WO2022181475A1 - パルス管冷凍機 - Google Patents
パルス管冷凍機 Download PDFInfo
- Publication number
- WO2022181475A1 WO2022181475A1 PCT/JP2022/006609 JP2022006609W WO2022181475A1 WO 2022181475 A1 WO2022181475 A1 WO 2022181475A1 JP 2022006609 W JP2022006609 W JP 2022006609W WO 2022181475 A1 WO2022181475 A1 WO 2022181475A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pulse tube
- volume
- inertance
- buffer
- expander
- Prior art date
Links
- 238000000034 method Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 24
- 238000001816 cooling Methods 0.000 description 20
- 239000003507 refrigerant Substances 0.000 description 18
- 238000010586 diagram Methods 0.000 description 8
- 230000004323 axial length Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005549 size reduction Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
Definitions
- the present invention relates to a pulse tube refrigerator, for example, a Stirling pulse tube refrigerator.
- a pulse tube refrigerator that uses a pressure vibration source such as a linear compressor.
- a pulse-tube refrigerator is also called a Stirling-type pulse-tube refrigerator because it is common to the Stirling refrigerator in that it utilizes a pressure-oscillated flow generated by a pressure-oscillation source.
- a long thin tube for example, a tube with an inner diameter of several millimeters and a tube length of several meters wound into a coil is generally used for phase control. (or inertance tube).
- Pulse tube refrigerators often adopt a design in which the inertance tube is housed in the buffer tank. Since the inertance tube has a length of, for example, several meters as described above, it occupies a considerable volume in the buffer tank. In addition to the volume required for the buffer tank, a storage space for the inertance tube must be secured within the buffer tank, so the size of the buffer tank tends to be large. This can be a constraint in miniaturizing the pulse tube refrigerator.
- One exemplary object of an aspect of the present invention is to provide technology that contributes to miniaturization of pulse tube refrigerators.
- a pulse tube refrigerator includes a pulse tube, an inertance volume connected to an end of the pulse tube, and a phase control section including a buffer volume connected to the pulse tube via the inertance volume. and at least one of the inertance volume and the buffer volume are arranged around the pulse tube.
- FIG. 1 is a diagram schematically showing a pulse tube refrigerator according to an embodiment
- FIG. It is a figure which shows roughly the expander of the pulse tube refrigerator which concerns on embodiment.
- FIG. 5 is a diagram schematically showing an expander of a pulse tube refrigerator according to a comparative example; It is a figure which illustrates the method of installation to the vacuum container of the expander which concerns on embodiment.
- FIG. 10 is a diagram schematically showing an expander of a pulse tube refrigerator according to another embodiment;
- FIG. 1 is a diagram schematically showing a pulse tube refrigerator according to an embodiment.
- FIG. 2 is a diagram schematically showing an expander of the pulse tube refrigerator according to the embodiment.
- the pulse-tube refrigerator 10 is configured as a Stirling-type pulse-tube refrigerator and includes a pressure vibration source 12, a connecting tube 14, and an expander 16, also called a cold head.
- the expander 16 includes an expander cylinder 17 having a regenerator 18 and a pulse tube 22 , a cooling stage 20 and a phase controller 24 .
- the regenerator 18 is arranged around the pulse tube 22 .
- the expander 16 has a so-called coaxial configuration in which the regenerator 18 and the pulse tube 22 are arranged coaxially so that the regenerator 18 surrounds the pulse tube 22 .
- the phase control section 24 includes an inertance volume 26 connected to the end of the pulse tube 22 and a buffer volume 28 connected to the pulse tube 22 via the inertance volume 26 . At least one of the inertance volume 26 and the buffer volume 28 are positioned around the expander cylinder 17 and thereby around the pulse tube 22, as described below.
- the pulse tube refrigerator 10 can be configured as a two stage pulse tube refrigerator. .
- Helium gas is typically used as the refrigerant gas for the pulse tube refrigerator 10 . However, it is not limited to this, and it is also possible to use other suitable gases as the refrigerant gas. Refrigerant gas is filled and enclosed in the pulse tube refrigerator 10 .
- the pressure vibration of the refrigerant gas is induced in the pulse tube 22 by the operation of the pressure vibration source 12, and the pulse tube 22 is controlled by the operation of the phase control unit 24 with an appropriate phase delay in synchronization with the pressure vibration. It is designed so that the displacement vibration of the refrigerant gas, that is, the reciprocating motion of the gas piston, occurs inside.
- the movement of the refrigerant gas periodically reciprocating up and down within the pulse tube 22 while maintaining a certain pressure is often referred to as a "gas piston" and is often used to describe the behavior of the pulse tube refrigerator 10.
- FIG. When the gas piston is at or near the hot end of the pulse tube 22, the refrigerant gas expands at the cold end of the pulse tube 22, generating cold.
- the pulse tube refrigerator 10 can cool the cooling stage 20 to a desired cryogenic temperature. Therefore, the pulse tube refrigerator 10 can cool to a cryogenic temperature an object to be cooled that is installed on the cooling stage 20 or thermally coupled to the cooling stage 20 via an appropriate heat transfer member.
- a refrigeration cycle for example, a reverse Stirling cycle, for example
- the object to be cooled may be a detection element that detects infrared rays, submillimeter waves, X-rays, or other electromagnetic waves.
- Such sensing elements may be components of observation equipment used for astronomical observations.
- the pulse tube refrigerator 10 may be mounted on a spacecraft such as an artificial satellite, for example.
- the pulse tube refrigerator 10 may be mounted on a ground facility equipped with such observation equipment.
- the pulse tube refrigerator 10 may be mounted on a spacecraft or ground facility with, for example, a superconducting device or other device where a cryogenic environment is desired.
- the pressure vibration source 12 is configured as a so-called opposing two-cylinder linear compressor having two coaxially arranged opposing cylinders 12a.
- Each cylinder 12a accommodates a piston 12b and a linear actuator 12c for axially vibrating the piston 12b.
- the vibration direction of the piston 12b is different from the axial direction of the expander 16 .
- the piston 12b is elastically supported by the cylinder 12a via a leaf spring or an elastic support member, also called a flexure bearing 12d, so that it can be displaced in the axial direction while being restricted in radial and circumferential displacements.
- the cylinder 12a fixedly supports the linear actuator 12c.
- a compression chamber 12e is formed between the cylinder 12a and the piston 12b.
- One end of the connection pipe 14 is connected to the compression chamber 12e.
- the piston 12b By driving the linear actuator 12c, the piston 12b is vibrated in the axial direction. As a result, the volume of the compression chamber 12e vibrates, and the pressure vibration of the refrigerant gas in the compression chamber 12e is generated.
- the average pressure of the pressure oscillation is, for example, on the order of megapascals, for example, in the range of about 1-4 MPa
- the pressure amplitude is, for example, within the range of about 0.5-1 MPa
- the frequency is, for example, in the range of about 50-60 Hz.
- the connection pipe 14 connects the pressure vibration source 12 and the expander 16 so that the refrigerant gas can flow in both directions between the pressure vibration source 12 and the expander 16 .
- the pressure vibration source 12 and the expander 16 are each constructed as a pressure vessel in which refrigerant gas is enclosed. Therefore, the pressure vibration of the refrigerant gas generated by the pressure vibration source 12 can be transmitted to the expander 16 via the connecting pipe 14 , thereby inducing pressure vibration in the expander 16 .
- the connection pipe 14 may be a flexible pipe or a rigid pipe.
- the cold accumulator 18 generally includes a container having a cylindrical or other cylindrical shape and a cold accumulating material filled in this container.
- the regenerator 18 has a regenerator hot end 18a and a regenerator cold end 18b.
- the cold storage high temperature end 18 a is connected to the other end of the connecting pipe 14 and connected to the compression chamber 12 e of the pressure vibration source 12 via the connecting pipe 14 .
- the regenerator hot end 18a may be provided with a heat exchanger, also called an aftercooler, or other heat dissipating member.
- the pulse tube 22 is, for example, a tubular member having a cylindrical or other suitable shape, and has an internal space capable of containing a refrigerant gas.
- the regenerator 18 and the phase control section 24 are connected via a pulse tube 22 .
- the pulse tube refrigerator 10 is not provided with a refrigerant gas flow path that bypasses the regenerator 18 and the pulse tube 22 . Therefore, all gas flow between pressure vibration source 12 and phase control section 24 is via regenerator 18 and pulse tube 22 .
- the pulse tube 22 has a pulse tube hot end 22a and a pulse tube cold end 22b.
- the pulse tube cold end 22b is connected to the regenerator cold end 18b.
- the pulse tube low temperature end 22b and the regenerator low temperature end 18b communicate with each other, whereby the pulse tube 22 and the regenerator 18 are connected to each other so that the refrigerant gas can flow in both directions.
- the pulse tube cold end 22b is structurally rigidly coupled to the regenerator cold end 18b.
- a cooling stage 20 is installed at the joint between the pulse tube cold end 22b and the regenerator cold end 18b so as to surround the joint.
- the cooling stage 20 is made of a high heat conductive material such as copper. Cooling stage 20 is thermally coupled to pulse tube cold end 22b and regenerator cold end 18b.
- the expander 16 has a coaxial configuration as described above, the flow path of the refrigerant gas connecting the pulse tube low temperature end 22b and the regenerator low temperature end 18b is axially folded in the opposite direction inside the cooling stage 20. .
- a desired object to be cooled by the pulse tube refrigerator 10 can be placed on the cooling stage 20 .
- the phase control section 24 is provided at the pulse tube high temperature end 22a.
- An inertance volume 26 is connected to the pulse tube hot end 22a, and a buffer volume 28 is connected through the inertance volume 26 to the pulse tube hot end 22a.
- a buffer volume 28 is arranged around the expander cylinder 17 in this embodiment.
- An inertance volume 26 is arranged around the expander cylinder 17 within a buffer volume 28 .
- the buffer volume 28 is bounded from the outside world by a buffer tank wall 30 provided with a cylindrical recess 34 coaxial with the expander cylinder 17 .
- Cylindrical recess 34 houses most of expander cylinder 17, including regenerator hot end 18a and pulse tube hot end 22a.
- Cooling stage 20 is positioned outside cylindrical recess 34 with regenerator cold end 18b and pulse tube cold end 22b.
- the pulse tube high temperature end 22a is provided with a flange portion 35 extending in its radial direction (the direction perpendicular to the axial direction of the pulse tube 22).
- the regenerator high temperature end 18a and the pulse tube high temperature end 22a are located at substantially the same place and both are fixed to the flange portion 35.
- the connecting pipe 14 penetrates the flange portion 35 (or through an internal channel formed in the flange portion 35) and is connected to the regenerator hot end 18a.
- the phase control portion 24 may have an internal connection channel 27 formed within the flange portion 35 and connecting the pulse tube 22 to the inertance volume 26 .
- the internal volume of the internal connecting channel 27 may also be considered part of the inertance volume 26 .
- the buffer tank wall 30 is also fixed to the flange portion 35 so that the airtightness of the buffer volume 28 is maintained.
- the expander cylinder 17 and the buffer tank wall 30 are mounted on the same side with respect to the flange portion 35 .
- a buffer volume 28 is thus defined within the buffer tank wall 30 to form a buffer tank.
- a buffer tank is also arranged coaxially with the expander cylinder 17 .
- the inertance volume 26 is formed in the buffer tank wall 30 .
- the buffer tank wall 30 includes a pressure-resistant wall 38 surrounding the buffer volume 28 and an inertance cylinder 40 disposed inside the pressure-resistant wall 38 and having the inertance volume 26 therein.
- the pressure-resistant wall 38 has a cylindrical outer wall portion 38a, an inner wall portion 38b, and a bottom wall portion 38c that connects the outer wall portion 38a and the inner wall portion 38b and closes the buffer volume 28 on the side opposite to the flange portion 35.
- the outer wall portion 38a, the bottom wall portion 38c, and the inner wall portion 38b are integrally formed.
- the cylindrical recess 34 is opened at the center of the bottom wall 38c.
- the pressure-resistant wall 38 is made of a metal material, such as stainless steel, that can withstand a high load so as to meet the desired pressure-resistant performance.
- the inertance tubular portion 40 is prepared as a single tubular component having a helical flow path as the inertance volume 26 inside, for example, by a three-dimensional modeling technique such as a 3D printer.
- the helical space formed in the inertance tubular portion 40 has an inner diameter of several millimeters and a length of several meters, like the coiled inertance tube in the existing pulse tube refrigerator.
- the cross-sectional shape of the spiral space is, for example, circular as shown, but may be other shapes.
- One end of the inertance volume 26 (flange portion 35 side) is connected to the pulse tube high temperature end 22a by an internal connection flow path 27, and the other end of the inertance volume 26 (bottom wall portion 38c side) is an outlet 36 to the buffer volume 28. is open to buffer volume 28 as .
- the inertance cylindrical portion 40 is attached to the outer wall portion 38a of the pressure-resistant wall 38 in contact with the inner surface of the outer wall portion 38a. Unlike the pressure wall 38, the inertance cylinder 40 is housed in the buffer volume 28 and does not need to bear the load due to the pressure of the refrigerant gas. It may be made of any suitable material.
- the inertance cylindrical portion 40 may be arranged at another location within the buffer volume 28, and may be attached to the inner wall portion 38b, for example.
- the inertance tubular portion 40 may be attached to the bottom wall portion 38 c of the pressure-resistant wall 38 or the flange portion 35 .
- the inertance tubular portion 40 may be arranged inside the pressure wall 38 with some clearance from the pressure wall 38 .
- a spirally wound inertance tube may be accommodated in the buffer volume 28 as the inertance volume 26 .
- FIG. 3 is a diagram schematically showing an expander 16' of a pulse tube refrigerator according to a comparative example.
- the expander 16' has a so-called in-line or straight configuration in which the regenerator 18 and the pulse tube 22 are coaxially and serially connected to each other.
- a cooling stage 20 is provided at the joint between the pulse tube cold end 22b and the regenerator cold end 18b, and the pulse tube high temperature end 22a and the regenerator high temperature end 18a are arranged on opposite sides of the cooling stage 20.
- the pulse tube high temperature end 22 a is provided on the flange portion 35 .
- a buffer tank that defines the buffer volume 28 is attached to the flange portion 35 on the side opposite to the pulse tube 22 with respect to the flange portion 35 .
- a helically wound inertance tube is contained within the buffer tank as an inertance volume 26 .
- One end of the inertance tube is connected to the pulse tube hot end 22a inside the buffer tank.
- the regenerator 18, the pulse tube 22, and the buffer volume 28 are arranged side by side in the axial direction. Become.
- both the buffer volume 28 and the inertance volume 26 are arranged around the pulse tube 22, so the axial length L1 of the expander 16 is becomes shorter than the axial length L2 of .
- the expander 16 of the pulse tube refrigerator 10 can be shortened in the axial direction, and the size reduction of the pulse tube refrigerator 10 can be realized.
- the fact that the expander 16 has a coaxial configuration in which the pulse tube 22 is surrounded by the regenerator 18 also contributes to shortening the axial length L1 of the expander 16 .
- pulse tube refrigerators are generally suitable for use in cooling objects that dislike vibration, such as sensors.
- the expander of the pulse tube refrigerator can be configured to have no moving parts, so that the object to be cooled can be cooled while maintaining low vibration without taking any vibration damping measures for the expander. It is from.
- the inertance volume 26 is formed in the buffer tank wall 30 and is integrated with the buffer tank wall 30, compared to the existing pulse tube refrigerator having a coiled inertance tube, As a result, the above-described minute vibrations that may occur during the operation of the pulse tube refrigerator 10 can be reduced. This also leads to improved reliability of the pulse tube refrigerator 10 .
- the inertance volume 26 is built into the buffer tank wall 30 . Therefore, unlike the inertance tube in the conventional pulse tube refrigerator, it is not necessary to wind the thin tube during manufacture.
- the winding diameter of the inertance tube is reduced to reduce the size of the pulse tube refrigerator, the problem that the tube is flattened or bent, making it difficult to process as designed, is solved or at least alleviated. be.
- the size of the pulse tube refrigerator 10 can be easily reduced.
- the inertance volume 26 is formed in the inertance tubular portion 40 in the above-described embodiment, the inertance volume 26 may be formed in the pressure-resistant wall 38 .
- the outer wall portion 38a may include an outer cylinder and an inner cylinder that are joined together, an outer spiral groove is formed on the inner peripheral surface of the outer cylinder, an inner spiral groove is formed on the outer peripheral surface of the inner cylinder, and an inertance volume 26 may be formed by combining outer and inner spiral grooves by joining the outer and inner cylinders.
- the inertance cylinder portion 40 may include such an outer cylinder and an inner cylinder, and the inertance volume 26 may be formed by combining these.
- the buffer tank wall 30 with the inertance volume 26 formed therein and pressure-resistant design may be provided as a single part.
- the pulse tube refrigerator 10 may be manufactured using this.
- FIG. 2 shows an example of how to install the expander 16 according to the embodiment to the vacuum container 42 .
- Expander 16 is installed in vacuum vessel 42 such that expander cylinder 17 and cooling stage 20 are located within vacuum vessel 42 .
- buffer tank wall 30 may be inserted with expander cylinder 17 and cooling stage 20 through an opening in vacuum vessel 42 to which flange portion 35 of expander 16 may be secured.
- the flange portion 35 is a vacuum flange, and is fixed to the vacuum vessel 42 using an appropriate fastening member such as a bolt, so that the airtightness of the vacuum vessel 42 is maintained.
- FIG. 4 is a diagram showing another example of how to install the expander 16 according to the embodiment to the vacuum container 42.
- buffer tank wall 30 may form part of the wall of vacuum vessel 42 .
- the buffer tank wall 30 may be provided with a vacuum flange 44 for coupling with the vacuum vessel 42 .
- expander 16 may be installed in vacuum vessel 42 such that expander cylinder 17 and cooling stage 20 are located within vacuum vessel 42 .
- FIG. 5 is a diagram schematically showing an expander of a pulse tube refrigerator according to another embodiment.
- the inflator 16 shown in FIG. 5 differs from the embodiment shown in FIGS. 1 and 2 with respect to the arrangement of the inertance volume 26 and the buffer volume 28, and the rest are generally common.
- different configurations will be mainly described, and common configurations will be briefly described or omitted.
- inertance volume 26 is arranged around expander cylinder 17 .
- An inertance volume 26 is located between the flange portion 35 and the cooling stage 20 .
- the buffer volume 28 is arranged on the side opposite to the inertance volume 26 with respect to the flange portion 35 . That is, the buffer tank wall 30 is attached to the flange portion 35 on the side opposite to the expander cylinder 17 with respect to the flange portion 35 .
- the inertance volume 26 is a helically wound inertance tube and is located on the same side of the flange portion 35 as the expander cylinder 17 .
- inertance volume 26 One end of inertance volume 26 is connected to the pulse tube hot end and the other end of inertance volume 26 is connected to buffer volume 28 . Since the inertance volume 26 and the buffer volume 28 are arranged opposite to each other with respect to the flange portion 35 , a flow path connecting the inertance volume 26 and the buffer volume 28 is formed through the flange portion 35 .
- the inertance volume 26 is arranged around the expander cylinder 17, it is not necessary to accommodate the inertance volume 26 in the buffer volume 28, and the buffer volume 28 can be reduced accordingly. Therefore, the axial length L3 of the expander 16 is shorter than the axial length L2 of the comparative example. Therefore, the size reduction of the pulse tube refrigerator 10 can be realized.
- buffer volume 28 and the inertance volume 26 may be arranged in reverse.
- Buffer tank wall 30 is attached to flange portion 35 on the same side as expander cylinder 17 relative to flange portion 35 as shown in FIGS. may be placed on the opposite side of the
- the expander 16 is coaxial, and the regenerator 18 coaxially surrounds the pulse tube 22 .
- the arrangement of the phase control section 24 according to the embodiment is applicable to other types of expanders 16 as well.
- the expander 16 may have an in-line or linear configuration in which the regenerator 18 and the pulse tube 22 are coaxially and serially connected to each other, as in the comparative example shown in FIG.
- at least one of inertance volume 26 and buffer volume 28 may be arranged around pulse tube 22 .
- buffer volume 28 may be positioned around pulse tube 22 and inertance volume 26 may be positioned around pulse tube 22 within buffer volume 28 .
- the inertance volume 26 may be arranged around the pulse tube 22 and the buffer volume 28 may be arranged on the opposite side of the inertance volume 26 with respect to the pulse tube hot end 22a.
- the shape of the inertance volume 26 is not limited to a spiral shape.
- the inertance volume 26 may have various other flow path arrangements within the buffer tank wall 30 or within the inertance tube 40 .
- the inertance volume 26 may take a serpentine path or other curved path to and from the axial direction of the pulse tube 22 .
- the present invention can be used in the field of pulse tube refrigerators, for example, Stirling pulse tube refrigerators.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
パルス管冷凍機は、パルス管(22)と、パルス管(22)の端部に接続されるイナータンス容積(26)と、イナータンス容積(26)を介してパルス管(22)に接続されるバッファ容積(28)とを備える位相制御部(24)と、を備え、イナータンス容積(26)とバッファ容積(28)のうち少なくとも一方が、パルス管(22)の周りに配置されている。バッファ容積(28)が、パルス管(22)の周りに配置され、イナータンス容積(26)は、バッファ容積(28)内でパルス管(22)の周りに配置されてもよい。
Description
本発明は、パルス管冷凍機、例えば、スターリング型のパルス管冷凍機に関する。
従来、例えばリニア圧縮機などの圧力振動源を用いるパルス管冷凍機が知られている。圧力振動源が生成する圧力振動流を利用する点でスターリング冷凍機と共通するので、このようなパルス管冷凍機は、スターリング型パルス管冷凍機とも呼ばれている。スターリング型パルス管冷凍機では通例、位相制御のために、長い細管(例えば、管の内径が数mmで管の長さが数m)をたとえばコイル状に巻いたものが用いられ、「イナータンス管(またはイナータンスチューブ)」と呼ばれている。
パルス管冷凍機では、イナータンス管をバッファタンク内に収納する設計がしばしば採用される。イナータンス管は上述のように例えば数mに及ぶ長さを有するため、バッファタンク内で相応の容積を占めることになる。バッファタンクとして必要とされる容積に加えてイナータンス管の収納スペースをバッファタンク内に確保しなければならないので、バッファタンクのサイズが大きくなりがちである。これは、パルス管冷凍機の小型化にあたって制約となりうる。
本発明のある態様の例示的な目的のひとつは、パルス管冷凍機の小型化に寄与する技術を提供することにある。
本発明のある態様によると、パルス管冷凍機は、パルス管と、パルス管の端部に接続されるイナータンス容積と、イナータンス容積を介してパルス管に接続されるバッファ容積とを備える位相制御部と、を備え、イナータンス容積とバッファ容積のうち少なくとも一方が、パルス管の周りに配置されている。
本発明によれば、パルス管冷凍機の小型化に寄与する技術を提供することができる。
以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施の形態は例示であり、本発明の範囲を何ら限定するものではない。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
図1は、実施の形態に係るパルス管冷凍機を概略的に示す図である。図2は、実施の形態に係るパルス管冷凍機の膨張器を概略的に示す図である。
パルス管冷凍機10は、スターリング型パルス管冷凍機として構成され、圧力振動源12と、接続管14と、コールドヘッドとも称される膨張器16とを備える。膨張器16は、蓄冷器18およびパルス管22を有する膨張器シリンダ17と、冷却ステージ20と、位相制御部24とを備える。蓄冷器18は、パルス管22の周りに配置されている。膨張器16は、蓄冷器18がパルス管22を取り囲むように蓄冷器18とパルス管22が同軸に配置された、いわゆる同軸型の構成を有する。
位相制御部24は、パルス管22の端部に接続されるイナータンス容積26と、イナータンス容積26を介してパルス管22に接続されるバッファ容積28とを備える。後述するように、イナータンス容積26とバッファ容積28のうち少なくとも一方が、膨張器シリンダ17の周りに配置され、それによりパルス管22の周りに配置されている。
図においては簡単のために、単段のパルス管冷凍機10として示されているが、ある実施形態においては、パルス管冷凍機10は、二段パルス管冷凍機として構成することも可能である。
パルス管冷凍機10の冷媒ガスは典型的にヘリウムガスが使用される。ただし、これに限られず、適切な他のガスを冷媒ガスとして用いることも可能である。冷媒ガスは、パルス管冷凍機10内に充填され封入されている。
パルス管冷凍機10は、圧力振動源12の動作によってパルス管22内に冷媒ガスの圧力振動が誘起され、位相制御部24の作用により圧力振動と同期して適切な位相遅れをもって、パルス管22内で冷媒ガスの変位振動すなわちガスピストンの往復動が生じるように、設計されている。ある圧力を保持しながらパルス管22内を上下に周期的に往復する冷媒ガスの動きは、しばしば「ガスピストン」と称され、パルス管冷凍機10の挙動を説明するためによく用いられる。ガスピストンがパルス管22の高温端またはその近傍にあるときパルス管22の低温端で冷媒ガスが膨張し、寒冷が発生する。
このような冷凍サイクル(例えば、具体的には、逆スターリングサイクル)を繰り返すことにより、パルス管冷凍機10は、冷却ステージ20を所望の極低温に冷却することができる。したがって、パルス管冷凍機10は、冷却ステージ20に設置され、または適宜の伝熱部材を介して冷却ステージ20に熱的に結合された被冷却物を極低温に冷却することができる。
一例として、被冷却物は、赤外線、サブミリ波、X線、またはその他の電磁波を検出する検出素子であってもよい。こうした検出素子は、天文観測に使用される観測装置の構成要素であってもよい。このような電磁波検出素子を有する観測装置とともに、パルス管冷凍機10は、例えば人工衛星などの宇宙機に搭載可能とされていてもよい。あるいは、パルス管冷凍機10は、そうした観測装置を備える地上設備に搭載されてもよい。あるいは、パルス管冷凍機10は、極低温環境が望まれる例えば超伝導装置またはその他の装置とともに宇宙機または地上設備に搭載されてもよい。
圧力振動源12は、対向して同軸に配置された2つのシリンダ12aを有する、いわゆる対向二気筒のリニア圧縮機として構成されている。各シリンダ12aには、ピストン12bと、ピストン12bを軸方向に振動させるリニアアクチュエータ12cが収容されている。ピストン12bの振動方向は膨張器16の軸方向とは異なる。ピストン12bは、フレクシャベアリング12dとも呼ばれる板バネまたは弾性支持部材を介して、径方向および周方向の変位は規制されつつ軸方向には変位できるようにシリンダ12aに弾性的に支持されている。またシリンダ12aは、リニアアクチュエータ12cを固定的に支持する。シリンダ12aとピストン12bとの間に圧縮室12eが形成される。接続管14の一端が圧縮室12eに接続されている。
リニアアクチュエータ12cの駆動により、ピストン12bが軸方向に振動される。それにより圧縮室12eの容積が振動的に増減し、圧縮室12e内の冷媒ガスの圧力振動が生成される。一例として、圧力振動の平均圧力は例えばメガパスカルのオーダ、例えば約1~4MPaの範囲にあり、圧力振幅は例えば約0.5~1MPa以内の範囲にあり、周波数は例えば約50~60Hzの範囲にあってもよい。
接続管14は、圧力振動源12と膨張器16との間で相互に双方向に冷媒ガスを流すことができるように圧力振動源12と膨張器16とを接続する。圧力振動源12と膨張器16はそれぞれ内部に冷媒ガスを封入した圧力容器として構成される。よって、圧力振動源12により生成される冷媒ガスの圧力振動は、接続管14を介して膨張器16に伝達され、それにより膨張器16内に圧力振動を誘起することができる。なお、接続管14は、フレキシブル管であってもよいし、剛性管であってもよい。
蓄冷器18は通例、円筒またはそのほか筒状の形状を有する容器と、この容器に充填された蓄冷材とを備える。蓄冷器18は、蓄冷器高温端18aと、蓄冷器低温端18bとを有する。蓄冷器高温端18aは、接続管14の他端に接続され、接続管14を介して圧力振動源12の圧縮室12eに接続されている。蓄冷器高温端18aには、アフタークーラとも呼ばれる熱交換器またはその他の放熱部材が設けられていてもよい。
パルス管22は、例えば円筒または他の適切な形状を有する管状の部材であり、冷媒ガスを収容できる内部空間を有する。蓄冷器18と位相制御部24はパルス管22を介して接続されている。なお、パルス管冷凍機10においては、蓄冷器18およびパルス管22を迂回する冷媒ガスの流路は設けられていない。よって、圧力振動源12と位相制御部24との間のガス流通はすべて、蓄冷器18およびパルス管22を経由する。
パルス管22は、パルス管高温端22aと、パルス管低温端22bとを有する。パルス管低温端22bは、蓄冷器低温端18bに接続されている。パルス管低温端22bと蓄冷器低温端18bは相互に連通しており、それにより、パルス管22と蓄冷器18は相互に双方向に冷媒ガスを流すことができるように接続されている。また、パルス管低温端22bは、蓄冷器低温端18bと構造的に固く結合されている。
パルス管低温端22bと蓄冷器低温端18bの結合部には、この結合部を包囲するようにして、冷却ステージ20が設置されている。冷却ステージ20は、例えば銅などの高熱伝導材料で形成されている。冷却ステージ20は、パルス管低温端22bおよび蓄冷器低温端18bに熱的に結合されている。上述のように膨張器16が同軸型の構成を有する場合、パルス管低温端22bと蓄冷器低温端18bを互いにつなぐ冷媒ガスの流路は冷却ステージ20の内部で軸方向に反対向きに折り返される。冷却ステージ20には、パルス管冷凍機10により冷却すべき所望の被冷却物を設置することができる。
位相制御部24は、パルス管高温端22aに設けられている。イナータンス容積26がパルス管高温端22aに接続され、バッファ容積28がイナータンス容積26を介してパルス管高温端22aに接続されている。
この実施の形態では、バッファ容積28が、膨張器シリンダ17の周りに配置される。イナータンス容積26は、バッファ容積28内で膨張器シリンダ17の周りに配置されている。バッファ容積28は、バッファタンク壁30によって外界から区画され、バッファタンク壁30には、膨張器シリンダ17と同軸に円筒状凹陥部34が設けられている。円筒状凹陥部34には、蓄冷器高温端18aおよびパルス管高温端22aを含む膨張器シリンダ17の大部分が収められている。冷却ステージ20は蓄冷器低温端18bおよびパルス管低温端22bとともに、円筒状凹陥部34の外に配置されている。
パルス管高温端22aにはその径方向(パルス管22の軸方向に垂直な方向)に広がるフランジ部35が設けられている。蓄冷器高温端18aとパルス管高温端22aはほぼ同じ場所に位置し、ともにフランジ部35に固定されている。接続管14は、フランジ部35を貫通して(またはフランジ部35内に形成された内部流路を通じて)、蓄冷器高温端18aに接続されている。位相制御部24は、フランジ部35内に形成され、パルス管22をイナータンス容積26に接続する内部接続流路27を有してもよい。内部接続流路27の内部容積も、イナータンス容積26の一部であるとみなされてもよい。
また、バッファタンク壁30も、バッファ容積28の気密性が保持されるようにして、フランジ部35に固定されている。この実施の形態では、膨張器シリンダ17とバッファタンク壁30は、フランジ部35に対して同じ側に取り付けられている。このようにして、バッファタンク壁30内にバッファ容積28が定められ、バッファタンクが形成される。バッファタンクもまた、膨張器シリンダ17と同軸に配置されている。
イナータンス容積26は、バッファタンク壁30に形成されている。バッファタンク壁30は、バッファ容積28を包囲する耐圧壁38と、耐圧壁38の内側に配置され、内部にイナータンス容積26を有するイナータンス筒部40とを備える。
耐圧壁38は、円筒状の外壁部38aおよび内壁部38bと、外壁部38aと内壁部38bを接続しフランジ部35とは反対側でバッファ容積28を閉じる底壁部38cとを有する。外壁部38aと底壁部38cと内壁部38bは一体形成されている。底壁部38cの中心部には上述の円筒状凹陥部34が開口している。耐圧壁38は、所望の耐圧性能を満たすように、例えばステンレス鋼などの高荷重に耐える金属材料で形成される。
イナータンス筒部40は、例えば3Dプリンタなどの三次元造形技術により、イナータンス容積26としてのらせん状の流路を内部に有する単一の筒状部品として用意される。イナータンス筒部40に形成されたらせん状の空間は、既存のパルス管冷凍機におけるコイル状のイナータンス管と同様に、内径が数mm程度で長さが数m程度に及ぶ。らせん状空間の断面形状は、図示されるように例えば円形であるが、他の形状でもよい。イナータンス容積26の一端(フランジ部35側)は、内部接続流路27によりパルス管高温端22aに接続され、イナータンス容積26の他端(底壁部38c側)は、バッファ容積28への出口36としてバッファ容積28に開放されている。
イナータンス筒部40は、耐圧壁38の外壁部38aの内面に接触して外壁部38aに取り付けられている。耐圧壁38とは異なり、イナータンス筒部40はバッファ容積28に収められており、冷媒ガス圧力による荷重を受け持つ必要が無いので、耐圧壁38に比べて低強度の金属材料、または樹脂材料などその他適宜の材料で形成されてもよい。
なお、イナータンス筒部40は、バッファ容積28内の他の場所に配置されてもよく、例えば内壁部38bに取り付けられてもよい。あるいは、イナータンス筒部40は、耐圧壁38の底壁部38cまたはフランジ部35に取り付けられてもよい。イナータンス筒部40は、耐圧壁38からいくらか隙間をあけて、耐圧壁38の内側に配置されてもよい。
イナータンス筒部40に代えて、らせん状に巻かれたイナータンス管がイナータンス容積26としてバッファ容積28内に収められてもよい。
図3は、比較例に係るパルス管冷凍機の膨張器16’を概略的に示す図である。膨張器16’は、蓄冷器18とパルス管22が同軸かつ直列に互いに接続された、いわゆるインライン型または直線型の構成を有する。パルス管低温端22bと蓄冷器低温端18bの結合部には冷却ステージ20が設けられ、パルス管高温端22aと蓄冷器高温端18aは冷却ステージ20に対して互いに反対側に配置されている。パルス管高温端22aはフランジ部35に設けられている。
バッファ容積28を定めるバッファタンクが、フランジ部35に対してパルス管22とは反対側でフランジ部35に取り付けられている。らせん状に巻かれたイナータンス管がイナータンス容積26としてバッファタンク内に収められている。イナータンス管の一端がバッファタンク内でパルス管高温端22aに接続されている。
比較例の膨張器16’では、軸方向に蓄冷器18、パルス管22、バッファ容積28が並んで配置されているから、図示されるように、膨張器16’の軸方向長さL2が長くなる。
これに対して、実施の形態に係るパルス管冷凍機10では、バッファ容積28とイナータンス容積26がともにパルス管22の周りに配置されているから、膨張器16の軸方向長さL1が比較例の軸方向長さL2に比べて短くなる。このようにして、本実施の形態では、パルス管冷凍機10の膨張器16を軸方向に短くすることができ、パルス管冷凍機10の小型化を実現することができる。また、膨張器16が、蓄冷器18でパルス管22を取り囲む同軸型の構成であることも、膨張器16の軸方向長さL1の短縮に寄与している。
スターリング型パルス管冷凍機に限られず、パルス管冷凍機は一般に、例えばセンサなど振動を嫌う被冷却物を冷却する用途に適している。パルス管冷凍機の膨張器は可動部品を有しないように構成することができ、そのため、膨張器に関しては制振対策を何らとることなく被冷却物を低振動に保持して冷却することができるからである。
ところが、本発明者は、そのような既知の用途ではまったく問題とならない程度にすぎないが、既存のスターリング型パルス管冷凍機では、膨張器に出入りする冷媒ガスの運動による慣性力に起因して、実際には、膨張器に非常に微小な振動が生じうることに気づいた。その一因は、イナータンス管にある。コイル状に巻かれたイナータンス管は例えばバッファタンクなど隣接の部材に固定されるが、それでも実際の使用の際には管内部を出入りする冷媒ガスに誘起されて微小な振動がイナータンス管に発生しがちであり、この振動を十分に抑えることは必ずしも容易でない。
本発明者の想定によれば、最先端の学術研究または先進的な産業利用の冷却用途(例えば、宇宙機に搭載される新規な観測機器の検出素子の極低温冷却など)においては、既存のパルス管冷凍機により実現可能な低振動を超える超低振動のもとでの冷却が、今後要請される可能性がある。
実施の形態に係るパルス管冷凍機10によれば、イナータンス容積26がバッファタンク壁30に形成され、バッファタンク壁30と一体であるから、コイル状イナータンス管をもつ既存のパルス管冷凍機に比べて、パルス管冷凍機10の運転中に発生しうる上述の微小振動を低減することができる。これは、パルス管冷凍機10の信頼性向上にもつながる。
また、既存のパルス管冷凍機では、膨張器の小型化のためにイナータンス管の巻き径を小さくしたとすると、管の曲率は大きくなる。そうすると、パルス管冷凍機の製造時に管を巻くとき、管が平たく潰れたり、あるいは座屈して折れ曲がったりして、良好な加工をすることが困難となりうる。とくに、イナータンス管をバッファタンク内に収める設計を採用する場合には、この問題がバッファタンクの小型化の妨げとなりうる。
しかしながら、実施の形態に係るパルス管冷凍機10によれば、イナータンス容積26がバッファタンク壁30に組み込まれている。したがって、製造時に、従来のパルス管冷凍機におけるイナータンス管のように細管を巻く加工を要しない。パルス管冷凍機の小型化のためにイナータンス管の巻き径を小さくした場合に、管が平たく潰れたり、折れ曲がったりして、設計通りに加工しがたいという問題は、解消され、または少なくとも緩和される。イナータンス容積26をバッファタンク壁30に収めることにより、パルス管冷凍機10を小型化することが容易となる。
上述の実施の形態では、イナータンス容積26がイナータンス筒部40に形成されているが、イナータンス容積26は、耐圧壁38に形成されてもよい。例えば、外壁部38aが互いに接合される外筒と内筒を備えてもよく、外筒の内周面に外側らせん溝が形成され、内筒の外周面に内側らせん溝が形成され、イナータンス容積26が、外筒と内筒の接合により外側らせん溝と内側らせん溝が組み合わされることによって形成されてもよい。また、イナータンス筒部40がこうした外筒と内筒を備えてもよく、これらが組み合わされることによってイナータンス容積26が形成されてもよい。
バッファタンク壁30の製造に三次元造形技術を適用可能である場合には、内部にイナータンス容積26が形成されかつ耐圧設計されたバッファタンク壁30が単一部品として提供されてもよく、これを用いてパルス管冷凍機10が製造されてもよい。
図2には、実施の形態に係る膨張器16の真空容器42への設置の仕方の一例が示される。膨張器16は、膨張器シリンダ17および冷却ステージ20が真空容器42内に配置されるようにして、真空容器42に設置される。図示されるように、バッファタンク壁30が膨張器シリンダ17および冷却ステージ20とともに真空容器42の開口部から挿入され、この開口部に膨張器16のフランジ部35が固定されてもよい。フランジ部35は、真空フランジであり、真空容器42に例えばボルトなど適宜の締結部材を用いて真空容器42に固定され、それにより真空容器42の気密性が保たれる。
図4は、実施の形態に係る膨張器16の真空容器42への設置の仕方の他の一例を示す図である。図4に示されるように、バッファタンク壁30が真空容器42の壁の一部をなしてもよい。この場合、バッファタンク壁30には、真空容器42と結合するための真空フランジ44が設けられてもよい。このようにして、膨張器16は、膨張器シリンダ17および冷却ステージ20が真空容器42内に配置されるようにして、真空容器42に設置されてもよい。
図5は、他の実施の形態に係るパルス管冷凍機の膨張器を概略的に示す図である。図5に示される膨張器16は、イナータンス容積26およびバッファ容積28の配置に関して図1および図2に示される実施形態と相違し、その余については概ね共通する。以下では、相違する構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。
図5に示される実施の形態では、イナータンス容積26が、膨張器シリンダ17の周りに配置される。イナータンス容積26は、フランジ部35と冷却ステージ20の間に配置される。バッファ容積28は、フランジ部35に対してイナータンス容積26とは反対側に配置されている。つまり、バッファタンク壁30がフランジ部35に対して膨張器シリンダ17とは反対側でフランジ部35に取り付けられている。イナータンス容積26は、らせん状に巻かれたイナータンス管であり、フランジ部35に対して膨張器シリンダ17と同じ側に配置されている。イナータンス容積26の一端はパルス管高温端と接続され、イナータンス容積26の他端はバッファ容積28と接続される。イナータンス容積26とバッファ容積28がフランジ部35に対して互いに反対側に配置されているので、イナータンス容積26とバッファ容積28を接続する流路がフランジ部35を貫通して形成されている。
この実施の形態では、イナータンス容積26が膨張器シリンダ17の周りに配置されるため、バッファ容積28にイナータンス容積26を収める必要が無く、その分だけバッファ容積28を小さくすることができる。そのため、膨張器16の軸方向長さL3は、比較例の軸方向長さL2に比べて短くなる。よって、パルス管冷凍機10の小型化を実現することができる。
なお、バッファ容積28とイナータンス容積26は逆の配置でも良い。バッファタンク壁30が図1および図2に示されるようにフランジ部35に対して膨張器シリンダ17と同じ側でフランジ部35に取り付けられ、イナータンス容積26がフランジ部35に対して膨張器シリンダ17と反対側に配置されてもよい。
以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。ある実施の形態に関連して説明した種々の特徴は、他の実施の形態にも適用可能である。組合せによって生じる新たな実施の形態は、組み合わされる実施の形態それぞれの効果をあわせもつ。
上述の実施の形態では、膨張器16は同軸型とされ、蓄冷器18がパルス管22を同軸に取り囲んで配置されている。しかし、実施の形態に係る位相制御部24の配置は、他の形式の膨張器16にも適用可能である。例えば、膨張器16は、図3に示される比較例のように、蓄冷器18とパルス管22が同軸かつ直列に互いに接続されたインライン型または直線型の構成を有してもよい。この場合であっても、イナータンス容積26とバッファ容積28のうち少なくとも一方が、パルス管22の周りに配置されてもよい。例えば、バッファ容積28が、パルス管22の周りに配置され、イナータンス容積26は、バッファ容積28内でパルス管22の周りに配置されてもよい。あるいは、イナータンス容積26が、パルス管22の周りに配置され、バッファ容積28は、パルス管高温端22aに対してイナータンス容積26とは反対側に配置されてもよい。
イナータンス容積26の形状は、らせん状に限られない。イナータンス容積26は、バッファタンク壁30内、またはイナータンス筒部40内で、他の様々な流路配置をとりうる。たとえば、イナータンス容積26は、パルス管22の軸方向に往復するような蛇行経路、またはその他の湾曲経路をとってもよい。
実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用の一側面を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
本発明は、パルス管冷凍機、例えば、スターリング型のパルス管冷凍機の分野における利用が可能である。
10 パルス管冷凍機、 17 膨張器シリンダ、 18 蓄冷器、 22 パルス管、 24 位相制御部、 26 イナータンス容積、 28 バッファ容積、 30 バッファタンク壁。
Claims (9)
- パルス管と、
前記パルス管の端部に接続されるイナータンス容積と、前記イナータンス容積を介して前記パルス管に接続されるバッファ容積とを備える位相制御部と、を備え、
前記イナータンス容積と前記バッファ容積のうち少なくとも一方が、前記パルス管の周りに配置されていることを特徴とするパルス管冷凍機。 - 前記バッファ容積が、前記パルス管の周りに配置され、
前記イナータンス容積は、前記バッファ容積内で前記パルス管の周りに配置されていることを特徴とする請求項1に記載のパルス管冷凍機。 - 前記バッファ容積は、バッファタンク壁によって外界から区画されていることを特徴とする請求項1または2に記載のパルス管冷凍機。
- 前記イナータンス容積は、前記バッファタンク壁に形成されていることを特徴とする請求項3に記載のパルス管冷凍機。
- 前記イナータンス容積は、前記バッファタンク壁に形成されたらせん状の空間を含むことを特徴とする請求項4に記載のパルス管冷凍機。
- 前記バッファタンク壁は、前記バッファ容積を包囲する耐圧壁と、前記耐圧壁の内側に配置され、前記イナータンス容積を内部に有するイナータンス筒部と、を備えることを特徴とする請求項3から5のいずれかに記載のパルス管冷凍機。
- 前記バッファタンク壁には、前記パルス管が配置される凹陥部が設けられていることを特徴とする請求項3から6のいずれかに記載のパルス管冷凍機。
- 前記イナータンス容積が、前記パルス管の周りに配置され、
前記バッファ容積は、前記パルス管の前記端部に対して前記イナータンス容積とは反対側に配置されていることを特徴とする請求項1に記載のパルス管冷凍機。 - 前記パルス管と前記パルス管の周りに配置された蓄冷器とを有する膨張器シリンダを備え、
前記イナータンス容積と前記バッファ容積のうち少なくとも一方が、前記膨張器シリンダの周りに配置されていることを特徴とする請求項1から8のいずれかに記載のパルス管冷凍機。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021028210A JP2022129517A (ja) | 2021-02-25 | 2021-02-25 | パルス管冷凍機 |
JP2021-028210 | 2021-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022181475A1 true WO2022181475A1 (ja) | 2022-09-01 |
Family
ID=83048945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/006609 WO2022181475A1 (ja) | 2021-02-25 | 2022-02-18 | パルス管冷凍機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022129517A (ja) |
WO (1) | WO2022181475A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11281180A (ja) * | 1998-03-31 | 1999-10-15 | Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk | 冷凍装置 |
JP2005037015A (ja) * | 2003-07-17 | 2005-02-10 | Fuji Electric Systems Co Ltd | パルスチューブ冷凍機およびその製造方法 |
JP2009506293A (ja) * | 2005-08-23 | 2009-02-12 | サンパワー・インコーポレーテツド | 過渡的クールダウン時間及び熱損失を低減するよう作られた音響インピーダンスを有する多ステージ式パルス管クライオクーラー |
US20090107150A1 (en) * | 2007-10-31 | 2009-04-30 | Yuan Sidney W | Inertance tube and surge volume for pulse tube refrigerator |
-
2021
- 2021-02-25 JP JP2021028210A patent/JP2022129517A/ja active Pending
-
2022
- 2022-02-18 WO PCT/JP2022/006609 patent/WO2022181475A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11281180A (ja) * | 1998-03-31 | 1999-10-15 | Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk | 冷凍装置 |
JP2005037015A (ja) * | 2003-07-17 | 2005-02-10 | Fuji Electric Systems Co Ltd | パルスチューブ冷凍機およびその製造方法 |
JP2009506293A (ja) * | 2005-08-23 | 2009-02-12 | サンパワー・インコーポレーテツド | 過渡的クールダウン時間及び熱損失を低減するよう作られた音響インピーダンスを有する多ステージ式パルス管クライオクーラー |
US20090107150A1 (en) * | 2007-10-31 | 2009-04-30 | Yuan Sidney W | Inertance tube and surge volume for pulse tube refrigerator |
Also Published As
Publication number | Publication date |
---|---|
JP2022129517A (ja) | 2022-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5146124A (en) | Linear drive motor with flexible coupling | |
US6141971A (en) | Cryocooler motor with split return iron | |
US8910486B2 (en) | Expander for stirling engines and cryogenic coolers | |
CN109210818B (zh) | 超低温制冷机及超低温制冷机的磁屏蔽结构 | |
US7434409B2 (en) | Pulse tube cooler having ¼ wavelength resonator tube instead of reservoir | |
JP2005024184A (ja) | 極低温冷却装置 | |
US5542254A (en) | Cryogenic cooler | |
US10162023B2 (en) | Apparatus for reducing vibrations in a pulse tube refrigerator such as for magnetic resonance imaging systems | |
WO2022181475A1 (ja) | パルス管冷凍機 | |
JP4668238B2 (ja) | 蓄冷式冷凍機およびパルスチューブ冷凍機 | |
JP5120648B2 (ja) | 極低温冷却装置 | |
JP5283096B2 (ja) | 極低温冷却装置 | |
JP2022085122A (ja) | パルス管冷凍機 | |
JP2008115918A (ja) | フラットスプリング及びスターリング機関 | |
WO2020235555A1 (ja) | 極低温装置およびクライオスタット | |
JP6913046B2 (ja) | パルス管冷凍機 | |
JP7428510B2 (ja) | 極低温冷凍機、フレクシャベアリングおよび極低温冷凍機用リニア圧縮機 | |
EP4127575A1 (en) | Improved split pulse tube connecting line | |
US20130220111A1 (en) | Cryogenic refrigerator | |
JP2005055047A (ja) | パルス管冷凍機 | |
EP3699426B1 (en) | Linear compressor for cryocooler | |
JP6559586B2 (ja) | 超電導磁石装置 | |
JP2019194505A (ja) | 蓄冷器および極低温冷凍機 | |
JP2024085233A (ja) | パルス管冷凍機 | |
JP2024057242A (ja) | 極低温冷凍機の圧縮機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22759511 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22759511 Country of ref document: EP Kind code of ref document: A1 |