JP2024029929A - High-strength electric resistance welded steel pipe with excellent hot-dip galvanizing cracking resistance and suitable for overhead line poles, and its manufacturing method - Google Patents

High-strength electric resistance welded steel pipe with excellent hot-dip galvanizing cracking resistance and suitable for overhead line poles, and its manufacturing method Download PDF

Info

Publication number
JP2024029929A
JP2024029929A JP2022132402A JP2022132402A JP2024029929A JP 2024029929 A JP2024029929 A JP 2024029929A JP 2022132402 A JP2022132402 A JP 2022132402A JP 2022132402 A JP2022132402 A JP 2022132402A JP 2024029929 A JP2024029929 A JP 2024029929A
Authority
JP
Japan
Prior art keywords
hot
diameter reduction
less
mpa
reduction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022132402A
Other languages
Japanese (ja)
Inventor
竜大 服部
剛 小松
英幸 中村
雅和 尾▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2022132402A priority Critical patent/JP2024029929A/en
Publication of JP2024029929A publication Critical patent/JP2024029929A/en
Pending legal-status Critical Current

Links

Abstract

【課題】溶融亜鉛めっき濡れ性に優れ、耐溶融亜鉛めっき割れ性と高強度を両立する電縫鋼管及びその製造方法を提供する。【解決手段】所定の成分からなり、下記式(1)にて計算されるCEZ≦0.44を満たし、管軸および管軸直角方向の引張強度700MPa以上、同降伏点520MPa以上、管軸直角方向の残留応力が200MPa以下である耐溶融亜鉛めっき割れ性に優れ、架線柱に適した高強度電縫鋼管及びその製造方法。CEZ=C+Si/17+Mn/7.5+Cu/13+Ni/17+Cr/4.5+Mo/3+V/1.5+Nb/2+Ti/4.5+420B・・・(1)【選択図】図1An object of the present invention is to provide an electric resistance welded steel pipe that has excellent hot-dip galvanizing wettability, and has both hot-dip galvanizing cracking resistance and high strength, and a method for manufacturing the same. [Solution] Consists of predetermined components, satisfies CEZ≦0.44 calculated by the following formula (1), has a tensile strength of 700 MPa or more in the tube axis and the direction perpendicular to the tube axis, has a yield point of 520 MPa or more, and has a yield point of 520 MPa or more perpendicular to the tube axis. A high-strength electric resistance welded steel pipe that has excellent resistance to hot-dip galvanizing cracking and has residual stress in the direction of 200 MPa or less and is suitable for overhead wire poles, and a method for manufacturing the same. CEZ=C+Si/17+Mn/7.5+Cu/13+Ni/17+Cr/4.5+Mo/3+V/1.5+Nb/2+Ti/4.5+420B...(1) [Selection diagram] Figure 1

Description

本発明は、鉄道などの架線柱用として適し、高強度で耐溶融亜鉛めっき割れ性に優れた電縫鋼管およびその製造方法に関するものである。 TECHNICAL FIELD The present invention relates to an electric resistance welded steel pipe that is suitable for use as overhead line poles in railways, etc., and has high strength and excellent resistance to hot-dip galvanizing cracking, and a method for manufacturing the same.

架線柱は電車の車体に電力を供給するための架線を張る電柱である。2011年の東日本大震災を機に、架線柱の耐震設計が見直され、大震災レベルの揺れに耐えうる架線柱の需要が発生した。一般的に耐震性向上のためには、大径化、厚肉化、高強度化のいずれか、あるいはそれらの複合が考えられる。従来の高強度架線柱(590MPa級)で大径化する場合は、敷設スペースの観点から困難であり、また厚肉化は自重が増すことで水平方向の揺れが増大してしまい、揺れに耐えられない。また輸送コストも増大するおそれがある。そこで、高強度化の観点から、700MPa級の高強度架線柱の開発が検討されている。 An overhead line pole is a telephone pole on which overhead wires are attached to supply electricity to the train car body. In the wake of the Great East Japan Earthquake in 2011, the seismic design of overhead line poles was reviewed, and there was a demand for overhead line poles that could withstand earthquake-level shaking. In general, to improve earthquake resistance, one of the methods of increasing diameter, thickening, and strengthening is considered to be a combination of these. Increasing the diameter of conventional high-strength overhead line columns (590 MPa class) is difficult from the perspective of installation space, and thickening increases the weight of the overhead line, which increases horizontal shaking, making it difficult to withstand shaking. I can't do it. There is also a risk that transportation costs will increase. Therefore, from the viewpoint of increasing strength, the development of 700 MPa class high strength overhead line poles is being considered.

一般に架線柱を含む鉄塔、橋梁、建築物には、防錆のため、それらに用いられる鋼材を構造部材に溶接した後、溶融亜鉛めっきするという方法が広く使用されている。その一方で、溶融亜鉛めっきされた場合には、冷間加工時の残留応力、溶接熱影響部の残留応力、及び溶融亜鉛めっき時の加熱、冷却による熱応力で割れが発生する場合がある。この現象は液体金属脆化現象の一種で、「溶融亜鉛めっき割れ」としてよく知られている。 Generally, in order to prevent rust in steel towers, bridges, and buildings including overhead line columns, a method is widely used in which the steel used therein is welded to structural members and then hot-dip galvanized. On the other hand, in the case of hot-dip galvanizing, cracks may occur due to residual stress during cold working, residual stress in the weld heat affected zone, and thermal stress due to heating and cooling during hot-dip galvanizing. This phenomenon is a type of liquid metal embrittlement phenomenon and is well known as "hot-dip galvanizing cracking."

高強度の鋼材であれば、焼入性を高める元素や析出強化する元素が添加されるが、下記式(1)のCEZの式でもわかるように、高強度の鋼材に多く添加される元素は、CEZの式の値を大きくし、耐溶融亜鉛めっき割れ性を劣化させてしまう。
CEZ=C+Si/17+Mn/7.5+Cu/13+Ni/17+Cr/4.5+Mo/3+V/1.5+Nb/2+Ti/4.5+420B≦0.44・・・(1)
ここでCEZの式とは、非特許文献1のp.1108-p.1114において、鋼中の混入ボロンの影響について詳細に述べており、Bは2ppm以下で、かつ上記式(1)のCEZの値が0.44以下であれば、590MPa級の送電鉄塔鋼管において、溶融亜鉛めっき割れを防止できるとしている。非特許文献1はファブリケーターと鉄鋼4社で共同執筆されたものであり、現在のところ公表された技術の中で信頼がおける最先端のものと位置づけられている。
For high-strength steel materials, elements that increase hardenability and elements that strengthen precipitation are added, but as can be seen from the CEZ equation (1) below, the elements that are added in large quantities to high-strength steel materials are , the value of the CEZ equation becomes large, and the cracking resistance of hot-dip galvanizing deteriorates.
CEZ=C+Si/17+Mn/7.5+Cu/13+Ni/17+Cr/4.5+Mo/3+V/1.5+Nb/2+Ti/4.5+420B≦0.44...(1)
Here, the CEZ formula is as described in Non-Patent Document 1, p. 1108-p. 1114 describes in detail the influence of boron mixed in steel, and if B is 2 ppm or less and the CEZ value of the above formula (1) is 0.44 or less, in a 590 MPa class power transmission tower steel pipe, The company says it can prevent cracking in hot-dip galvanizing. Non-Patent Document 1 was co-authored by a fabricator and four steel companies, and is positioned as the most reliable and cutting-edge technology among the technologies published so far.

また、高強度であるほど耐溶融亜鉛めっき割れ性が劣ることも知られている。したがって、本案件においては、溶融亜鉛めっき濡れ性に優れ、耐溶融亜鉛めっき割れ性と高強度を両立する電縫鋼管の開発を要求されている。 It is also known that the higher the strength, the poorer the resistance to hot-dip galvanizing cracking. Therefore, in this project, there is a demand for the development of an electric resistance welded steel pipe that has excellent hot-dip galvanizing wettability, resistance to hot-dip galvanizing cracking, and high strength.

耐溶融亜鉛めっき割れ性と高強度を両立する手法に関して、例えば、特許文献1では、70K級未満の鋼材において、フェライト生成元素であるSi、Al、Tiの添加による粒界フェライト生成によって、BのHAZ粒界偏析を抑制し、耐溶融亜鉛めっき割れ性が向上するとしている。また特許文献2には、溶接性に優れ、かつ焼き入れ焼戻しを施して強度レベルを70~80K級に調質した耐溶融亜鉛めっき割れ性に優れた調質型高張力鋼及びその製造方法が記載されている。特許文献3には、圧延後の直接焼き入れままで80k級の耐溶融亜鉛めっき割れ性に優れた高張力鋼の製造方法が記載されている。 Regarding a method for achieving both hot-dip galvanizing cracking resistance and high strength, for example, in Patent Document 1, in steel materials of less than 70K class, B is produced by grain boundary ferrite generation by adding ferrite-forming elements Si, Al, and Ti. It is said that it suppresses HAZ grain boundary segregation and improves hot-dip galvanizing cracking resistance. Furthermore, Patent Document 2 discloses a tempered high-strength steel that has excellent weldability and is quenched and tempered to have a strength level of 70 to 80K, and has excellent hot-dip galvanizing cracking resistance, and a method for manufacturing the same. Are listed. Patent Document 3 describes a method for manufacturing high-strength steel of 80K class that has excellent hot-dip galvanizing cracking resistance even after being directly quenched after rolling.

特許文献4では粒界フェライト生成のためSi:0.5~1.5%としているが、Si:約0.30%以上の領域で生じるめっきやけが問題となるため、溶融亜鉛めっきが施される電縫鋼管には適用できず、また強度は70k級に達していない。また、電縫鋼管の場合、ホットコイルから巻き戻された熱延鋼板をロール成形することによりオープン管とし、得られたオープン管の突合せ部を電縫溶接して電縫溶接部を形成する。従って、電縫鋼管は特に管軸直角方向の引張残留応力が付与されるため、鋼板よりも溶融亜鉛めっき割れが発生しやすい。 In Patent Document 4, Si is set at 0.5 to 1.5% to generate grain boundary ferrite, but since the plating damage that occurs in the region of about 0.30% or more Si becomes a problem, hot-dip galvanizing is not performed. It cannot be applied to electric resistance welded steel pipes, and the strength does not reach 70k class. In the case of an electric resistance welded steel pipe, a hot rolled steel plate unwound from a hot coil is roll-formed to form an open tube, and the abutting portions of the resulting open tube are electric resistance welded to form an electric resistance welded portion. Therefore, since ERW steel pipes are particularly subjected to tensile residual stress in the direction perpendicular to the pipe axis, cracks in the hot-dip galvanizing occur more easily than steel plates.

特許文献5では残留応力除去のため焼き戻しを実施しており、製造コストが増加する。また、電縫鋼管の造管時に付与される残留応力についての思想が含まれておらず、溶融亜鉛めっき割れへの悪影響の懸念が残る。特許文献6では熱処理を必要としないが、やはり電縫鋼管の造管時に付与される残留応力についての思想が含まれておらず、溶融亜鉛めっき割れへの悪影響の懸念が残る。 In Patent Document 5, tempering is performed to remove residual stress, which increases manufacturing costs. Furthermore, it does not include any consideration of residual stress that is applied during the production of ERW steel pipes, and there remains concern that it may have an adverse effect on cracking in hot-dip galvanizing. Although Patent Document 6 does not require heat treatment, it does not include any consideration regarding residual stress that is applied during the production of ERW steel pipes, and there remains a concern that it may have an adverse effect on cracking in hot-dip galvanizing.

特開2005-307224号公報Japanese Patent Application Publication No. 2005-307224 特開平10-102195号公報Japanese Patent Application Publication No. 10-102195 特開平10-110214号公報Japanese Patent Application Publication No. 10-110214 特開2005-307224号公報Japanese Patent Application Publication No. 2005-307224 特開平10-102195号公報Japanese Patent Application Publication No. 10-102195 特開平10-110214号公報Japanese Patent Application Publication No. 10-110214

鉄と鋼vol.79(1993)Iron and steel vol. 79 (1993)

本発明では管軸および管軸直角方向の引張強度が700MPa以上であって、溶融亜鉛めっき濡れ性に優れ、耐溶融亜鉛めっき割れ性と高強度を両立する電縫鋼管及びその製造方法を提供する。 The present invention provides an electric resistance welded steel pipe that has a tensile strength of 700 MPa or more in the tube axis and the direction perpendicular to the tube axis, has excellent hot dip galvanizing wettability, and has both hot dip galvanizing cracking resistance and high strength, and a method for manufacturing the same. .

上記課題を解決するために管軸直角方向の残留応力に注目した。即ち、
(1)鋼の成分が質量%でC:0.08~0.20%、Si:0.03~0.40%、Mn:1.00~2.00%、P:0.000~0.030%、S:0.000~0.010%、Al:0.005~0.050%、N:0.0005~0.0100%及び残部がFe及び不純物からなり、下記式(1)にて計算されるCEZ≦0.44を満たし、管軸および管軸直角方向の引張強度700MPa以上、同降伏点520MPa以上、管軸直角方向の残留応力が200MPa以下であることを特徴とする、耐溶融亜鉛めっき割れ性に優れ、架線柱に適した高強度電縫鋼管である。
CEZ=C+Si/17+Mn/7.5+Cu/13+Ni/17+Cr/4.5+Mo/3+V/1.5+Nb/2+Ti/4.5+420B・・・(1)
In order to solve the above problem, we focused on the residual stress in the direction perpendicular to the tube axis. That is,
(1) The components of steel are C: 0.08-0.20%, Si: 0.03-0.40%, Mn: 1.00-2.00%, P: 0.000-0 .030%, S: 0.000 to 0.010%, Al: 0.005 to 0.050%, N: 0.0005 to 0.0100%, and the balance consists of Fe and impurities, and the following formula (1) It satisfies CEZ≦0.44 calculated by This is a high-strength electric resistance welded steel pipe that has excellent resistance to hot-dip galvanizing cracking and is suitable for overhead line poles.
CEZ=C+Si/17+Mn/7.5+Cu/13+Ni/17+Cr/4.5+Mo/3+V/1.5+Nb/2+Ti/4.5+420B...(1)

(2)また、さらに鋼の成分が質量%で、B:0.00000%超~0.00020%、Ti:0.00%超~1.00%、Nb:0.00%超~1.00%、V:0.00%超~1.00%、Cu:0.00%超~1.00%、Ni:0.00%超~1.00%、Cr:0.00%超~1.00%、Mo:0.00%超~0.50%、W:0.00%超~0.50%、Ca:0.0000%超~0.0200%、Mg:0.0000%超~0.0200%、Zr:0.0000%超~0.0200%、REM:0.0000%超~0.0200%、の1種または2種以上を含有することも好ましい。 (2) Furthermore, the components of the steel are expressed in mass%: B: more than 0.00000% to 0.00020%, Ti: more than 0.00% to 1.00%, Nb: more than 0.00% to 1. 00%, V: more than 0.00% to 1.00%, Cu: more than 0.00% to 1.00%, Ni: more than 0.00% to 1.00%, Cr: more than 0.00% 1.00%, Mo: more than 0.00% to 0.50%, W: more than 0.00% to 0.50%, Ca: more than 0.0000% to 0.0200%, Mg: 0.0000% It is also preferable to contain one or more of the following.

(3)さらに製造方法としては、(1)に記載の化学組成の鋼を用いて、熱間圧延時の加熱温度が1070℃以上1300℃以下、熱間仕上げ圧延温度が800℃以上1050℃以下、冷却後の巻取り温度が500℃以下として熱延鋼板を製造し、当該熱延鋼板を用いて、下記式(3)を満足する条件下で造管することにより、CEZ≦0.44を満たし、管軸、管軸直角方向の引張強度700MPa以上、降伏点520MPa以上であって、管軸直角方向の残留応力が200MPa以下の鋼管を得ることを特徴とする、耐溶融亜鉛めっき割れ性に優れ、架線柱に適した高強度電縫鋼管の製造方法。
2.0≦SZ最終段縮径量/(FP最終段縮径量+SQ縮径量)≦3.5・・・(3)
ここでSZ最終段縮径量は造管工程のサイザー工程最終段縮径量(mm)、FP最終段縮径量は同フィンパス工程最終段縮径量(mm)、SQ縮径量は同スクイズ工程の縮径量(mm)である。
(3) Furthermore, as a manufacturing method, using steel having the chemical composition described in (1), the heating temperature during hot rolling is 1070°C or more and 1300°C or less, and the hot finishing temperature is 800°C or more and 1050°C or less. , CEZ≦0.44 can be achieved by manufacturing a hot-rolled steel sheet with a coiling temperature of 500°C or less after cooling, and using the hot-rolled steel sheet to form a pipe under conditions that satisfy the following formula (3). A steel pipe having a tensile strength of 700 MPa or more in the direction perpendicular to the pipe axis, a yield point of 520 MPa or more, and a residual stress of 200 MPa or less in the direction perpendicular to the pipe axis, is obtained. A method for manufacturing high-strength electric resistance welded steel pipes that are excellent and suitable for overhead line poles.
2.0≦SZ final stage diameter reduction amount/(FP final stage diameter reduction amount + SQ diameter reduction amount)≦3.5...(3)
Here, the SZ final stage diameter reduction amount is the final stage diameter reduction amount (mm) of the sizer process in the pipe making process, the FP final stage diameter reduction amount is the final stage diameter reduction amount (mm) of the same fin pass process, and the SQ diameter reduction amount is the sizer process final stage diameter reduction amount (mm). This is the amount of diameter reduction (mm) in the process.

(4)(3)において、さらに鋼の成分が質量%で、B:0.00000%超~0.00020%、Ti:0.00%超~1.00%、Nb:0.00%超~1.00%、V:0.00%超~1.00%、Cu:0.00超%~1.00%、Ni:0.00%超~1.00%、Cr:0.00%超~1.00%、Mo:0.00%超~0.50%、W:0.00%超~0.50%、Ca:0.0000%超~0.0200%、Mg:0.0000%超~0.0200%、Zr:0.0000%超~0.0200%、REM:0.0000%超~0.0200%、の1種または2種以上を含有することも好ましい。 (4) In (3), the steel components are further expressed in mass %: B: more than 0.00000% to 0.00020%, Ti: more than 0.00% to 1.00%, Nb: more than 0.00% ~1.00%, V: over 0.00% ~ 1.00%, Cu: over 0.00% ~ 1.00%, Ni: over 0.00% ~ 1.00%, Cr: 0.00 % to 1.00%, Mo: 0.00% to 0.50%, W: 0.00% to 0.50%, Ca: 0.0000% to 0.0200%, Mg: 0 It is also preferable to contain one or more of the following: more than 0.0000% to 0.0200%, Zr: more than 0.0000% to 0.0200%, and REM: more than 0.0000% to 0.0200%.

本発明により、CEZ≦0.44%の鋼種において、管軸、管軸直角方向の引張強度700MPa以上、降伏点520MPa以上を達成し、かつ管軸直角方向残留応力≦200MPaであり、溶融亜鉛めっき濡れ性に優れ、耐溶融亜鉛めっき割れ性と高強度を両立する電縫鋼管及びその製造方法を提供することができた。 According to the present invention, in a steel type with CEZ≦0.44%, a tensile strength of 700 MPa or more in the direction perpendicular to the tube axis, a yield point of 520 MPa or more in the direction perpendicular to the tube axis, and residual stress ≦200 MPa in the direction perpendicular to the tube axis, and hot-dip galvanizing. It was possible to provide an electric resistance welded steel pipe that has excellent wettability and is compatible with hot-dip galvanizing cracking resistance and high strength, and a method for manufacturing the same.

引張強度700MPa以上、降伏点520MPa以上の電縫鋼管における管軸直角方向の引張残留応力と耐溶融亜鉛めっき割れの関係を示す図である。FIG. 3 is a diagram showing the relationship between tensile residual stress in the direction perpendicular to the tube axis and hot-dip galvanizing cracking resistance in an electric resistance welded steel pipe having a tensile strength of 700 MPa or more and a yield point of 520 MPa or more. SZ最終段縮径量/(FP最終段縮径量+SQ縮径量)の値と管軸直角方向の引張残留応力の関係を示す図である。It is a figure which shows the relationship between the value of SZ final stage diameter reduction amount/(FP final stage diameter reduction amount + SQ diameter reduction amount) and the tensile residual stress in the direction perpendicular to the tube axis.

本発明者らは上述の状況を鑑み、電縫鋼管の造管時に付与される残留応力に着目し、引張強度700MPa以上、降伏点520MPa以上の電縫鋼管において、管軸直角方向の引張残留応力と耐溶融亜鉛めっき割れの有無を調査したところ、この残留応力が200MPa以下で割れを防止できることを確認した。その結果を図1に示す。 In view of the above-mentioned situation, the present inventors focused on the residual stress imparted during the manufacturing of ERW steel pipes, and found that in ERW steel pipes with a tensile strength of 700 MPa or more and a yield point of 520 MPa or more, tensile residual stress in the direction perpendicular to the pipe axis. When investigating the presence or absence of hot-dip galvanizing cracking, it was confirmed that cracking could be prevented if this residual stress was 200 MPa or less. The results are shown in Figure 1.

ここで、本発明において、引張強さ、降伏点は以下のようにして測定する。本発明の電縫鋼管における母材90°位置から、管軸方向にJIS 12号引張試験片を採取し、また、母材180°位置から、管軸直角方向にJIS 5号引張試験片を採取し、採取した引張試験片について、JIS Z 2241(2011年)に準拠して管軸方向の引張試験を行い、管軸、管軸直角方向の引張強さを測定する。得られた結果を、本開示の電縫鋼管の管軸方向の引張強さ、降伏点とする。 Here, in the present invention, tensile strength and yield point are measured as follows. In the ERW steel pipe of the present invention, a JIS No. 12 tensile test piece was taken from the 90° position of the base material in the direction of the tube axis, and a JIS No. 5 tensile test piece was taken from the 180° position of the base material in the direction perpendicular to the pipe axis. Then, a tensile test is performed on the collected tensile test piece in the tube axis direction in accordance with JIS Z 2241 (2011), and the tensile strength in the tube axis and the direction perpendicular to the tube axis is measured. The obtained results are defined as the tensile strength in the tube axis direction and the yield point of the electric resistance welded steel pipe of the present disclosure.

また、本発明において、管軸直角方向における残留応力は下記式(2)で表されるクランプトン法(例えばThe International Journal of Advanced Manufacturing Technology (2019) 103:4221-4231)により求める。クランプトン法は鋼管を長手方向に切断することで残留応力を解放させ、切断前後の外径の変化量から残留応力を求める方法である。式(2)において、D0は切断前の平均外形、D1は切断後の平均外形である。なお、クランプトン法の試験体の長さはL/D(試験体長さLと外径Dの比)≧2を満たすようにする。ここで、Eはヤング率、νはポアソン比、tは肉厚である。
残留応力=E・(1/D0-1/D1)・t/(1-ν2)・・・(2)
Further, in the present invention, the residual stress in the direction perpendicular to the tube axis is determined by the Crampton method (for example, The International Journal of Advanced Manufacturing Technology (2019) 103:4221-4231) expressed by the following equation (2). The Crampton method is a method in which the residual stress is released by cutting the steel pipe in the longitudinal direction, and the residual stress is determined from the amount of change in the outer diameter before and after cutting. In formula (2), D0 is the average external shape before cutting, and D1 is the average external shape after cutting. The length of the specimen in the Crampton method is set to satisfy L/D (ratio of specimen length L to outer diameter D)≧2. Here, E is Young's modulus, ν is Poisson's ratio, and t is wall thickness.
Residual stress = E・(1/D0-1/D1)・t/(1-ν2)...(2)

この管軸直角方向の引張残留応力は、造管工程における縮径加工により塑性変形させることで低減される。造管工程における縮径加工工程には、フィンパス工程(以下、フィンパスをFPと称する)、スクイズ工程(以下、スクイズをSQと称する)、サイジング工程(以下、サイジングをSZと称する)がある。FP工程では縮径加工するが、まだ閉断面となっていないため特にエッジ部が塑性変形するのみである。SQ工程ではビード排出により縮径するが、電縫溶接部近傍がわずかに塑性変形するのみである。SZ工程では、最終的な真円度調整のために、SQ工程後の閉断面となった電縫鋼管を絞り加工して周方向に均一に塑性変形される。従って、管軸直角方向の引張残留応力を周方向に均一に低減するためには、SZ工程で十分な縮径量を確保する必要がある。 This tensile residual stress in the direction perpendicular to the tube axis is reduced by plastically deforming the tube through diameter reduction processing in the tube making process. The diameter reduction process in the tube manufacturing process includes a fin pass process (hereinafter, fin pass is referred to as FP), a squeeze process (hereinafter, squeeze is referred to as SQ), and a sizing process (hereinafter, sizing is referred to as SZ). In the FP process, the diameter is reduced, but since the cross section has not yet been closed, only the edge portion in particular undergoes plastic deformation. In the SQ process, the diameter is reduced due to bead discharge, but only slight plastic deformation occurs in the vicinity of the electric resistance welding part. In the SZ process, for final roundness adjustment, the electric resistance welded steel pipe, which has a closed cross section after the SQ process, is drawn and plastically deformed uniformly in the circumferential direction. Therefore, in order to uniformly reduce the tensile residual stress in the direction perpendicular to the tube axis in the circumferential direction, it is necessary to ensure a sufficient diameter reduction amount in the SZ process.

そこで、SZ工程で十分な縮径量を確保するためには、FP工程、SQ工程、SZ工程の縮径量を、何らかの形でバランスさせることが有効と考え、式(3)を構築し、この式(3)が下記の所定の範囲を満たすことが重要となることを見出した。
2.0≦SZ最終段縮径量/(FP最終段縮径量+SQ縮径量)≦3.5・・・(3)
上記式(3)が所定の範囲を満たせば、前述の管軸直角方向の引張残留応力が安定的に200MPa以下、かつ外観疵が発生しない電縫鋼管を製造可能で、かつ溶融亜鉛めっき割れを防止できることが判明した。その結果を図2に示す。
Therefore, in order to ensure a sufficient amount of diameter reduction in the SZ process, we thought that it would be effective to balance the diameter reduction amounts of the FP process, SQ process, and SZ process in some way, and constructed equation (3), It has been found that it is important that this formula (3) satisfies the following predetermined range.
2.0≦SZ final stage diameter reduction amount/(FP final stage diameter reduction amount + SQ diameter reduction amount)≦3.5...(3)
If the above formula (3) satisfies a predetermined range, it is possible to manufacture an ERW steel pipe in which the tensile residual stress in the direction perpendicular to the pipe axis is stably 200 MPa or less, and no appearance defects occur, and there is no cracking in the hot-dip galvanizing. It turns out that it can be prevented. The results are shown in FIG.

本発明は上記知見を基礎として完成されたものであり、以下の電縫鋼管及びその製造方法を要旨とする。尚、本明細書中では、
・「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
・成分(元素)の含有量を示す「%」は、「質量%」を意味する。
・C(炭素)など成分の含有量を、「C含有量」と表記することがある。他の元素の含有量についても同様に表記することがある。
・「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程が明細書記載の目的を達成すれば、本用語に含まれる。
The present invention was completed based on the above knowledge, and its gist is the following electric resistance welded steel pipe and method for manufacturing the same. In addition, in this specification,
- A numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits.
- "%" indicating the content of a component (element) means "mass%".
- The content of components such as C (carbon) is sometimes expressed as "C content". The contents of other elements may also be expressed in the same manner.
- The term "step" is used not only to refer to an independent step, but also to include the term even if the step cannot be clearly distinguished from other steps, as long as the step achieves the purpose stated in the specification.

本発明では、前提としてFe以外の含有成分につき、以下の成分範囲とする。 In the present invention, the following component ranges are assumed for the components other than Fe.

C:0.08~0.20%
Cは、鋼の強度を向上させる元素である。C含有量が0.08%未満では、70k級以上の引張強度が得られない場合がある。従って、C含有量は0.08%以上である。一方、C含有量が0.20%を超えると溶接性、耐溶融亜鉛めっき割れ性を損なう場合がある。従って、C含有量は0.20%以下である。好ましくは0.12%以下である。
C: 0.08-0.20%
C is an element that improves the strength of steel. If the C content is less than 0.08%, a tensile strength of 70k class or higher may not be obtained. Therefore, the C content is 0.08% or more. On the other hand, if the C content exceeds 0.20%, weldability and hot-dip galvanizing cracking resistance may be impaired. Therefore, the C content is 0.20% or less. Preferably it is 0.12% or less.

Si:0.03~0.40%
Siは、脱酸のために用いられる元素である。Si含有量が0.03%未満では、脱酸が不十分となり粗大な酸化物が生成する場合がある。従って、Si含有量は0.03%以上である。好ましくは0.15%以上である。一方、Si含有量が0.40%を超えるとめっき濡れ性が悪化する。またFe-Zn合金反応が促進され、合金層が表面に露出した外観不良であるめっき焼けが発生しやすくなる。従って、Si含有量は0.40%以下である。Si含有量は、好ましくは0.25%以下である。
Si: 0.03-0.40%
Si is an element used for deoxidation. If the Si content is less than 0.03%, deoxidation may be insufficient and coarse oxides may be produced. Therefore, the Si content is 0.03% or more. Preferably it is 0.15% or more. On the other hand, when the Si content exceeds 0.40%, plating wettability deteriorates. In addition, the Fe--Zn alloy reaction is accelerated, and plating burn, which is a poor appearance in which the alloy layer is exposed on the surface, is likely to occur. Therefore, the Si content is 0.40% or less. The Si content is preferably 0.25% or less.

Mn:1.00~2.00%
Mnは、鋼の強度を向上させる元素である。Mn含有量が1.00%未満では、70k級以上の引張強度が得られない場合がある。従って、Mn含有量は1.00%以上である。好ましくは1.40%以上である。一方、Mn含有量が2.00%を超えると、溶接性、耐溶融亜鉛めっき割れ性を損なう場合がある。従って、Mn含有量は2.00%以下である。
Mn: 1.00-2.00%
Mn is an element that improves the strength of steel. If the Mn content is less than 1.00%, a tensile strength of 70k class or higher may not be obtained. Therefore, the Mn content is 1.00% or more. Preferably it is 1.40% or more. On the other hand, if the Mn content exceeds 2.00%, weldability and hot-dip galvanizing cracking resistance may be impaired. Therefore, the Mn content is 2.00% or less.

P:0.000~0.030%
Pは、鋼中に不純物として含まれ得る元素である。P含有量が0.030%を超えると、亜鉛めっき時の合金反応が活発化し、めっき層剥離が生じる場合がある。従って、P含有量は0.030%以下である。一方、P含有量は、本発明の場合、実質的に不純物であるので0.000%が好ましいが、脱燐コスト低減の観点から、P含有量は0.001%以上であってもよく、0.010%以上であってもよい。
P:0.000~0.030%
P is an element that can be contained as an impurity in steel. If the P content exceeds 0.030%, the alloy reaction during galvanizing becomes active, and the plating layer may peel off. Therefore, the P content is 0.030% or less. On the other hand, in the case of the present invention, the P content is preferably 0.000% since it is substantially an impurity, but from the viewpoint of reducing the cost of dephosphorization, the P content may be 0.001% or more. It may be 0.010% or more.

S:0.000~0.010%
Sは、鋼中に不純物として含まれ得る元素である。S含有量が0.010%を超えると、粗大なMnSが生成し、それが起点となり割れが生じる場合がある。従って、S含有量は0.010%以下である。S含有量は、好ましくは0.005%以下である。一方、S含有量は、本発明の場合、実質的に不純物であるので0.000%が好ましいが、脱硫コスト低減の観点から、S含有量は0.001%以上であってもよい。
S: 0.000-0.010%
S is an element that can be contained as an impurity in steel. When the S content exceeds 0.010%, coarse MnS is generated, which may serve as a starting point to cause cracks. Therefore, the S content is 0.010% or less. The S content is preferably 0.005% or less. On the other hand, in the case of the present invention, the S content is preferably 0.000% since it is substantially an impurity, but from the viewpoint of reducing desulfurization cost, the S content may be 0.001% or more.

Al:0.005~0.050%
Alは脱酸剤として添加するが、含有量が0.005%未満では、脱酸が不十分となり粗大な酸化物が生成する場合がある。従って、Al含有量は0.005%以上である。一方、0.05%を超えて含有しても脱酸効果は飽和する。従ってAl含有量は0.05%以下である。なお、AlNを形成しやすく、VNの安定析出を阻害するため、好ましくは0.02%以下である。
Al: 0.005-0.050%
Al is added as a deoxidizer, but if the content is less than 0.005%, deoxidation may be insufficient and coarse oxides may be produced. Therefore, the Al content is 0.005% or more. On the other hand, even if the content exceeds 0.05%, the deoxidizing effect is saturated. Therefore, the Al content is 0.05% or less. Note that since AlN is easily formed and stable precipitation of VN is inhibited, the content is preferably 0.02% or less.

N:0.0005~0.0100%
Nは、AlNを生成し、熱延時のピンニング効果によりオーステナイト粒の微細化に寄与する。また、VNを生成し、強度に寄与する元素である。N含有量が0.0005%未満では、強度への寄与は期待できない。従って、N含有量は0.0005%以上である。好ましくは0.001%以上である。一方、N含有量が0.0100%を超えると靱性を劣化させる。従って、N含有量は0.0100%以下である。好ましくは0.005%以下である。
N: 0.0005-0.0100%
N generates AlN and contributes to the refinement of austenite grains due to the pinning effect during hot rolling. It is also an element that generates VN and contributes to strength. If the N content is less than 0.0005%, no contribution to strength can be expected. Therefore, the N content is 0.0005% or more. Preferably it is 0.001% or more. On the other hand, if the N content exceeds 0.0100%, toughness will deteriorate. Therefore, the N content is 0.0100% or less. Preferably it is 0.005% or less.

以下は高強度化、高靭性化等のために、選択的に1種または2種以上含有することが好ましい元素である The following are elements that are preferably selectively included in one or more types in order to increase strength, toughness, etc.

B:0.00000%超~0.00020%
Bは、鋼の焼入れ性を向上させる元素であるが、B含有量が0.00020%を超えると、耐溶融亜鉛めっき割れ性を損なう場合がある。従って、B含有量は0.00020%以下であることが好ましい。一方、本発明の場合、Bは実質的に不純物のため、含有量の下限は0.00000%超が好ましい。
B: More than 0.00000% to 0.00020%
B is an element that improves the hardenability of steel, but if the B content exceeds 0.00020%, it may impair hot-dip galvanizing cracking resistance. Therefore, the B content is preferably 0.00020% or less. On the other hand, in the case of the present invention, since B is substantially an impurity, the lower limit of the content is preferably more than 0.00000%.

Ti:0.00%超~1.00%
Tiは、鋼の高強度化に寄与する元素であるが、本発明においては任意の元素であり、含有されなくてもよい。含有する場合は0.00%超である。一方、Tiを過剰に含有させると、効果が飽和してコストの上昇を招く場合がある。また、靭性を劣化させる場合があるため、Ti含有量は1.00%以下である。好ましくは0.10%以下である。
Ti: more than 0.00% to 1.00%
Ti is an element that contributes to increasing the strength of steel, but it is an optional element in the present invention and does not need to be included. If it is contained, it is more than 0.00%. On the other hand, if Ti is contained excessively, the effect may be saturated and the cost may increase. Furthermore, the Ti content is 1.00% or less since it may deteriorate the toughness. Preferably it is 0.10% or less.

Nb:0.00%超~1.00%
Nbは、鋼の高強度化に寄与する元素であるが、本発明においては任意の元素であり、含有されなくてもよい。含有する場合は0.00%超である。一方、Nbを過剰に含有させると、効果が飽和してコストの上昇を招く場合がある。また、靭性を劣化させる場合があるため、Nb含有量は1.00%以下である。好ましくは0.10%以下である。
Nb: More than 0.00% to 1.00%
Nb is an element that contributes to increasing the strength of steel, but in the present invention, it is an optional element and does not need to be included. If it is contained, it is more than 0.00%. On the other hand, if Nb is contained excessively, the effect may be saturated and the cost may increase. Furthermore, the Nb content is 1.00% or less since it may deteriorate the toughness. Preferably it is 0.10% or less.

V:0.00%超~1.00%
Vは、鋼の高強度化に寄与する元素であるが、本発明においては任意の元素であり、含有されなくてもよい。含有する場合は0.00%超である。一方、Vを過剰に含有させると、効果が飽和してコストの上昇を招く場合がある。また、靭性を劣化させる場合があるため、V含有量は1.00%以下である。好ましくは0.10%以下である。
V: More than 0.00% to 1.00%
Although V is an element that contributes to increasing the strength of steel, it is an optional element in the present invention and does not need to be contained. If it is contained, it is more than 0.00%. On the other hand, if too much V is contained, the effect may be saturated and the cost may increase. Further, the V content is 1.00% or less since it may deteriorate the toughness. Preferably it is 0.10% or less.

Cu:0.00%超~1.00%
Cuは、鋼の高強度化に寄与する元素であるが、本発明においては任意の元素であり、含有されなくてもよい。含有する場合は0.00%超である。一方、Cuを過剰に含有させると、効果が飽和してコストの上昇を招く場合がある。また、靭性を劣化させる場合があるため、Cu含有量は1.00%以下である。好ましくは0.10%以下である。
Cu: more than 0.00% to 1.00%
Cu is an element that contributes to increasing the strength of steel, but in the present invention, it is an optional element and does not need to be included. If it is contained, it is more than 0.00%. On the other hand, if Cu is contained excessively, the effect may be saturated and the cost may increase. Further, the Cu content is 1.00% or less since it may deteriorate toughness. Preferably it is 0.10% or less.

Ni:0.00%超~1.00%
Niは、鋼の高強度化に寄与する元素であるが、本発明においては任意の元素であり、含有されなくてもよい。含有する場合は0.00%超である。一方、Niを過剰に含有させると、効果が飽和してコストの上昇を招く場合がある。また、溶接性、耐溶融亜鉛めっき割れ性を損なう場合があるため、Ni含有量は1.00%以下である。好ましくは0.10%以下である。
Ni: more than 0.00% to 1.00%
Ni is an element that contributes to increasing the strength of steel, but in the present invention, it is an optional element and does not need to be included. If it is contained, it is more than 0.00%. On the other hand, if Ni is contained excessively, the effect may be saturated and the cost may increase. In addition, the Ni content is 1.00% or less since it may impair weldability and hot-dip galvanizing cracking resistance. Preferably it is 0.10% or less.

Cr:0.00%超~1.00%
Crは、鋼の高強度化に寄与する元素であるが、本発明においては任意の元素であり、含有されなくてもよい。含有する場合は0.00%超である。一方、Crを過剰に含有させると、効果が飽和してコストの上昇を招く場合がある。また、溶接性、耐溶融亜鉛めっき割れ性を損なう場合があるため、Cr含有量は、1.00%以下である。好ましくは0.10%以下である。
Cr: more than 0.00% to 1.00%
Cr is an element that contributes to increasing the strength of steel, but in the present invention, it is an optional element and does not need to be included. If it is contained, it is more than 0.00%. On the other hand, if Cr is contained excessively, the effect may be saturated and the cost may increase. In addition, the Cr content is 1.00% or less since it may impair weldability and hot-dip galvanizing cracking resistance. Preferably it is 0.10% or less.

Mo:0.00%超~0.50%
Moは、鋼の高強度化に寄与する元素であるが、本発明においては任意の元素であり、含有されなくてもよい。含有する場合は0.00%超である。一方、Moを過剰に含有させると、効果が飽和してコストの上昇を招く場合がある。従って、Mo含有量は、0.50%以下である。好ましくは0.10%以下である。
Mo: more than 0.00% to 0.50%
Mo is an element that contributes to increasing the strength of steel, but in the present invention, it is an optional element and does not need to be included. If it is contained, it is more than 0.00%. On the other hand, if Mo is contained excessively, the effect may be saturated and the cost may increase. Therefore, the Mo content is 0.50% or less. Preferably it is 0.10% or less.

W:0.00%超~0.500%
Wは、鋼の高強度化に寄与する元素であるが、本発明においては任意の元素であり、含有されなくてもよい。含有する場合は0.00%超である。一方、Wを過剰に含有させると、効果が飽和してコストの上昇を招く場合がある。従って、W含有量は、0.50%以下である。好ましくは0.10%以下である。
W: More than 0.00% to 0.500%
W is an element that contributes to increasing the strength of steel, but in the present invention, it is an optional element and does not need to be included. If it is contained, it is more than 0.00%. On the other hand, if W is contained excessively, the effect may be saturated and the cost may increase. Therefore, the W content is 0.50% or less. Preferably it is 0.10% or less.

Ca:0.0000%超~0.0200%
Caは、介在物を形態制御し、靭性向上の効果を有するが、本発明においては任意の元素であり、含有されなくてもよい。含有する場合は0.00%超である。一方、Caを過剰に含有させると、効果が飽和してコストの上昇を招く場合がある。従って、Ca含有量は、0.0200%以下である。
Ca: more than 0.0000% to 0.0200%
Although Ca has the effect of controlling the shape of inclusions and improving toughness, it is an optional element in the present invention and does not need to be contained. If it is contained, it is more than 0.00%. On the other hand, if Ca is contained excessively, the effect may be saturated and the cost may increase. Therefore, the Ca content is 0.0200% or less.

Mg:0.0000%超~0.0200%
Mgは、介在物を形態制御し、靭性向上の効果を有するが、本発明においては任意の元素であり、含有されなくてもよい。含有する場合は0.00%超である。一方、Mgを過剰に含有させると、効果が飽和してコストの上昇を招く場合がある。従って、Mg含有量は、0.0200%以下である。
Mg: more than 0.0000% to 0.0200%
Although Mg has the effect of controlling the shape of inclusions and improving toughness, it is an optional element in the present invention and does not need to be contained. If it is contained, it is more than 0.00%. On the other hand, if Mg is contained excessively, the effect may be saturated and the cost may increase. Therefore, the Mg content is 0.0200% or less.

Zr:0.0000%超~0.0200%
Zrは、介在物を形態制御し、靭性向上の効果を有するが、本発明においては任意の元素であり、含有されなくてもよい。含有する場合は0.00%超である。一方、Zrを過剰に含有させると、効果が飽和してコストの上昇を招く場合がある。従って、Zr含有量は、0.0200%以下である。
Zr: More than 0.0000% to 0.0200%
Although Zr has the effect of controlling the shape of inclusions and improving toughness, it is an optional element in the present invention and does not need to be contained. If it is contained, it is more than 0.00%. On the other hand, if Zr is contained excessively, the effect may be saturated and the cost may increase. Therefore, the Zr content is 0.0200% or less.

REM:0.0000%超~0.0200%
REMは、希土類元素、即ち、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選択される少なくとも1種の元素を指す。REMは、介在物を制御する効果を有するが、本発明においては任意の元素であり、含有されなくてもよい。含有する場合は0.00%超である。一方、REMを過剰に含有させると、効果が飽和してコストの上昇を招く場合がある。従って、REM含有量は、0.0200%以下である。
REM: More than 0.0000% to 0.0200%
REM includes at least one rare earth element selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Refers to one type of element. Although REM has the effect of controlling inclusions, it is an optional element in the present invention and may not be included. If it is contained, it is more than 0.00%. On the other hand, if REM is contained excessively, the effect may be saturated and the cost may increase. Therefore, the REM content is 0.0200% or less.

残部:Fe及び不純物
母材部の化学組成において、上述した各元素を除いた残部は、Fe及び不純物である。ここで、不純物とは、原材料(例えば、鉱石、スクラップ、等)に含まれる成分、または、製造の工程で混入する成分であって、意図的に鋼に含有させたものではない成分を指す。不純物としては、上述した元素以外のあらゆる元素が挙げられる。不純物としての元素は、1種のみであっても2種以上であってもよい。不純物として、例えば、Sb、Sn、Co、As、Pb、Bi、Hが挙げられる。通常、Sb、Sn、Co、及びAsについては例えば含有量0.1%以下の混入が、Pb及びBiについては例えば含有量0.005%以下の混入が、Hについては、例えば含有量0.0004%以下の混入が、それぞれあり得る。その他の元素の含有量については、通常の範囲であれば、特に制御する必要はない。
Remaining portion: Fe and impurities In the chemical composition of the base material, the remainder excluding each of the above-mentioned elements is Fe and impurities. Here, impurities refer to components contained in raw materials (for example, ore, scrap, etc.) or components mixed in during the manufacturing process, but not intentionally added to steel. Examples of impurities include all elements other than those mentioned above. The number of elements as impurities may be one or two or more. Examples of impurities include Sb, Sn, Co, As, Pb, Bi, and H. Usually, Sb, Sn, Co, and As are mixed in at a content of 0.1% or less, Pb and Bi are mixed in at a content of 0.005% or less, and H is mixed in at a content of 0.1% or less, for example. Contamination of up to 0.0004% is possible in each case. There is no need to particularly control the contents of other elements as long as they are within normal ranges.

また本発明の電縫鋼管を鉄塔用鋼材に用いる場合、590MPa級の送電鉄塔鋼管と同等であることが必要とされ、前記CEZは0.44以下である。 Further, when the electric resistance welded steel pipe of the present invention is used as a steel material for a steel tower, it is required to be equivalent to a 590 MPa class power transmission tower steel pipe, and the CEZ is 0.44 or less.

次に、本発明の電縫鋼管を製造する方法の一例として、以下、説明する。
前記の化学組成を有するスラブを1070℃~1300℃で加熱することで、溶鋼凝固過程で析出した、炭化物、窒化合物及び炭窒化合物を鋼中で十分に固溶させ、耐内面割れ性を劣化させずに強度を向上させることができる。また、加熱によるオーステナイト粒の粗大化が抑制され、粗大なAlNが、熱間圧延中または熱間圧延後の冷却中に析出することを抑制できる。
Next, an example of a method for manufacturing the electric resistance welded steel pipe of the present invention will be described below.
By heating the slab having the above chemical composition at 1070°C to 1300°C, the carbides, nitrates, and carbonitrides that precipitate during the solidification process of molten steel are sufficiently dissolved in the steel, thereby deteriorating the internal cracking resistance. It is possible to improve the strength without causing any damage. Further, coarsening of austenite grains due to heating is suppressed, and coarse AlN can be prevented from precipitating during hot rolling or during cooling after hot rolling.

上記加熱スラブを熱間圧延仕上温度が800℃以上1050℃以下で熱間圧延することで、再結晶域および未再結晶域でひずみを導入し、核生成サイトを増して組織を微細化する。 By hot rolling the heated slab at a hot rolling finish temperature of 800° C. or more and 1050° C. or less, strain is introduced in the recrystallized region and the non-recrystallized region, the number of nucleation sites is increased, and the structure is refined.

熱間圧延後、巻取温度500℃以下となるまで冷却し、巻取ることにより、軟質なフェライト生成を抑制する。 After hot rolling, the product is cooled to a coiling temperature of 500° C. or less and coiled to suppress the formation of soft ferrite.

当該ホットコイルを巻き戻し、造管工程にて前記式(3)を満たす範囲でロール成形、電縫溶接することで、管軸、管軸直角方向の引張強度700MPa以上、降伏点520MPa以上の、耐溶融亜鉛めっき割れ性に優れ、架線柱に適した高強度電縫鋼管が得られる。 By unwinding the hot coil and performing roll forming and electric resistance welding within a range that satisfies the above formula (3) in the tube manufacturing process, a tube axis, a tensile strength of 700 MPa or more in the direction perpendicular to the tube axis, and a yield point of 520 MPa or more. A high-strength electric resistance welded steel pipe with excellent hot-dip galvanizing cracking resistance and suitable for overhead line poles can be obtained.

表1に本発明の用いるスラブの成分を示す。 Table 1 shows the components of the slab used in the present invention.

Figure 2024029929000002
Figure 2024029929000002

表1に記載の化学組成を有するスラブについて、表2に記載の熱延条件、冷却、巻取条件、造管条件にて電縫鋼管を製造、評価した。表2には得られた電縫鋼管の引張強度、管軸直角方向の残留応力も示す。ここで、造管時の各縮径量の測定方法は、FP工程最終段、SQ工程、SZ工程最終段での外周長を、実際に成形の前後にメジャーで測定することにより、算出する。 For the slabs having the chemical compositions listed in Table 1, electric resistance welded steel pipes were manufactured and evaluated under the hot rolling conditions, cooling, winding conditions, and pipe forming conditions listed in Table 2. Table 2 also shows the tensile strength and residual stress in the direction perpendicular to the pipe axis of the obtained electric resistance welded steel pipe. Here, the method for measuring each amount of diameter reduction during pipe making is calculated by actually measuring the outer circumferential length at the final stage of the FP process, SQ process, and SZ process with a tape measure before and after forming.

Figure 2024029929000003
Figure 2024029929000003

本発明の要件を満足する実施例では、所定の引張強さを満足し、かつ残留応力が200MPa以下となっており、溶融亜鉛めっき割れは認められなかった。一方で比較例では、式(3)の値が本発明の範囲外で低すぎるため、残留応力を低減する効果が得られず、溶融亜鉛めっき割れが発生した例、式(3)の値が本発明の範囲外で高すぎるため、溶融亜鉛めっき割れは見られないものの、外観疵が発生した。 In the examples that satisfied the requirements of the present invention, the predetermined tensile strength was satisfied and the residual stress was 200 MPa or less, and no hot-dip galvanizing cracking was observed. On the other hand, in comparative examples, the value of formula (3) was too low outside the range of the present invention, so the effect of reducing residual stress could not be obtained, and hot-dip galvanizing cracking occurred. Because the temperature was too high outside the scope of the present invention, no cracks were observed in the hot-dip galvanizing, but appearance defects occurred.

Claims (4)

鋼の成分が質量%でC:0.08~0.20%、Si:0.03~0.40%、Mn:1.00~2.00%、P:0.000~0.030%、S:0.000~0.010%、Al:0.005~0.050%、N:0.0005~0.0100%及び残部がFe及び不純物からなり、下記式(1)にて計算されるCEZ≦0.44を満たし、管軸および管軸直角方向の引張強度700MPa以上、同降伏点520MPa以上であって、管軸直角方向の残留応力が200MPa以下であることを特徴とする、耐溶融亜鉛めっき割れ性に優れ、架線柱に適した高強度電縫鋼管。
CEZ=C+Si/17+Mn/7.5+Cu/13+Ni/17+Cr/4.5+Mo/3+V/1.5+Nb/2+Ti/4.5+420B・・・(1)
The components of the steel are C: 0.08-0.20%, Si: 0.03-0.40%, Mn: 1.00-2.00%, P: 0.000-0.030% in mass%. , S: 0.000 to 0.010%, Al: 0.005 to 0.050%, N: 0.0005 to 0.0100%, and the balance consists of Fe and impurities, calculated using the following formula (1) CEZ≦0.44, the tensile strength in the tube axis and the direction perpendicular to the tube axis is 700 MPa or more, the yield point is 520 MPa or more, and the residual stress in the direction perpendicular to the tube axis is 200 MPa or less, High-strength electric resistance welded steel pipe with excellent hot-dip galvanized cracking resistance and suitable for overhead line poles.
CEZ=C+Si/17+Mn/7.5+Cu/13+Ni/17+Cr/4.5+Mo/3+V/1.5+Nb/2+Ti/4.5+420B...(1)
さらに鋼の成分が質量%で、B:0.00000%超~0.00020%、Ti:0.00%超~1.00%、Nb:0.00%超~1.00%、V:0.00%超~1.00%、Cu:0.00%超~1.00%、Ni:0.00%超~1.00%、Cr:0.00%超~1.00%、Mo:0.00%超~0.50%、W:0.00%超~0.50%、Ca:0.0000%超~0.0200%、Mg:0.0000%超~0.0200%、Zr:0.0000%超~0.0200%、REM:0.0000%超~0.0200%、の1種または2種以上を含有することを特徴とする、請求項1に記載の耐溶融亜鉛めっき割れ性に優れ、架線柱に適した高強度電縫鋼管。 Further, the components of the steel are expressed in mass%, B: more than 0.00000% to 0.00020%, Ti: more than 0.00% to 1.00%, Nb: more than 0.00% to 1.00%, V: More than 0.00% to 1.00%, Cu: More than 0.00% to 1.00%, Ni: More than 0.00% to 1.00%, Cr: More than 0.00% to 1.00%, Mo: more than 0.00% to 0.50%, W: more than 0.00% to 0.50%, Ca: more than 0.0000% to 0.0200%, Mg: more than 0.0000% to 0.0200 %, Zr: more than 0.0000% to 0.0200%, and REM: more than 0.0000% to 0.0200%. High-strength electric resistance welded steel pipe with excellent hot-dip galvanized cracking resistance and suitable for overhead line poles. 請求項1に記載の化学組成の鋼を用いて、熱間圧延時の加熱温度が1070℃以上1300℃以下、熱間仕上げ圧延温度が800℃以上1050℃以下、冷却後の巻取り温度が500℃以下として熱延鋼板を製造し、当該熱延鋼板を用いて、下記式(3)を満足する条件下で造管することにより、CEZ≦0.44を満たし、管軸、管軸直角方向の引張強度700MPa以上、降伏点520MPa以上であって、管軸直角方向の残留応力が200MPa以下の鋼管を得ることを特徴とする、耐溶融亜鉛めっき割れ性に優れ、架線柱に適した高強度電縫鋼管の製造方法。
2.0≦SZ最終段縮径量/(FP最終段縮径量+SQ縮径量)≦3.5・・・(3)
ここでSZ最終段縮径量は造管工程のサイザー工程最終段縮径量(mm)、FP最終段縮径量は同フィンパス工程最終段縮径量(mm)、SQ縮径量は同スクイズ工程の縮径量(mm)である。
Using steel having the chemical composition according to claim 1, the heating temperature during hot rolling is 1070°C or more and 1300°C or less, the hot finish rolling temperature is 800°C or more and 1050°C or less, and the coiling temperature after cooling is 500°C. ℃ or less, and using the hot rolled steel plate to form a tube under conditions that satisfy the following formula (3), CEZ≦0.44 is satisfied, and the tube axis and the direction perpendicular to the tube axis are A steel pipe with a tensile strength of 700 MPa or more, a yield point of 520 MPa or more, and a residual stress of 200 MPa or less in the direction perpendicular to the pipe axis, with excellent hot-dip galvanizing cracking resistance and high strength suitable for overhead wire columns. Manufacturing method of ERW steel pipe.
2.0≦SZ final stage diameter reduction amount/(FP final stage diameter reduction amount + SQ diameter reduction amount)≦3.5...(3)
Here, the SZ final stage diameter reduction amount is the final stage diameter reduction amount (mm) of the sizer process in the pipe making process, the FP final stage diameter reduction amount is the final stage diameter reduction amount (mm) of the same fin pass process, and the SQ diameter reduction amount is the sizer process final stage diameter reduction amount (mm). This is the amount of diameter reduction (mm) in the process.
さらに質量%で、B:0.00000%超~0.00020%、Ti:0.00%超~1.00%、Nb:0.00%超~1.00%、V:0.00%超~1.00%、Cu:0.00超%~1.00%、Ni:0.00%超~1.00%、Cr:0.00%超~1.00%、Mo:0.00%超~0.50%、W:0.00%超~0.50%、Ca:0.0000%超~0.0200%、Mg:0.0000%超~0.0200%、Zr:0.0000%超~0.0200%、REM:0.0000%超~0.0200%、の1種または2種以上を含有する化学組成の鋼を用いることを特徴とする、請求項3に記載の耐溶融亜鉛めっき割れ性に優れ、架線柱に適した高強度電縫鋼管の製造方法。 Furthermore, in mass%, B: more than 0.00000% to 0.00020%, Ti: more than 0.00% to 1.00%, Nb: more than 0.00% to 1.00%, V: 0.00% More than 1.00%, Cu: More than 0.00% to 1.00%, Ni: More than 0.00% to 1.00%, Cr: More than 0.00% to 1.00%, Mo: 0. More than 0.00% to 0.50%, W: More than 0.00% to 0.50%, Ca: More than 0.0000% to 0.0200%, Mg: More than 0.0000% to 0.0200%, Zr: Claim 3, characterized in that a steel having a chemical composition containing one or more of the following: more than 0.0000% to 0.0200%, and REM: more than 0.0000% to 0.0200% is used. A method for producing a high-strength electric resistance welded steel pipe that has excellent hot-dip galvanizing cracking resistance and is suitable for overhead line poles.
JP2022132402A 2022-08-23 2022-08-23 High-strength electric resistance welded steel pipe with excellent hot-dip galvanizing cracking resistance and suitable for overhead line poles, and its manufacturing method Pending JP2024029929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022132402A JP2024029929A (en) 2022-08-23 2022-08-23 High-strength electric resistance welded steel pipe with excellent hot-dip galvanizing cracking resistance and suitable for overhead line poles, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022132402A JP2024029929A (en) 2022-08-23 2022-08-23 High-strength electric resistance welded steel pipe with excellent hot-dip galvanizing cracking resistance and suitable for overhead line poles, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2024029929A true JP2024029929A (en) 2024-03-07

Family

ID=90106627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022132402A Pending JP2024029929A (en) 2022-08-23 2022-08-23 High-strength electric resistance welded steel pipe with excellent hot-dip galvanizing cracking resistance and suitable for overhead line poles, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2024029929A (en)

Similar Documents

Publication Publication Date Title
JP4772927B2 (en) High-strength steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet having excellent fatigue characteristics and elongation and impact characteristics, and methods for producing them
US8052807B2 (en) Steel sheet excellent in workability
KR101333854B1 (en) Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
JP5834717B2 (en) Hot-dip galvanized steel sheet having a high yield ratio and method for producing the same
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP5812115B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof
US20160076124A1 (en) High strength hot rolled steel sheet and method for manufacturing the same (as amended)
WO2010087512A1 (en) Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
JP5825185B2 (en) Cold rolled steel sheet and method for producing the same
WO2013047760A1 (en) High-strength hot-dip galvanized steel sheet having excellent delayed fracture resistance, and method for producing same
JP2014019928A (en) High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
JP5817671B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP5401863B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
WO2013094130A1 (en) High-strength steel sheet and process for producing same
JP6575734B1 (en) ERW steel pipe for line pipe
JP5521482B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP2014205889A (en) High strength hot rolled steel sheet excellent in toughness and method of producing the same
JP5521483B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP5521484B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP4900260B2 (en) Method for producing hot-rolled steel sheet having excellent ductile crack propagation characteristics and sour resistance
JP6693610B1 (en) ERW steel pipe for line pipe
JP4317517B2 (en) High corrosion resistance hot rolled steel sheet with excellent workability and weld heat affected zone toughness and its manufacturing method
JP2024029929A (en) High-strength electric resistance welded steel pipe with excellent hot-dip galvanizing cracking resistance and suitable for overhead line poles, and its manufacturing method
CN112673121A (en) Resistance welding steel pipe for torsion beam
JP2009179840A (en) Method for producing high tensile steel excellent in low-temperature toughness and crack arrest property