JP2024050865A - 珪素含有酸化物被覆窒化アルミニウム粒子の製造方法および珪素含有酸化物被覆窒化アルミニウム粒子 - Google Patents

珪素含有酸化物被覆窒化アルミニウム粒子の製造方法および珪素含有酸化物被覆窒化アルミニウム粒子 Download PDF

Info

Publication number
JP2024050865A
JP2024050865A JP2024017860A JP2024017860A JP2024050865A JP 2024050865 A JP2024050865 A JP 2024050865A JP 2024017860 A JP2024017860 A JP 2024017860A JP 2024017860 A JP2024017860 A JP 2024017860A JP 2024050865 A JP2024050865 A JP 2024050865A
Authority
JP
Japan
Prior art keywords
aluminum nitride
nitride particles
containing oxide
silicon
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024017860A
Other languages
English (en)
Inventor
雄樹 大塚
Yuki Otsuka
直樹 御法川
Naoki Minorikawa
郁恵 小林
Ikue Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Resonac Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Holdings Corp filed Critical Resonac Holdings Corp
Priority to JP2024017860A priority Critical patent/JP2024050865A/ja
Publication of JP2024050865A publication Critical patent/JP2024050865A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0728After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)

Abstract

【課題】窒化アルミニウム粒子の高い熱伝導性を維持し、耐湿性が向上した珪素含有酸化物被覆窒化アルミニウム粒子を製造することができる珪素含有酸化物被覆窒化アルミニウム粒子の製造方法を提供する。【解決手段】窒化アルミニウム粒子と、前記窒化アルミニウム粒子の表面を覆う珪素含有酸化物被膜とを備える珪素含有酸化物被覆窒化アルミニウム粒子の製造方法であって、特定構造を含む有機シリコーン化合物を溶媒に溶解した有機シリコーン化合物溶液と、前記窒化アルミニウム粒子とを混合した後、加熱して前記溶媒を除去することにより、前記有機シリコーン化合物により覆われた前記窒化アルミニウム粒子を得る第1工程と、前記有機シリコーン化合物により覆われた前記窒化アルミニウム粒子を300℃以上1000℃以下の温度で加熱する第2工程とを備える。【選択図】図1

Description

本発明は、珪素含有酸化物被覆窒化アルミニウム粒子の製造方法および珪素含有酸化物被覆窒化アルミニウム粒子を含有する放熱性樹脂組成物の製造方法に関する。
窒化アルミニウムは、熱伝導性が高く、優れた電気絶縁性を備えている。そのため、窒化アルミニウムは、放熱シートおよび電子部品の封止材などの製品に使用される樹脂組成物の充填剤として有望である。しかしながら、窒化アルミニウムは、水分との反応で加水分解を引き起こし、熱伝導性の低い水酸化アルミニウムに変性する。また、窒化アルミニウムは、加水分解の際に腐食性を持つアンモニアも発生する。
窒化アルミニウムの加水分解は、大気中の水分によっても進行する。そのため、窒化アルミニウムを添加した製品は、高温、高湿の条件下において、耐湿性、熱伝導性の低下を引き起こすだけでなく、窒化アルミニウムの加水分解によって発生したアンモニアによる腐食を招くなど、性能の劣化が懸念される。
窒化アルミニウムの耐湿性の向上を図る技術は、窒化アルミニウム粉末の表面にSi-Al-O-Nからなる層を形成する方法(例えば、特許文献1参照)、窒化アルミニウム粉末の表面にシリケート処理剤とカップリング剤とで被覆層を形成する方法(例えば、特許文献2参照)、シリケート処理剤で処理し窒化アルミニウム粉末の表面に有機基を残す方法(例えば、特許文献3参照)、窒化アルミニウム粒子の表面を特定の酸性リン酸エステルを用いて表面修飾する方法(例えば、特許文献4参照)などが、それぞれ提案されている。
特許文献1の防湿性窒化アルミニウム粉末は、窒化アルミニウム粉末表面にケイ酸エステル層を塗布した後、350~1000℃の高温で焼成することにより、Si-Al-O-Nからなる層を表面に形成している。特許文献2の窒化アルミニウム系粉末は、シリケート処理剤とカップリング剤で表面処理後に高温加熱処理を行うことで、表面に被覆層を形成している。特許文献3の窒化アルミニウム粉末は、シリケート処理剤で表面処理後に90℃を超えない温度で加熱処理することにより、有機基を残すことで樹脂との馴染性を向上させている。特許文献4の表面修飾粒子は、特定の酸性リン酸エステルを用いて表面修飾した窒化アルミニウム粒子により耐湿性を向上させている。
特許第3446053号公報 特許第4088768号公報 特許第4804023号公報 特開2015-71730号公報
しかしながら、従来技術には、以下のような課題がある。
上述した窒化アルミニウム粉末は、耐湿性の向上を図るため、Si-Al-O-Nの反応層、シリケート処理剤とカップリング剤とで形成する被覆層、表面修飾層などを有している。その結果、耐湿性の改善は、認められるが、まだ十分なレベルではなく、逆に耐湿の向上を図る手段として用いた被膜が、本来の窒化アルミニウムの熱伝導性を低下させる場合が多い。
本発明は、上述した課題を解決するためになされたものであり、窒化アルミニウム粒子の高い熱伝導性を維持し、耐湿性が向上した珪素含有酸化物被覆窒化アルミニウム粒子を製造することができる珪素含有酸化物被覆窒化アルミニウム粒子の製造方法、および、珪素含有酸化物被覆窒化アルミニウム粒子を含有する放熱性樹脂組成物の製造方法を提供することを目的とする。
本発明者らが鋭意検討した結果、特定の有機シリコーン化合物を溶媒に溶解した有機シリコーン化合物溶液を用いて特定の方法により窒化アルミニウム粒子を被覆することで、上記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明は、以下の構成を有するものである。
[1] 窒化アルミニウム粒子と、前記窒化アルミニウム粒子の表面を覆う珪素含有酸化物被膜とを備える珪素含有酸化物被覆窒化アルミニウム粒子の製造方法であって、
下記式(1)で示される構造を含む有機シリコーン化合物を溶媒に溶解した有機シリコーン化合物溶液と、前記窒化アルミニウム粒子とを混合した後、加熱して前記溶媒を除去することにより、前記有機シリコーン化合物により覆われた前記窒化アルミニウム粒子を得る第1工程と、
前記有機シリコーン化合物により覆われた前記窒化アルミニウム粒子を300℃以上1000℃以下の温度で加熱する第2工程と、を備える珪素含有酸化物被覆窒化アルミニウム粒子の製造方法。
Figure 2024050865000002
(式(1)中、Rは炭素数が4以下のアルキル基である。)
[2] 前記式(1)で示される構造を含む有機シリコーン化合物が、下記式(2)で示される化合物および下記式(3)で示される化合物の少なくとも一方を含む[1]に記載の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法。
Figure 2024050865000003
(式(2)中、R1およびR2は、それぞれ独立に、水素原子またはメチル基であり、R1およびR2の少なくとも一方は水素原子であり、mは0~10の整数である。)
Figure 2024050865000004
(式(3)中、nは3~6の整数である。)
[3] 前記窒化アルミニウム粒子は、体積累計のd50が10μm以上60μm以下である[1]または[2]に記載の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法。
[4] 前記第1工程における前記加熱の温度は、35℃以上200℃以下である[1]~[3]のいずれか1つに記載の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法。
[1]~[4]のいずれか1つに記載の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法によって製造された前記珪素含有酸化物被覆窒化アルミニウム粒子と、樹脂とを混合する混合工程を備える放熱性樹脂組成物の製造方法。
本発明によれば、高い熱伝導性を維持し、耐湿性が向上したシリカ被覆窒化アルミニウム粒子等の珪素含有酸化物被覆窒化アルミニウム粒子を製造することができる珪素含有酸化物被覆窒化アルミニウム粒子の製造方法および珪素含有酸化物被覆窒化アルミニウム粒子を含有する放熱性樹脂組成物の製造方法を提供することができる。
本発明のシリカ被覆窒化アルミニウム粒子の製造方法を示すフローチャートである。
以下、本発明の実施形態(以下、「本実施形態」という)について、詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
<<珪素含有酸化物被覆窒化アルミニウム粒子の製造方法>>
本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法は、窒化アルミニウム粒子と、この窒化アルミニウム粒子の表面を覆う珪素含有酸化物被膜とを備える珪素含有酸化物被覆窒化アルミニウム粒子を製造するものである。珪素含有酸化物被膜や珪素含有酸化物被覆窒化アルミニウム粒子の「珪素含有酸化物」として、詳しくは後述するが、シリカや、珪素元素およびアルミニウム元素との複合酸化物が挙げられる。酸化物としては、酸化物、酸窒化物や、酸炭窒化物等が含まれる。
そして、本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法は、下記式(1)で示される構造を含む有機シリコーン化合物を溶媒に溶解した有機シリコーン化合物溶液と、窒化アルミニウム粒子とを混合した後、加熱して溶媒を除去することにより、有機シリコーン化合物により覆われた窒化アルミニウム粒子を得る第1工程と、有機シリコーン化合物により覆われた窒化アルミニウム粒子を300℃以上1000℃以下の温度で加熱する第2工程とを備える。
Figure 2024050865000005
(式(1)中、Rは炭素数が4以下のアルキル基である。)
このような本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法について、図1を参照しながら詳細に説明する。図1は、本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法の一例として、本実施形態のシリカ被覆窒化アルミニウム粒子の製造方法を示すフローチャートである。
[窒化アルミニウム粒子]
本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法において、原料として用いられる窒化アルミニウム粒子は、市販品など公知のものを使用することができる。窒化アルミニウム粒子の製法は、特に制限がなく、例えば、金属アルミニウム粉と窒素またはアンモニアとを直接反応させる直接窒化法、アルミナを炭素還元しながら窒素またはアンモニア雰囲気下で加熱して同時に窒化反応を行う還元窒化法などがある。
また、窒化アルミニウム粒子として、窒化アルミニウム微粒子の凝集体を焼結により顆粒状にした粒子を用いることもできる。特に、体積累計のd50が1μm程度の高純度窒化アルミニウム微粒子を原料とした焼結顆粒は、窒化アルミニウム粒子として好適に用いることができる。
ここで、高純度窒化アルミニウム微粒子とは、酸素の含有量が低く、金属不純物も少ない粒子のことである。具体的には、例えば、酸素の含有量が1質量%以下であり、金属不純物(すなわち、アルミニウム以外の金属原子)の総含有量が1000質量ppm以下である高純度窒化アルミニウムが、珪素含有酸化物被覆窒化アルミニウム粒子に含まれる窒化アルミニウム粒子のより高い熱伝導性を得るためには好適である。
窒化アルミニウム粒子は、単独または組み合わせて使用することができる。
なお、上述した酸素の含有量は、酸素検出用赤外線検出器を付帯する、無機分析装置などで測定できる。具体的には、酸素の含有量は、酸素・窒素・水素分析装置(ONH836:LECOジャパン合同会社製)を使用することにより、測定することができる。
また、アルミニウム以外の金属原子の総含有量は、ICP(Inductively Coupled Plasma)質量分析装置などで測定できる。具体的には、アルミニウム以外の金属原子の総含有量は、ICP質量分析計(ICPMS-2030:株式会社島津製作所製)を使用することにより、測定することができる。
なお、本明細書において、粒子の体積累計のd50とは、ある粒度分布に対して体積累計の積算値が50%となる粒径を示している。体積累計のd50は、レーザー回折散乱法による粒度分布から求められ、具体的には、体積累計のd50は、レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3300EX2:マイクロトラック・ベル株式会社製)を使用することにより、測定することができる。
本実施形態で用いられる窒化アルミニウム粒子の形状は、特に限定されるものではなく、例えば、無定形(破砕状)、球形、楕円状、板状(鱗片状)などが挙げられる。また、珪素含有酸化物被覆窒化アルミニウム粒子を、放熱材料用のフィラーとして放熱性樹脂組成物中に分散させて含有させる場合は、窒化アルミニウム粒子としては、同一の形状、構造を有する同じ種類の窒化アルミニウム粒子(単一物)のみを用いてもよいが、異なる形状、構造を持つ2種類以上の異種の窒化アルミニウム粒子を種々の割合で混合した窒化アルミニウム粒子の混合物の形で用いることもできる。
珪素含有酸化物被覆窒化アルミニウム粒子を、放熱性樹脂組成物中に分散させて含有させる場合は、放熱性樹脂組成物に対する、珪素含有酸化物被覆窒化アルミニウム粒子を構成する窒化アルミニウム粒子の体積比(充填量)が大きいほど、放熱性樹脂組成物の熱伝導率が高くなる。したがって、窒化アルミニウム粒子の形状は、珪素含有酸化物被覆窒化アルミニウム粒子の添加による放熱性樹脂組成物の粘度上昇の少ない球形に近いことが好ましい。
窒化アルミニウム粒子の平均アスペクト比(粒子形状の指標)は、0.8以上1.0以下の範囲が好ましく、より好ましくは、0.85以上1.0以下の範囲であり、さらに好ましくは、0.9以上1.0以下の範囲である。ここで、窒化アルミニウム粒子の平均アスペクト比とは、任意に抽出した粒子100個の電子顕微鏡写真像について、それぞれ短径(D1)と長径(D2)とを測定し、その比(D1/D2)の相加平均値である。なお、短径(D1)とは、窒化アルミニウム粒子の電子顕微鏡写真像について、2本の平行線で挟まれた最小の長さであり、長径(D2)とは、電子顕微鏡写真像について、2本の平行線で挟まれた最大の長さである。
本実施形態で用いる窒化アルミニウム粒子の体積累計のd50は、好ましくは0.2μm以上200μm以下であり、より好ましくは10μm以上100μm以下であり、さらに好ましくは10μm以上60μm以下、特に好ましくは15μm以上50μm以下の範囲である。
窒化アルミニウム粒子の体積累計のd50が、上述した範囲内であると、電力系電子部品を搭載する放熱材料に、珪素含有酸化物被覆窒化アルミニウム粒子を含有させた放熱性樹脂組成物を用いる場合でも、最小の厚みの薄い放熱材料の供給が可能になるとともに、被膜が窒化アルミニウム粒子の表面を均一に被覆しやすいためか、窒化アルミニウム粒子の耐湿性がより向上する。
なお、本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法は、厚みの薄い珪素含有酸化物の被覆層を形成できるためか、体積累計のd50が50μm以下の比較的細かい窒化アルミニウム粒子を用いた場合も熱伝導性に与える影響は小さく、後述する実施例に示すように、窒化アルミニウム粒子の体積累計のd50が30μm以下であると、熱伝導性により優れる。
[被覆に用いる有機シリコーン化合物]
本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法において、珪素含有酸化物被覆窒化アルミニウム粒子を構成する珪素含有酸化物被膜の原料として用いられる有機シリコーン化合物は、上記式(1)で示される構造を含む有機シリコーン化合物であれば、直鎖状、環状または分岐鎖状の形態にかかわらず、特に制限なく使用できる。式(1)で表される構造は、珪素原子に直接水素が結合した、ハイドロジェンシロキサン単位である。
上記式(1)において、炭素数が4以下のアルキル基であるRとしては、メチル基、エチル基、プロピル基、t-ブチル基などが好ましく、特に好ましいのはメチル基である。本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法において、原料として用いられる有機シリコーン化合物は、例えば、式(1)で示される構造を含むオリゴマまたはポリマーである。
有機シリコーン化合物として、例えば、下記式(2)で示される化合物やおよび下記式(3)で示される化合物の少なくとも一方が好適である。
Figure 2024050865000006
(式(2)中、R1およびR2は、それぞれ独立に、水素原子またはメチル基であり、R1およびR2の少なくとも一方は水素原子であり、mは0~10の整数である。)
Figure 2024050865000007
(式(3)中、nは3~6の整数である。)
特に、上記式(3)においてnが4の環状ハイドロジェンシロキサンオリゴマーが、窒化アルミニウム粒子表面に均一な被膜を形成できる点で優れている。式(1)で示す構造を含む有機シリコーン化合物の重量平均分子量は、好ましくは100以上2000以下であり、より好ましくは150以上1000以下であり、さらに好ましくは180以上500以下の範囲である。この範囲の重量平均分子量の、式(1)で示す構造を含む有機シリコーン化合物を用いることで、窒化アルミニウム粒子表面に薄くて均一な被膜を形成しやすいと推測される。なお、式(2)において、mが1であることが好ましい。
本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いたポリスチレン換算重量平均分子量であり、具体的には、カラム(ショウデックス (登録商標)LF-804:昭和電工株式会社製)と示差屈折率検出器(ショウデックス(登録商標) RI-71S:昭和電工株式会社製)との組み合わせで測定することができる。
<第1工程>
第1工程では、上記窒化アルミニウム粒子の表面を、上記式(1)で示される構造を含む有機シリコーン化合物により覆う。
第1工程では、まず、上記式(1)で示される構造を含む有機シリコーン化合物を溶媒に溶解した有機シリコーン化合物溶液と、窒化アルミニウム粒子とを混合する。
式(1)で示される構造を含む有機シリコーン化合物を溶解させる溶媒は、特に限定されないが、例えば、ジクロロメタン(CHCl)、トルエン等の有機溶媒が挙げられる。
有機シリコーン化合物溶液の式(1)で示される構造を含む有機シリコーン化合物の濃度は、特に限定されないが、例えば、0.10質量%以上60質量%以下であり、好ましくは0.30質量%以上40質量%以下である。
その後、混合物を加熱して、溶媒を揮発させて除去する。これにより、有機シリコーン化合物により覆われた窒化アルミニウム粒子が得られる。
第1工程の加熱温度は、式(1)で示される構造を含む有機シリコーン化合物は揮発せず、用いた溶媒が十分に揮発する温度に設定すればよい。第1工程の加熱温度は、好ましくは35℃以上200℃以下であり、より好ましくは40℃以上150℃以下であり、さらに好ましくは40℃以上100℃以下である。このときの圧力は、常圧でも減圧でもよい。
式(1)で示される構造を含む有機シリコーン化合物の第1工程での使用量は、特に限定されないが、例えば、窒化アルミニウム粒子100質量部に対して、0.02質量部以上50質量部が好ましく、0.1質量部以上25質量部がより好ましく、0.2質量部以上20質量部がさらに好ましい。なお、この使用量は、用いた式(1)で示される構造を含む有機シリコーン化合物の全てが、窒化アルミニウム粒子に付着するとして決定する。
また、第1工程の加熱処理の雰囲気は特に限定されず、例えば、N、Ar、He等の不活性ガス雰囲気下や、H、CO、CH等の還元ガスを含む雰囲気下でもよいが、酸素ガスを含む雰囲気下、例えば大気中(空気中)で行うことが好ましい。
<第2工程>
第2工程では、第1工程で得られた有機シリコーン化合物により覆われた窒化アルミニウム粒子を、300℃以上1000℃以下、好ましくは350℃以上950℃以下、より好ましくは500℃以上900℃以下の温度で加熱する。これにより、窒化アルミニウム粒子表面に珪素含有酸化物被膜を形成することができる。
この第2工程での加熱が低温の場合は、窒化アルミニウム粒子表面に、珪素含有酸化物被膜としてのシリカ被膜が形成され、シリカ被覆窒化アルミニウム粒子が製造できる。また、この第2工程での加熱が高温の場合は、窒化アルミニウム粒子表面に、珪素含有酸化物被膜としての珪素元素およびアルミニウム元素との複合酸化物の被膜が形成され、珪素元素およびアルミニウム元素との複合酸化物被覆窒化アルミニウム粒子が製造できる。第2工程での温度が高くなると、窒化アルミニウム粒子を構成するアルミニウムが窒化アルミニウム粒子表面に出てくることで有機シリコーン化合物に由来する珪素とともに複合酸化物を形成して、珪素元素およびアルミニウム元素との複合酸化物の被膜が形成されると推測される。
第2工程では、第1工程で得られた有機シリコーン化合物により覆われた窒化アルミニウム粒子を、300℃以上1000℃以下の温度で加熱することができれば、すなわち、第1工程で得られた有機シリコーン化合物により覆われた窒化アルミニウム粒子を、300℃以上1000℃以下の温度範囲に保持できるものであれば、一般の加熱炉を使用することができる。
第2工程の熱処理(300℃以上1000℃以下の温度での加熱)では、熱処理の初期段階で窒化アルミニウム粒子表面を被覆している式(1)で示される構造を含む有機シリコーン化合物が脱水素反応により、有機シリコーン化合物同士、または窒化アルミニウム粒子表面の水酸基などと結合し、被覆がさらに強固になると考えられる。そして、熱処理の終期では、有機シリコーン化合物の有機基(炭素数4以下のアルキル基)が分解して揮散する。したがって、形成される珪素含有酸化物被膜は炭素原子の含有量が少なくなり、ひいては、珪素含有酸化物被覆窒化アルミニウム粒子の炭素原子の含有量も少なくなる。よって炭素原子の含有量が1000質量ppm未満、好ましくは500質量ppm未満、より好ましくは250質量ppm未満である珪素含有酸化物被覆窒化アルミニウム粒子を得ることができる。珪素含有酸化物被覆窒化アルミニウム粒子の炭素原子の含有量が上記範囲であれば、耐湿性が良好である傾向があり、また、偏在した炭素粒子が絶縁性などへ影響を与えにくい。
なお、シリカ被覆とは、シリカを主成分とする薄膜でコートされていることを意味する。ただし、コートされたシリカと窒化アルミニウム粒子との界面には、複数の無機複合物が存在する可能性があるので、ToF-SIMS(Time of Flight Secondary Ion Mass Spectrometry:飛行時間二次イオン質量分析、ION-TOF社、TOF.SIMS5)で分析した場合には、二次イオン同士の再結合やイオン化の際の分解なども重なり、AlSiOイオン、SiNOイオンなどのセグメントが副成分として同時に検出される場合もある。このToF-SIMS分析で分析される複合セグメントも、窒化アルミニウムをシリカ化した場合の部分検出物と定義することができる。目安としては、シリカの2次電子量が、その他のフラクションより多い状態であれば、シリカが主成分であると見なすことができる。
さらに精度を上げてシリカの純度を確認する実験として、窒化アルミニウム多結晶基板上に同様の方法でシリカ被膜を形成させた試料表面を、光電子分光測定装置(XPS:X-ray Photoelectron Spectroscopy、アルバック・ファイ社、Quantera II)で測定し、検出されるSi由来の光電子の運動エネルギーがシリカの標準ピーク103.7eVとほぼ一致することから、ほとんどがSiO構造になっていると推測される。なお、加熱温度によっては、有機成分が残るケースもありうる。本発明の効果を損なわない範囲であれば、有機シロキサン成分が混在することは十分ありうる。
炭素原子の含有量は、管状電気炉方式による非分散赤外吸収法を用いた炭素・硫黄分析装置などで測定できる。具体的には、炭素・硫黄分析装置(Carbon Anlyzer EMIA-821:株式会社堀場製作所製)を使用することにより測定することができる。
第2工程の加熱温度(熱処理温度)は、300℃以上1000℃以下、好ましくは350℃以上950℃以下、より好ましくは500℃以上900℃以下である。この温度範囲で行うことで、耐湿性および熱伝導性の良好な珪素含有酸化物被膜が形成される。具体的には、300℃以上で加熱すると、珪素含有酸化物被膜が緻密化し水分を透過し難くなるためか、耐湿性が良好になる。また、1000℃以下、好ましくは950℃以下、より好ましくは900℃以下で加熱すると熱伝導性が良好になる。他方、1000℃超であると、耐湿性や熱伝導性が悪くなる。また、加熱温度が、300℃以上1000℃以下、好ましくは350℃以上950℃以下、より好ましくは500℃以上900℃以下であれば窒化アルミニウム粒子の表面に均一に珪素含有酸化物被膜が形成される。また、加熱温度が300℃以上であれば、珪素含有酸化物被膜は絶縁性に優れたものになり、1000℃以下、好ましくは950℃以下、より好ましくは900℃以下であれば、エネルギーコスト的にも有効である。加熱温度は、好ましくは350℃以上であり、より好ましくは500℃以上であり、さらに好ましくは650℃以上である。
加熱時間としては、30分以上12時間以下が好ましく、30分以上6時間以下がより好ましく、さらに好ましくは45分以上4時間以下の範囲である。熱処理時間は、30分以上であれば有機シリコーン化合物の有機基(炭素数4以下のアルキル基)の分解物の残存がなく、窒化アルミニウム粒子表面に炭素原子の含有量の非常に少ない珪素含有酸化物被膜が得られる点で好ましい。また、加熱時間を6時間以下とすることが、珪素含有酸化物被覆窒化アルミニウム粒子を生産効率よく製造することができる点で好ましい。
第2工程の熱処理の雰囲気は特に限定されず、例えば、N、Ar、He等の不活性ガス雰囲気下や、H、CO、CH等の還元ガスを含む雰囲気下でもよいが、酸素ガスを含む雰囲気下、例えば大気中(空気中)で行うことが好ましい。
第2工程の熱処理後に、珪素含有酸化物被覆窒化アルミニウム粒子同士が、部分的に融着することがある。その場合には、これを解砕することで、固着・凝集のない珪素含有酸化物被覆窒化アルミニウム粒子を得ることができる。なお、解砕に使用する装置は、特に限定されるものではないが、ローラーミル、ハンマーミル、ジェットミル、ボールミルなどの一般的な粉砕機を使用することができる。
また、第2工程終了後に、さらに、第1工程および第2工程を順に行ってもよい。すなわち、第1工程および第2工程を順に行う工程を、繰り返し実行してもよい。
本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法は、均一で薄い珪素含有酸化物被膜を形成することが可能である。したがって、第1工程および第2工程を順に行う工程を複数回、例えば2~5回程度繰り返しても、窒化アルミニウム粒子の良好な熱伝導率を発揮させることができる。
一方、耐湿性に関しては、第1工程および第2工程を順に行う工程の回数と耐湿性との間には、正の相関が認められる。したがって、実際の用途で求められる耐湿性のレベルに応じて、第1工程および第2工程を順に行う工程の回数を自由に選択することができる。
上記本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法で得られた、珪素含有酸化物被覆窒化アルミニウム粒子は、後述する実施例に示すように、窒化アルミニウム粒子本来の高熱伝導性を維持し、かつ、耐湿性にも優れているため、電気・電子分野などで使用される放熱材料用途のフィラーとして広く適用できる。
上記本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法によって製造される珪素含有酸化物被覆窒化アルミニウム粒子、すなわち、窒化アルミニウム粒子と窒化アルミニウム粒子の表面を覆う珪素含有酸化物被膜とを備える珪素含有酸化物被覆窒化アルミニウム粒子は、炭素原子の含有量が1000質量ppm未満、好ましくは500質量ppm未満、より好ましくは250質量ppm未満とすることができる。
上述したように、本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法によって製造される珪素含有酸化物被覆窒化アルミニウム粒子は、耐湿性に優れる。
例えば、上記珪素含有酸化物被覆窒化アルミニウム粒子は、pH4に調整した塩酸水溶液に投入し、85℃で2時間の処理(すなわち、珪素含有酸化物被覆窒化アルミニウム粒子を、pH4に調整した塩酸水溶液に85℃で2時間浸漬)したとき、塩酸水溶液中に抽出されたアンモニアの濃度が35mg/L以下とすることができ、極めて耐湿性に優れる。なお、酸性溶液中では加水分解反応が空気中よりも促進されるため、粒子をpH4に調整した塩酸水溶液に晒すことで、耐湿性の加速試験ができる。したがって、pH4の塩酸水溶液を用いることで、珪素含有酸化物被覆窒化アルミニウム粒子の耐湿性を評価することができ、上記アンモニアの濃度が35mg/L以下であれば、耐湿性が良いと言える。また、pH4の塩酸水溶液を用いることで合わせて耐薬品性の比較もできる。
上記抽出されたアンモニアの濃度は、20mg/L以下であることが好ましく、10mg/L以下であることがより好ましい。
耐湿性の観点から、炭素原子の含有量は低いほど好ましい。ここで、上記本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法では原料として式(1)で示される構造を有する有機シリコーン化合物を用いているため、珪素含有酸化物被覆窒化アルミニウム粒子は炭素原子を含有する場合が多く、例えば50質量ppm以上、さらには60質量ppm以上含む場合がある。しかしながら、上記のとおり1000質量ppm未満、好ましくは500質量ppm未満、より好ましくは250質量ppm未満であれば耐湿性が優れる。
また、本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法によって製造される珪素含有酸化物被覆窒化アルミニウム粒子の珪素原子の含有量は、特に限定されないが、例えば5000質量ppm以下、好ましくは3000質量ppm以下、より好ましくは2800質量ppm以下であり、さらに好ましくは2600質量ppm以下である。珪素含有酸化物被覆窒化アルミニウム粒子の珪素原子の含有量は、例えば100質量ppm以上である。
また、本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法によって製造される珪素含有酸化物被覆窒化アルミニウム粒子のBET法から求めた比表面積は、特に限定されないが、例えば0.08m/g以上0.90m/g以下であり、好ましくは0.10m/g以上0.80m/g以下であり、より好ましくは0.12m/g以上0.70m/g以下である。
また、本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法によって製造される珪素含有酸化物被覆窒化アルミニウム粒子は、BET法から求めた比表面積に対する珪素原子の含有量(珪素原子の含有量/BET法から求めた比表面積)は、特に限定されないが、例えば850質量ppm・g/m以上1800質量ppm・g/m以下であり、好ましくは900質量ppm・g/m以上1700質量ppm・g/m以下であり、より好ましくは950質量ppm・g/m以上1650質量ppm・g/m以下である。
なお、珪素原子の含有量は、ICP法で測定することができる。また、珪素含有酸化物被覆窒化アルミニウム粒子のBET法から求めた比表面積xは、ガス流動法による窒素吸着BET1点法から測定することができる。評価装置としては、Mountech社製Macsorb HM model-1210を用いることができる。
<<放熱性樹脂組成物の製造方法>>
上記本実施形態の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法によって製造される珪素含有酸化物被覆窒化アルミニウム粒子を用いて、放熱性樹脂組成物を製造することができる。すなわち、本実施形態の放熱性樹脂組成物の製造方法は、上記珪素含有酸化物被覆窒化アルミニウム粒子の製造方法によって製造された珪素含有酸化物被覆窒化アルミニウム粒子と、樹脂とを混合する混合工程を備える。珪素含有酸化物被膜や珪素含有酸化物被覆窒化アルミニウム粒子の「珪素含有酸化物」として、上記シリカや、珪素元素およびアルミニウム元素との複合酸化物が挙げられる。酸化物としては、酸化物、酸窒化物や、酸炭窒化物等が含まれる。
上記珪素含有酸化物被覆窒化アルミニウム粒子の製造方法によって製造された珪素含有酸化物被覆窒化アルミニウム粒子は、窒化アルミニウム粒子の高い熱伝導性を維持し、耐湿性が向上するため、本実施形態の放熱性樹脂組成物の製造方法で得られる放熱性樹脂組成物は、耐湿性および熱伝導性に優れる。
混合工程では、上記珪素含有酸化物被覆窒化アルミニウム粒子の製造方法によって製造された珪素含有酸化物被覆窒化アルミニウム粒子と、樹脂とを混合する。
混合工程で混合する樹脂は、特に限定されないが、熱硬化性樹脂、熱可塑性樹脂または熱硬化性樹脂と熱可塑性樹脂の混合物であることが、得られる放熱性樹脂組成物が耐熱性に優れる点で好ましい。熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ビスマレイミド樹脂、シアネート樹脂、ウレタン樹脂、(メタ)アクリル系樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ポリビニールアルコールアセタール樹脂などが挙げられ、単独または二種類以上を混ぜ合わせて使用することができる。さらに、熱硬化性樹脂に硬化剤や、硬化促進剤を加えた混合物を使用してもよい。特に、硬化後の耐熱性、接着性、電気特性の良い点でエポキシ樹脂が好ましく、柔軟密着性を重視する用途ではシリコーン樹脂が好ましい。
なお、シリコーン樹脂には、付加反応硬化型シリコーン樹脂、縮合反応硬化型シリコーン樹脂、有機過酸化物硬化型シリコーン樹脂などがあり、単独または粘度の異なる2種類以上を組み合わせても使用することができる。特に、得られる放熱性樹脂組成物が柔軟密着性を重視する用途において使用される場合には、シリコーン樹脂として、例えば、気泡などの原因物質となり得る副生成物の生成がない付加反応硬化型液状シリコーン樹脂が挙げられ、ベースポリマーであるアルケニル基を有するオルガノポリシロキサンと架橋剤であるSi-H基を有するオルガノポリシロキサンとを硬化剤の存在下で、常温または加熱により反応させることでシリコーン樹脂硬化物を得ることができる。なお、ベースポリマーであるオルガノポリシロキサンの具体例としては、例えば、アルケニル基として、ビニル基、アリル基、プロペニル基、ヘキセニル基などを有するものがある。特に、ビニル基は、オルガノポリシロキサンとして好ましい。また、硬化触媒は、例えば、白金金属系の硬化触媒を用いることができ、目的とする樹脂硬化物の硬さを実現するため、添加量を調整して使用することもできる。
エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂などの2官能グルシジルエーテル型エポキシ樹脂、ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエステルなどのグルシジルエステル型エポキシ樹脂、エポキシ化ポリブタジエン、およびエポキシ化大豆油などの線状脂肪族エポキシ樹脂、トリグリシジルイソシアヌレートなどの複素環型エポキシ樹脂、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン、N,N,N’,N’-テトラグリシジル-1,3-ベンゼンジ(メタンアミン)、4-(グリシジロキシ)-N,N-ジグリシジルアニリン、3-(グリシジロキシ)-N,N-ジグリシジルアニリンなどのグルシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレンアラルキル型エポキシ樹脂、4官能ナフタレン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂などの多官能グリシジルエーテル型エポキシ樹脂などが挙げられる。上述したエポキシ樹脂は、単独でまたは二種類以上を混合して使用することができる。
上述したエポキシ樹脂を使用した場合には、硬化剤、硬化促進剤を配合していてもよい。硬化剤としては、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸および無水ハイミック酸などの脂環式酸無水物、ドデセニル無水コハク酸などの脂肪族酸無水物、無水フタル酸および無水トリメリット酸などの芳香族酸無水物、ビスフェノールA、ビスフェノールF、ビスフェノールSなどのビスフェノール類、フェノール・ホルムアルデヒド樹脂、フェノール・アラルキル樹脂、ナフトール・アラルキル樹脂、フェノール-ジシクロペンタジエン共重合体樹脂などのフェノール樹脂類、ジシアンジアミドおよびアジピン酸ジヒドラジドなどの有機ジヒドラジドが挙げられ、硬化触媒としては、例えば、トリス(ジメチルアミノメチル)フェノール、ジメチルベンジルアミン、1,8-ジアザビシクロ(5,4,0)ウンデセンおよびその誘導体などのアミン類、2-メチルイミダゾール、2-エチル-4-メチルイミダゾールおよび2-フェニルイミダゾールなどのイミダゾール類およびその誘導体が挙げられる。これらは、単独または二種類以上を組み合わせて用いることができる。
混合工程では、上記珪素含有酸化物被覆窒化アルミニウム粒子以外に通常使用される窒化硼素、アルミナ、シリカ、酸化亜鉛などのフィラーを併用してもよい。
混合工程において、上記珪素含有酸化物被覆窒化アルミニウム粒子や上記珪素含有酸化物被覆窒化アルミニウム粒子以外のフィラーは、所望の放熱性樹脂組成物になる量を混合すればよい。
得られる放熱性樹脂組成物における上記珪素含有酸化物被覆窒化アルミニウム粒子および上記珪素含有酸化物被覆窒化アルミニウム粒子以外のフィラーの総含有量は、50体積%以上95体積%以下が好ましく、より好ましくは60体積%以上90体積%以下であり、さらに好ましくは70体積%以上90体積%以下の範囲である。総含有量が、50体積%以上であれば良好な放熱性を発揮でき、95体積%以下であれば放熱性樹脂組成物の使用時に良好な作業性が得られる。
また、得られる放熱性樹脂組成物における珪素含有酸化物被覆窒化アルミニウム粒子の含有量は、上記珪素含有酸化物被覆窒化アルミニウム粒子および上記珪素含有酸化物被覆窒化アルミニウム粒子以外のフィラーの総含有量の30体積%以上100体積%以下が好ましく、より好ましくは40体積%以上100体積%以下であり、さらに好ましくは50体積%以上100体積%以下の範囲である。総含有量は、30体積%以上で良好な放熱性を発揮できる。
混合工程では、さらに、必要に応じてシリコーン、ウレタンアクリレート、ブチラール樹脂、アクリルゴム、ジエン系ゴムおよびその共重合体などの可撓性付与剤、シラン系カップリング剤、チタン系カップリング剤、無機イオン補足剤、顔料、染料、希釈剤、溶剤などを適宜添加することができる。
混合工程における混合方法は、特に限定されず、例えば珪素含有酸化物被覆窒化アルミニウム粒子、樹脂、その他添加剤などを、一括または分割して、らいかい器、プラネタリーミキサー、自転・公転ミキサー、ニーダー、ロールミルなどの分散・溶解装置を単独または適宜組み合わせ、必要に応じて加熱して混合、溶解、混練する方法が挙げられる。
また、得られた放熱性樹脂組成物は、成形し、必要に応じて反応させた成形体として使用することができる。例えば、得られた放熱性樹脂組成物をシート状に成形し、必要に応じて反応させて、放熱シートとすることができる。上述した放熱性樹脂組成物および放熱シート等の成形体は、半導体パワーデバイス、パワーモジュールなどの接着用途などに好適に使用することができる。成形体の製造方法例について、放熱シート等のシート状の成形体を例に、以下に説明する。
放熱シート等のシート状の成形体の製造方法としては、基材フィルムで両面を挟む形で放熱性樹脂組成物を圧縮プレスなどで成形する方法、基材フィルム上に放熱性樹脂組成物をバーコーター、スクリーン印刷、ブレードコーター、ダイコーター、コンマコーターなどの装置を用いて塗布する方法などが挙げられる。さらに、成形・塗布後の放熱シート等のシート状の成形体は、溶剤を除去する工程、加熱などによるBステージ化、完全硬化などの処理工程を追加することもできる。上述したように、工程により様々な形態の放熱シート等のシート状の成形体を得ることができ、対象となる用途分野、使用方法に広く対応することが可能となる。
放熱性樹脂組成物を基材フィルム上に塗布または形成する際に、作業性をよくするために溶剤を用いることができる。溶剤としては、特に限定するものではないが、ケトン系溶剤のアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、エーテル系溶剤の1,4-ジオキサン、テトラヒドロフラン、ジグライム、グリコールエーテル系溶剤のメチルセロソルブ、エチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールメチルエチルエーテル、その他ベンジルアルコール、N-メチルピロリドン、γ-ブチロラクトン、酢酸エチル、N,N-ジメチルホルムアミドなどを単独あるいは二種類以上混合して使用することができる。
放熱性樹脂組成物をシート状に形成するためには、シート形状を保持するシート形成性が必要になる。シート形成性を得るために、放熱性樹脂組成物に、高分子量成分を添加することができる。例えば、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカルボジイミド樹脂、シアネートエステル樹脂、(メタ)アクリル樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリビニルアセタール樹脂、ウレタン樹脂、アクリルゴム等が挙げられ、その中でも、耐熱性およびフィルム形成性に優れる観点から、フェノキシ樹脂、ポリイミド樹脂、(メタ)アクリル樹脂、アクリルゴム、シアネートエステル樹脂、ポリカルボジイミド樹脂などが好ましく、フェノキシ樹脂、ポリイミド樹脂、(メタ)アクリル樹脂、アクリルゴムがより好ましい。それらは、単独または二種類以上の混合物、共重合体として使用することができる。
高分子量成分の分子量は、10000重量平均分子量以上100000の重量平均分子量以下が好ましく、さらに好ましくは20000重量平均分子量50000重量平均分子量以下の範囲である。
なお、取扱い性のよい良好なシート形状は、上述したような範囲の重量平均分子量成分を添加することで、保持することができる。
高分子量成分の添加量は、特に限定されないが、シート性状を保持するためには、放熱性樹脂組成物に対し、0.1質量%以上20質量%以下であることが好ましく、より好ましくは1質量%以上15質量%以下であり、さらに好ましくは2質量%以上10質量%以下の範囲である。なお、0.1質量%以上20質量%以下の添加量で、取り扱い性もよく、良好なシート、膜の形成が図られる。
放熱シート等のシート状の成形体の製造時に使用する基材フィルムは、製造時の加熱、乾燥などの工程条件に耐えるものであれば、特に限定するものではなく、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)などの芳香環を有するポリエステルからなるフィルム、ポリプロピレンフィルム、ポリイミドフィルム、ポリエーテルイミドフィルムなどが挙げられる。上述したフィルムは、二種類以上を組み合わせた多層フィルムであってもよく、表面がシリコーン系などの離型剤処理されたものであってもよい。なお、基材フィルムの厚さは、10μm以上100μm以下が好ましい。
基材フィルム上に形成された放熱シート等のシート状の成形体の厚さは、20μm以上500μm以下が好ましく、さらに好ましくは50μm以上200μm以下である。シートの厚さは、20μm以上では均一な組成のシートを得ることができ、500μm以下では良好な放熱性を得ることができる。
以下、実施例および比較例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらの実施例により何ら限定されるものではない。
[珪素含有酸化物被覆窒化アルミニウム粒子の炭素原子の含有量の測定]
珪素含有酸化物被覆窒化アルミニウム粒子の炭素原子の含有量は、管状電気炉方式による非分散赤外吸収法を用いた炭素・硫黄分析装置(Carbon Anlyzer EMIA-821:株式会社堀場製作所製)により測定した。
[珪素含有酸化物被覆窒化アルミニウム粒子の珪素原子の含有量の測定]
珪素含有酸化物被覆窒化アルミニウム粒子の珪素原子の含有量は、以下の手順で測定した。
(1)20ccのテフロン(登録商標)容器に、97質量%の硫酸(超特級、和光純薬製)とイオン交換水とを1:2(体積比)で混合した溶液10ccと、サンプル(珪素含有酸化物被覆窒化アルミニウム粒子)0.5gとを投入した。
(2)テフロン(登録商標)容器ごとステンレスの耐圧容器に入れ、230℃で15時間維持し、投入したサンプルを溶解させた。
(3)(1)で混合した溶液を取り出し、ICP(島津製作所製、ICPS-7510)を用いて測定した珪素原子の濃度から、珪素含有酸化物被覆窒化アルミニウム粒子の珪素原子の含有量を算出した。
[珪素含有酸化物被覆窒化アルミニウム粒子のBET法から求めた比表面積の測定]
珪素含有酸化物被覆窒化アルミニウム粒子のBET法から求めた比表面積は、それぞれMountech社製Macsorb HM model-1210を用いて測定した。なお、吸着ガスとして、He70体積%とN30体積%の混合ガスを用いた。珪素含有酸化物被覆窒化アルミニウム粒子のBET法から求めた比表面積を、表において「BET比表面積(m2/g)」欄に記載した。
[粒子の耐湿性の評価]
珪素含有酸化物被覆窒化アルミニウム粒子等の粒子の耐湿性は、50mlのサンプル管にpH4に調整した塩酸水溶液を17gと珪素含有酸化物被覆窒化アルミニウム粒子3gとを投入して密封した後、振とう式恒温槽で85℃、80rpm、2時間の条件で振とうし、静置後、室温(25℃)まで冷却し、上澄み液中のアンモニア濃度を、25℃の温度条件でアンモニア電極(アンモニア電極5002A:株式会社堀場製作所製)を用いて測定した。表において「耐湿性アンモニア濃度」欄に記載し、測定温度も併記した。
[樹脂成形体の熱伝導率の測定]
25℃にて、レーザーフラッシュ法熱拡散率測定装置(LFA447 NanoFlash:NETZSCH社製)により樹脂成形体の熱拡散率を測定した。また、各成分について単純に加成性が成り立つと仮定して、各成分の配合量を考慮した加重平均により、樹脂成形体の理論比熱と理論密度とを求めた。そして、熱拡散率に理論比熱と理論密度を掛けることにより算出した値を、樹脂成形体の厚み方向の熱伝導率とした。
熱拡散率測定用のサンプルは、下記[樹脂成形体の製造]で得られた厚さ1mmで内径30mmの円形状の樹脂成形体を、イオンコーター(IB-3:株式会社エイコー製)を用いて両面に金コーティングを施した後、さらに両面をグラファイトコーティングしたものを使用した。
なお、各実施例および比較例の樹脂成形体の理論比熱は、窒化アルミニウムの理論比熱を0.73J/g・K、樹脂成分の理論比熱を1.80J/g・K、高分子量成分の理論比熱を1.80J/g・Kとして計算した。また、各実施例および比較例の樹脂成形体の理論密度は、窒化アルミニウムの理論密度を3.26g/cm、樹脂成分の理論密度を1.17g/cm、高分子量成分の理論密度を1.17g/cmとして計算した。なお、溶剤はすべて揮発したものとみなし、また、硬化剤は微量のため、無視した。
[粒子の作製]
<実施例1>
(第1工程)
体積累計のd50が16μm、BET法から求めた比表面積が0.5m/gの窒化アルミニウム粒子A(TFZ-N15P:東洋アルミニウム社製)と、式(3)においてn=4である有機シリコーン化合物A(環状メチルハイドロジェンシロキサン4量体:東京化成工業社製)をCHCl(沸点40℃)に溶解した溶液とを、自転・公転ミキサー(シンキー社製 あわとり練太郎)にて、2000rpmで20秒間回転させた後に冷却する動作を5回行うことで混合した。なお、有機シリコーン化合物Aは、窒化アルミニウム粒子A 100質量部に対して0.2質量部となる量を用いた。
その後、大気中で40℃、6時間加熱することにより、CHClを全て除去した。これにより、有機シリコーン化合物により覆われた窒化アルミニウム粒子を得た。
(第2工程)
第1工程で得られた有機シリコーン化合物により覆われた窒化アルミニウム粒子を、大気中で650℃、1.5時間加熱することで、珪素含有酸化物被覆窒化アルミニウム粒子としてのシリカ被覆窒化アルミニウム粒子を得た。
<実施例2>
有機シリコーン化合物Aの量を、窒化アルミニウム粒子A 100質量部に対して3.3質量部に変更した以外は、実施例1と同様にして、珪素含有酸化物被覆窒化アルミニウム粒子としてのシリカ被覆窒化アルミニウム粒子を得た。
<実施例3>
有機シリコーン化合物Aの量を、窒化アルミニウム粒子A 100質量部に対して16.7質量部に変更した以外は、実施例1と同様にして、珪素含有酸化物被覆窒化アルミニウム粒子としてのシリカ被覆窒化アルミニウム粒子を得た。
<実施例4>
第2工程後に、さらに第1工程および第2工程をこの順で繰返し行ったこと以外は、実施例2と同様にして、珪素含有酸化物被覆窒化アルミニウム粒子としてのシリカ被覆窒化アルミニウム粒子を得た。
<実施例5>
窒化アルミニウム粒子Aを、体積累計のd50が50μm、BET法から求めた比表面積が0.07m/gの窒化アルミニウム粒子B(FAN-f50-A1:古河電子株式会社製)に変更し、有機シリコーン化合物Aを、窒化アルミニウム粒子B 100質量部に対して0.7質量部となる量をCHClに溶解したこと以外は、実施例1と同様にして、珪素含有酸化物被覆窒化アルミニウム粒子としてのシリカ被覆窒化アルミニウム粒子を得た。
<実施例6>
有機シリコーン化合物Aの量を、窒化アルミニウム粒子B 100質量部に対して16.7質量部に変更した以外は、実施例5と同様にして、珪素含有酸化物被覆窒化アルミニウム粒子としてのシリカ被覆窒化アルミニウム粒子を得た。
<実施例7>
有機シリコーン化合物Aを式(2)で示されるR1がメチル基であり、R2が水素であり、mが1である有機シリコーン化合物B(製品名KF-99-P:信越化学工業株式会社製)に変更し、有機シリコーン化合物Bを、窒化アルミニウム粒子B 100質量部に対して0.7質量部となる量をCHClに溶解したこと以外は、実施例5と同様にして、珪素含有酸化物被覆窒化アルミニウム粒子としてのシリカ被覆窒化アルミニウム粒子を得た。
<実施例8>
第2工程後に、さらに第1工程および第2工程をこの順で繰返し行ったこと以外は、実施例5と同様にして、珪素含有酸化物被覆窒化アルミニウム粒子としてのシリカ被覆窒化アルミニウム粒子を得た。
<実施例9>
第2工程での加熱温度を900℃にしたこと以外は、実施例1と同様にして、珪素含有酸化物被覆窒化アルミニウム粒子としての珪素元素およびアルミニウム元素との複合酸化物被覆窒化アルミニウム粒子を作製した。
<実施例10>
第2工程での加熱温度を400℃にしたこと以外は、実施例1と同様にして、珪素含有酸化物被覆窒化アルミニウム粒子としてのシリカ被覆窒化アルミニウム粒子を得た。
<比較例1>
窒化アルミニウム粒子Aであり、実施例の全ての工程を経ていない未処理品を、比較例1の粒子とした。
<比較例2>
窒化アルミニウム粒子Bであり、実施例の全ての工程を経ていない未処理品を、比較例2の粒子とした。
<比較例3>
第2工程での加熱温度を、1100℃にしたこと以外は、実施例1と同様の操作を行った。
<比較例4>
第2工程での加熱温度を、200℃にしたこと以外は、実施例1と同様の操作を行った。得られた粒子の表面には、シリカ被膜等の珪素含有酸化物被膜は形成されていなかった。
[樹脂成形体の製造]
樹脂成分としての液状硬化性エポキシ樹脂[エポキシ当量189のビスフェノールA型エポキシ樹脂(YD128:新日鉄住金化学株式会社製)]に、高分子量成分としてのポリスチレン換算重量平均分子量40000のビスフェノールA型フェノキシ樹脂(商品名「YP-50S」、新日鉄住金化学(株)製、純度:99.0質量%以上)を、表1及び表2に記載の質量部となるように配合した樹脂混合物を作製した。
表1及び表2に記載の質量部の、実施例1~10および比較例1~4の粒子と、樹脂混合物と、硬化剤(2-エチル-4-メチルイミダゾール、東京化成工業社製)との配合物を、手動にて攪拌したのち、シート塗工が可能な濃度まで希釈するための溶剤(1-メトキシ-2-プロパノール)を滴下後、自転・公転ミキサー(シンキー社製 あわとり練太郎)にて2000rpm30secの攪拌を5回行った。
得られた組成物を、片面に離型処理を施したPETフィルムを塗工基材として用いてシート化した。
具体的には、得られた組成物を、コーターを用いて膜厚が500μmとなるように、PETフィルムの離型処理を施されている側の面に塗布して樹脂組成物層を形成し、真空下で50℃、20分乾燥し、溶剤を揮発させた。溶媒が揮発していることを確認の上、樹脂組成物層をPETフィルム基材からそぎ取り、再度真空下で50℃、20分乾燥し、溶剤が完全に除去された組成物を得た。得られた組成物は、粘土状または粉状であった。
その後、鋼板上に厚さ188μmのPETを敷き、さらにその上に、表面に離型剤を塗布した厚さ35μmの銅箔を積層した。銅箔表面上に、内壁に離型剤を塗布した厚さ1mmで内径30mmの鋼製の円筒金型を設置し、上記で得られた粘土状または粉状の組成物を充填し、金型の下に配置したものと同様、組成物に触れる面に離型剤が塗布された銅箔、PET及び鋼板をこの順に積層させて挟み込んだ。これを、120℃で30分間熱プレスし、樹脂組成物層を硬化させ、厚さ1mmで内径30mmの円形状の樹脂成形体(エポキシ成形体)を作製した。
なお、実施例および比較例の樹脂成形体の粒子の含有量(体積%)は、窒化アルミニウムの理論密度を3.26g/cm、樹脂成分の理論密度を1.17g/cm、高分子量成分の理論密度を1.17g/cmとし、各成分について単純に加成性が成り立つと仮定して計算した。なお、溶剤は、すべて揮発したとみなし、また、硬化剤は微量のため、無視した。
実施例および比較例で得られた粒子について、[珪素含有酸化物被覆窒化アルミニウム粒子の炭素原子の含有量の測定]、[珪素含有酸化物被覆窒化アルミニウム粒子の珪素原子の含有量の測定]、[珪素含有酸化物被覆窒化アルミニウム粒子のBET法から求めた比表面積の測定]、[粒子の耐湿性の評価]および[樹脂成形体の熱伝導率の測定]の結果を、表1及び表2に示す。
実施例1~10の粒子は、比較例1~4の粒子と比較して、耐湿性が高かった。また、実施例1~10の粒子を用いた樹脂成形体は、比較例1~4の粒子を用いた樹脂成形体と、同程度の熱伝導率であった。これらの結果から、本発明の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法により得られた実施例1~10の珪素含有酸化物被覆窒化アルミニウム粒子は、珪素含有酸化物被覆処理を行わなかった比較例1及び2の粒子や、第2工程の加熱温度が本発明の範囲外の比較例3及び4の粒子と比較して、窒化アルミニウム粒子の高い熱伝導性を維持し、かつ、窒化アルミニウム粒子の耐湿性を各段に向上できることが分かる。
特に、d50が30μm以下の窒化アルミニウム粒子を用いた実施例1~4及び9~10は、熱伝導率が高かった。
Figure 2024050865000008
Figure 2024050865000009

Figure 2024050865000016
Figure 2024050865000017

Claims (5)

  1. 窒化アルミニウム粒子と、前記窒化アルミニウム粒子の表面を覆う珪素含有酸化物被膜とを備える珪素含有酸化物被覆窒化アルミニウム粒子の製造方法であって、
    下記式(1)で示される構造を含む有機シリコーン化合物を溶媒に溶解した有機シリコーン化合物溶液と、前記窒化アルミニウム粒子とを混合した後、加熱して前記溶媒を除去することにより、前記有機シリコーン化合物により覆われた前記窒化アルミニウム粒子を得る第1工程と、
    前記有機シリコーン化合物により覆われた前記窒化アルミニウム粒子を300℃以上1000℃以下の温度で加熱する第2工程と、を備える珪素含有酸化物被覆窒化アルミニウム粒子の製造方法。
    Figure 2024050865000010
    (式(1)中、Rは炭素数が4以下のアルキル基である。)
  2. 前記式(1)で示される構造を含む有機シリコーン化合物が、下記式(2)で示される化合物および下記式(3)で示される化合物の少なくとも一方を含む請求項1に記載の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法。
    Figure 2024050865000011
    (式(2)中、R1およびR2は、それぞれ独立に、水素原子またはメチル基であり、R1およびR2の少なくとも一方は水素原子であり、mは0~10の整数である。)
    Figure 2024050865000012
    (式(3)中、nは3~6の整数である。)
  3. 前記窒化アルミニウム粒子は、体積累計のd50が10μm以上60μm以下である請求項1または2に記載の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法。
  4. 前記第1工程における前記加熱の温度は、35℃以上200℃以下である請求項1~3のいずれか1項に記載の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法。
  5. 請求項1~4のいずれか1項に記載の珪素含有酸化物被覆窒化アルミニウム粒子の製造方法によって製造された前記珪素含有酸化物被覆窒化アルミニウム粒子と、樹脂とを混合する混合工程を備える放熱性樹脂組成物の製造方法。
JP2024017860A 2019-11-12 2024-02-08 珪素含有酸化物被覆窒化アルミニウム粒子の製造方法および珪素含有酸化物被覆窒化アルミニウム粒子 Pending JP2024050865A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024017860A JP2024050865A (ja) 2019-11-12 2024-02-08 珪素含有酸化物被覆窒化アルミニウム粒子の製造方法および珪素含有酸化物被覆窒化アルミニウム粒子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019205080A JP7434818B2 (ja) 2019-11-12 2019-11-12 珪素含有酸化物被覆窒化アルミニウム粒子の製造方法および放熱性樹脂組成物の製造方法
JP2024017860A JP2024050865A (ja) 2019-11-12 2024-02-08 珪素含有酸化物被覆窒化アルミニウム粒子の製造方法および珪素含有酸化物被覆窒化アルミニウム粒子

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019205080A Division JP7434818B2 (ja) 2019-11-12 2019-11-12 珪素含有酸化物被覆窒化アルミニウム粒子の製造方法および放熱性樹脂組成物の製造方法

Publications (1)

Publication Number Publication Date
JP2024050865A true JP2024050865A (ja) 2024-04-10

Family

ID=73839073

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019205080A Active JP7434818B2 (ja) 2019-11-12 2019-11-12 珪素含有酸化物被覆窒化アルミニウム粒子の製造方法および放熱性樹脂組成物の製造方法
JP2024017860A Pending JP2024050865A (ja) 2019-11-12 2024-02-08 珪素含有酸化物被覆窒化アルミニウム粒子の製造方法および珪素含有酸化物被覆窒化アルミニウム粒子

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019205080A Active JP7434818B2 (ja) 2019-11-12 2019-11-12 珪素含有酸化物被覆窒化アルミニウム粒子の製造方法および放熱性樹脂組成物の製造方法

Country Status (6)

Country Link
US (1) US20220135805A1 (ja)
EP (1) EP3911598B1 (ja)
JP (2) JP7434818B2 (ja)
CN (1) CN113474411A (ja)
TW (1) TWI745158B (ja)
WO (1) WO2021095747A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6997834B1 (ja) * 2020-06-26 2022-01-24 デクセリアルズ株式会社 熱伝導性樹脂組成物及びこれを用いた熱伝導性シート
JP7229328B1 (ja) 2021-12-15 2023-02-27 信越化学工業株式会社 窒化ケイ素被覆窒化アルミニウム粉末の製造方法
CN118510720A (zh) 2022-12-16 2024-08-16 株式会社力森诺科 含有硅的氧化物被覆氮化铝粒子的制造方法
WO2024127697A1 (ja) * 2022-12-16 2024-06-20 株式会社レゾナック 珪素含有酸化物被覆窒化アルミニウム粒子の製造方法
CN116253571A (zh) * 2023-03-16 2023-06-13 无锡海古德新技术有限公司 一种氮化铝陶瓷造粒粉及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234712A (en) * 1992-06-08 1993-08-10 The Dow Chemical Company Method of making moisture resistant aluminum nitride powder and powder produced thereby
US5923945A (en) * 1996-11-13 1999-07-13 The Dow Chemical Company Method of preparing coated nitride powder and the coated powder produced thereby
JP2930298B1 (ja) * 1998-08-18 1999-08-03 信越化学工業株式会社 熱伝導性グリース組成物
JP4088768B2 (ja) * 2002-08-27 2008-05-21 東洋アルミニウム株式会社 窒化アルミニウム系粉末
US7608531B2 (en) * 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
JP4804023B2 (ja) 2005-04-08 2011-10-26 東洋アルミニウム株式会社 窒化アルミニウム系粉末及びその製造方法ならびにそれを含む熱伝導性材料
US8546476B2 (en) * 2009-07-14 2013-10-01 Sakai Chemical Industry Co., Ltd. Exoergic filler composition, resin composition, exoergic grease and exoergic coating composition
JP6169466B2 (ja) 2013-10-04 2017-07-26 株式会社トクヤマ 表面修飾粒子
JP6506545B2 (ja) * 2013-12-27 2019-04-24 株式会社半導体エネルギー研究所 半導体装置
JP6516656B2 (ja) * 2015-11-13 2019-05-22 株式会社トクヤマ 耐水性窒化アルミニウム粉末
CN106810699A (zh) * 2017-01-19 2017-06-09 佛山市功能高分子材料与精细化学品专业中心 一种有机硅树脂及其制备而成的双交联体系高性能有机硅导热绝缘胶

Also Published As

Publication number Publication date
EP3911598B1 (en) 2024-03-06
TWI745158B (zh) 2021-11-01
CN113474411A (zh) 2021-10-01
TW202132479A (zh) 2021-09-01
EP3911598A1 (en) 2021-11-24
JP7434818B2 (ja) 2024-02-21
WO2021095747A1 (en) 2021-05-20
US20220135805A1 (en) 2022-05-05
JP2021075435A (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
JP7419938B2 (ja) 珪素含有酸化物被覆窒化アルミニウム粒子
JP7434818B2 (ja) 珪素含有酸化物被覆窒化アルミニウム粒子の製造方法および放熱性樹脂組成物の製造方法
TWI734552B (zh) 被覆二氧化矽的氮化硼粒子之製造方法、散熱性樹脂組成物之製造方法
JP7395111B2 (ja) 無機粒子分散樹脂組成物及び無機粒子分散樹脂組成物の製造方法
JP7524889B2 (ja) 珪素含有酸化物被覆窒化アルミニウム粒子の製造方法及び樹脂組成物の製造方法
JP7468803B1 (ja) 珪素含有酸化物被覆窒化アルミニウム粒子の製造方法
JP2020073625A (ja) シリカ被覆窒化アルミニウム粒子分散樹脂組成物の製造方法、その硬化物からなるシートの製造方法、およびシートを備えるパワーデバイスの製造方法
WO2024127697A1 (ja) 珪素含有酸化物被覆窒化アルミニウム粒子の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240308