JP2024047316A - スターリング型の極低温冷凍機 - Google Patents

スターリング型の極低温冷凍機 Download PDF

Info

Publication number
JP2024047316A
JP2024047316A JP2022152867A JP2022152867A JP2024047316A JP 2024047316 A JP2024047316 A JP 2024047316A JP 2022152867 A JP2022152867 A JP 2022152867A JP 2022152867 A JP2022152867 A JP 2022152867A JP 2024047316 A JP2024047316 A JP 2024047316A
Authority
JP
Japan
Prior art keywords
expander cylinder
partition wall
refrigerant gas
expander
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022152867A
Other languages
English (en)
Inventor
善勝 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2022152867A priority Critical patent/JP2024047316A/ja
Publication of JP2024047316A publication Critical patent/JP2024047316A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

【課題】スターリング型の極低温冷凍機によるガス液化速度を向上する。【解決手段】スターリング型の極低温冷凍機10は、冷却ステージ18と、冷却ステージ18に接続された膨張器シリンダ20と、膨張器シリンダ20の周りに配置された少なくとも1つの仕切壁32とを備える。極低温冷凍機10は、冷却ステージ18および膨張器シリンダ20を囲む気密容器30と、ガスを気密容器30内に受け入れるためのガス導入口34とをさらに備えてもよい。仕切壁32は、膨張器シリンダ20に隣接する予冷エリア40および冷却ステージ18に隣接する液化エリア42を、ガスがガス導入口34から予冷エリア40を経由して液化エリア42に流入するように気密容器30内に形成されてもよい。【選択図】図1

Description

本発明は、スターリング型の極低温冷凍機に関する。
従来、例えばスターリング冷凍機やスターリング型パルス管冷凍機など、スターリング型の極低温冷凍機が知られている。
特開2000-121190号公報
本発明者は、スターリング型の極低温冷凍機について鋭意研究を重ねた結果、以下の課題を認識するに至った。スターリング型の極低温冷凍機の用途の一つとして、極低温下で凝縮する例えばヘリウムガスなど冷媒ガスの液化がある。ある典型的な構成では、極低温冷凍機によって冷却される極低温空間に冷媒ガスの配管が配置され、配管内を流れる冷媒ガスが極低温空間と熱交換をすることによって液化される。本発明者は、液化速度を上げるために、スターリング型の極低温冷凍機の膨張器シリンダと冷媒ガスとの熱交換を利用することを新たに提案する。これは、冷媒ガス配管を極低温冷凍機の膨張器シリンダに巻き付けるなどして固定することによって可能になる。しかしながら、スターリング型の極低温冷凍機では多くの場合、膨張器シリンダは非常に薄肉であるため、良好に熱交換できるように膨張器シリンダに冷媒ガス配管を固定する実用上利用可能な方法が無く、実現可能性が低い。
本発明のある態様の例示的な目的のひとつは、スターリング型の極低温冷凍機によるガス液化速度の向上にある。
本発明のある態様によると、スターリング型の極低温冷凍機は、冷却ステージと、冷却ステージに接続された膨張器シリンダと、膨張器シリンダの周りに配置された少なくとも1つの仕切壁と、を備える。
本発明によれば、スターリング型の極低温冷凍機によるガス液化速度を向上することができる。
実施の形態に係るガス液化用のスターリング型の極低温冷凍機を概略的に示す図である。 他の実施の形態に係るガス液化用のスターリング型の極低温冷凍機を概略的に示す図である。 実施の形態に係る極低温冷凍機の膨張器の他の一例の一部分を概略的に示す図である。
以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施の形態は例示であり、本発明の範囲を何ら限定するものではない。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
図1は、実施の形態に係るガス液化用のスターリング型の極低温冷凍機10を概略的に示す図である。この例では、極低温冷凍機10は、単段式のスターリング冷凍機であり、圧力振動源12と、接続管14と、コールドヘッドとも称される膨張器16とを備える。
極低温冷凍機10によって液化される冷媒ガスは、例えばヘリウムガス、水素ガス、酸素ガス、窒素ガスなど、極低温下で凝縮するさまざまなガスでありうる。また、極低温冷凍機10の作動ガスは典型的にヘリウムガスが使用される。ただし、これに限られず、適切な他のガスを極低温冷凍機10の作動ガスとして用いることも可能である。作動ガスは、極低温冷凍機10内に充填され封入されている。このように、液化される冷媒ガスと極低温冷凍機10の作動ガスは、同種のガスでありうるが、冷媒ガスが流れる冷媒ガス回路と極低温冷凍機10内の作動ガス回路は互いに隔離され、これらガスが合流することはない。
圧力振動源12は、一例として、対向して同軸に配置された2つの圧縮機シリンダ12aを有する、いわゆる対向二気筒のリニア圧縮機として構成されている。各圧縮機シリンダ12aには、圧縮機ピストン12bと、圧縮機ピストン12bをその軸方向に振動させるリニアアクチュエータ12cが収容されている。圧縮機ピストン12bは、フレクシャベアリング12dとも呼ばれる板バネまたは弾性支持部材を介して、径方向および周方向の変位は規制されつつ軸方向には変位できるように圧縮機シリンダ12aに弾性的に支持されている。また圧縮機シリンダ12aは、リニアアクチュエータ12cを固定的に支持する。圧縮機シリンダ12aと圧縮機ピストン12bとの間に圧縮室12eが形成される。接続管14の一端が圧縮室12eに接続されている。
リニアアクチュエータ12cの駆動により、圧縮機ピストン12bが軸方向に振動する。それにより圧縮室12eの容積が振動的に増減し、圧縮室12e内の作動ガスの圧力振動が生成される。一例として、圧力振動の平均圧力は例えばメガパスカルのオーダ、例えば約1~4MPaの範囲にあり、圧力振幅は例えば約0.5~1MPa以内の範囲にあり、周波数は例えば約50~60Hzの範囲にあってもよい。
接続管14は、圧力振動源12と膨張器16との間で相互に双方向に作動ガスを流すことができるように圧力振動源12と膨張器16とを接続する。よって、圧力振動源12により生成される作動ガスの圧力振動は、接続管14を介して膨張器16に伝達され、それにより膨張器16内に圧力振動を誘起することができる。なお、接続管14は、フレキシブル管であってもよいし、剛性管であってもよい。
膨張器16は、冷却ステージ18と、膨張器シリンダ20と、ディスプレーサ22と、耐圧容器24と、支持体26とを備える。冷却ステージ18および膨張器シリンダ20が支持体26の一方側に配置され、耐圧容器24が支持体26の他方側に配置される。耐圧容器24と膨張器シリンダ20の一端とが支持体26に気密に結合され、冷却ステージ18が膨張器シリンダ20の他端に気密に結合されて、膨張器16内に耐圧空間が形成される。この耐圧空間に作動ガスが封入されている。ディスプレーサ22は、圧力振動源12によって膨張器16内に生成される圧力振動によって軸方向(図1に示される膨張器16の中心軸Cの方向)に振動するように、膨張器16の耐圧空間に配置されている。耐圧空間において、ディスプレーサ22と支持体26との間には第1空洞28が形成され、ディスプレーサ22と冷却ステージ18との間には作動ガスの膨張空間としての第2空洞29が形成される。
冷却ステージ18は、液化される冷媒ガスを効率的に冷却するために、例えば銅などの熱伝導率の高い材料で形成される。膨張器シリンダ20は、冷却ステージ18への膨張器シリンダ20を通じた熱侵入を抑制するために、例えばステンレス鋼など、冷却ステージ18に比べて熱伝導率の低い材料で形成される。耐圧容器24、支持体26など耐圧空間を形成する他の部材は、例えばステンレス鋼など高強度の材料で形成される。膨張器シリンダ20と冷却ステージ18との結合、および膨張器シリンダ20と支持体26との結合は、例えばろう付けなど適宜の接合手法を用いて行われうる。
支持体26は、一体形成された取付フランジ26a、シリンダ固定部26b、およびディスプレーサ支持部26cを備える。なお、これらは別部品として用意され互いに気密に結合されて、支持体26を形成してもよい。取付フランジ26aの一方側にシリンダ固定部26bが、他方側にディスプレーサ支持部26cが設けられている。取付フランジ26aおよびシリンダ固定部26bには、膨張器16の軸方向に貫通する中心開口が形成されており、この中心開口にディスプレーサ22が挿入されている。ディスプレーサ支持部26cは、耐圧容器24の内側に配置されている。
耐圧容器24は、一端が開放されたドーム状の形状を有し、この開放端が取付フランジ26aに固定されている。耐圧容器24の開放端は、取付フランジ26aに取付可能なフランジを有する。この耐圧容器24のフランジは、冷却ステージ18および膨張器シリンダ20とは反対側で取付フランジ26aに固定される。耐圧容器24のフランジと取付フランジ26aは、例えばOリングなどのシール部材を挟み込むようにして例えばボルトなど締結部材で締結される。
ディスプレーサ22は、ディスプレーサロッド22aと蓄冷器22bを備える。ディスプレーサロッド22aは、フレクシャベアリング23とも呼ばれる板バネまたは弾性支持部材を介して、径方向および周方向の変位は規制されつつ軸方向には変位できるように、ディスプレーサ支持部26cに弾性的に支持されている。ディスプレーサロッド22aは、耐圧容器24内から支持体26の中心開口を貫通して膨張器シリンダ20内へと延びている。この中心開口でディスプレーサロッド22aと支持体26との間にはクリアランスシールが形成されており、ディスプレーサロッド22aは支持体26に対して摺動可能である。ディスプレーサロッド22aは、例えばステンレス鋼など適宜の材料で形成される。
蓄冷器22bは、膨張器シリンダ20内に配置され、膨張器シリンダ20に対し摺動可能にディスプレーサロッド22aに支持されている。蓄冷器22bは、ディスプレーサロッド22aの先端に取り付けられ、膨張器シリンダ20内で冷却ステージ18に向かって延びている。蓄冷器22bは、蓄冷器シリンダとその内部に充填された蓄冷材とを備える。蓄冷器シリンダは、例えばステンレス鋼など適宜の材料で形成される。蓄冷材は、例えば銅などの熱伝導率の高い材料で形成される。蓄冷材は、そうした高熱伝導材料の金網の積層体であってもよい。
第1空洞28は、ディスプレーサロッド22aと蓄冷器22bとの接続部と支持体26のシリンダ固定部26bとの間に形成されている。圧力振動源12とは反対側の接続管14の他端が取付フランジ26aに取り付けられ、接続管14は、第1空洞28に接続されている。よって、第1空洞28は、圧力振動源12の圧縮室12eに接続管14を介して接続されている。また、第1空洞28は、ディスプレーサロッド22aの内部流路を通じて蓄冷器22bの一端に接続されている。第2空洞29は、ディスプレーサロッド22aとは反対側の蓄冷器22bの先端と冷却ステージ18との間に形成されている。第2空洞29は、蓄冷器22bに接続されている。したがって、極低温冷凍機10の作動ガスは、第1空洞28から蓄冷器22bを通じて第2空洞29に流入し、また、第2空洞29から蓄冷器22bを通じて第1空洞28へと戻ることができる。
極低温冷凍機10の運転中、ディスプレーサ22は、圧力振動源12の動作によって第1空洞28に誘起される作動ガスの圧力振動によって振動する。このとき、第2空洞29には、ディスプレーサ22の振動と同期してこれと適切な位相差をもつ圧力振動が第1空洞28から蓄冷器22bを通じて伝わる。これにより、第2空洞29には、冷凍サイクル(例えば、具体的には、逆スターリングサイクル)が生成される。このようにして、極低温冷凍機10は、冷媒ガスが凝縮する温度(つまり冷媒ガスの沸点)よりも低い所望の温度まで冷却ステージ18を冷却することができる。冷却ステージ18と冷媒ガスの熱交換により、冷媒ガスは冷却され液化される。
このとき、膨張器シリンダ20の高温端(第1空洞28側の端部)は例えば室温など周囲温度にあるが、冷却ステージ18に接続された膨張器シリンダ20の低温端(第2空洞29側の端部)は冷却ステージ18とともに冷却されうる。膨張器シリンダ20の表面には、周囲温度から冷却ステージ温度へと変化する温度分布がシリンダ軸方向に生成される。
冷媒ガスを冷却するために、冷却ステージ18だけでなく、膨張器シリンダ20と冷媒ガスとの熱交換が利用されてもよい。この場合、冷媒ガスから膨張器シリンダ20を通じた冷却ステージ18への熱侵入に起因して極低温冷凍機10の冷凍能力がいくらか低下しうる。しかしながら、膨張器シリンダ20と冷媒ガスとの熱交換により冷媒ガスを効果的に予冷することができ、冷却ステージ18での冷媒ガスの液化速度を高めることができる。
図1に示されるように、極低温冷凍機10は、冷媒ガスの液化のために、冷却ステージ18および膨張器シリンダ20を囲む気密容器30と、気密容器30内に配置された複数の仕切壁32とを備える。複数の仕切壁32は、後述のように、冷媒ガスと膨張器シリンダ20との熱交換を促進するための冷媒ガス流路を気密容器30内に形成する。
気密容器30は、支持体26と気密に結合される。気密容器30は、一端が開放された例えば円筒状のドーム状の形状を有する。気密容器30の開放端は、耐圧容器24とは反対側で取付フランジ26aに固定される。気密容器30と取付フランジ26aは、例えばOリングなどのシール部材を挟み込むようにして例えばボルトなど締結部材で締結される。気密容器30は、例えばステンレス鋼など適宜の材料で形成される。このようにして、気密容器30は支持体26とともに、冷却ステージ18および膨張器シリンダ20を囲む気密空間を形成する。
気密容器30には、冷媒ガスを気密容器30内に受け入れるためのガス導入口34が設けられている。ガス導入口34は、気密容器30の外に設けられた図示しない冷媒ガス源に接続されてもよい。冷媒ガス源からの冷媒ガスが、ガス導入口34を通じて気密容器30の気密空間に供給されうる。こうして、気密容器30内に冷却ステージ18および膨張器シリンダ20を取り巻く冷媒ガス雰囲気が生成される。
なお、ガス導入口34は、支持体26(例えば取付フランジ26a)に設けられてもよい。また、ガス導入口34は、冷媒ガス源として液化ガスタンク38に接続され、液化ガスタンク38で気化した冷媒ガスが液化ガスタンク38からガス導入口34を通じて気密容器30に供給されてもよい。
また、気密容器30には、冷媒ガスと冷却ステージ18の熱交換により冷却され液化した冷媒ガスを気密容器30の外に取り出すための液化ガス出口36が設けられている。あるいは、液化ガス出口36は、支持体26(例えば取付フランジ26a)に設けられてもよい。液化ガス出口36は、液化ガスタンク38に接続されている。液化ガスタンク38は、液化した冷媒ガスを貯留するために気密容器30の外に設けられている。
複数の仕切壁32は、気密容器30内の気密空間を予冷エリア40と液化エリア42に分ける。予冷エリア40は、膨張器シリンダ20に隣接する気密容器30内の区域であり、液化エリア42は、冷却ステージ18に隣接する気密容器30内の区域である。複数の仕切壁32は、以下に述べるように、冷媒ガスがガス導入口34から予冷エリア40を経由して液化エリア42に流入するように、予冷エリア40および液化エリア42を形成する。ガス導入口34は予冷エリア40に接続され、液化ガス出口36は液化エリア42に接続されている。
複数の仕切壁32は、互いに間隔を空けて膨張器シリンダ20に沿って配置されている。よって、予冷エリア40は、複数の仕切壁32によって複数のサブエリアへと軸方向に仕切られている。また、複数の仕切壁32のうち冷却ステージ18に最も近い仕切壁32によって、予冷エリア40と液化エリア42が分けられている。図示の例では、液化エリア42は一つのエリアであるが、仕切壁32を追加して液化エリア42が複数のサブエリアに仕切られてもよい。仕切壁32の数は任意であり、多数の仕切壁32が設けられ、予冷エリア40及び/または液化エリア42が多数のサブエリアに仕切られてもよい。
複数の仕切壁32は、膨張器シリンダ20から延出する。各仕切壁32は、膨張器シリンダ20の中心軸に垂直な平面に沿って、膨張器シリンダ20の外周面から気密容器30に向かって径方向外向きに延びている。仕切壁32は、膨張器シリンダ20から外向きに突出する薄板のフランジであってもよく、上面視で(膨張器シリンダ20の軸方向から見て)、例えば円状の形状を有してもよい。
仕切壁32は、膨張器シリンダ20の一部であってもよい。言い換えると、仕切壁32は、膨張器シリンダ20と一体形成されてもよい。仕切壁32は、膨張器シリンダ20と同じ材料、例えばステンレス鋼で形成されてもよい。母材のブロックを例えば切削など加工することによって、仕切壁32を一体的に有する膨張器シリンダ20が製作されてもよい。このようにすれば、外周面から仕切壁32が延出した膨張器シリンダ20を比較的容易に製造することができる。なお、適用可能であれば、例えばろう付けなど他の適宜の接合方法により仕切壁32が膨張器シリンダ20に接合されてもよい。
図示されるように、仕切壁32の外周部は、気密容器30の内周面に達している。例えば、上述のように気密容器30が円筒状の形状を有し、仕切壁32が円板状である場合には、仕切壁32の外径を気密容器30の内径と等しくすることにより、仕切壁32の外周部は、気密容器30の内周面に接触することになる。このようにすれば、仕切壁の外周部と気密容器の内周面との間の隙間を塞ぐことができる。こうした隙間が存在した場合、そこを通る冷媒ガスの流れは、膨張器シリンダ20と熱交換をほとんど又は全くしないであろうと予想される。隙間を塞ぐことにより、この問題に対処することができる。
複数の仕切壁32の各々は、その仕切壁32の一方側から他方側へと冷媒ガスを流すための1つ又は複数の開口部33を有する。開口部33は、仕切壁32に形成された貫通穴、または仕切壁32の外周部に形成された切り欠きであってもよい。仕切壁32が予冷エリア40をサブエリアに仕切るものである場合には、この仕切壁32の開口部33は、仕切壁32の一方側に面するサブエリアからの冷媒ガス出口であり、仕切壁32の他方側に面する隣りのサブエリアへの冷媒ガス入口でもある。また、仕切壁32が予冷エリア40と液化エリア42を仕切る最終の仕切壁32である場合には、この仕切壁32の開口部33は、予冷エリア40からの冷媒ガス出口であり、液化エリア42への冷媒ガス入口でもある。
各仕切壁32の開口部33は、その仕切壁32上の任意の位置に形成されうる。例えば、開口部33は、膨張器シリンダ20に隣接する仕切壁32の内周部に形成されてもよいし、気密容器30に隣接する仕切壁32の外周部に形成されてもよい。あるいは、開口部33は、仕切壁32の内周部と外周部の中間に形成されてもよい。
仮に、各仕切壁32の開口部33が同じ位置に配置されたとすると、これら開口部33は、上面視で(膨張器シリンダ20の軸方向から見て)、膨張器シリンダ20の軸方向に沿って一直線上に整列されることになる。冷媒ガスは、これら開口部33を直通して流れることが予想される。このような開口部33の直線状配列が膨張器シリンダ20に隣接配置されている場合には、開口部33を直通する冷媒ガス流れと膨張器シリンダ20は相応の熱交換を行えるかもしれない。しかし、開口部33の直線状配列が膨張器シリンダ20から離れて配置されている場合には、冷媒ガスと膨張器シリンダ20の熱交換が不足する不満足な結果に終わるかもしれない。
そこで、複数の仕切壁32の開口部33は、(例えば一直線上に)整列されないように配置されてもよい。複数の仕切壁32の開口部33は、上面視で、隣接する2つの仕切壁32のうち一方の仕切壁32の開口部33と他方の仕切壁32の開口部33とが重ならないように配置されてもよい。例えば、隣接する2つの仕切壁32のうち一方の仕切壁32の開口部33と他方の仕切壁32の開口部33とが膨張器シリンダ20を挟んで互いに反対側に配置されてもよい(図において、一方の仕切壁32の開口部33が膨張器シリンダ20に対して左側に配置され、他方の仕切壁32の開口部33が膨張器シリンダ20に対して右側に配置されてもよい)。このようにすれば、冷媒ガスは、複数の仕切壁32によって蛇行しながら膨張器シリンダ20の周りを流れることができ、冷媒ガスと膨張器シリンダ20の効果的な熱交換が可能になるものと期待される。
図1を参照して、極低温冷凍機10の動作を述べる。極低温冷凍機10の運転中、冷却ステージ18は上述のように、液化されるべき冷媒ガスの沸点よりも低い温度まで冷却されている。このとき、膨張器シリンダ20外周面にはその軸方向に(つまり支持体26から冷却ステージ18に向かって)、周囲温度から冷却ステージ温度へと変化する温度分布が生成されている。
周囲温度を有する冷媒ガスがガス導入口34から気密容器30内に導入される。冷媒ガスは、気密容器30(および支持体26)と最初の仕切壁32との間に形成される予冷エリア40の最初のサブエリアに入る。冷媒ガスは、この最初の仕切壁32に沿って、膨張器シリンダ20と交差するように膨張器シリンダ20の周りを流れる。このサブエリアに露出される膨張器シリンダ20の外周面は、上述の軸方向温度分布に従って周囲温度またはそれよりいくらか低い温度を有する。したがって、冷媒ガスが膨張器シリンダ20の周りを通過するときこのサブエリアでの膨張器シリンダ20の露出表面との熱交換によりこの露出表面の温度に向けて冷却される。こうしていくらか冷却された冷媒ガスは、この仕切壁32の開口部33に向かう。この開口部33は、膨張器シリンダ20に対してガス導入口34とは反対側に配置されていてもよい。開口部33を通って最初の仕切壁32を通過した冷媒ガスは、隣りの2番目のサブエリアに入る。
同様にして、冷媒ガスは、2番目の仕切壁32に沿って膨張器シリンダ20に向けて流れる。2番目のサブエリアにおける膨張器シリンダ20の露出表面は前述の最初のサブエリアでの膨張器シリンダ20の露出表面よりも低い温度に冷却されている。冷媒ガスは、このサブエリアでの膨張器シリンダ20の露出表面との熱交換によりその温度に向けてさらに冷却される。冷却された冷媒ガスは、この仕切壁32の開口部33に向かう。この開口部33は上述のように、膨張器シリンダ20に対して最初の仕切壁32の開口部33とは反対側に配置されていてもよい。冷媒ガスは、開口部33を通ってさらに次のサブエリアに入る。
このようにして、冷媒ガスは複数の仕切壁32および対応するサブエリアを順番に流れながら、膨張器シリンダ20の軸方向温度分布に従って段々と低い温度へと予冷されていく。冷媒ガスは、最終のサブエリアでは、冷却ステージ18の冷却温度に近い温度まで予冷されうる。冷媒ガスは、最終の仕切壁32の開口部33を通過して予冷エリア40を出て液化エリア42に入る。冷媒ガスは上述のように予冷されているので、液化エリア42において冷却ステージ18との熱交換により凝縮温度へと速やかに冷却され液化される。液化した冷媒ガスは、液化ガス出口36を通じて気密容器30の外へと流れ、液化ガスタンク38に貯留される。
したがって、この実施の形態によると、極低温冷凍機10は、仕切壁32を利用して冷媒ガスと膨張器シリンダ20との熱交換を促進し、それにより冷媒ガスを効率的に予冷し、冷媒ガスの液化速度を向上することができる。
図2は、他の実施の形態に係るガス液化用のスターリング型の極低温冷凍機10を概略的に示す図である。この例では、極低温冷凍機10は、単段式のスターリング型パルス管冷凍機であり、圧力振動源12と、接続管14と、コールドヘッドとも称される膨張器16とを備える。以下の説明では、図1に示される実施の形態と共通する構成には同じ参照符号を付し、その詳細な説明は冗長を避けるため適宜省略する。
膨張器16は、冷却ステージ18と、膨張器シリンダ20と、耐圧容器24と、支持体26とを備える。冷却ステージ18および膨張器シリンダ20が支持体26の一方側に配置され、耐圧容器24が支持体26の他方側に配置される。耐圧容器24と膨張器シリンダ20の一端とが支持体26に気密に結合され、冷却ステージ18が膨張器シリンダ20の他端に気密に結合されて、膨張器16内に耐圧空間が形成される。この耐圧空間に作動ガスが封入されている。
膨張器シリンダ20は、蓄冷器50とパルス管52を備える。蓄冷器50とパルス管52の低温端は、冷却ステージ18に接続されている。膨張器16は、蓄冷器50がパルス管52を取り囲むように蓄冷器50とパルス管52が同軸に配置された、いわゆる同軸型の構成を有する。極低温冷凍機10の作動ガスの流路は冷却ステージ18の内部で軸方向に反対向きに折り返される。蓄冷器50とパルス管52の高温端は、支持体26に固定されている。蓄冷器50の高温端には接続管14が接続され、パルス管52の高温端には位相制御部54が接続されている。
この実施の形態では、位相制御部54は、パルス管52の高温端にイナータンス管54aと、イナータンス管54aを介してパルス管52の高温端に接続されたバッファ容積54bとを有する。バッファ容積54bは、耐圧容器24の内部空間に相当し、イナータンス管54aを収容する。イナータンス管54aは、パルス管52の高温端から支持体26を軸方向に貫通してバッファ容積54bへと延び、支持体26とは反対側の耐圧容器24のドーム状壁面近傍でその壁面に沿って耐圧容器24の側壁へ向けて湾曲され、さらに耐圧容器24の側壁に沿ってコイル状に湾曲されている。イナータンス管54aの開放端(パルス管52とは反対側の管端)は支持体26の近傍に位置し、この開放端を通じてバッファ容積54bとイナータンス管54aとの作動ガスの流通が可能となる。
接続管14は、蓄冷器50の高温端に接続されており、圧力振動源12で生成される作動ガスの圧力振動は接続管14を介して膨張器16に伝達され、膨張器16内で蓄冷器50と冷却ステージ18の内部流路を通じてパルス管52内に伝達され、さらに位相制御部54へと伝達されることになる。
極低温冷凍機10は、圧力振動源12の動作によってパルス管52内に冷媒ガスの圧力振動が誘起され、位相制御部54の作用により圧力振動と同期して適切な位相遅れをもって、パルス管52内で冷媒ガスの変位振動すなわちガスピストンの往復動が生じるように、設計されている。ある圧力を保持しながらパルス管52内を上下に周期的に往復する冷媒ガスの動きは、しばしば「ガスピストン」と称され、極低温冷凍機10の挙動を説明するためによく用いられる。ガスピストンがパルス管52の高温端またはその近傍にあるときパルス管52の低温端で冷媒ガスが膨張し、寒冷が発生する。
このような冷凍サイクル(例えば、具体的には、逆スターリングサイクル)を繰り返すことにより、極低温冷凍機10は、冷却ステージ18を所望の極低温に冷却することができる。したがって、極低温冷凍機10は、冷媒ガスが凝縮する温度(つまり冷媒ガスの沸点)よりも低い所望の温度まで冷却ステージ18を冷却することができる。冷却ステージ18と冷媒ガスの熱交換により、冷媒ガスは冷却され液化される。
このとき、膨張器シリンダ20の高温端は例えば室温など周囲温度にあるが、冷却ステージ18に接続された膨張器シリンダ20の低温端は冷却ステージ18とともに冷却されうる。膨張器シリンダ20(つまり蓄冷器50)の表面には、周囲温度から冷却ステージ温度へと変化する温度分布がシリンダ軸方向に生成される。
図2に示される極低温冷凍機10も、図1に示される極低温冷凍機10と同様の冷媒ガス液化部、すなわち気密容器30および複数の仕切壁32を備える。気密容器30は、冷却ステージ18および膨張器シリンダ20を囲み、支持体26に固定されている。仕切壁32は、気密容器30内に配置され、冷媒ガスと膨張器シリンダ20との熱交換を促進するための冷媒ガス流路を気密容器30内に形成する。
気密容器30(または支持体26)には、冷媒ガスを気密容器30内に受け入れるためのガス導入口34が設けられている。また、気密容器30には、冷媒ガスと冷却ステージ18の熱交換により冷却され液化した冷媒ガスを気密容器30の外に取り出すための液化ガス出口36が設けられている。液化ガス出口36は、気密容器30の外に設けられた液化ガスタンク38に接続されている。
複数の仕切壁32は、膨張器シリンダ20に隣接する予冷エリア40と冷却ステージ18に隣接する液化エリア42に気密容器30内の気密空間を分ける。複数の仕切壁32は、冷媒ガスがガス導入口34から予冷エリア40を経由して液化エリア42に流入するように、予冷エリア40および液化エリア42を気密容器30内に形成する。
上述の実施の形態と同様に、複数の仕切壁32は、互いに間隔を空けて膨張器シリンダ20に沿って配置され、予冷エリア40は、複数の仕切壁32によって複数のサブエリアに軸方向に仕切られている。複数の仕切壁32は、膨張器シリンダ20から延出し、仕切壁32の外周部は、気密容器30の内周面に達している。複数の仕切壁32の各々は、その仕切壁32の一方側から他方側へと冷媒ガスを流すための1つ又は複数の開口部33を有する。
ガス導入口34から気密容器30内に導入される冷媒ガスは、気密容器30内の予冷エリア40で仕切壁32に沿って膨張器シリンダ20の周りを蛇行状に流れながら、膨張器シリンダ20の軸方向温度分布に従って段々と低い温度へと予冷されていく。予冷された冷媒ガスは、液化エリア42において冷却ステージ18との熱交換により凝縮温度へと速やかに冷却され液化される。液化した冷媒ガスは、液化ガス出口36を通じて気密容器30の外へと流れ、液化ガスタンク38に貯留される。
したがって、極低温冷凍機10は、仕切壁32を利用して冷媒ガスと膨張器シリンダ20との熱交換を促進し、それにより冷媒ガスを効率的に予冷し、冷媒ガスの液化速度を向上することができる。
極低温冷凍機10の冷媒ガス液化部に設けられる仕切壁32は、他の構成をとることもできる。上述のスターリング冷凍機またはスターリング型パルス管冷凍機に適用しうる他の例示的な仕切壁32を以下に述べる。
図3は、実施の形態に係る極低温冷凍機の膨張器16の他の一例の一部分(冷媒ガス液化部)を概略的に示す図である。図3に示されるように、一つの仕切壁32が、膨張器シリンダ20の周りにらせん状に延びている。仕切壁32は、膨張器シリンダ20に隣接する予冷エリア40と冷却ステージ18に隣接する液化エリア42に気密容器30内の気密空間を分ける。仕切壁32は、冷媒ガスがガス導入口34から予冷エリア40を経由して液化エリア42に流入するように、予冷エリア40および液化エリア42を気密容器30内に形成する。仕切壁32は、膨張器シリンダ20から延出し、仕切壁32の外周部は、気密容器30の内周面に達している。予冷エリア40がらせん状の仕切壁32によって膨張器シリンダ20の周りにらせん状に形成されるため、上述の実施の形態とは異なり、仕切壁32には開口部が形成される必要はない。
ガス導入口34から気密容器30内に導入される冷媒ガスは、気密容器30内の予冷エリア40で仕切壁32に沿って膨張器シリンダ20の周りをらせん状に流れながら、膨張器シリンダ20の軸方向温度分布に従って段々と低い温度へと予冷されていく。予冷された冷媒ガスは、液化エリア42において冷却ステージ18との熱交換により凝縮温度へと速やかに冷却され液化される。液化した冷媒ガスは、液化ガス出口36を通じて気密容器30の外へと流れ、外部の液化ガスタンクに貯留される。
したがって、図3に示される膨張器16は、仕切壁32を利用して冷媒ガスと膨張器シリンダ20との熱交換を促進し、それにより冷媒ガスを効率的に予冷し、冷媒ガスの液化速度を向上することができる。
以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。ある実施の形態に関連して説明した種々の特徴は、他の実施の形態にも適用可能である。組合せによって生じる新たな実施の形態は、組み合わされる実施の形態それぞれの効果をあわせもつ。
上述の実施の形態では、仕切壁32が膨張器シリンダ20と一体形成されている。しかし、ある実施の形態では、仕切壁32は、気密容器30と一体形成されていてもよい。仕切壁32は、気密容器30の内周面から膨張器シリンダ20の外周面に向かって延出してもよい。仕切壁32の内周部が膨張器シリンダ20の外周面に達していてもよい。
上述の実施の形態では、仕切壁32は、膨張器シリンダ20の軸方向に垂直な径方向に延びている。しかし、ある実施の形態では、複数の仕切壁32が、膨張器シリンダ20に設けられ、膨張器シリンダ20の軸方向に延在してもよい。複数の仕切壁32は、膨張器シリンダ20の周りに放射状に配置されてもよい。この場合、各仕切壁32は、膨張器シリンダ20によって冷却され、膨張器シリンダ20と同様の軸方向温度分布を有しうる。気密容器30内に導入された冷媒ガスは、仕切壁32が配置される予冷エリア40で仕切壁32および膨張器シリンダ20との熱交換により予冷され、液化エリア42で最終的に液化されてもよい。このようにしても、極低温冷凍機10は、仕切壁32を利用して冷媒ガスと膨張器シリンダ20との熱交換を促進し、それにより冷媒ガスを効率的に予冷し、冷媒ガスの液化速度を向上することができる。
上述の実施の形態では、気密容器30が膨張器シリンダ20の全体を冷却ステージ18とともに囲んでいる。しかし、気密容器30が膨張器シリンダ20の全体を囲むことは必須ではない。ある実施の形態では、気密容器30は、冷却ステージ18と冷却ステージ18に近接する膨張器シリンダ20の一部のみを囲むものであってもよい。こうした気密容器30内に仕切壁32が配置されてもよい。
上述の実施の形態では、単段式のスターリング型の極低温冷凍機を例として説明しているが、ある実施の形態においては、極低温冷凍機10は、二段式のスターリング型の極低温冷凍機(すなわち、二段式のスターリング冷凍機、または二段式のスターリング型パルス管冷凍機)として構成することも可能である。この場合、実施の形態に係る冷媒ガス液化部、すなわち気密容器30および少なくとも1つの仕切壁32は、第1段の膨張器シリンダおよび第2段の膨張器シリンダのうち少なくとも一方に適用されてもよい。
図2に示す実施の形態では、同軸型のスターリング型パルス管冷凍機を例として説明しているが、ある実施の形態においては、冷媒ガス液化部は、蓄冷器とパルス管が直線状に接続される、いわゆるインライン型の膨張器シリンダ20に適用されてもよい。この場合、冷媒ガス液化部は、蓄冷器およびパルス管のうち少なくとも一方に適用されてもよい。
実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用の一側面を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
10 極低温冷凍機、 16 膨張器、 18 冷却ステージ、 20 膨張器シリンダ、 30 気密容器、 32 仕切壁、 33 開口部、 34 ガス導入口、 40 予冷エリア、 42 液化エリア。

Claims (6)

  1. 冷却ステージと、
    前記冷却ステージに接続された膨張器シリンダと、
    前記膨張器シリンダの周りに配置された少なくとも1つの仕切壁と、を備えることを特徴とするスターリング型の極低温冷凍機。
  2. 前記冷却ステージおよび前記膨張器シリンダを囲む気密容器と、
    ガスを前記気密容器内に受け入れるためのガス導入口と、をさらに備え、
    前記仕切壁は、前記膨張器シリンダに隣接する予冷エリアおよび前記冷却ステージに隣接する液化エリアを、前記ガスが前記ガス導入口から前記予冷エリアを経由して前記液化エリアに流入するように前記気密容器内に形成することを特徴とする請求項1に記載のスターリング型の極低温冷凍機。
  3. 前記仕切壁は、前記膨張器シリンダから延出することを特徴とする請求項1に記載のスターリング型の極低温冷凍機。
  4. 前記仕切壁の外周部は、前記冷却ステージおよび前記膨張器シリンダを囲む気密容器の内周面に達していることを特徴とする請求項3に記載のスターリング型の極低温冷凍機。
  5. 複数の仕切壁が、互いに間隔を空けて前記膨張器シリンダに沿って配置され、
    各仕切壁は、当該仕切壁の一方側から当該仕切壁の他方側へとガスを流すための開口部を有することを特徴とする請求項1から4のいずれかに記載のスターリング型の極低温冷凍機。
  6. 前記仕切壁は、前記膨張器シリンダの周りにらせん状に延びていることを特徴とする請求項1から4のいずれかに記載のスターリング型の極低温冷凍機。
JP2022152867A 2022-09-26 2022-09-26 スターリング型の極低温冷凍機 Pending JP2024047316A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022152867A JP2024047316A (ja) 2022-09-26 2022-09-26 スターリング型の極低温冷凍機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022152867A JP2024047316A (ja) 2022-09-26 2022-09-26 スターリング型の極低温冷凍機

Publications (1)

Publication Number Publication Date
JP2024047316A true JP2024047316A (ja) 2024-04-05

Family

ID=90527104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022152867A Pending JP2024047316A (ja) 2022-09-26 2022-09-26 スターリング型の極低温冷凍機

Country Status (1)

Country Link
JP (1) JP2024047316A (ja)

Similar Documents

Publication Publication Date Title
CN109210818B (zh) 超低温制冷机及超低温制冷机的磁屏蔽结构
US20160097567A1 (en) Cryogenic refrigerator
JP2012057920A (ja) クライオポンプ及び極低温冷凍機
JP3974869B2 (ja) パルス管冷凍機
JP2007040647A (ja) パルス管型蓄熱機関
JP2003523495A (ja) 周期的に作動する冷凍機
CN108800643B (zh) 一种脉管型自由活塞斯特林制冷机及制冷方法
JP2024047316A (ja) スターリング型の極低温冷凍機
JP2005106297A (ja) 極低温冷凍機
JP7265363B2 (ja) 極低温冷凍機および極低温システム
JP4520676B2 (ja) 冷却装置
JPH03117855A (ja) 蓄冷型極低温冷凍機
US10228164B2 (en) Stirling refrigerator
JP2019128082A (ja) 蓄冷型冷凍機
WO2003001127A1 (en) Cold storage type freezing machine
WO2020235555A1 (ja) 極低温装置およびクライオスタット
WO2024014117A1 (ja) 極低温システムおよび極低温システムの制御方法
WO2024111339A1 (ja) ジュール・トムソン冷凍機
JP2022085122A (ja) パルス管冷凍機
JP2004069268A (ja) パルスチューブ冷凍機
WO2022181475A1 (ja) パルス管冷凍機
WO2023145302A1 (ja) 極低温冷却装置
JPH04124561A (ja) スターリング冷凍機の膨張機
JP2024057242A (ja) 極低温冷凍機の圧縮機
JPH10325626A (ja) パルス管冷凍機