JP2024043381A - How to remove insulation coating from flat wire - Google Patents

How to remove insulation coating from flat wire Download PDF

Info

Publication number
JP2024043381A
JP2024043381A JP2022148548A JP2022148548A JP2024043381A JP 2024043381 A JP2024043381 A JP 2024043381A JP 2022148548 A JP2022148548 A JP 2022148548A JP 2022148548 A JP2022148548 A JP 2022148548A JP 2024043381 A JP2024043381 A JP 2024043381A
Authority
JP
Japan
Prior art keywords
rectangular wire
insulating coating
predetermined range
along
peeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022148548A
Other languages
Japanese (ja)
Inventor
勇介 松葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2022148548A priority Critical patent/JP2024043381A/en
Publication of JP2024043381A publication Critical patent/JP2024043381A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Removal Of Insulation Or Armoring From Wires Or Cables (AREA)

Abstract

【課題】絶縁被膜を残存させることなく剥離することが可能な平角線の絶縁被膜剥離方法を提供する。【解決手段】平角線の絶縁被膜剥離方法は、平角線の対向する2辺(長辺)の絶縁被膜を、平角線の長さ方向に沿う所定範囲に亘って剥離する第1の剥離工程と、2辺の両端点が、平角線の長さ方向に沿ってそれぞれ形成する稜線の位置を、所定範囲に亘って外側に移動させる角部移動工程と、所定範囲に亘って、外側に移動させた稜線を含む角部に面取部を形成する面取工程と、平角線の2辺(短辺)の絶縁被膜を、所定範囲に亘って剥離する第2の剥離工程と、を順に行う。【選択図】図2[Problem] To provide a method for stripping an insulating coating from a rectangular wire that can strip the insulating coating without leaving any insulating coating behind. [Solution] The method for stripping an insulating coating from a rectangular wire includes a first stripping step for stripping the insulating coating from two opposing sides (long sides) of the rectangular wire over a predetermined range along the length of the rectangular wire, a corner moving step for moving the positions of the ridgelines formed by both end points of the two sides along the length of the rectangular wire outward over a predetermined range, a chamfering step for forming a chamfered portion at the corner including the ridgeline that has been moved outward over a predetermined range, and a second stripping step for stripping the insulating coating from two sides (short sides) of the rectangular wire over a predetermined range, in that order. [Selected Figure] Figure 2

Description

本発明は、平角線の絶縁被膜剥離方法に関する。 The present invention relates to a method for removing an insulation coating from a flat wire.

従来、例えばモータのステータコイル等に使用される平角線の絶縁被膜を剥離する前に、平角線の対向する2辺の両端を塑性変形させることによって面取りを行う方法が提案されている(特許文献1参照)。 Conventionally, a method has been proposed in which, before peeling off the insulation coating of a rectangular wire used for a motor stator coil, for example, the chamfering is performed by plastically deforming both ends of two opposing sides of the rectangular wire (Patent Document (see 1).

特開2021-40441号公報JP2021-40441A

しかしながら、特許文献1に開示された平角線の製造方法では、塑性変形させた際に、平角線の左右側面の絶縁被膜が内側に入り込んでしまう可能性があった。そのため、後工程において平角線の左右側面の絶縁被膜を剥離する際に、内側に入り込んだ絶縁被膜が残存してしまうおそれがあった。 However, in the method for manufacturing a rectangular wire disclosed in Patent Document 1, there is a possibility that the insulating coatings on the left and right side surfaces of the rectangular wire may penetrate inside when the rectangular wire is plastically deformed. Therefore, when the insulation coatings on the left and right sides of the rectangular wire are peeled off in a subsequent process, there is a risk that the insulation coatings that have penetrated inside may remain.

本発明の目的は、絶縁被膜を残存させることなく剥離することが可能な平角線の絶縁被膜剥離方法を提供することである。 An object of the present invention is to provide a method for stripping an insulating coating from a rectangular wire, which allows stripping without leaving any insulating coating.

前記の目的を達成するため、本発明の平角線の絶縁被膜剥離方法は、平角線の対向する2辺の絶縁被膜を、平角線の長さ方向に沿う所定範囲に亘って剥離する第1の剥離工程と、2辺の両端点が、平角線の長さ方向に沿ってそれぞれ形成する稜線の位置を、所定範囲に亘って外側に移動させる角部移動工程と、所定範囲に亘って、外側に移動させた稜線を含む角部に面取部を形成する面取工程と、平角線の2辺と直交する2辺の絶縁被膜を、所定範囲に亘って剥離する第2の剥離工程と、を順に行うことを特徴とする。 In order to achieve the above object, the insulating coating peeling method for a rectangular wire of the present invention includes a first step of peeling off the insulating coating on two opposing sides of the rectangular wire over a predetermined range along the length direction of the rectangular wire. a peeling step, a corner moving step in which the positions of the ridge lines formed by both end points of the two sides are moved outward over a predetermined range along the length direction of the rectangular wire; a chamfering step in which a chamfer is formed on a corner including the ridgeline that has been moved; a second peeling step in which the insulation coating on two sides orthogonal to the two sides of the flat wire is peeled off over a predetermined range; It is characterized by performing the following in order.

この構成によれば、絶縁被膜を残存させることなく剥離することができる。 According to this configuration, it is possible to peel off the insulating film without leaving it behind.

また、本発明に係る平角線の絶縁被膜剥離方法において、角部移動工程は、所定範囲に亘って、平角線の対向する2辺の稜線の近傍に、それぞれ、平角線の長さ方向に沿って、先端ほど断面積が小さい突当部を備える第1の型を押し当てる。 In addition, in the method for removing an insulating coating on a flat wire according to the present invention, the corner moving step includes moving the corners along the length direction of the flat wire in the vicinity of the ridge lines on two opposing sides of the flat wire over a predetermined range. Then, a first mold having an abutting portion having a smaller cross-sectional area toward the tip is pressed against the mold.

この構成によれば、角部移動工程に係る加工を曲刃によって実現できるため、定期的な刃の交換を不要とすることができる。 According to this configuration, the machining related to the corner moving process can be realized using the curved blade, so that periodic replacement of the blade can be made unnecessary.

また、本発明に係る平角線の絶縁被膜剥離方法において、角部移動工程は、所定範囲に亘って、平角線の対向する2辺の略中央に、平角線の長さ方向に沿って、先端ほど断面積が小さい突当部を備える第2の型を押し当てる。 In addition, in the method for stripping the insulating coating from a rectangular wire according to the present invention, the corner moving process presses a second die having abutting portions with a smaller cross-sectional area toward the tip along the length of the rectangular wire at approximately the center of two opposing sides of the rectangular wire over a specified range.

この構成によれば、角部移動工程に係る加工を曲刃によって実現できるため、定期的な刃の交換を不要とすることができる。 According to this configuration, the machining related to the corner moving process can be realized using the curved blade, so that periodic replacement of the blade can be made unnecessary.

本発明によれば、絶縁被膜を残存させることなく剥離することが可能な平角線の絶縁被膜剥離方法を提供することができる。 The present invention provides a method for removing the insulating coating from rectangular wire that can remove the coating without leaving any insulating coating behind.

図1は、絶縁被膜剥離を施された平角線の一例を示す外観斜視図である。FIG. 1 is an external perspective view showing an example of a rectangular wire with an insulating coating peeled off. 図2は、平角線の絶縁被膜剥離の手順の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of a procedure for removing an insulating coating from a rectangular wire. 図3は、平角線の長辺の絶縁被膜を剥離する方法を説明する図である。FIG. 3 is a diagram illustrating a method of peeling off the insulating coating on the long sides of the rectangular wire. 図4Aは、平角線の角部の移動加工を行う方法を説明する図である。FIG. 4A is a diagram illustrating a method of moving the corners of a rectangular wire. 図4Bは、平角線の角部の移動加工に用いる曲刃の別の形態を示す図である。FIG. 4B is a diagram showing another form of the curved blade used for moving the corners of a flat wire. 図5は、平角線の角部の面取加工を行う方法を説明する図である。FIG. 5 is a diagram illustrating a method of chamfering the corners of a rectangular wire. 図6は、平角線の短辺の絶縁被膜を剥離する方法を説明する図である。FIG. 6 is a diagram illustrating a method for removing the insulating coating from the short sides of a rectangular wire. 図7は、平角線の窪み加工を行う方法を説明する図である。FIG. 7 is a diagram illustrating a method for forming a recess on a rectangular wire. 図8は、平角線の切断・面取加工を行う方法を説明する図である。FIG. 8 is a diagram illustrating a method for cutting and chamfering a rectangular wire. 図9は、平角線の角部の移動加工を行う別の方法を説明する図である。FIG. 9 is a diagram illustrating another method of moving the corners of a rectangular wire.

以下では、本発明の実施の形態について、添付図面を参照しつつ詳細に説明する。 The following describes in detail an embodiment of the present invention with reference to the attached drawings.

(絶縁被膜が剥離された平角線の概略構造)
図1を用いて、本発明によって絶縁被膜が剥離された平角線の概略構造を説明する。図1は、絶縁被膜剥離を施された平角線の一例を示す外観斜視図である。
(Schematic structure of rectangular wire with insulating coating peeled off)
The schematic structure of a rectangular wire from which an insulating coating has been peeled off according to the present invention will be described with reference to Fig. 1. Fig. 1 is an external perspective view showing an example of a rectangular wire from which an insulating coating has been peeled off.

平角線10は、矩形断面を有する導体12の表面に絶縁被膜13が形成された構造を有する。このような平角線10の先端部の絶縁被膜13を剥離して導体12を露出させ、異なる導体12同士を溶接することによって、モータのステータコイルが形成される。 The rectangular wire 10 has a structure in which an insulating coating 13 is formed on the surface of a conductor 12 having a rectangular cross section. The stator coil of the motor is formed by peeling off the insulating coating 13 at the tip of the rectangular wire 10 to expose the conductor 12, and welding different conductors 12 together.

図1は、本開示の絶縁被膜剥離方法を用いて、平角線10の先端部の絶縁被膜13を剥離した状態の一例を示す。 FIG. 1 shows an example of a state in which the insulation coating 13 on the tip of a flat wire 10 is peeled off using the insulation coating peeling method of the present disclosure.

平角線10は、Y軸に沿って延びる長辺14aと、Z軸に沿って延びる短辺14bとが形成する矩形断面を有する。平角線10の内部は、銅等の導通性を有する導体12で形成されており、その外側が、エナメル等の非導電性の絶縁被膜13で被覆されている。そして、平角線10の先端部は、絶縁被膜13が剥離されて、導体12が露出した状態になっている。なお、本実施形態では長辺14aは短辺14bよりも長いものとして説明するが、長辺14aと短辺14bとが同じ長さであってもよい。また、長辺14aと短辺14bとが逆になってもよい。即ち、以下の説明で、長辺14a、短辺14bと記載されている箇所は、長辺14aを短辺14bと読み替えて、短辺14bを長辺14aと読み替えてもよい。 The rectangular wire 10 has a rectangular cross section defined by a long side 14a extending along the Y-axis and a short side 14b extending along the Z-axis. The inside of the rectangular wire 10 is formed of a conductor 12 having electrical conductivity such as copper, and the outside thereof is covered with a non-conductive insulating film 13 such as enamel. The insulating coating 13 is peeled off from the tip of the rectangular wire 10, so that the conductor 12 is exposed. In this embodiment, the long side 14a is described as being longer than the short side 14b, but the long side 14a and the short side 14b may have the same length. Further, the long side 14a and the short side 14b may be reversed. That is, in the following description, where the long side 14a and the short side 14b are written, the long side 14a may be read as the short side 14b, and the short side 14b may be read as the long side 14a.

絶縁被膜13が剥離された平角線10の先端部には、上下面15aと左右面15bと先端面15cとが形成される。上下面15aは、導体12の長さ方向に沿って形成される、XY平面に沿う面である。左右面15bは、導体12の長さ方向に沿って形成される、XZ平面に沿う面である。先端面15cは、導体12の先端に形成される、YZ平面に沿う面である。 At the tip of the rectangular wire 10 from which the insulating coating 13 has been peeled off, there are formed upper and lower surfaces 15a, left and right surfaces 15b, and a tip surface 15c. The upper and lower surfaces 15a are surfaces formed along the length direction of the conductor 12 and along the XY plane. The left and right surfaces 15b are surfaces formed along the length direction of the conductor 12 and along the XZ plane. The tip surface 15c is a surface formed at the tip of the conductor 12 and along the YZ plane.

導体12の上下面15aと左右面15bとの交線である稜線(角部)の位置には、面取部16aが形成される。また、導体12の左右面15bと先端面15cとの交線の位置には、面取部16bが形成される。更に、導体12の上下面15aと先端面15cとの交線の位置には、面取部16cが形成される。これらの面取部16a,16b,16cを形成することによって、後工程で導体12を溶接して形成したコイルに、絶縁のための絶縁粉体塗装を行う際に、吹き付けられた粉体が導体12の面取部に確実に付着するため、強固な絶縁被膜を形成することができる。 A chamfered portion 16a is formed at a ridgeline (corner) that is an intersection line between the upper and lower surfaces 15a and the left and right surfaces 15b of the conductor 12. Furthermore, a chamfered portion 16b is formed at the intersection of the left and right surfaces 15b and the tip end surface 15c of the conductor 12. Further, a chamfered portion 16c is formed at the intersection of the upper and lower surfaces 15a of the conductor 12 and the tip end surface 15c. By forming these chamfered portions 16a, 16b, and 16c, when performing insulating powder coating for insulation on the coil formed by welding the conductor 12 in a later process, the powder sprayed on the conductor is Since it reliably adheres to the chamfered portion 12, a strong insulating film can be formed.

(絶縁被膜の剥離処理の流れ)
図2を用いて、平角線10の絶縁被膜13を剥離する処理の流れを説明する。図2は、平角線の絶縁被膜剥離の手順の一例を示すフローチャートである。
(Flow of insulating coating peeling process)
The flow of the process for peeling off the insulating coating 13 of the rectangular wire 10 will be explained using FIG. 2. FIG. 2 is a flowchart illustrating an example of a procedure for removing an insulating coating from a rectangular wire.

まず、平角線10の長辺14aに沿って、所定範囲Rに亘って絶縁被膜13を剥離する(ステップS1)。ステップS1で行う加工方法について、詳しくは後述する(図3参照)。なお、ステップS1の工程が、本開示における第1の剥離工程の一例である。 First, the insulating coating 13 is peeled off over a predetermined range R along the long side 14a of the flat wire 10 (step S1). The processing method performed in step S1 will be described in detail later (see FIG. 3). Note that the process of step S1 is an example of the first peeling process in the present disclosure.

次に、絶縁被膜13を剥離した長辺14aの両端の稜線(角部)の位置を、所定範囲Rに亘って外側に僅かに移動させる移動加工を行う(ステップS2)。ステップS2で行う加工方法について、詳しくは後述する(図4a参照)。なお、ステップS2の工程が、本開示における角部移動工程の一例である。 Next, a movement process is performed in which the positions of the ridge lines (corners) at both ends of the long side 14a from which the insulating coating 13 has been peeled are slightly moved outward over a predetermined range R (step S2). The processing method performed in step S2 will be described in detail later (see FIG. 4a). Note that the step S2 is an example of a corner moving step in the present disclosure.

次に、ステップS2で外側に移動させた稜線を含む角部に面取部16aを形成する面取加工を行う(ステップS3)。ステップS3で行う加工方法について、詳しくは後述する(図5参照)。なお、ステップS3の工程が、本開示における面取工程の一例である。 Next, a chamfering process is performed to form a chamfered portion 16a at a corner including the ridgeline moved outward in step S2 (step S3). The processing method performed in step S3 will be described in detail later (see FIG. 5). Note that the process of step S3 is an example of a chamfering process in the present disclosure.

次に、平角線10の短辺14bに沿って絶縁被膜13を剥離する(ステップS4)。ステップS4で行う加工方法について、詳しくは後述する(図6参照)。なお、ステップS4の工程が、本開示における第2の剥離工程の一例である。 Next, the insulating coating 13 is peeled off along the short side 14b of the rectangular wire 10 (step S4). The processing method performed in step S4 will be described in detail later (see FIG. 6). The process in step S4 is an example of the second peeling process in this disclosure.

次に、導体12の両側面に窪み20a,20b(図7参照)と面取部16bとを形成する窪み加工を行う(ステップS5)。ステップS5で行う加工方法について、詳しくは後述する(図7参照)。 Next, recess processing is performed to form recesses 20a, 20b (see FIG. 7) and chamfered portions 16b on both side surfaces of the conductor 12 (step S5). The processing method performed in step S5 will be described in detail later (see FIG. 7).

最後に、窪み20aと窪み20bとを通る位置で導体12を切断して、切断した位置に面取部16cを形成する面取加工を行う(ステップS6)。ステップS6で行う加工方法について、詳しくは後述する(図8参照)。 Finally, the conductor 12 is cut at a position passing through the depressions 20a and 20b, and a chamfering process is performed to form a chamfered portion 16c at the cut position (step S6). The processing method performed in step S6 will be described in detail later (see FIG. 8).

(長辺に沿う絶縁被膜の剥離)
図3を用いて、図2のステップS1で行う、平角線10の長辺14aに沿う絶縁被膜13を剥離する第1の剥離工程について詳しく説明する。図3は、平角線の長辺の絶縁被膜を剥離する方法を説明する図である。なお、平角線10はX軸に沿って配置されており、長辺14a(図1参照)がY軸に平行、短辺14b(図1参照)がZ軸に平行に配置されているものとする。
(Peeling of insulation coating along long sides)
The first peeling step of peeling off the insulating coating 13 along the long side 14a of the rectangular wire 10, which is performed in step S1 in FIG. 2, will be described in detail with reference to FIG. 3. FIG. 3 is a diagram illustrating a method of peeling off the insulating coating on the long sides of the rectangular wire. Note that the rectangular wire 10 is arranged along the X-axis, with the long side 14a (see FIG. 1) parallel to the Y-axis, and the short side 14b (see FIG. 1) parallel to the Z-axis. do.

加工前の平角線10は、図3(a)に示すように、X軸に沿って長く延びた状態になっている。ここでは、平角線10の所定範囲Rに亘って、長辺14aに沿って絶縁被膜13を剥離する。 Before processing, the rectangular wire 10 is elongated along the X-axis, as shown in FIG. 3(a). Here, the insulating coating 13 is peeled off along the long side 14a over a predetermined range R of the rectangular wire 10.

平角線10は、A-A断面図に示すように、導体12の周囲が絶縁被膜13に被覆されている。 As shown in the A-A cross-sectional view, the rectangular wire 10 has an insulating coating 13 covering the conductor 12.

絶縁被膜13の剥離は、図3(b)に示すように、所定範囲Rに亘る切刃30a,30bを、平角線10の表面の絶縁被膜13に当てて、長辺14aに沿う方向、即ちY軸に沿って移動させることによって行う。具体的には、B-B断面図に示すように、平角線10のY軸方向負側にパット33を押し当てて、Y軸方向正側に下型34を押し当てた状態で、平角線10のZ軸負側の面に沿って切刃30aをY軸負側から正側に向かって移動させる。また、平角線10のZ軸正側の面に沿って切刃30bをY軸負側から正側に向かって移動させる。これによって、切刃30a,30bは、それぞれ、所定範囲Rに亘って、平角線10のXY平面に沿う絶縁被膜13を切削する。 The insulating coating 13 is peeled off by applying the cutting blades 30a and 30b over a predetermined range R to the insulating coating 13 on the surface of the rectangular wire 10, as shown in FIG. This is done by moving along the Y axis. Specifically, as shown in the BB sectional view, with the pad 33 pressed against the negative side of the flat wire 10 in the Y-axis direction and the lower die 34 pressed against the positive side of the flat wire 10, the flat wire 10 is pressed. The cutting blade 30a is moved along the Z-axis negative side surface of 10 from the Y-axis negative side toward the positive side. Further, the cutting blade 30b is moved along the surface of the flat wire 10 on the Z-axis positive side from the Y-axis negative side toward the positive side. Thereby, the cutting blades 30a and 30b each cut the insulating coating 13 along the XY plane of the rectangular wire 10 over a predetermined range R.

これによって、図3(c)に示すように、所定範囲Rの領域に導体12が露出する。 As a result, the conductor 12 is exposed in a predetermined range R, as shown in FIG. 3(c).

(角部の移動加工)
図4A,図4Bを用いて、図2のステップS2で行う、平角線10の角部を移動する角部移動工程について詳しく説明する。図4Aは、平角線の角部の移動加工を行う方法を説明する図である。図4Bは、平角線の角部の移動加工に用いる曲刃の別の形態を示す図である。
(Movement machining of corners)
The corner moving step of moving the corner of the rectangular wire 10 performed in step S2 in FIG. 2 will be described in detail with reference to FIGS. 4A and 4B. FIG. 4A is a diagram illustrating a method of moving the corners of a rectangular wire. FIG. 4B is a diagram showing another form of the curved blade used for moving the corners of a flat wire.

本ステップでは、図4A(a)に示すように、平角線10に、Z軸負側から型40aを押し当てることによって成型(例えばコイニングによる塑性変形)を行う。また、Z軸正側から型40bを押し当てることによって成型を行う。型40aの先端には、所定範囲Rに亘って、高さが等しい曲刃42aと曲刃43aとが形成されている。曲刃42a,43aは、先端(Z軸正側)ほど断面積が小さくなっており、曲刃42a,43aの先端は、平角線10の所定範囲Rに亘って、X軸に沿って導体12と線接触する。なお、曲刃42a,43aは、いずれも、刃先の内側がZ軸に沿っており、刃先の外側が約45°の角度を有している。曲刃42a,43aは、それぞれ、平角線10の短辺(Z軸に沿う辺)に形成された絶縁被膜13と導体12との境界位置の付近に押し当てられる。ここで、型40a,40bは、本開示における第1の型の一例である。また、曲刃42a,43aは、本開示における突当部の一例である。 In this step, as shown in FIG. 4A(a), a mold 40a is pressed against the rectangular wire 10 from the Z-axis negative side to perform molding (for example, plastic deformation by coining). Further, molding is performed by pressing the mold 40b from the positive side of the Z-axis. A curved blade 42a and a curved blade 43a having the same height are formed over a predetermined range R at the tip of the mold 40a. The cross-sectional area of the curved blades 42a, 43a becomes smaller toward the tips (positive side of the Z-axis), and the tips of the curved blades 42a, 43a extend along the X-axis to the conductor 12 over a predetermined range R of the flat wire 10. line contact with. Note that the curved blades 42a and 43a both have an inner side of the cutting edge along the Z axis, and an outer side of the cutting edge at an angle of about 45°. The curved blades 42a and 43a are pressed near the boundary between the insulating coating 13 and the conductor 12 formed on the short side (the side along the Z axis) of the rectangular wire 10, respectively. Here, the molds 40a and 40b are examples of the first mold in the present disclosure. Further, the curved blades 42a and 43a are examples of abutting portions in the present disclosure.

また、型40bの先端にも、所定範囲Rに亘って、高さが等しい曲刃42bと曲刃43bとが形成されている。曲刃42b,43bは、先端(Z軸負側)ほど断面積が小さくなっており、曲刃42b,43bの先端は、平角線10の所定範囲Rに亘って、X軸に沿って導体12と線接触する。なお、曲刃42b,43bは、いずれも、刃先の内側がZ軸に沿っており、刃先の外側が約45°の角度を有している。曲刃42b,43bは、それぞれ、平角線10の短辺(Z軸に沿う辺)に形成された絶縁被膜13と導体12との境界位置の付近に押し当てられる。ここで、曲刃42b,43bは、本開示における突当部の一例である。 At the tip of the die 40b, curved blades 42b and 43b of equal height are formed over a predetermined range R. The curved blades 42b and 43b have a smaller cross-sectional area toward the tip (negative side of the Z axis), and the tips of the curved blades 42b and 43b make line contact with the conductor 12 along the X axis over the predetermined range R of the rectangular wire 10. The inside of the blade tip of each of the curved blades 42b and 43b is aligned along the Z axis, and the outside of the blade tip has an angle of about 45°. The curved blades 42b and 43b are each pressed against the vicinity of the boundary between the insulating coating 13 formed on the short side (side along the Z axis) of the rectangular wire 10 and the conductor 12. Here, the curved blades 42b and 43b are an example of abutting parts in this disclosure.

平角線10に、曲刃42a,43aと曲刃42b,43bとを押し当てることによって、平角線10は、刃先の外側に向かって塑性変形する。この塑性変形によって、X軸に沿って平角線10の角部を形成する稜線18の位置が、図4A(a)に示す位置から、図4A(b)に示す位置、即ちY軸方向外側に移動する。これにより、稜線18が、稜線18aの位置に移動する。なお、曲刃42a,43aと曲刃42b,43bとの押し当て量は僅かであるため、図4A(b)に示すように、平角線10の塑性変形量も僅かである。 By pressing the curved blades 42a, 43a and the curved blades 42b, 43b against the flat wire 10, the flat wire 10 is plastically deformed toward the outside of the cutting edge. Due to this plastic deformation, the position of the ridge line 18 forming the corner of the rectangular line 10 along the X-axis changes from the position shown in FIG. 4A(a) to the position shown in FIG. 4A(b), that is, outward in the Y-axis direction. Moving. As a result, the ridge line 18 moves to the position of the ridge line 18a. Note that since the amount of pressing between the curved blades 42a, 43a and the curved blades 42b, 43b is small, the amount of plastic deformation of the flat wire 10 is also small, as shown in FIG. 4A(b).

なお、角部の移動加工に用いる曲刃の刃先の角度は45°に限定されるものではない。例えば、図4Bに示す型44aのように、刃先の内側と外側がそれぞれ45°の角度を有して、刃先の角度が90°をなす曲刃46aと曲刃47aを用いて成型を行っても、図4A(b)と同様に、平角線10の稜線18の位置を、稜線18aの位置に移動させることができる。 Note that the angle of the cutting edge of the curved blade used for moving the corner is not limited to 45°. For example, as in a mold 44a shown in FIG. 4B, molding is performed using curved blades 46a and 47a in which the inside and outside of the blade edges each have an angle of 45 degrees, and the blade edges form an angle of 90 degrees. Similarly to FIG. 4A(b), the position of the ridge line 18 of the flat wire 10 can be moved to the position of the ridge line 18a.

(角部の面取加工)
図5を用いて、図2のステップS3で行う、角部の面取工程について詳しく説明する。図5は、平角線の角部の面取加工を行う方法を説明する図である。
(Chamfering of corners)
The corner chamfering step performed in step S3 of FIG. 2 will be described in detail with reference to FIG. 5. FIG. 5 is a diagram illustrating a method of chamfering the corners of a rectangular wire.

本ステップでは、前記した角部の移動加工によって移動した4か所の角部(稜線18aを含む領域)をZ軸に沿って塑性変形させることによって、面取加工を行う。 In this step, the chamfering process is performed by plastically deforming the four corners (area including the ridge line 18a) along the Z-axis that have been moved by the above-described corner movement process.

面取加工は、平角線10に、Z軸負側から型50aを押し当てて、Z軸正側から型50bを押し当てて、成型(例えばコイニングによる塑性変形)を行うことによって行う。型50aの先端には、所定範囲Rに亘って、高さが等しい曲刃52aと曲刃53aとが形成されている。曲刃52a,53aは、Y軸方向に対して約25°の傾斜面を有する。なお、傾斜面の傾きは25°に限定されるものではなく、加工する平角線10に応じて適切な角度が選定される。 The chamfering process is performed by pressing a mold 50a against the rectangular wire 10 from the negative side of the Z-axis and pressing a mold 50b against the positive side of the Z-axis to perform molding (for example, plastic deformation by coining). A curved blade 52a and a curved blade 53a having the same height are formed over a predetermined range R at the tip of the mold 50a. The curved blades 52a and 53a have an inclined surface of about 25° with respect to the Y-axis direction. Note that the inclination of the inclined surface is not limited to 25°, and an appropriate angle is selected depending on the flat wire 10 to be processed.

型50aの曲刃52a,53aが備える傾斜面が、平角線10の角部に押し当たって押圧されることによって、図5(b)に示すように、平角線10の角部に面取部16aが形成される。このとき、角部の移動加工によって外側に移動した稜線18aの位置も、Z軸に沿って塑性変形して、図5(b)に示すように、Z軸正側に移動する。 When the inclined surfaces of the curved blades 52a and 53a of the mold 50a are pressed against the corners of the flat wire 10, chamfers are formed at the corners of the flat wire 10, as shown in FIG. 5(b). 16a is formed. At this time, the position of the ridge line 18a, which has been moved outward by the movement processing of the corner, is also plastically deformed along the Z-axis, and moves to the positive side of the Z-axis, as shown in FIG. 5(b).

なお、型50bも、型50aと同様の構造の曲刃52bと曲刃53bとを備える。曲刃52bと曲刃53bとは、Z軸正側から平角線10に押し当てられて、面取部16aを形成する。 Note that the mold 50b also includes a curved blade 52b and a curved blade 53b having the same structure as the mold 50a. The curved blade 52b and the curved blade 53b are pressed against the flat wire 10 from the positive side of the Z-axis to form a chamfered portion 16a.

(短辺に沿う絶縁被膜の剥離)
図6を用いて、図2のステップS4で行う、平角線10の短辺14bに沿う絶縁被膜13を剥離する第2の剥離工程について詳しく説明する。図6は、平角線の短辺の絶縁被膜を剥離する方法を説明する図である。
(Peeling of insulation coating along the short side)
The second peeling step of peeling off the insulating coating 13 along the short side 14b of the rectangular wire 10, which is performed in step S4 of Fig. 2, will be described in detail with reference to Fig. 6. Fig. 6 is a diagram for explaining a method of peeling off the insulating coating on the short side of the rectangular wire.

本ステップでは、前記した面取加工が終了した後で、平角線10の所定範囲Rに亘って、平角線10の短辺(Z軸に沿う辺)に沿って、絶縁被膜13を剥離する。 In this step, after the above-described chamfering process is completed, the insulating coating 13 is peeled off along the short sides (sides along the Z axis) of the flat wire 10 over a predetermined range R of the flat wire 10.

絶縁被膜13の剥離は、図6(a)に示すように、所定範囲Rに亘る切刃60aと切刃60bを、面取加工された平角線10の導体12と絶縁被膜13との境界付近に当てて、Z軸方向に移動させることによって行う。このとき、平角線10のZ軸方向負側にパット63を押し当てて、Z軸方向正側に下型64を押し当てた状態で、平角線10の左右両側面に沿って切刃60a,60bを、Z軸負側から正側に向かって移動させる。これによって、切刃60a,60bは、それぞれ、平角線10のXZ平面に沿う絶縁被膜13を切削する。このとき、導体12と絶縁被膜13との境界は、前記した角部の面取加工によって、Y軸方向外側に塑性変形しているため、切刃60aと切刃60bとで絶縁被膜13を剥離した際に、残存する絶縁被膜13は生じない。 As shown in FIG. 6(a), the insulating coating 13 is peeled off by cutting the cutting edges 60a and 60b over a predetermined range R near the boundary between the conductor 12 and the insulating coating 13 of the chamfered rectangular wire 10. This is done by moving it in the Z-axis direction. At this time, with the pad 63 pressed against the negative side of the flat wire 10 in the Z-axis direction and the lower mold 64 pressed against the positive side of the flat wire 10, the cutting blades 60a, 60b is moved from the negative side to the positive side of the Z-axis. As a result, the cutting blades 60a and 60b cut the insulating coating 13 along the XZ plane of the rectangular wire 10, respectively. At this time, the boundary between the conductor 12 and the insulating coating 13 is plastically deformed outward in the Y-axis direction due to the corner chamfering described above, so the insulating coating 13 is peeled off by the cutting blades 60a and 60b. At this time, no remaining insulating film 13 is formed.

(窪み加工)
図7を用いて、図2のステップS5で行う窪み加工について詳しく説明する。図7は、平角線の窪み加工を行う方法を説明する図である。
(dent processing)
The recess machining performed in step S5 of FIG. 2 will be described in detail using FIG. 7. FIG. 7 is a diagram illustrating a method for forming a recess on a rectangular wire.

本ステップでは、絶縁被膜13が剥離された導体12のXZ平面に沿う左右側面の略中央部に、Z軸に沿う窪み20aと窪み20bを形成する。 In this step, a recess 20a and a recess 20b along the Z-axis are formed approximately at the center of the left and right side surfaces along the XZ plane of the conductor 12 from which the insulating coating 13 has been peeled off.

窪み20aと窪み20bは、平角線10に対して、Z軸負側から、図7(a)に示す曲刃72aが形成された型70aと、曲刃72bが形成された型70bとを押し当てることによって形成する。 The depressions 20a and 20b are formed by pressing a die 70a with a curved blade 72a and a die 70b with a curved blade 72b shown in FIG. 7(a) against the rectangular wire 10 from the negative side of the Z axis.

曲刃72a,72bは、略U字形状を有して、平角線10の導体12に押し当たることによって、導体12の左右側面の一部を、図7(b)に示すように略U字形状に押し潰す。これによって、窪み20aと窪み20bが形成される。なお、窪み20a,20bの根元には、それぞれ、導体12の左右側面の位置に面取部16bが形成される。 The curved blades 72a and 72b have a substantially U-shape, and by pressing against the conductor 12 of the flat wire 10, a portion of the left and right side surfaces of the conductor 12 are shaped into a substantially U-shape as shown in FIG. 7(b). Squeeze into shape. As a result, a depression 20a and a depression 20b are formed. Note that chamfered portions 16b are formed at the bases of the depressions 20a and 20b at positions on the left and right side surfaces of the conductor 12, respectively.

(平角線の切断および面取加工)
図8を用いて、図2のステップS6で行う平角線10の切断および面取加工について詳しく説明する。図8は、平角線の切断・面取加工を行う方法を説明する図である。
(Cutting and chamfering of flat wire)
The cutting and chamfering of the rectangular wire 10 performed in step S6 in FIG. 2 will be described in detail with reference to FIG. 8. FIG. 8 is a diagram illustrating a method for cutting and chamfering a rectangular wire.

本ステップでは、導体12を、窪み加工で形成した窪み20a,20bの位置で切断する。 In this step, the conductor 12 is cut at the positions of the depressions 20a and 20b formed by depression processing.

導体12の切断は、図8(a)に示すように、窪み20bの位置に押し当てた切刃80を、Y軸に沿って窪み20aの位置まで移動させることによって行う。 The conductor 12 is cut by moving the cutting blade 80 pressed against the position of the recess 20b along the Y axis to the position of the recess 20a, as shown in FIG. 8(a).

切刃80は、Z軸負側に傾斜部80aと傾斜部80bとを備える。この傾斜部80a,80bによって、切断された導体12の切り口には、Y軸に沿って、図8(b)に示す面取部16cが形成される。 The cutting blade 80 includes an inclined portion 80a and an inclined portion 80b on the negative side of the Z-axis. Due to the inclined portions 80a and 80b, a chamfered portion 16c shown in FIG. 8(b) is formed at the cut end of the cut conductor 12 along the Y axis.

また、切刃80は、Z軸正側に傾斜部80cと傾斜部80dとを備える。この傾斜部80c,80dによって、切断された導体12の切り口には、Y軸に沿って面取部16cが形成される。 Further, the cutting blade 80 includes an inclined portion 80c and an inclined portion 80d on the positive side of the Z-axis. Due to the inclined portions 80c and 80d, a chamfered portion 16c is formed at the cut end of the cut conductor 12 along the Y axis.

以上説明した、ステップS1からステップS6までの加工を、平角線10の所定の間隔毎に行うことによって、両端部に導体12が露出した複数の平角線10が形成される。これらの複数の平角線10は、ステータコアの周りに隣接した状態で配置される。そして、隣接する平角線10の端部同士を溶接することによって、ステータコアに巻回されたステータコイルが形成される。 By performing the above-described processing from step S1 to step S6 at predetermined intervals of the rectangular wires 10, a plurality of rectangular wires 10 with conductors 12 exposed at both ends are formed. These plural rectangular wires 10 are arranged adjacently around the stator core. Then, by welding the ends of adjacent flat wires 10 together, a stator coil wound around the stator core is formed.

(本実施形態の作用効果)
以上説明したように、本実施の形態に係る平角線の絶縁被膜剥離方法は、平角線10の対向する2辺(長辺14a)の絶縁被膜13を、当該平角線10の長さ方向に沿う所定範囲Rに亘って剥離する第1の剥離工程と、長辺14aの両端点が、平角線10の長さ方向に沿ってそれぞれ形成する稜線18の位置を、所定範囲Rに亘って外側に移動させる角部移動工程と、所定範囲Rに亘って、外側に移動させた稜線18を含む角部に面取部16aを形成する面取工程と、平角線10の長辺14aと直交する短辺14bの絶縁被膜13を、所定範囲Rに亘って剥離する第2の剥離工程と、を順に行う。したがって、平角線10の絶縁被膜13を残存させることなく剥離することができる。
(Operations and effects of this embodiment)
As explained above, the method for stripping the insulation coating of a flat wire according to the present embodiment is to remove the insulation coating 13 on two opposing sides (long sides 14a) of the flat wire 10 along the length direction of the flat wire 10. A first peeling step of peeling off over a predetermined range R, and a step of peeling outward over a predetermined range R of the positions of the ridge lines 18 formed by both end points of the long side 14a along the length direction of the flat wire 10, respectively. a chamfering step of forming a chamfered portion 16a on the corner including the ridgeline 18 moved outward over a predetermined range R; A second peeling step of peeling off the insulating coating 13 on the side 14b over a predetermined range R is performed in sequence. Therefore, the insulation coating 13 of the rectangular wire 10 can be peeled off without remaining.

また、本実施の形態に係る平角線の絶縁被膜剥離方法において、角部移動工程は、所定範囲Rに亘って、平角線10の対向する2辺(長辺14a)の稜線18の近傍に、それぞれ、平角線10の長さ方向に沿って、先端ほど断面積が小さい曲刃42a,43a(突当部)を備える型40a(第1の型)と、曲刃42b,43b(突当部)を備える型40b(第1の型)とを押し当てる。したがって、平角線10の角部を含む領域を塑性変形させることによって、外側に移動させることができる。これによって、後工程で短辺14bに沿う絶縁被膜13を剥離した際に、絶縁被膜13を残存させることなく剥離することができる。また、切刃ではなく曲刃42a,43a,42b,43bで加工を行うため、刃の寿命を延ばすことができる。 In addition, in the method for peeling an insulating coating of a flat wire according to the present embodiment, the corner moving step includes, over a predetermined range R, near the ridgeline 18 of two opposing sides (long sides 14a) of the flat wire 10, A mold 40a (first mold) includes curved blades 42a, 43a (abutment portions) whose cross-sectional area is smaller toward the tip along the length direction of the flat wire 10, and a mold 40a (first mold) includes curved blades 42b, 43b (abutment portions). ) is pressed against the mold 40b (first mold). Therefore, by plastically deforming the area including the corner of the rectangular wire 10, it can be moved outward. Thereby, when the insulation coating 13 along the short side 14b is peeled off in a later step, the insulation coating 13 can be peeled off without remaining. Further, since processing is performed using the curved blades 42a, 43a, 42b, and 43b instead of cutting blades, the life of the blades can be extended.

(実施形態の変形例)
図9を用いて、平角線10の角部の移動加工を行う別の方法を説明する。図9は、平角線の角部の移動加工を行う別の方法を説明する図である。
(Modified example of embodiment)
Another method of moving the corners of the rectangular wire 10 will be described with reference to FIG. FIG. 9 is a diagram illustrating another method of moving the corners of a rectangular wire.

図4Aでは、型40aの先端に形成された、X軸に沿う所定範囲Rに亘る曲刃42aと曲刃43aとを平角線10に押し当てて角部の移動加工を行う方法を説明したが、角部の移動加工を行う方法は、これに限定されない。 In FIG. 4A, a method was explained in which the curved blades 42a and 43a formed at the tip of the mold 40a and extending over a predetermined range R along the X-axis are pressed against the flat wire 10 to move the corners. , the method of moving the corners is not limited to this.

例えば、図9(a)に示すように、平角線10の長辺の略中央に、先端に、X軸に沿う所定範囲Rに亘る曲刃92aを有する型90aを押し当てることによって、平角線10の角部が形成する稜線18の位置を外側に移動させてもよい。 For example, as shown in FIG. 9(a), the position of the ridge line 18 formed by the corner of the rectangular wire 10 may be shifted outward by pressing a die 90a having a curved blade 92a at its tip, which has a predetermined range R along the X-axis, against approximately the center of the long side of the rectangular wire 10.

曲刃92aは、先端(Z軸正側)ほど断面積が小さくなっており、曲刃92aの先端は、平角線10の所定範囲Rに亘って、X軸に沿って導体12と線接触する。なお、曲刃92aの先端は、刃先の両側とも、Z軸と30°の傾きをなす。即ち、刃先の角度は約60°である。 The cross-sectional area of the curved blade 92a becomes smaller toward the tip (positive side of the Z-axis), and the tip of the curved blade 92a makes line contact with the conductor 12 along the X-axis over a predetermined range R of the flat wire 10. . Note that the tip of the curved blade 92a is inclined at 30° with respect to the Z axis on both sides of the cutting edge. That is, the angle of the cutting edge is about 60°.

このような曲刃92aを、平角線10の導体12に押し当てることによって、導体12は塑性変形する。この塑性変形は、曲刃92aを押し当てた箇所からY軸に沿って左右に伝わることにより、稜線18の位置が、図9(b)に示す稜線18aの位置に移動する。即ち、図4Aで説明した角部の移動加工と同じ加工を行うことができる。 By pressing such a curved blade 92a against the conductor 12 of the flat wire 10, the conductor 12 is plastically deformed. This plastic deformation is transmitted to the left and right along the Y-axis from the location where the curved blade 92a is pressed, thereby moving the position of the ridge line 18 to the position of the ridge line 18a shown in FIG. 9(b). That is, the same machining as the moving machining of the corner explained with reference to FIG. 4A can be performed.

平角線10の裏面側も、同様に、型90bの先端に形成された曲刃92bを押し当てることによって、角部の移動加工を行うことができる。ここで、型90a,90bは、本開示における第2の型の一例である。また、曲刃92a,92bは、本開示における突当部の一例である。 Similarly, on the back side of the flat wire 10, the corner can be moved by pressing the curved blade 92b formed at the tip of the mold 90b. Here, the molds 90a and 90b are examples of the second mold in the present disclosure. Furthermore, the curved blades 92a and 92b are examples of abutting portions in the present disclosure.

(本実施形態の変形例の作用効果)
以上説明したように、本実施の形態の変形例に係る平角線の絶縁被膜剥離方法において、角部移動工程は、所定範囲Rに亘って、平角線10の対向する2辺(長辺14a)の各々の略中央に、それぞれ、平角線10の長さ方向に沿って、先端ほど断面積が小さい曲刃92a,92b(突当部)を備える型90a,90b(第2の型)を押し当てる。したがって、平角線10の角部を含む領域を塑性変形させることによって、外側に移動させることができる。これによって、後工程で短辺14bに沿う絶縁被膜13を剥離した際に、絶縁被膜13を残存させることなく剥離することができる。また、切刃ではなく曲刃92a,92bで加工を行うため、刃の寿命を延ばすことができる。
(Operations and effects of the modified example of this embodiment)
As explained above, in the method for peeling an insulating coating of a flat wire according to the modification of the present embodiment, the corner moving step includes two opposing sides (long sides 14a) of the flat wire 10 over a predetermined range R. Press molds 90a and 90b (second molds) having curved blades 92a and 92b (abutting portions) whose cross-sectional area is smaller toward the tip along the length direction of the rectangular wire 10, respectively, approximately at the center of each of the flat wires 10. guess. Therefore, by plastically deforming the area including the corner of the rectangular wire 10, it can be moved outward. Thereby, when the insulation coating 13 along the short side 14b is peeled off in a later step, the insulation coating 13 can be peeled off without remaining. Further, since processing is performed with the curved blades 92a and 92b instead of the cutting blade, the life of the blades can be extended.

以上、本発明の実施の形態について説明したが、上述した実施の形態は、例として提示したものであり、本発明の範囲を限定することは意図していない。この新規な実施の形態は、その他の様々な形態で実施されることが可能である。また、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。また、この実施の形態は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiments of the present invention have been described above, the embodiments described above are presented as examples and are not intended to limit the scope of the present invention. This novel embodiment can be implemented in various other forms. Furthermore, various omissions, substitutions, and changes can be made without departing from the gist of the invention. Further, this embodiment is included within the scope and gist of the invention, and is also included within the scope of the invention described in the claims and its equivalents.

10 平角線
12 導体
13 絶縁被膜
14a 長辺
14b 短辺
15a 上下面
15b 左右面
15c 先端面
16a,16b,16c 面取部
18,18a 稜線
20a,20b 窪み
30a,30b,60a,60b 切刃
33,63 パット
34,64 下型
40a,40b,44a 型(第1の型)
42a,42b,43a,43b,46a,47a 曲刃(突当部)
50a,50b 型
52a,53a,52b,53b 曲刃
70a,70b 型
72a,72b 曲刃
80 切刃
80a,80b,80c,80d 傾斜部
90a,90b 型(第2の型)
92a,92b 曲刃(突当部)
R 所定範囲
10 Flat wire 12 Conductor 13 Insulating coating 14a Long side 14b Short side 15a Top and bottom surfaces 15b Left and right surfaces 15c Tip surface 16a, 16b, 16c Chamfered portion 18, 18a Ridge line 20a, 20b Hollow 30a, 30b, 60a, 60b Cutting blade 33, 63 Pad 34, 64 Lower mold 40a, 40b, 44a mold (first mold)
42a, 42b, 43a, 43b, 46a, 47a Curved blade (abutment part)
50a, 50b mold 52a, 53a, 52b, 53b curved blade 70a, 70b mold 72a, 72b curved blade 80 cutting blade 80a, 80b, 80c, 80d inclined part 90a, 90b mold (second mold)
92a, 92b Curved blade (abutment part)
R Predetermined range

Claims (3)

平角線の対向する2辺の絶縁被膜を、当該平角線の長さ方向に沿う所定範囲に亘って剥離する第1の剥離工程と、
前記2辺の両端点が、前記平角線の長さ方向に沿ってそれぞれ形成する稜線の位置を、前記所定範囲に亘って外側に移動させる角部移動工程と、
前記所定範囲に亘って、外側に移動させた前記稜線を含む角部に面取部を形成する面取工程と、
前記平角線の前記2辺と直交する2辺の絶縁被膜を、前記所定範囲に亘って剥離する第2の剥離工程と、を順に行う
平角線の絶縁被膜剥離方法。
A first peeling step of peeling off the insulating coating on two opposing sides of the rectangular wire over a predetermined range along the length of the rectangular wire;
a corner moving step of moving the positions of the ridge lines formed by both end points of the two sides along the length direction of the rectangular wire outward over the predetermined range;
a chamfering step of forming a chamfered portion at a corner including the ridge line that has been moved outward over the predetermined range;
a second peeling step of peeling off the insulating coating on two sides of the rectangular wire perpendicular to the two sides over the specified range.
前記角部移動工程は、
前記所定範囲に亘って、前記平角線の対向する2辺の前記稜線の近傍に、それぞれ、前記平角線の長さ方向に沿って、先端ほど断面積が小さい突当部を備える第1の型を押し当てる、
請求項1に記載の平角線の絶縁被膜剥離方法。
The corner moving step includes:
A first mold including abutment portions having a cross-sectional area smaller toward the tip along the length direction of the rectangular wire in the vicinity of the ridge lines on two opposing sides of the rectangular wire over the predetermined range; press against
The method for peeling an insulating coating from a rectangular wire according to claim 1.
前記角部移動工程は、
前記所定範囲に亘って、前記平角線の対向する2辺の各々の略中央に、それぞれ、前記平角線の長さ方向に沿って、先端ほど断面積が小さい突当部を備える第2の型を押し当てる、
請求項1に記載の平角線の絶縁被膜剥離方法。
The corner moving step includes:
A second mold including an abutting portion having a cross-sectional area smaller toward the tip along the length direction of the rectangular wire at substantially the center of each of two opposing sides of the rectangular wire over the predetermined range; press against
The method for peeling an insulating coating from a rectangular wire according to claim 1.
JP2022148548A 2022-09-16 2022-09-16 How to remove insulation coating from flat wire Pending JP2024043381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022148548A JP2024043381A (en) 2022-09-16 2022-09-16 How to remove insulation coating from flat wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022148548A JP2024043381A (en) 2022-09-16 2022-09-16 How to remove insulation coating from flat wire

Publications (1)

Publication Number Publication Date
JP2024043381A true JP2024043381A (en) 2024-03-29

Family

ID=90418247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022148548A Pending JP2024043381A (en) 2022-09-16 2022-09-16 How to remove insulation coating from flat wire

Country Status (1)

Country Link
JP (1) JP2024043381A (en)

Similar Documents

Publication Publication Date Title
US9570893B2 (en) Cutting method of flat wire, and cutting tool
JP2003025019A (en) Metal plate folding method, and connector terminal
JP4042401B2 (en) Method for stripping coated conductor wire
JP2024043381A (en) How to remove insulation coating from flat wire
JP2003143818A (en) Manufacturing method for divided conductor of coil
TW468293B (en) Method for removing a braiding layer of a coaxial cable
JP7406295B2 (en) Manufacturing method of flat wire
JPH06179088A (en) Method for working metal sheet and manufacture of lead frame
JP3285026B2 (en) Stripping method of coated conductor wire
JP7496338B2 (en) How to remove the coating from rectangular wire
JP2001327043A (en) Terminal-welded laminated bus bar
JP2587462B2 (en) Enamel substrate and method of manufacturing the same
JP7170815B1 (en) Coating stripping method and coating stripping device
JP7389591B2 (en) How to process flat wire
JPS6244422B2 (en)
JP2006263755A (en) Method and apparatus for manufacturing press-formed metallic component
JP7460284B2 (en) Manufacturing method of rectangular wire
JP7342751B2 (en) Method of manufacturing conductive wire
JP2023041414A (en) Film removal method of rectangular wire
JP7368070B2 (en) Manufacturing method of flat wire
JP2024039346A (en) Flat wire coating removal method and coating removal device
JPH09162083A (en) Manufacture of electronic component with lead wire
JP2021049574A (en) Method of manufacturing straight angle wire
CN112770520A (en) Gold finger structure and manufacturing method thereof
CN117796163A (en) Method for producing a molded part from an electrically conductive planar element and circuit board having at least one such molded part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240325