを用いて加速評価動作で装置内状態を評価する手法を説明する。このような装置内評価は、インプリント装置の組立、改造、メンテナンスの作業後に実施することでインプリント装置の稼働を許可するかどうかを判断することができる。フローチャートの処理は、装置オペレータが全て手動で実施することもできるが、インプリント装置1の制御部50が処理を行うように制御することもできる。インプリント装置1で行う場合には、事前にインプリント装置1内部のメモリなどに加速係数Kを記憶させておくことが必要となる。
S201では、インプリント装置1の制御部50は、基板搬送容器106から基板搬送ロボットで基板チャック118へとベアウエハを搬入し、加速評価動作として温度勾配を発生させた状態でダミー動作を行い、基板を基板搬送容器106へと搬出する。加速評価動作の詳細については、図5で説明する。
S202では、インプリント装置1の制御部50は、ダミー動作が行われた基板を外部のパーティクル検査装置等で検査することで取得されたパーティクル数(M1[個/動作])を取得する。具体的には不図示の入力手段からオペレータが入力することでパーティクル数M1を取得することができる。
S203では、インプリント装置1の制御部は、取得されたパーティクル数M1を加速係数Kで除算することにより、標準評価動作を行った際の値に換算し、清浄度を評価する基準値M0と比較する(M1/K≦M0)。
S203で、M1/Kが標準動作によるパーティクルの数M0以下であることが確認できれば、S204に進み、インプリント装置1の制御部は、装置内の清浄度が装置稼働可能な状態(使用可能な状態)であると判断できる。そして、表示部などに使用可能な装置状態であることを表示する等でオペレータに対して装置の使用許可を通知することができる。
一方、S203でM1/Kが標準動作によるパーティクルの数M0以下であることが確認できないような場合には、オペレータにクリーニング動作が必要なことを通知することができる。そしてクリーニング動作後に、再度加速評価動作を行い、装置状態を評価するという工程を繰り返すことになる。
このように加速係数Kを取得しておくことで、清浄度の判断を、標準評価動作によるパーティクルの数として行われるように決められている場合でも短時間で装置内のパーティクル状態を評価することが可能となる。また副次的な効果として、加速評価動作を十分に行う時間が確保できるのであれば、温度勾配により装置内パーティクルがウエハに付着する確率が加速している状態といえるため、装置内のクリーニングも実施していることになる。
なお、装置の清浄度の判断は、標準評価動作によるパーティクル数を基準値として用いて判断せずに、加速評価動作によるパーティクル数Mxを基準値として用いて判断してもよい。その場合には、S202で取得したパーティクル数をMxと比較することで装置内の清浄度が装置稼働可能な状態であるかを判断することができる。
次に図3を用いて温度勾配を生じさせることでパーティクル付着頻度を上げる方法を説明する。図3(a)は温度勾配を生じさせた際の装置内の切断面である。図3(b)は温度と距離との関係を示す図である。
図3(a)では、加工前のウエハであるベアウエハを評価基板として用いて加速評価動作用を行う例を示している。評価基板102の表面は、一般的に半導体製造で広く使用されているパターンなしウエハ検査装置(例えば、パーティクル検査装置)で検査可能な清浄度と平滑度を有している。この評価基板102は、基板チャック118に吸着・保持され、平面に矯正される。基板チャック118は真空チャックあるいは静電チャックとしており、ウエハとの接触面積を減らすためにウエハとの接触部はピン121で構成されている。基板ステージ119のチャック支持板119aは基板チャック118を支持し所定温度に温調できるように構成されており、温調機構として機能する。チャック支持板119aに、例えば、内部に温調用流路119bを設け、外部の温調器で温調された温調液体が循環することで所定温度に温調することができる。評価基板102はモールド駆動機構116やモールド100のような部材と対向する。
通常の装置稼働状態で装置内部が精密温調される温度がT0[℃]とすると、モールド駆動機構116などの部材の表面温度もT0[℃]となる。一方、評価基板102の表面温度をT1[℃]を、温調機構によりT0よりも低い温度となるように制御する。なお、評価基板102の表面温度T1[℃]は、基板表面の結露を防ぐため装置内のエアの露点よりも高い必要がある。このように基板を冷却することにより、評価基板102と部材の間には、温度勾配が形成される。
T0とT1の差分温度をΔT、評価基板102と部材との間の距離をΔDとすると、温度勾配はΔT/ΔDとなる。このような温度勾配が発生する空間にパーティクルが浮遊していると、パーティクルには部材から評価基板102に向かう方向に熱泳動力が作用する。
一般的に熱泳動力は、高温側の壁付近の気体分子の熱運動と、低温側の壁付近の気体分子の熱運動と差によりパーティクルに発生する。パーティクルの移動速度Uは、概ね温度勾配ΔT/ΔDに概ね比例することが知られており、以下のような式(2)で表すことができる。
U=-Kν/TΔT/ΔD…式(2)
ここで、Kは熱泳動係数でありパーティクルのサイズ、材質に依存する比例係数、νは空気の動粘度、Tはパーティクル近傍の雰囲気媒体の平均温度を示す。
この式から、装置内パーティクル移動速度Uを上げるためには、ΔTを大きくすることで浮遊するパーティクルが評価基板102に付着しやすい状態を作れるといえる。
次に図4及び図5を用いて評価動作の流れについて説明する。評価動作は、インプリント装置で行われるインプリント処理の動作を極力模擬した装置内動作(ダミー動作)とすることにより、より信頼性の高い評価を行うことができる。そのため、図4のフローチャートで示すインプリント処理における動作を模擬して図5のフローチャートで示す加速評価動作を行う。
図4及び図5の動作は、インプリント装置1の制御部50が各部を統括的に制御することで実現することができる。
S401では、制御部50は、インプリント処理を行う基板101を基板搬送ロボット112a、112bによって、基板搬送容器106から装置内に搬入する。基板101は、搬送ロボット112bにより、基板ステージ119の基板チャック118に保持される。
基板チャック118は、装置内基準温度T0と同じ温度となっているため、S402では制御部50は、この状態を一定時間保持することで、基板101を装置内基準温度T0に温度調整する。
S403では、制御部50は、ステージ119のキャリブレーションやモールド駆動機構116のキャリブレーションを行う。インプリント前の各種キャリブレーションが完了すると、S404で、制御部50は、基板ステージ119を液体吐出装置122の下に移動させ、液体吐出装置122によって基板101上にインプリント材を塗布する(塗布処理)。その後、基板ステージ119を再びモールド駆動機構116の下の所定の位置に移動させる。
S405では、制御部50は、モールド駆動機構116を制御し、モールド100を基板101にむけて降下させ(鉛直下方、-Z方向)、基板上のインプリント材に押し付ける(押印処理)。その後、光照射部115によりモールド100を介してインプリント材に紫外線などの硬化光を照射することで、インプリント材を硬化させる(硬化処理)。その後、モールド駆動機構116によりモールド100を移動させて硬化したレジストからモールドを引き離す(離型処理)。本明細書においては、塗布処理、押印処理、露光処理、離型処理の一連の処理をインプリント処理と称する。
S406では、制御部50は、基板上の処理すべき所定ショット数のインプリント処理が完了しているかどうか判断し、完了していない場合は、S404に戻り、インプリント処理を繰り返す。基板上の処理すべきショット領域全てのインプリント処理が完了している場合には、S406に進み、制御部50は、基板101をステージ119から基板搬送ロボット112a、112bにより、基板搬送容器106へと搬出する。
S408では、制御部50は、処理すべき基板の枚数処理が完了しているかを判断し、完了していない場合には、S401に戻り処理を継続し、完了している場合にはインプリント動作を終了する。以上の動作がデバイス製造時の通常のインプリント動作である。
次にこのような通常のインプリント動作を模擬した加速評価動作の流れを、図5を用いて説明する。加速評価動作において、S501と、S503、S506、S507、S508の動作は、基板101が評価基板102に変更される以外は図4の通常のインプリント動作と同じであるため説明を省略する。なお加速評価動作もモールド100をモールドチャック117に保持した状態で行うことが好ましいが、実際にはインプリント処理では使用しないテストモールド103としておいてもよい。
S502において、制御部50は、基板ステージ119のチャック支持板119aは基板チャック118を温度制御することで、基板ステージ119上の評価基板102を装置内基準温度T0よりも低い温度T1となるように温度制御する。以降の処理は基板101をT1に制御している状態で行われる。なお、加速係数Kを求める際に行った標準評価動作は、加速評価動作のS502の温度制御を、図4のS402のように基板101を装置内基準温度T0に温度調整した状態で行えばよい。
S504では、制御部50は、基板ステージ119を液体吐出装置122の下に移動させ、液体吐出装置122と基板101とを相対移動させるがインプリント材は吐出させないダミー吐出動作を行う。その後、基板ステージ119を再びモールド駆動機構116の下の所定の位置に移動させる。
S505では、制御部50は、モールド駆動機構116を制御し、モールド100を基板101にむけて降下させ(鉛直下方、-Z方向)、モールド100が基板101に接触する前に停止させる(ダミー押印処理)。その後、光照射部115による照射に相当する時間モールド100を保持し(ダミー硬化処理)。その後、モールド駆動機構116によりモールド100を基板101から離れる方向に上昇させる(ダミー離型処理)。
なお、図5の例ではこのような処理を加速評価動作のダミーインプリント処理とするが、光照射部115から光を照射させてもよいし、モールド100を降下させないなど、多少異なっていてもよい。また、S506及びS508の繰り返し処理は、実際のインプリント動作に合致させる必要はない。
以上のようなダミーインプリント処理を行ったのち、基板搬送容器106へ搬出された評価基板102を、パーティクル検査装置(不図示)で検査させることで、加速評価動作により評価基板102に付着するパーティクルの数を取得することができる。
そして取得したパーティクルの数を図2に示すような評価方法を用いて装置の稼働を判断するパーティクル評価を行うことができる。
以上のように加速評価動作により取得されたパーティクルの数を用いて装置内の清浄度を判断することによって短時間の評価動作であっても信頼性の高い評価を行うことができる。すなわち装置のダウンタイムを長時間取らなくとも装置内の清浄度の評価を適切に評価することができる。
また、副次的な効果として、温度勾配により装置内パーティクルがウエハに付着する確率が加速している状態といえるため、装置内のクリーニングも実施していることになる。前述のモールド駆動機構に帯電プレートは、温度勾配の熱泳動力と同様にパーティクルを引き付ける力があるが、帯電プレートによる静電気力は、パーティクルの極性に依存する。帯電プレートと温度勾配の熱泳動力を両方用いることで帯電していないパーティクルもクリーニングすることができる。
<第2実施形態>
第1実施形態では基板を冷却することで温度勾配を発生させて熱泳動力を生じさせていた。本実施形態では評価基板102は、装置内基準温度T0となるように温度調整されている状態で、評価基板102に対向する部材の表面温度を温度調整することで、温度勾配を発生させて熱泳動力を生じさせる方法を説明する。本実施形態では、第1実施形態と異なる部分を中心に説明し、同様の部分については説明を省略する。本実施形態では、評価基板102に対向する部材としては、モールド(テストモールド)の例で説明する。
次に図6を用いて温度勾配を生じさせることでパーティクル付着頻度を上げる方法を説明する。図6(a)は温度勾配を生じさせた際の装置内の切断面である。図6(b)は温度と距離との関係を示す図である。
図6(a)では、加工前のウエハであるベアウエハを評価基板として用いて加速評価動作用を行う例を示している。評価基板102の表面は、一般的に半導体製造で広く使用されているパターンなしウエハ検査装置(例えば、パーティクル検査装置)で検査可能な清浄度と平滑度を有している。この評価基板102は、基板チャック118に吸着・保持され、平面に矯正される。基板チャック118は真空チャックあるいは静電チャックとしており、ウエハとの接触面積を減らすためにウエハとの接触部はピン121で構成されている。基板ステージ119のチャック支持板119aは基板チャック118を支持し所定温度に温調できるように構成されており、温調機構として機能する。チャック支持板119aに、例えば、内部に温調用流路119bを設け、外部の温調器で温調された温調液体が循環することで所定温度に温調することができる。評価基板102はモールド駆動機構116のような部材と対向する。本実施形態では評価基板102は、温調機構により通常の装置稼働状態で装置内部が精密温調される温度であるT0[℃]となっている。
一方評価基板102に対向する部材であるテストモールド103の表面温度は、モールドの表面温度がT0よりも高い温度のT2となるように加熱されている。モールド表面温度を加熱する手法としては、テストモールドの表面に金属膜を設ける方法を用いることができる。例えばCr膜103aを透過性部材であるテストモールド103の表面に設けておくことで光130を照射することにより、モールドの表面温度をT2とすることができる。
制御部50は、例えばテストモールド103の表面温度がT2となるように光照射部115の光の状態(光強度、照明領域、ON/OFFなど)を制御することで、テストモールド103の温調を行うことができる。Cr膜の分光反射率は、波長360nm程度の紫外光の場合、52%程度であるため、48%はCr膜に吸収されるためCr膜は温度上昇する。そのため、光照射部115の紫外光の強度、ON/OFF等を制御することで、テストモールド103の表面温度をT2に制御することが可能になる。なお、テストモールド103の温調方法は上述の方法に限られず、モールドチャックを温調することでも実現可能である。
このような制御により、テストモールド103と評価基板102との間には、温度勾配が形成される。T2とT0の差分温度をΔT、評価基板102とテストモールド103との間の距離をΔDとすると、温度勾配はΔT/ΔDとなる。このような温度勾配が発生する空間にパーティクルが浮遊していると、パーティクルにはテストモールド103から評価基板102に向かう方向に熱泳動力が作用する。すなわち、装置内の空間に浮遊するパーティクルは評価基板102に付着しやすい状態となる。すなわちこのような温度勾配が発生している状態で加速評価動作を行うことで装置内の状態を評価することができる。
なお、パーティクルの付着頻度をさらに高くするために、評価基板102の温度をT0よりも低いT1として、T2とT1との温度勾配が生じている状態で加速評価動作をすることで、さらに加速係数を大きくすることもできる。
本実施形態における加速評価動作の流れは、図5のS502の基板の温度をT0に調整する点と、少なくともS504及びS505のダミーインプリント動作を行う際にテストモールド103の表面温度をT2となるように制御してある点が異なる。図7は本実施形態の加速評価動作の一例を示すフローチャートである。図5の例では省略したが、S701で制御部50は、加速試験に用いるテストモールド103を、モールド搬送ロボット109aによって、モールド搬送容器105から装置内に搬入する。テストモールド103は、搬送ロボット109bにより、モールドチャック117に保持される。S702で制御部は、テストモールド103に光を照射するように光照射部115を制御し、テストモールド103の表面温度をT2となるように制御する。それ以降の処理はS502において基板の温度をT0に調整する以外は図5の処理と同様であるため、説明を省略する。
以上のようなダミーインプリント処理を行ったのち、基板搬送容器106へ搬出された評価基板102をパーティクル検査装置(不図示)で検査させることで、加速評価動作により評価基板102に付着するパーティクルの数を取得することができる。
そして取得したパーティクルの数を図2に示すような評価方法を用いて評価することで、装置の稼働の可否を判断するパーティクル評価を行うことができる。
以上のように加速評価動作により取得されたパーティクルの数を用いて装置内の清浄度を判断することにより、短時間の評価動作であっても信頼性の高い評価を行うことができる。すなわち装置のダウンタイムを長時間取らなくとも装置内の清浄度の評価を適切に評価することができる。
また、副次的な効果として、温度勾配により装置内パーティクルがウエハに付着する確率が加速している状態といえるため、装置内のクリーニングも実施していることになる。前述のモールド駆動機構に帯電プレートは、温度勾配の熱泳動力と同様にパーティクルを引き付ける力があるが、帯電プレートによる静電気力は、パーティクルの極性に依存する。帯電プレートと温度勾配の熱泳動力を両方用いることで帯電していないパーティクルもクリーニングすることができる。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形および変更が可能である。リソグラフィ装置の一例として、基板の上のインプリント材を型により成形(成型)して、基板にパターン形成を行うインプリント装置について説明したが、インプリント装置に限定されるものではない。
例えば、凹凸表面を有する基板上にインプリント材を塗布し、平坦な表面を有するモールドを押印し、光照射し、モールドを引き離す工程を有する平坦化装置に適用することも可能である。
リソグラフィ装置の一例として、光学系を介して、マスクの投影像を基板上に露光することでパターン形成を行う投影露光装置であっても良い。また、感光媒体を基板の表面上に塗布する塗布装置、パターンが転写された基板を現像する現像装置など、デバイス等の物品の製造において、前述のようなリソグラフィ装置が実施する工程以外の工程を実施する製造装置も含み得る。
〈物品の製造について〉
以上説明したインプリント装置1を用いて形成される硬化物のパターンは、各種物品の少なくとも一部に恒久的に、或いは各種物品を製造する際に一時的に、用いられる。
物品とは、電気回路素子、光学素子、MEMS、記録素子、センサ、或いは、型等である。電気回路素子としては、DRAM、SRAM、フラッシュメモリ、MRAMのような、揮発性或いは不揮発性の半導体メモリや、LSI、CCD、イメージセンサ、FPGAのような半導体素子等が挙げられる。型としては、インプリント用のモールド等が挙げられる。
硬化物のパターンは、上記物品の少なくとも一部の構成部材として、そのまま用いられるか、或いは、レジストマスクとして一時的に用いられる。基板の加工工程においてエッチング又はイオン注入等が行われた後、レジストマスクは除去される。
次に、図8を用いて、インプリント装置によって基板にパターンを形成し、該パターンが形成された基板を処理し、該処理が行われた基板から物品を製造する物品製造方法について説明する。まず図8(a)に示すように、絶縁体等の被加工材2zが表面に形成されたシリコンウエハ等の基板1zを用意し、続いて、インクジェット法等により、被加工材2zの表面にインプリント材3zを付与する。ここでは、複数の液滴状になったインプリント材3zが基板上に付与された様子を示している。
図8(b)に示すように、インプリント用の型4zを、その凹凸パターンが形成された側を基板上のインプリント材3zに向け、対向させる。図8(c)に示すように、インプリント材3zが付与された基板1zと型4zとを接触させ、圧力を加える。インプリント材3zは型4zと被加工材2zとの隙間に充填される。この状態で硬化用のエネルギーとして光を型4zを介して照射すると、インプリント材3zは硬化する。
図8(d)に示すように、インプリント材3zを硬化させた後、型4zと基板1zを引き離すと、基板1z上にインプリント材3zの硬化物のパターンが形成される。この硬化物のパターンは、型の凹部が硬化物の凸部に、型の凸部が硬化物の凹部に対応した形状になっており、即ち、インプリント材3zに型4zの凹凸パターンが転写されたことになる。
図8(e)に示すように、硬化物のパターンを耐エッチングマスクとしてエッチングを行うと、被加工材2zの表面のうち、硬化物が無いか或いは薄く残存した部分が除去され、溝5zとなる。図8(f)に示すように、硬化物のパターンを除去すると、被加工材2zの表面に溝5zが形成された物品を得ることができる。ここでは硬化物のパターンを除去したが、加工後も除去せずに、例えば、半導体素子等に含まれる層間絶縁用の膜、つまり、物品の構成部材として利用してもよい。
そして物品の製造方法には、基板に供給(塗布)されたインプリント材に上記のインプリント装置(インプリント方法)を用いてパターンを形成する工程と、かかる工程でパターンを形成された基板を加工する工程も含まれる。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利であるといえる。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。
<実施形態のまとめ>
本明細書の開示は、以下の異物除去方法、形成方法、物品の製造方法、異物除去装置、システム、およびテンプレートを含む。
(項目1)
基板を処理する処理部を有する基板処理装置の評価方法であって、
前記基板処理装置に評価基板に搬入する工程と、
前記評価基板と当該評価基板に対向する部材との間の空間に、前記評価基板の表面温度が前記対向する部材の表面温度よりも相対的に低くなるような温度勾配を発生させる工程と、
前記温度勾配が発生している状態で、前記評価基板を前記基板処理装置の内部で移動させる工程と、
前記移動させる工程により前記評価基板に付着したパーティクルの数に基づいて、前記基板処理装置の状態を評価する評価工程と、
を有することを特徴とする評価方法。
(項目2)
前記移動させる工程は、前記基板処理装置で処理される通常の基板が前記基板処理装置の内部で移動する動作を模擬したダミー動作であることを特徴とする項目1に記載の評価方法。
(項目3)
前記温度勾配を発生させる工程は、前記評価基板を保持する保持部を冷却する冷却工程、および、前記評価基板と対向する部材を加熱する加熱工程の少なくとも一方であることを特徴とする項目1または2に記載の評価方法。
(項目4)
前記評価基板と対向する部材は、金属膜が形成された透過性部材であり、
前記加熱工程は、前記基板処理装置に設けられた光照射部によって、前記部材に光を照射することで、前記部材を加熱することを特徴とする項目3に記載の評価方法。
(項目5)
前記基板処理装置は、基板上のインプリント材にモールドを接触させることで基板上にパターンを形成するインプリント装置であることを特徴とする項目1乃至4のいずれか1項に記載の評価方法。
(項目6)
前記パーティクルの数を検査する検査工程をさらに有し、
前記評価工程は、前記検査工程で検査されたパーティクルの数に基づいて評価することを特徴とする項目1乃至5のいずれか1項に記載の評価方法。
(項目7)
前記評価工程は、前記基板処理装置を実際の基板処理に使用するか否かの評価を行うことを特徴とする項目1乃至6のいずれか1項に記載の評価方法。
(項目8)
基板を処理する処理部を有する基板処理装置であって
基板を保持する基板保持部と、
前記基板保持部と対向する位置で部材を保持する部材保持部と、
前記基板保持部で保持される評価基板と、前記部材保持部で保持される部材との間の空間に、前記評価基板の表面温度が前記対向する部材の表面温度よりも相対的に低くなるような温度勾配を発生させる温度調整手段と、
前記温度勾配が発生している状態で、前記評価基板を前記基板処理装置の内部で移動するように制御する制御部と、を有し、
前記制御部は、前記基板処理装置の内部を移動した前記評価基板に付着したパーティクルの数に基づいて、前記基板処理装置の状態を評価することを特徴とする基板処理装置。
(項目9)
項目1乃至項目7のいずれか1項に記載の評価方法で評価された基板処理装置を用いて、基板を処理する工程と、
前記工程で処理された基板を加工する工程と、を含み、
加工された前記基板から物品を製造することを特徴とする物品の製造方法。

Claims (9)

  1. 基板を処理する処理部を有する基板処理装置の評価方法であって、
    前記基板処理装置に評価基板に搬入する工程と、
    前記評価基板と当該評価基板に対向する部材との間の空間に、前記評価基板の表面温度が前記対向する部材の表面温度よりも相対的に低くなるような温度勾配を発生させる工程と、
    前記温度勾配が発生している状態で、前記評価基板を前記基板処理装置の内部で移動させる工程と、
    前記移動させる工程により前記評価基板に付着したパーティクルの数に基づいて、前記基板処理装置の状態を評価する評価工程と、
    を有することを特徴とする評価方法。
  2. 前記移動させる工程は、前記基板処理装置で処理される通常の基板が前記基板処理装置の内部で移動する動作を模擬したダミー動作であることを特徴とする請求項1に記載の評価方法。
  3. 前記温度勾配を発生させる工程は、前記評価基板を保持する保持部を冷却する冷却工程、および、前記評価基板と対向する部材を加熱する加熱工程の少なくとも一方であることを特徴とする請求項1に記載の評価方法。
  4. 前記評価基板と対向する部材は、金属膜が形成された透過性部材であり、
    前記加熱工程は、前記基板処理装置に設けられた光照射部によって、前記部材に光を照射することで、前記部材を加熱することを特徴とする請求項3に記載の評価方法。
  5. 前記基板処理装置は、基板上のインプリント材にモールドを接触させることで基板上にパターンを形成するインプリント装置であることを特徴とする請求項1に記載の評価方法。
  6. 前記パーティクルの数を検査する検査工程をさらに有し、
    前記評価工程は、前記検査工程で検査されたパーティクルの数に基づいて評価することを特徴とする請求項1に記載の評価方法。
  7. 前記評価工程は、前記基板処理装置を実際の基板処理に使用するか否かの評価を行うことを特徴とする請求項1に記載の評価方法。
  8. 基板を処理する処理部を有する基板処理装置であって
    基板を保持する基板保持部と、
    前記基板保持部と対向する位置で部材を保持する部材保持部と、
    前記基板保持部で保持される評価基板と、前記部材保持部で保持される部材との間の空間に、前記評価基板の表面温度が前記対向する部材の表面温度よりも相対的に低くなるような温度勾配を発生させる温度調整手段と、
    前記温度勾配が発生している状態で、前記評価基板を前記基板処理装置の内部で移動するように制御する制御部と、を有し、
    前記制御部は、前記基板処理装置の内部を移動した前記評価基板に付着したパーティクルの数に基づいて、前記基板処理装置の状態を評価することを特徴とする基板処理装置。
  9. 請求項1乃至請求項7のいずれか1項に記載の評価方法で評価された基板処理装置を用いて、基板を処理する工程と、
    前記工程で処理された基板を加工する工程と、を含み、
    加工された前記基板から物品を製造することを特徴とする物品の製造方法。
JP2022157703A 2022-09-30 2022-09-30 基板処理装置の評価方法 Pending JP2024051498A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022157703A JP2024051498A (ja) 2022-09-30 2022-09-30 基板処理装置の評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022157703A JP2024051498A (ja) 2022-09-30 2022-09-30 基板処理装置の評価方法

Publications (1)

Publication Number Publication Date
JP2024051498A true JP2024051498A (ja) 2024-04-11

Family

ID=90622591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022157703A Pending JP2024051498A (ja) 2022-09-30 2022-09-30 基板処理装置の評価方法

Country Status (1)

Country Link
JP (1) JP2024051498A (ja)

Similar Documents

Publication Publication Date Title
US11194249B2 (en) Molding apparatus for molding composition on substrate with mold, and article manufacturing method
JP2020145383A (ja) インプリント装置の制御方法、インプリント装置、および物品製造方法
JP7305430B2 (ja) 情報処理装置、プログラム、リソグラフィ装置、リソグラフィシステム、および物品の製造方法
JP7171468B2 (ja) 情報処理装置、プログラム、リソグラフィ装置、物品の製造方法、物品の製造システム、及び出力方法
US10444646B2 (en) Lithography apparatus and method of manufacturing article
JP7171394B2 (ja) 成形装置、成形方法、および物品の製造方法
JP2024051498A (ja) 基板処理装置の評価方法
JP2019125745A (ja) モールドを用いて基板上の組成物を成形する成形装置及び物品の製造方法
KR20190115424A (ko) 임프린트 장치를 관리하는 방법, 임프린트 장치, 평탄화층 형성 장치를 관리하는 방법, 및 물품 제조 방법
KR20190037114A (ko) 임프린트 장치, 임프린트 방법, 임프린트재의 배치 패턴의 결정 방법 및 물품의 제조 방법
KR20180107725A (ko) 리소그래피 장치 및 물품의 제조 방법
JP2017199731A (ja) インプリント装置および物品製造方法
JP2021034562A (ja) インプリント装置、インプリント方法、および物品製造方法
US20220364972A1 (en) Evaluation method, substrate processing apparatus, manufacturing method of substrate processing apparatus and article manufacturing method
JP2019096697A (ja) インプリント装置および物品製造方法
KR102461027B1 (ko) 몰드를 사용해서 기판 상의 조성물을 성형하는 성형 장치, 및 물품 제조 방법
JP2019067916A (ja) リソグラフィ装置、および物品の製造方法
US20220063175A1 (en) Substrate processing method, substrate holding apparatus, molding apparatus, and article manufacturing method
US20230347390A1 (en) Foreign particle removing method, formation method, article manufacturing method, foreign particle removing apparatus, and system
JP2023051335A (ja) 基板処理装置及び物品の製造方法
JP7091138B2 (ja) インプリント装置、インプリント方法、および物品製造方法
JP6921690B2 (ja) 集塵装置、基板処理システム、および物品の製造方法
JP7089420B2 (ja) 基板処理装置、および物品製造方法
JP2018006560A (ja) リソグラフィ装置及び物品の製造方法
JP6808386B2 (ja) インプリント装置および物品製造方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231213