JP5812115B2 - High-tensile hot-rolled steel sheet and manufacturing method thereof - Google Patents
High-tensile hot-rolled steel sheet and manufacturing method thereof Download PDFInfo
- Publication number
- JP5812115B2 JP5812115B2 JP2013551228A JP2013551228A JP5812115B2 JP 5812115 B2 JP5812115 B2 JP 5812115B2 JP 2013551228 A JP2013551228 A JP 2013551228A JP 2013551228 A JP2013551228 A JP 2013551228A JP 5812115 B2 JP5812115 B2 JP 5812115B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- phase
- steel sheet
- hot
- rolled steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 144
- 239000010959 steel Substances 0.000 title claims description 144
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000001816 cooling Methods 0.000 claims description 46
- 238000005096 rolling process Methods 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 31
- 229910001563 bainite Inorganic materials 0.000 claims description 25
- 239000002344 surface layer Substances 0.000 claims description 25
- 229910000734 martensite Inorganic materials 0.000 claims description 23
- 229910000859 α-Fe Inorganic materials 0.000 claims description 20
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 15
- 229910052758 niobium Inorganic materials 0.000 claims description 15
- 229910001562 pearlite Inorganic materials 0.000 claims description 15
- 229910052720 vanadium Inorganic materials 0.000 claims description 15
- 230000009467 reduction Effects 0.000 claims description 13
- 229910001567 cementite Inorganic materials 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000005098 hot rolling Methods 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 238000004804 winding Methods 0.000 claims description 7
- 230000001186 cumulative effect Effects 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 238000010583 slow cooling Methods 0.000 claims description 4
- 239000012071 phase Substances 0.000 description 56
- 230000000694 effects Effects 0.000 description 26
- 238000000034 method Methods 0.000 description 24
- 239000003973 paint Substances 0.000 description 19
- 238000009864 tensile test Methods 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000009863 impact test Methods 0.000 description 4
- 238000003303 reheating Methods 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000003129 oil well Substances 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/003—Cementite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、原油、天然ガス等を輸送する輸送管(ラインパイプ)用、あるいは油井管用として、高強度、高靭性が要求される溶接鋼管、なかでも高強度電縫鋼管、高強度スパイラル鋼管用素材として好適な、高張力熱延鋼板及びその製造方法に係り、特に管成形(造管)された後の変形特性が向上したものに関する。
なお、ここでいう「高張力熱延鋼板」とは、API5L−X65級以上X80級以下の高強度を有する熱延鋼板をいうものとする。The present invention is for welded steel pipes that require high strength and high toughness, especially for transport pipes (line pipes) for transporting crude oil, natural gas, etc., and for oil well pipes, especially for high strength ERW steel pipes and high strength spiral steel pipes. The present invention relates to a high-strength hot-rolled steel sheet suitable as a material and a method for producing the same, and particularly relates to a steel sheet having improved deformation characteristics after being pipe-formed (tube-formed).
The “high-tensile hot-rolled steel sheet” herein refers to a hot-rolled steel sheet having a high strength of API5L-X65 grade or more and X80 grade or less.
近年、石油危機以来の原油の高騰や、エネルギー供給源の多様化の要求などから、極寒冷地での石油、天然ガスの採掘及びパイプラインの敷設が活発に行われるようになっている。さらに、パイプラインにおいては、天然ガスやオイルの輸送効率向上のため、太径で高圧操業を行う傾向となっている。パイプラインの高圧操業に耐えるため、輸送管(ラインパイプ)は厚肉の鋼管とする必要があり、UOE鋼管のような厚鋼板を素材とする鋼管が使用され、さらにAPI5L規格のX80級といった高強度グレードの鋼管が使用されるようになっている。しかし、最近では、パイプラインの施工コストの更なる低減という強い要望や、鋼管の材料コスト低減の要望も強く、輸送管として、厚鋼板を素材とするUOE鋼管にかわり、コイル形状の熱延鋼板(熱延鋼帯)を素材とした高強度電縫鋼管あるいは高強度スパイラル鋼管が用いられるようになってきた。 In recent years, oil and natural gas extraction and pipeline laying have been actively carried out in extremely cold regions due to soaring crude oil since the oil crisis and diversification of energy supply sources. Furthermore, in the pipeline, in order to improve the transport efficiency of natural gas and oil, there is a tendency to perform high-pressure operation with a large diameter. In order to withstand the high-pressure operation of the pipeline, the transport pipe (line pipe) must be a thick-walled steel pipe, a steel pipe made of a thick steel plate such as UOE steel pipe is used, and the API5L standard X80 grade Strength grade steel pipes are used. Recently, however, there is a strong demand for further reduction in pipeline construction costs and a reduction in material costs for steel pipes. As a transport pipe, instead of UOE steel pipes made of thick steel plates, coil-shaped hot-rolled steel sheets are used. High-strength ERW steel pipes or high-strength spiral steel pipes made from (hot rolled steel strip) have come to be used.
これら高強度鋼管には、ラインパイプの破壊を防止する観点から、高強度と同時に、優れた低温靭性を具備することが要求されている。このような高強度と高靭性とを兼備した鋼管を製造するために、鋼管素材である鋼板では、熱間圧延後の加速冷却を利用した変態強化や、Nb、Ti、V等の合金元素の析出物を利用した析出強化等による高強度化と、制御圧延等を利用した組織の微細化等による高靭性化が図られてきた。 These high-strength steel pipes are required to have excellent low-temperature toughness as well as high strength from the viewpoint of preventing line pipe breakage. In order to produce a steel pipe having both high strength and high toughness, in steel sheet as a steel pipe material, transformation strengthening using accelerated cooling after hot rolling and alloying elements such as Nb, Ti, V, etc. Strengthening by precipitation strengthening using precipitates and toughness by microstructure refinement using controlled rolling have been attempted.
例えば、特許文献1には、C、Si、Mn、Nを適正量含有し、さらにSi、MnをMn/Siが5〜8を満足する範囲に含有し、さらにNb:0.01〜0.1%を含有する鋼片に、圧下率を圧延温度ごとに調整する粗圧延と、いったん表層部をAr1点以下まで冷却し、復熱又は強制加熱で表層部の温度が(Ac3−40℃)〜(Ac3+40℃)になった時点で仕上圧延を開始し、950℃以下での合計圧下率:60%以上で、圧延終了温度:Ac3点以上となる仕上圧延を施し、仕上圧延終了後10℃/s以上で600℃以下まで冷却し、600〜350℃の温度範囲で巻き取る高強度電縫鋼管用熱延鋼板の製造方法が記載されている。特許文献1に記載のされた技術では、高価な合金元素を添加することなく、また、鋼管全体を熱処理することなく、鋼板表層の組織を微細化でき、低温靭性に優れた高強度電縫鋼管が製造できるとしている。しかし、特許文献1に記載された技術では、板厚が厚い鋼板の場合には、冷却能力が不足し、所望の冷却速度を確保できず、更なる冷却能力の向上を必要とするという問題があった。 For example, Patent Document 1 contains appropriate amounts of C, Si, Mn, and N, further contains Si and Mn in a range where Mn / Si satisfies 5 to 8, and further contains Nb: 0.01 to 0.1%. Rough rolling to adjust the rolling reduction for each rolling temperature, and once cooling the surface layer part to Ar1 point or less, the temperature of the surface layer part is (Ac3-40 ° C) to (Ac3 + 40 ° C) by reheating or forced heating. ), And finish rolling is performed at a total rolling reduction at 950 ° C. or lower: 60% or higher, rolling finish temperature: Ac3 point or higher, and at 10 ° C./s or higher after finishing rolling. A method for producing a hot rolled steel sheet for high-strength ERW steel pipe that is cooled to 600 ° C. or lower and wound in a temperature range of 600 to 350 ° C. is described. In the technique described in Patent Document 1, a high-strength electric resistance welded steel pipe excellent in low-temperature toughness can be refined without adding an expensive alloy element or heat treating the entire steel pipe Can be manufactured. However, in the technique described in Patent Document 1, in the case of a steel plate having a large thickness, there is a problem that the cooling capacity is insufficient, a desired cooling rate cannot be secured, and further improvement of the cooling capacity is required. there were.
また、パイプラインが敷設される環境も年々多様化しており、パイプライン敷設後に地盤変動、海底での海流などの影響により、パイプラインの曲げ変形が無視できない場合があり、パイプライン敷設設計上問題となっている。 In addition, the environment in which pipelines are laid is diversifying year by year, and there are cases where bending deformation of pipelines cannot be ignored due to ground fluctuations, ocean currents at the seabed, etc. after pipeline laying. It has become.
このような問題に対し、例えば特許文献2には、C:0.02〜0.09%を含み、Si:0.001〜0.8%、Mn:0.5〜2.5%と、さらに、Ti:0.005〜0.03%、Nb:0.005〜0.3%、Al:0.001〜0.1%、N:0.001〜0.008%を含み、さらにNi:0.1〜1.0%、Cu:0.1〜1.0、Mo:0.05〜0.6%の二種以上を、(Ni+Cu)−Mo>0.5を満足するように含み、面積率で50%以下の結晶粒径が平均で15μm以下のフェライトと、残部がマルテンサイト及び/又はベイナイトの混合組織を有する鋼板を溶接してなる、時効後の変形特性に優れたパイプライン用高強度鋼管が記載されている。この鋼管は、200〜300℃に加熱後の一様伸びが5%以上で、時効後の変形特性に優れたX−70〜X−100級の高強度鋼管となるとしている。しかしながら、特許文献2に記載された技術では、熱間圧延時の液相脆化の原因となるCuや高価なNiといった合金元素を比較的多量に含む必要があり、溶接性に問題を残していた。 For example, Patent Document 2 includes C: 0.02 to 0.09%, Si: 0.001 to 0.8%, Mn: 0.5 to 2.5%, and Ti: 0.005 to 0.03%, Nb: 0.005. -0.3%, Al: 0.001-0.1%, N: 0.001-0.008%, and Ni: 0.1-1.0%, Cu: 0.1-1.0, Mo: 0.05-0.6%, (Ni + Cu)- Aging that is formed by welding a steel sheet having a mixed structure of ferrite with a grain size of 15 μm or less on average and a balance of martensite and / or bainite, including Mo> 0.5 so as to satisfy Mo> 0.5. A high-strength steel pipe for pipelines having excellent later deformation characteristics is described. This steel pipe is said to be an X-70 to X-100 grade high-strength steel pipe having a uniform elongation after heating at 200 to 300 ° C. of 5% or more and excellent deformation characteristics after aging. However, in the technique described in Patent Document 2, it is necessary to contain a relatively large amount of alloy elements such as Cu and expensive Ni that cause liquid phase embrittlement during hot rolling, leaving a problem in weldability. It was.
また、最近では、海底ラインパイプの敷設には、リールバージ法が多用されるようになっている。リールバージ法は、予め陸上で円周溶接、検査、塗装などを行い、できあがった長尺のパイプを、海上のバージ船のリールに巻き取って、目的の海上で、巻き戻しながら海底に敷設する方法である。しかし、リールバージ法では、パイプ巻取り時、及びパイプ敷設時にパイプの一部に曲げ−曲げ戻しによる引張及び圧縮の応力が作用する。このため、パイプに局部座屈が生じ、それを起点としてパイプの破壊が生じるという問題がある。 Recently, the reel barge method has been frequently used for laying submarine line pipes. In the reel barge method, circumferential welding, inspection, painting, etc. are performed in advance on land, and the resulting long pipe is wound on the reel of a barge ship at sea and laid on the seabed while rewinding at the target sea. Is the method. However, in the reel barge method, tensile and compressive stress due to bending-bending back acts on a part of the pipe when winding the pipe and laying the pipe. For this reason, local buckling arises in a pipe, and there exists a problem that destruction of a pipe arises from it.
このような問題に対し、例えば特許文献3には、C:0.03〜0.20%、Si:0.05〜0.50%、Mn:0.50〜1.5%、Al:0.005〜0.060%を含み、Nb+V+Tiを0.04%以下に制限して含み、炭素当量Ceqを0.20〜0.35%、溶接割れ感受性指数Pcmを0.25%以下に制限した組成とする、降伏比85%以下で溶接軟化部が少ないリールバージ敷設性に優れた電縫鋼管が記載されている。特許文献3に記載された技術によれば、リールバージ法を利用したパイプライン敷設時にパイプに発生する局部座屈を防止できるとしている。 For such problems, for example, Patent Document 3 includes C: 0.03 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.50 to 1.5%, Al: 0.005 to 0.060%, and Nb + V + Ti to 0.04% or less. ESR with excellent reel barge laying property with a yield ratio of 85% or less and less weld softening, with a limited composition, carbon equivalent Ceq of 0.20 to 0.35% and weld crack sensitivity index Pcm of 0.25% or less Steel pipes are described. According to the technique described in Patent Document 3, local buckling that occurs in a pipe when a pipeline is laid using a reel barge method can be prevented.
また、特許文献4には、C:0.1%以下、Mn:2.3%以下を含有する組成の帯鋼に、造管成形工程の前に、板厚方向平均で15%以下の歪を付与する歪付与工程を施す、電縫鋼管の製造方法が記載されている。これにより、パイプ敷設時の局部座屈が防止できるとしている。 Patent Document 4 discloses that a strain having a composition containing C: 0.1% or less and Mn: 2.3% or less is given a strain of 15% or less on the average in the thickness direction before the pipe forming step. A method for producing an electric resistance welded steel pipe, which is subjected to an applying step, is described. Thereby, local buckling at the time of pipe laying can be prevented.
しかしながら、特許文献3に記載された技術では、X65級以上という高強度を安定して確保するためにはCを増量する必要があり、靭性が確保できないという問題を残していた。また、特許文献4に記載された技術では、帯鋼に、歪付与工程を付与する必要があり、大規模な歪導入設備が必要になるという問題があった。
また、ラインパイプには、通常、防食のため、管表面に塗装が施される。そして、その塗装を焼付けるために、200〜300℃の範囲の温度に加熱する塗装焼付処理が施される。そのため、造管時に歪が導入された鋼管は、歪時効により硬化し、降伏強さが増加し、降伏伸びを示す変形特性を示す場合がある。このような変形特性を示す鋼管では、その後の鋼管への曲げ変形に際し、局部座屈を生じ、パイプの破壊に至るという問題がある。However, in the technique described in Patent Document 3, it is necessary to increase the amount of C in order to stably secure a high strength of X65 grade or higher, and there remains a problem that toughness cannot be ensured. Further, the technique described in Patent Document 4 has a problem in that it is necessary to apply a strain applying process to the steel strip, and a large-scale strain introducing facility is required.
Also, line pipes are usually painted on the pipe surface for corrosion protection. And in order to bake the coating, the coating baking process heated to the temperature of the range of 200-300 degreeC is given. Therefore, a steel pipe in which strain is introduced during pipe making is hardened by strain aging, yield strength increases, and may exhibit deformation characteristics indicating yield elongation. In the steel pipe showing such deformation characteristics, there is a problem that local buckling occurs during bending deformation of the steel pipe and the pipe is broken.
本発明は、上記した従来技術の問題を解決し、API5L−X65級以上X80級以下の高強度で、かつシャルピー衝撃試験の破面遷移温度vTrsが−80℃以下の高靭性で、さらに、表層及び板厚方向中心部での一様伸びが10%以上となる優れた変形特性を有し、かつ管成形後の変形特性に優れた高張力熱延鋼板を提供することを目的とする。
なお、ここでいう「管成形後の変形特性に優れた」とは、表層部がJIS Z 2241 の規定に準拠してJIS5号試験片(GL:50mm)を用いた引張試験で一様伸び10%以上を示し、さらに予歪として2%引張歪を付与した後、250℃×60 min加熱する塗装焼付硬化処理後の塗装焼付硬化量ΔYSが40MPa以下となる、低い塗装焼付硬化特性を有し、かつ管成形−塗装焼付処理後に降伏伸びの発生が抑制され、管として曲げ変形を受けたときに、局部座屈の発生を抑制できる変形特性を有することを意味する。The present invention solves the above-described problems of the prior art, has high strength of API5L-X65 grade or more and X80 grade or less, and has high toughness with a fracture surface transition temperature vTrs of -80 ° C. or less in the Charpy impact test. Another object of the present invention is to provide a high-tensile hot-rolled steel sheet having excellent deformation characteristics such that the uniform elongation at the center in the sheet thickness direction is 10% or more and excellent deformation characteristics after tube forming.
Note that “excellent deformation characteristics after tube forming” as used herein means that the surface layer portion has a uniform elongation of 10 in a tensile test using a JIS No. 5 test piece (GL: 50 mm) in accordance with the provisions of JIS Z 2241. %, And after applying 2% tensile strain as a pre-strain, the paint bake-hardening amount ΔYS after coating bake-hardening treatment heated at 250 ° C x 60 min is 40MPa or less. Further, it means that the occurrence of yield elongation is suppressed after pipe forming-paint baking treatment, and it has a deformation characteristic that can suppress the occurrence of local buckling when subjected to bending deformation as a pipe.
本発明者らは、上記した目的を達成するために、管として塗装焼付処理を施された後の変形特性、特に降伏伸びの発生に及ぼす各種要因について鋭意検討した。
その結果、Crと、さらにNb、Ti、Vを必須含有し、Nb、Ti、Vの合計量を適正範囲に調整し、かつ表層部の組織について、ベイナイトを主相とし、第二相として少量のマルテンサイトを含有する組織とすることにより、表層部の一様伸びを10%以上と高い変形能を有しかつ、予歪2%付与後に250℃×60minの熱処理(塗装焼付け処理)を施した後の塗装焼付硬化量ΔYS(={(塗装焼付け処理後の降伏応力)−(予歪付与後の変形応力)}が40MPa以下と低く、さらに、塗装焼付処理後に、降伏伸びが抑制できることを見出した。In order to achieve the above-described object, the present inventors diligently studied various factors that affect the deformation characteristics, particularly the occurrence of yield elongation, after being subjected to paint baking as a pipe.
As a result, Cr and Nb, Ti, V are essential, the total amount of Nb, Ti, V is adjusted to an appropriate range, and the structure of the surface layer part is bainite as the main phase and a small amount as the second phase. By having a structure containing martensite, the surface layer has a uniform deformation at a high elongation of 10% or more, and after applying 2% pre-strain, heat treatment (paint baking treatment) is performed at 250 ° C x 60 min. The coating bake hardening amount ΔYS (= {(yield stress after coating baking) − (deformation stress after applying pre-strain))} is as low as 40 MPa or less, and the yield elongation can be suppressed after coating baking. I found it.
本発明は、これらの知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.04〜0.08%、Si:0.50%以下、Mn:0.8〜2.2%、P:0.02%以下、S:0.006%以下、Al:0.1%以下、N:0.008%以下、Cr:0.05〜0.8%を含み、さらにNb:0.01〜0.08%、V:0.001〜0.12%、Ti:0.005〜0.04%を、以下の式(1):
0.05 ≦ Nb+V+Ti ≦ 0.20 ・・・(1)
(ここで、Nb、V、Tiは、鋼中の含有量(質量%)を示す。)
を満足するように調整して含有し、残部がFe及び不可避的不純物からなる組成であり、鋼板表面から板厚方向に2mmまでの領域である表層が、ベイナイトを主相とし、体積率で0.5〜4%のマルテンサイトを第二相とし、さらに、合計の体積率で10%以下のフェライト相、パーライト、セメンタイトのうちから選択される一種以上を、第三相として含む組織を有し、前記鋼板の表層以外の領域である板厚中央部が、ベイナイトを主相とし、体積率で0.5〜4%のマルテンサイトを第二相とし、さらに、合計の体積率20%以下のフェライト相、パーライト、セメンタイトのうちから選択される一種以上を、第三相として含む組織を有し、一様伸びが10%以上を示すことを特徴とする高張力熱延鋼板。
The present invention has been completed based on these findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.04 to 0.08%, Si: 0.50% or less, Mn: 0.8 to 2.2%, P: 0.02% or less, S: 0.006% or less, Al: 0.1% or less, N: 0.008% or less Cr: 0.05 to 0.8%, Nb: 0.01 to 0.08%, V: 0.001 to 0.12%, Ti: 0.005 to 0.04%, the following formula (1):
0.05 ≦ Nb + V + Ti ≦ 0.20 (1)
(Here, Nb, V, and Ti indicate the content (mass%) in the steel.)
Contains adjusted so as to satisfy a composition balance being Fe and unavoidable impurities, the surface layer is a region from the steel plate surface to 2mm in thickness direction, the bainite and the main phase, the volume ratio 0.5 to 4% martensite as the second phase, further having a structure containing as a third phase one or more selected from ferrite phase, pearlite, and cementite in a total volume ratio of 10% or less, The central portion of the thickness, which is a region other than the surface layer of the steel plate, has bainite as the main phase, 0.5 to 4% martensite by volume ratio as the second phase, and a ferrite phase having a total volume ratio of 20% or less, A high-tensile hot-rolled steel sheet having a structure containing at least one selected from pearlite and cementite as a third phase and having a uniform elongation of 10% or more.
(2)(1)において、前記組成に加えてさらに、質量%で、Mo:0.3%以下、Cu:0.5%以下、Ni:0.5%以下、B:0.001%以下のうちから選ばれた一種又は二種以上を含有することを特徴とする高張力熱延鋼板。 (2) In (1) , in addition to the above-mentioned composition, by mass%, Mo: 0.3% or less, Cu: 0.5% or less, Ni: 0.5% or less, B: 0.001% or less A high-tensile hot-rolled steel sheet containing two or more kinds.
(3)(1)又は(2)において、前記組成に加えてさらに、質量%で、Zr:0.04%以下、Ta:0.07%以下のうちから選ばれた一種又は二種を含有することを特徴とする高張力熱延鋼板。 (3) In (1) or (2) , in addition to the above-mentioned composition, the composition further contains one or two selected from the group consisting of Zr: 0.04% or less and Ta: 0.07% or less in mass%. High tensile hot-rolled steel sheet.
(4)(1)〜(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.005%以下、REM:0.005%以下のうちから選ばれた一種又は二種を含有することを特徴とする高張力熱延鋼板。 (4) In any one of (1) to (3) , in addition to the above composition, the composition further contains one or two kinds selected from Ca: 0.005% or less and REM: 0.005% or less in mass%. A high-tensile hot-rolled steel sheet characterized by that.
(5)鋼素材に、加熱後、熱間圧延を施し熱延板とし、前記熱間圧延後直ちに、前記熱延板に加速冷却を施した後、巻取温度でコイル状に巻き取る、熱延鋼板の製造方法であって、前記鋼素材を、質量%で、C:0.04〜0.08%、Si:0.50%以下、Mn:0.8〜2.2%、P:0.02%以下、S:0.006%以下、Al:0.1%以下、N:0.008%以下、Cr:0.05〜0.8%を含み、さらにNb:0.01〜0.08%、V:0.001〜0.12%、Ti:0.005〜0.04%を以下の式(1):
0.05 ≦ Nb+V+Ti ≦ 0.20 ・・・(1)
(ここで、Nb、V、Tiは、鋼中の含有量(質量%)を示す。)
を満足するように調整して含有し、残部がFe及び不可避的不純物からなる組成であり、前記鋼素材の前記加熱を1100〜1250℃の範囲の温度とし、前記熱間圧延における仕上圧延の、930℃以下の温度域における累積圧下率を50%以上、圧延終了温度を760℃以上とし、前記加速冷却を、前記仕上圧延終了後直ちに、7〜50℃/sの平均冷却速度CRで冷却を開始し、550℃以上、以下の式(2):
SCT(℃)=750−270C−90Mn+4Si(25−CR)−80Mo−30(Cu+Ni) ・・・(2)
(ここで、C、Mn、Si、Mo、Cu、Niは、鋼中の含有量(質量%)を示し、CRは、加速冷却における平均冷却速度(℃/s)を示す。)
で定義される温度SCT+30℃以下の範囲の温度である冷却停止温度で冷却を停止する処理とし、該加速冷却を停止した後、前記巻取りまでの間を、(SCT−20℃)〜(SCT+30℃)の温度域での滞留時間が10〜60sである放冷処理又は徐冷処理を施し、前記巻取温度を430℃以上(SCT−50℃)以下とし、
得られた高張力熱延鋼板は、鋼板表面から板厚方向に2mmまでの領域である表層が、ベイナイトを主相とし、体積率で0.5〜4%のマルテンサイトを第二相とし、さらに、合計の体積率で10%以下のフェライト相、パーライト、セメンタイトのうちから選択される一種以上を、第三相として含む組織を有し、前記鋼板の表層以外の領域である板厚中央部が、ベイナイトを主相とし、体積率で0.5〜4%のマルテンサイトを第二相とし、さらに、合計の体積率20%以下のフェライト相、パーライト、セメンタイトのうちから選択される一種以上を、第三相として含む組織を有し、一様伸びが10%以上を示すことを特徴とする管成形後の変形能に優れた高張力熱延鋼板の製造方法。
(5) After heating, the steel material is hot-rolled to form a hot-rolled sheet. Immediately after the hot-rolling, the hot-rolled sheet is subjected to accelerated cooling, and then coiled at a coiling temperature. A method for producing a rolled steel sheet, wherein the steel material is, in mass%, C: 0.04 to 0.08%, Si: 0.50% or less, Mn: 0.8 to 2.2%, P: 0.02% or less, S: 0.006% or less, Al: 0.1% or less, N: 0.008% or less, Cr: 0.05 to 0.8%, Nb: 0.01 to 0.08%, V: 0.001 to 0.12%, Ti: 0.005 to 0.04%, the following formula (1):
0.05 ≦ Nb + V + Ti ≦ 0.20 (1)
(Here, Nb, V, and Ti indicate the content (mass%) in the steel.)
Is adjusted to satisfy the content, the balance is composed of Fe and inevitable impurities, the heating of the steel material is a temperature in the range of 1100-1250 ° C., in the finish rolling in the hot rolling, The cumulative rolling reduction in the temperature range of 930 ° C or lower is set to 50% or higher, the rolling end temperature is set to 760 ° C or higher, and the accelerated cooling is performed immediately after the finish rolling is completed at an average cooling rate CR of 7 to 50 ° C / s. Start, over 550 ° C, the following formula (2):
SCT (° C) = 750−270C−90Mn + 4Si (25−CR) −80Mo−30 (Cu + Ni) (2)
(Here, C, Mn, Si, Mo, Cu, and Ni indicate the content (% by mass) in the steel, and CR indicates the average cooling rate (° C./s) in accelerated cooling.)
The temperature is defined as SCT + 30 ° C. or less, and the cooling is stopped at a cooling stop temperature, and after the accelerated cooling is stopped, the time until the winding is (SCT−20 ° C.) to (SCT + 30 ℃) in the temperature range is subjected to a cooling treatment or slow cooling treatment in which the residence time is 10 to 60 s, and the winding temperature is set to 430 ° C or higher (SCT-50 ° C) or lower ,
In the obtained high-tensile hot-rolled steel sheet, the surface layer that is a region from the steel sheet surface to 2 mm in the sheet thickness direction has bainite as the main phase, volume ratio of 0.5 to 4% martensite as the second phase, One or more selected from ferrite phase, pearlite, and cementite with a total volume ratio of 10% or less, and having a structure containing as a third phase, the plate thickness central portion that is a region other than the surface layer of the steel plate, One or more selected from ferrite phase, pearlite, and cementite having a volume ratio of 0.5 to 4% martensite as the second phase and a total volume ratio of 20% or less as the second phase. A method for producing a high-tensile hot-rolled steel sheet having excellent deformability after tube forming , having a structure including a phase and exhibiting a uniform elongation of 10% or more .
(6)(5)において、前記組成に加えてさらに、質量%で、Mo:0.3%以下、Cu:0.5%以下、Ni:0.5%以下、B:0.001%以下のうちから選ばれた一種又は二種以上を含有することを特徴とする高張力熱延鋼板の製造方法。 (6) In (5) , in addition to the above-mentioned composition, by mass%, Mo: 0.3% or less, Cu: 0.5% or less, Ni: 0.5% or less, B: 0.001% or less A method for producing a high-tensile hot-rolled steel sheet, comprising two or more kinds.
(7)(5)又は(6)において、前記組成に加えてさらに、質量%で、Zr:0.04%以下、Ta:0.07%以下のうちから選ばれた一種又は二種を含有することを特徴とする高張力熱延鋼板の製造方法。 (7) In (5) or (6) , in addition to the above-described composition, the composition further contains one or two kinds selected from Zr: 0.04% or less and Ta: 0.07% or less in mass%. A method for producing a high-tensile hot-rolled steel sheet.
(8)(5)ないし(7)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.005%以下、REM:0.005%以下のうちから選ばれた一種又は二種を含有することを特徴とする高張力熱延鋼板の製造方法。 (8) In any one of (5) to (7) , in addition to the above composition, the composition further contains one or two selected from Ca: 0.005% or less and REM: 0.005% or less by mass%. A method for producing a high-tensile hot-rolled steel sheet.
本発明によれば、鋼管として曲げ変形を受けたときに局部座屈を生じることがなく、管成形後の変形特性に優れ、ラインパイプ用、さらには油井管用として好適な、高張力熱延鋼板を安価に製造でき、産業上格段の効果を奏する。 According to the present invention, a high-tensile hot-rolled steel sheet that does not cause local buckling when subjected to bending deformation as a steel pipe, has excellent deformation characteristics after pipe forming, and is suitable for line pipes and oil well pipes. Can be manufactured at a low cost, and has a remarkable industrial effect.
本発明高張力熱延鋼板は、API5L−X65級以上X80級以下の高強度を有し、ラインパイプ用、さらには油井管用として好適な、管成形(造管)後の変形特性に優れた鋼管を製造できる熱延鋼板である。 The high-tensile hot-rolled steel sheet of the present invention has a high strength of API5L-X65 grade or more and X80 grade or less, and is suitable for line pipes and oil well pipes, and has excellent deformation characteristics after pipe forming (piping). It is a hot-rolled steel sheet that can be manufactured.
まず、本発明高張力熱延鋼板の組成限定理由について説明する。以下、特に断わらない限り質量%は、単に%で記す。 First, the reasons for limiting the composition of the high-tensile hot-rolled steel sheet of the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.
C:0.04〜0.08%
Cは、鋼の強度を増加させる作用を有する元素であり、本発明では所望の強度を確保するために、0.04%以上の含有を必要とする。一方、0.08%を超えて多量に含有すると、母材の靭性、溶接熱影響部靭性を低下させる。このため、Cは0.04〜0.08%の範囲に限定した。なお、好ましくは0.05〜0.07%である。C: 0.04-0.08%
C is an element having an effect of increasing the strength of steel, and in the present invention, it is necessary to contain 0.04% or more in order to ensure a desired strength. On the other hand, when it contains more than 0.08%, the toughness of the base metal and the weld heat affected zone toughness are lowered. For this reason, C was limited to 0.04 to 0.08% of range. In addition, Preferably it is 0.05 to 0.07%.
Si:0.50%以下
Siは、脱酸剤として作用する元素であり、このような効果は0.01%以上の含有で認められる。また、Siは、電縫溶接時にSiを含有する酸化物を形成し、溶接部品質を低下させるとともに、溶接熱影響部靭性を低下させる。このような観点からSiはできるだけ低減することが望ましいが、0.50%までは許容できる。このようなことから、Siは0.50%以下に限定した。なお、好ましくは0.40%以下である。Si: 0.50% or less
Si is an element that acts as a deoxidizer, and such an effect is recognized with a content of 0.01% or more. Moreover, Si forms an oxide containing Si during ERW welding, lowers the weld zone quality, and lowers the weld heat affected zone toughness. From this point of view, it is desirable to reduce Si as much as possible, but it is acceptable up to 0.50%. For these reasons, Si is limited to 0.50% or less. In addition, Preferably it is 0.40% or less.
Mn:0.8〜2.2%
Mnは、焼入れ性を向上させる元素であり、焼入れ性向上を介して鋼板の強度増加に寄与する。また、MnはMnSを形成しSを固定することにより、Sの粒界偏析を防止してスラブ割れを抑制する。このような効果を得るためには0.8%以上の含有を必要とする。一方、2.2%を超える過剰の含有は、凝固時の偏析を助長し、鋼板にMn濃化部を残存させ、セパレーションの発生を増加させる。このため、Mnは0.8〜2.2%の範囲に限定した。なお、好ましくは0.9〜2.1%である。Mn: 0.8-2.2%
Mn is an element that improves the hardenability and contributes to an increase in the strength of the steel sheet through the improvement of the hardenability. Further, Mn forms MnS and fixes S, thereby preventing S grain boundary segregation and suppressing slab cracking. In order to obtain such an effect, the content of 0.8% or more is required. On the other hand, an excessive content exceeding 2.2% promotes segregation during solidification, leaves Mn-concentrated portions in the steel sheet, and increases the occurrence of separation. For this reason, Mn was limited to the range of 0.8 to 2.2%. In addition, Preferably it is 0.9 to 2.1%.
P:0.02%以下
Pは、鋼の強度を増加させる作用を有するが、偏析傾向が強く、靭性を低下させる。このため、本発明ではPはできるだけ低減することが望ましいが、0.02%までは許容できる。このようなことから、Pは0.02%以下に限定した。なお、好ましくは0.016%以下である。P: 0.02% or less P has an effect of increasing the strength of steel, but has a strong segregation tendency and lowers toughness. Therefore, in the present invention, it is desirable to reduce P as much as possible, but it is acceptable up to 0.02%. Therefore, P is limited to 0.02% or less. In addition, Preferably it is 0.016% or less.
S:0.006%以下
Sは、鋼中では主として介在物(硫化物)として存在し、延性、靭性を低下させる悪影響を及ぼす。このため、Sはできるだけ低減することが望ましいが、0.006%までは許容できる。このようなことから、Sは0.006%以下に限定した。なお、好ましくは0.004%以下である。S: 0.006% or less S is present as an inclusion (sulfide) in steel, and has an adverse effect on reducing ductility and toughness. For this reason, it is desirable to reduce S as much as possible, but it is acceptable up to 0.006%. For these reasons, S is limited to 0.006% or less. In addition, Preferably it is 0.004% or less.
Al:0.1%以下
Alは、脱酸剤として作用する元素であり、このような効果を得るためには0.001%以上含有することが望ましい。一方、0.1%を超える含有は、電縫溶接時の溶接部の清浄性を著しく損なう。このため、Alは0.1%以下に限定した。Al: 0.1% or less
Al is an element that acts as a deoxidizer, and in order to obtain such an effect, it is desirable to contain 0.001% or more. On the other hand, a content exceeding 0.1% significantly impairs the cleanliness of the welded part during ERW welding. For this reason, Al was limited to 0.1% or less.
N:0.008%以下
Nは、不可避的に含まれる元素であるが、過剰な含有はスラブ鋳造時の割れを多発させる。また、固溶Nは時効を引き起こすとともに、塗装焼付処理時に降伏強さの増加(塗装焼付硬化)をもたらすため、できるだけ低減することが望ましい。このようなことから、Nは0.008%以下に限定した。N: 0.008% or less N is an element inevitably contained, but excessive inclusion frequently causes cracks during slab casting. In addition, solute N causes aging and increases yield strength (paint bake hardening) during paint baking, so it is desirable to reduce it as much as possible. For these reasons, N is limited to 0.008% or less.
Cr:0.05〜0.8%
Crは、焼入れ性を向上させ、鋼板強度を増加させる作用を有する元素であり、また、Crは、塗装焼付処理後に降伏伸びの発生を抑制する作用を有する。このような効果を得るためには0.05%以上の含有を必要とする。一方、0.8%を超える過剰な含有は、強度が高くなりすぎ、延性、靭性を低下する。このため、Crは0.05〜0.8%の範囲に限定した。なお、好ましくは0.3〜0.5%である。Cr: 0.05-0.8%
Cr is an element that has the effect of improving the hardenability and increasing the strength of the steel sheet, and Cr has the effect of suppressing the occurrence of yield elongation after the coating baking process. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, if it exceeds 0.8%, the strength becomes too high and the ductility and toughness are lowered. For this reason, Cr was limited to the range of 0.05 to 0.8%. In addition, Preferably it is 0.3 to 0.5%.
Nb:0.01〜0.08%
Nbは、オーステナイトの粒界移動を抑制し、オーステナイト粒の粗大化、再結晶を抑制する作用を有する元素である。また、Nbは、炭窒化物として微細析出することにより、溶接性を損なうことなく、少ない含有量で熱延鋼板を高強度化する作用を有する。また、NbはC、Nを固定し、塗装焼付処理時の硬化量を小さくする。このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.08%を超える含有は、強度が高くなりすぎて、延性、靭性を低下させる。このため、Nbは0.01〜0.08%の範囲に限定した。なお、好ましくは0.02〜0.07%である。Nb: 0.01-0.08%
Nb is an element that has the action of suppressing the austenite grain boundary movement and suppressing the austenite grain coarsening and recrystallization. Moreover, Nb has the effect | action which makes a hot-rolled steel plate high intensity | strength with little content, without impairing weldability by carrying out fine precipitation as a carbonitride. Moreover, Nb fixes C and N, and reduces the amount of curing during the coating baking process. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, if the content exceeds 0.08%, the strength becomes too high and the ductility and toughness are lowered. For this reason, Nb was limited to the range of 0.01 to 0.08%. In addition, Preferably it is 0.02 to 0.07%.
V:0.001〜0.12%
Vは、炭窒化物として微細析出することにより、鋼板の強度を増加させる作用を有する。また、VはC、Nを固定し、塗装焼付処理後の降伏伸びの発生を抑制し、管成形後の変形特性を向上させる。このような効果を得るためには、0.001%以上の含有を必要とする。一方、0.12%を超える含有は、強度が高くなりすぎて、延性、靭性を低下させる。このため、Vは0.001〜0.12%の範囲に限定した。なお、好ましくは0.001〜0.08%である。V: 0.001 to 0.12%
V has the effect | action which increases the intensity | strength of a steel plate by carrying out fine precipitation as a carbonitride. Moreover, V fixes C and N, suppresses the occurrence of yield elongation after paint baking, and improves the deformation characteristics after tube forming. In order to obtain such an effect, a content of 0.001% or more is required. On the other hand, if the content exceeds 0.12%, the strength becomes too high and the ductility and toughness are lowered. For this reason, V was limited to the range of 0.001 to 0.12%. In addition, Preferably it is 0.001 to 0.08%.
Ti:0.005〜0.04%
Tiは、炭窒化物として微細析出することにより、鋼板の強度を増加させる作用を有する。また、TiはC、Nを固定し、塗装焼付処理後の降伏伸びの発生を抑制し、管成形後の変形特性を向上させる。このような効果を得るためには、0.005%以上の含有を必要とする。一方、0.04%を超える含有は、溶接性を低下させる。このため、Tiは0.005〜0.04%の範囲に限定した。Ti: 0.005-0.04%
Ti has the effect of increasing the strength of the steel sheet by fine precipitation as carbonitride. Ti also fixes C and N, suppresses the occurrence of yield elongation after paint baking, and improves the deformation characteristics after tube forming. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, if the content exceeds 0.04%, weldability decreases. For this reason, Ti was limited to 0.005 to 0.04% of range.
また、前記組成は、Nb、V、Tiは、上記した範囲でかつ、次式(1)を満足するように調整して含有する。
0.05 ≦ Nb+V+Ti ≦ 0.20 ‥‥(1)
(ここで、Nb、V、Ti:含有量(質量%))
Nb、V、Tiの合計含有量が、0.05%未満では、所望の高強度を確保することができないうえ、塗装焼付処理後の降伏伸びの発生を抑制することができない。一方、0.20%を超える過剰の含有は、延性、靭性の低下が著しくなる。このようなことから、Nb、V、Tiは、(1)式を満足するように調整して含有することとした。In the composition, Nb, V, and Ti are contained within the above-described range and adjusted to satisfy the following formula (1).
0.05 ≦ Nb + V + Ti ≦ 0.20 (1)
(Nb, V, Ti: content (mass%))
If the total content of Nb, V, and Ti is less than 0.05%, the desired high strength cannot be ensured, and the occurrence of yield elongation after paint baking cannot be suppressed. On the other hand, when the content exceeds 0.20%, the ductility and toughness deteriorate significantly. For these reasons, Nb, V, and Ti are adjusted and contained so as to satisfy the expression (1).
上記した成分が基本の成分であり、これら基本の組成に加えてさらに選択元素として、Mo:0.3%以下、Cu:0.5%以下、Ni:0.5%以下、B:0.001%以下のうちから選ばれた一種また二種以上、及び/又は、Zr:0.04%以下、Ta:0.07%以下のうちから選ばれた一種又は二種、及び/又は、Ca:0.005%以下、REM:0.005%以下のうちから選ばれた一種又は二種を、必要に応じて、選択して含有できる。 The above components are the basic components, and in addition to these basic compositions, the elements selected from Mo: 0.3% or less, Cu: 0.5% or less, Ni: 0.5% or less, B: 0.001% or less are selected. One or two or more selected from Zr: 0.04% or less, Ta: 0.07% or less, and / or Ca: 0.005% or less, REM: 0.005% or less 1 type or 2 types chosen from can be selected and contained as needed.
Mo:0.3%以下、Cu:0.5%以下、Ni:0.5%以下、B:0.001%以下のうちから選ばれた一種又は二種以上
Mo、Cu、Ni、Bはいずれも、鋼板強度を増加させる作用を有し、本発明では、Mo、Cu、Ni、Bのうちから選択して一種又は二種以上を必要に応じて選択して含有できる。
Moは、焼入れ性向上を介して、鋼板強度を増加させる作用を有するとともに、炭窒化物として微細に析出して鋼板強度の増加に寄与する。また、Moは塗装焼付処理後の降伏伸びの発生を抑制する作用を有する。このような効果を得るためには、0.05%以上含有することが望ましい。一方、0.3%を超える含有は、溶接性を低下させる。このため、含有する場合には、Moは0.3%以下に限定することが好ましい。
また、Cuは、固溶してあるいは析出して、鋼板強度を増加させる。このような効果を得るためには、0.05%以上含有することが望ましい。一方、0.5%を超えて含有すると、鋼板の表面品質を低下させる恐れがある。このため、含有する場合には、Cuは0.5%以下に限定することが好ましい。
また、Niは、固溶して鋼板強度を増加させるとともに、鋼板の靭性向上に寄与する。このような効果を得るためには0.05%以上含有することが望ましい。一方、0.5%を超える含有は、製造コストの高騰を招く。このようなことから、含有する場合には、Niは0.5%以下に限定することが好ましい。
また、Bは、少量の含有で焼入れ性を顕著に向上させ、鋼板強度の増加に寄与する。このような効果は0.0003%以上の含有で顕著となるが、0.001%を超えて含有しても効果が飽和する。このようなことから、含有する場合には0.001%以下に限定することが好ましい。One or more selected from Mo: 0.3% or less, Cu: 0.5% or less, Ni: 0.5% or less, B: 0.001% or less
Mo, Cu, Ni, and B all have the effect of increasing the strength of the steel sheet, and in the present invention, one of Mo, Cu, Ni, and B is selected as required, and one or more are selected as necessary. Can be contained.
Mo has an effect of increasing the strength of the steel sheet through the improvement of hardenability, and contributes to an increase in the strength of the steel sheet by being finely precipitated as carbonitride. Moreover, Mo has the effect | action which suppresses generation | occurrence | production of the yield elongation after a paint baking process. In order to acquire such an effect, it is desirable to contain 0.05% or more. On the other hand, the content exceeding 0.3% lowers the weldability. For this reason, when it contains, it is preferable to limit Mo to 0.3% or less.
Further, Cu dissolves or precipitates to increase the steel sheet strength. In order to acquire such an effect, it is desirable to contain 0.05% or more. On the other hand, if the content exceeds 0.5%, the surface quality of the steel sheet may be deteriorated. For this reason, when it contains, it is preferable to limit Cu to 0.5% or less.
Ni also dissolves to increase the strength of the steel sheet and contributes to improving the toughness of the steel sheet. In order to acquire such an effect, it is desirable to contain 0.05% or more. On the other hand, if the content exceeds 0.5%, the production cost increases. Therefore, when Ni is contained, Ni is preferably limited to 0.5% or less.
Further, B, when contained in a small amount, significantly improves the hardenability and contributes to an increase in steel sheet strength. Such an effect becomes remarkable when the content is 0.0003% or more, but even if the content exceeds 0.001%, the effect is saturated. For these reasons, when it is contained, it is preferably limited to 0.001% or less.
Zr:0.04%以下、Ta:0.07%以下のうちから選ばれた一種又は二種
Zr、Taは、炭窒化物として微細析出することにより、鋼板を増加させる作用を有する元素であり、必要に応じて選択して含有できる。このような効果を得るためには、Zr:0.005%以上、Ta:0.01%以上含有することが望ましいが、Zr:0.04%、Ta:0.07%を超えて含有すると、溶接性が低下する。このため、含有する場合には、Zr:0.04%以下、Ta:0.07%以下に限定することが好ましい。One or two selected from Zr: 0.04% or less, Ta: 0.07% or less
Zr and Ta are elements having an action of increasing the steel sheet by fine precipitation as carbonitride, and can be selected and contained as necessary. In order to obtain such an effect, it is desirable to contain Zr: 0.005% or more and Ta: 0.01% or more, but if it contains more than Zr: 0.04%, Ta: 0.07%, the weldability is lowered. For this reason, when it contains, it is preferable to limit to Zr: 0.04% or less and Ta: 0.07% or less.
Ca:0.005%以下、REM:0.005%以下のうちから選ばれた一種又は二種
Ca、REMは、いずれも、展伸した粗大な硫化物を球状の硫化物とする硫化物の形態制御に寄与する元素であり、必要に応じて選択して含有できる。このような効果を得るためには、Ca:0.001%以上、REM:0.001%以上含有することが望ましいが、Ca:0.005%、REM:0.005%をそれぞれ超えて多量に含有すると、鋼板の清浄度を低下させる。このため、Caは0.005%以下、REMは0.005%以下に限定することが好ましい。Ca: One or two selected from 0.005% or less, REM: 0.005% or less
Both Ca and REM are elements that contribute to the control of the morphology of sulfides in which the expanded coarse sulfide is a spherical sulfide, and can be selected and contained as necessary. In order to obtain such an effect, it is desirable to contain Ca: 0.001% or more, REM: 0.001% or more, but if it contains a large amount exceeding Ca: 0.005% and REM: 0.005%, respectively, the cleanliness of the steel sheet Reduce. For this reason, it is preferable to limit Ca to 0.005% or less and REM to 0.005% or less.
なお、上述した組成成分以外の残部は、Fe及び不可避的不純物からなる。 The balance other than the above-described composition components is composed of Fe and inevitable impurities.
本発明の高張力熱延鋼板は、上記した組成を有することに加え、該鋼板の表層が、ベイナイトを主相とし、体積率で0.5〜4%のマルテンサイトを第二相として含み、さらに第三相として合計の体積率で10%以下のフェライト、パーライト、セメンタイトのうちの一種以上を含む組織を有する。
なお、ここでいう「主相」とは、体積率で50%以上、好ましくは80%以上を占める相をいうものとする。また、ここでいう「表層」とは、鋼板表面から板厚方向に2mmまでの領域をいうものとする。In addition to having the above-described composition, the high-tensile hot-rolled steel sheet of the present invention includes a surface layer of the steel sheet that includes bainite as a main phase, and a volume ratio of 0.5 to 4% martensite as a second phase. As a three-phase, it has a structure containing at least one of ferrite, pearlite, and cementite in a total volume ratio of 10% or less.
Here, the “main phase” means a phase occupying 50% or more, preferably 80% or more by volume ratio. The “surface layer” here refers to a region from the steel plate surface to 2 mm in the plate thickness direction.
前記鋼板の表層の組織を、ベイナイトを主相とし、体積率で0.5〜4%のマルテンサイトを第二相として含む組織とすることにより、一様伸びが好ましくは10%以上の優れた変形特性を有することができるようになる。さらには、管成形後に、塗装焼付け処理を行っても、硬化量は少なく、しかも塗装焼付処理後に、降伏伸びが抑制でき、管を曲げ加工しても座屈が発生することがなくなり、曲げ加工性に優れる鋼管となる。なお、ここでいう「ベイナイト」は、ベイナイト及びベイニティックフェライトを含むものとする。
また、第二相として、マルテンサイト相を含むことにより、降伏比が低下し、管成形後の変形特性が向上するとともに、塗装焼付処理時の硬化量を少なくすることができ、管成形後の降伏伸びの発生を抑制することができる。また、ベイナイトおよびマルテンサイト以外の第三相としては、フェライト相、パーライト、セメンタイトのうちから選択される一種以上を含むことができる。これらは、一様伸びを低下させるため、少ないほど好ましいが、合計の体積率で10%以下であれば許容できる。By making the structure of the surface layer of the steel sheet into a structure containing bainite as the main phase and martensite at a volume ratio of 0.5 to 4% as the second phase, excellent deformation characteristics with a uniform elongation of preferably 10% or more are preferable. You will be able to have Furthermore, even if paint baking is performed after pipe forming, the amount of curing is small, and after paint baking, yield elongation can be suppressed, and buckling does not occur even if the pipe is bent. It becomes a steel pipe with excellent properties. The “bainite” here includes bainite and bainitic ferrite.
In addition, by including a martensite phase as the second phase, the yield ratio is reduced, the deformation characteristics after pipe forming are improved, and the amount of hardening during the coating baking process can be reduced. The occurrence of yield elongation can be suppressed. In addition, the third phase other than bainite and martensite may include one or more selected from ferrite phase, pearlite, and cementite. These are preferably as small as possible in order to reduce the uniform elongation, but are acceptable if the total volume ratio is 10% or less.
さらに、前記鋼板の板厚中央部は、ベイナイトを主相とし、体積率で0.5〜4%のマルテンサイトを第二相とし、さらに、合計の体積率で20%以下のフェライト相、パーライト、セメンタイトのうちから選択される一種以上を、第三相として含む組織を有する。
前記鋼板の板厚中央部の組織を、ベイナイトが主相で、第二相として体積率で0.5〜4%のマルテンサイトを第二相として含む組織とすることにより、高強度及び高靭性を兼備させることができる。具体的には、高い強度を有しつつ、10%以上の一様伸びを実現できる。ここで、「板厚中央部」とは、前記表層以外の部分をいう。また、ベイナイトおよびマルテンサイト以外の第三相としては、フェライト相、パーライト、セメンタイトのうちから選択される一種以上を含むことができる。これらは、強度及び靭性を低下させるため、少ないほど好ましいが、合計の体積率で20%以下とする。
Further, the plate thickness center part of the steel sheet, a bainite and a main phase, 0.5 to 4% of the martensite and the second phase by volume, further, the volume ratio of the total of 20% or less of the ferrite phase, pearlite, cementite It has the structure | tissue which contains 1 or more types selected from among them as a 3rd phase.
By making the structure of the steel plate thickness central part of the steel sheet into a structure containing bainite as a main phase and martensite as a second phase in a volume ratio of 0.5 to 4% as a second phase, it has both high strength and high toughness. Can be made. Specifically, a uniform elongation of 10% or more can be realized while having high strength. Here, the “plate thickness central portion” refers to a portion other than the surface layer. In addition, the third phase other than bainite and martensite may include one or more selected from ferrite phase, pearlite, and cementite. These are preferably as small as possible in order to reduce the strength and toughness, but the total volume ratio is 20% or less .
つぎに、本発明熱延鋼板の製造方法について説明する。
まず、上述した組成を有する鋼素材を出発素材とする。
鋼素材の製造方法は特に、限定する必要はなく、転炉等の通常公知の溶製方法がいずれも適用できる。溶製された溶鋼は、連続鋳造法等の通常公知の鋳造方法がいずれも適用でき、スラブ等の鋼素材に鋳造できる。Below, the manufacturing method of this invention hot rolled sheet steel is demonstrated.
First, a steel material having the above-described composition is used as a starting material.
The method for producing the steel material is not particularly limited, and any generally known melting method such as a converter can be applied. The melted steel can be applied to any generally known casting method such as a continuous casting method, and can be cast on a steel material such as a slab.
得られた鋼素材は、ついで再加熱される。
鋼素材の再加熱は、1100〜1250℃の範囲の温度とする。再加熱温度が、1100℃未満では、Nbの固溶及び圧延後の析出による強度増加量が低下し、所望の高強度を確保できにくくなる。一方、1250℃を超える高温では、結晶粒が粗大化し低温靭性が低下するとともに、スケール生成量が増加し、表面性状が低下するとともに、歩留が低下する。このため、鋼素材の加熱温度は1100〜1250℃の範囲に限定することが好ましい。なお、鋼素材が、上記した範囲の温度を確保できる熱を保有している場合には、再加熱することなく、あるいは短時間の加熱炉保持を経て、熱間圧延を施してもよい。The obtained steel material is then reheated.
The reheating of the steel material is performed at a temperature in the range of 1100 to 1250 ° C. When the reheating temperature is less than 1100 ° C., the amount of increase in strength due to the solid solution of Nb and precipitation after rolling is reduced, and it becomes difficult to secure a desired high strength. On the other hand, at a high temperature exceeding 1250 ° C., the crystal grains become coarse and the low temperature toughness decreases, the amount of scale generation increases, the surface properties decrease, and the yield decreases. For this reason, it is preferable to limit the heating temperature of a steel raw material to the range of 1100-1250 degreeC. In addition, when the steel raw material has the heat which can ensure the temperature of the above-mentioned range, you may perform hot rolling, without reheating or through a short time heating furnace holding | maintenance.
加熱された鋼素材は、ついで粗圧延と仕上圧延からなる熱間圧延を施される。
粗圧延は、所定寸法形状のシートバーとすることができればよく、特にその条件を規定する必要はない。一方、仕上圧延は、930℃以下の温度域における累積圧下率が50%以上で、仕上圧延終了温度が、760℃以上である圧延とする。930℃以下の温度域(未再結晶温度域)での累積圧下率が50%未満では、結晶粒の微細化が達成できず、所望の高靭性を確保できない。なお、好ましくは85%以下である。累積圧下率で85%超えでは、圧下量が多くなりすぎて、結晶粒が圧延方向に極端にへん平した形状を呈し、破断時に板厚方向に剥離し、セパレーションの原因となる。このため、未再結晶温度域での累積圧下率は50%以上、好ましくは85%以下とする。The heated steel material is then subjected to hot rolling comprising rough rolling and finish rolling.
Rough rolling only needs to be a sheet bar having a predetermined size and shape, and there is no need to particularly define the conditions. On the other hand, finish rolling is rolling in which the cumulative rolling reduction in a temperature range of 930 ° C. or lower is 50% or higher and the finish rolling finish temperature is 760 ° C. or higher. If the cumulative rolling reduction in a temperature range of 930 ° C. or lower (non-recrystallization temperature range) is less than 50%, crystal grain refinement cannot be achieved, and desired high toughness cannot be ensured. In addition, Preferably it is 85% or less. If the cumulative reduction ratio exceeds 85%, the reduction amount becomes too large, and the crystal grains form a shape that is extremely flat in the rolling direction, and peels in the plate thickness direction at the time of breakage, causing separation. For this reason, the cumulative rolling reduction in the non-recrystallization temperature range is 50% or more, preferably 85% or less.
さらに、仕上圧延終了温度は、760℃未満では、オーステナイト→フェライト変態が特に表層で進行し、表層の組織を所望のベイナイト相を主相とする組織とすることができなくなり、所望の高靭性を確保できなくなる。なお、好ましくは870℃以下である。仕上圧延終了温度が870℃を超えると、組織の微細化が達成できず、靭性が低下する。このようなことから、仕上圧延終了温度は760℃以上、好ましくは870℃以下に限定した。
仕上圧延終了後、直ちに、好ましくは15s以内、更に好ましくは10s以内に加速冷却を開始する。Furthermore, when the finish rolling finish temperature is less than 760 ° C., the austenite → ferrite transformation proceeds particularly in the surface layer, and the surface layer structure cannot be made a structure having a desired bainite phase as the main phase, and the desired high toughness is achieved. It cannot be secured. In addition, Preferably it is 870 degrees C or less. When the finish rolling finish temperature exceeds 870 ° C., the structure cannot be refined and the toughness is lowered. Therefore, the finish rolling finish temperature is limited to 760 ° C. or higher, preferably 870 ° C. or lower.
Immediately after finishing rolling, accelerated cooling is preferably started within 15 s, more preferably within 10 s.
加速冷却は、7〜50℃/sの平均冷却速度で、冷却停止温度まで冷却し、冷却を停止する。これにより、フェライト相、パーライトの生成が抑制され、結晶粒の粗大化が防止できる。冷却速度が平均で7℃/s未満では、フェライト相が過剰に生成し、所望の高強度、高靭性を確保できにくくなる。高温で生成するフェライトが多く形成されると、微細なベイナイト相の形成が困難となる。一方、50℃/sを超える冷却速度では、マルテンサイト相が形成されやすくなり、ベイナイト相を主相とする所望の組織が形成しにくくなる。このようなことから、加速冷却の冷却速度は平均で7〜50℃/sの範囲に限定した。なお、好ましくは20℃/s以下である。 Accelerated cooling is performed by cooling to a cooling stop temperature at an average cooling rate of 7 to 50 ° C./s, and cooling is stopped. Thereby, the generation of ferrite phase and pearlite is suppressed, and coarsening of crystal grains can be prevented. When the cooling rate is less than 7 ° C./s on average, the ferrite phase is excessively generated, and it becomes difficult to secure desired high strength and high toughness. When a large amount of ferrite formed at high temperature is formed, it becomes difficult to form a fine bainite phase. On the other hand, at a cooling rate exceeding 50 ° C./s, a martensite phase is easily formed, and a desired structure having a bainite phase as a main phase is hardly formed. For this reason, the cooling rate of accelerated cooling was limited to a range of 7 to 50 ° C./s on average. In addition, Preferably it is 20 degrees C / s or less.
加速冷却の冷却停止温度は、550℃以上(SCT+30℃)以下の範囲の温度とする。
加速冷却の冷却停止温度が550℃未満では、主相としてマルテンサイト相が形成されやすくなり、ベイナイト相を主相とする所望の組織が形成しにくくなる。一方、(SCT+30℃)超えの温度では、フェライト、パーライトが多量に生成し、所望の特性を安定して確保できにくくなる。
ここで、SCTは、次の式(2)
SCT(℃)=750−270C−90Mn+4Si(25−CR)−80Mo−30(Cu+Ni)・・・(2)
(ここで、C、Mn、Si、Mo、Cu、Niは、鋼中の含有量(質量%)を示し、CRは、加速冷却における平均冷却速度(℃/s)を示す。)
で定義される温度であり、内部にマルテンサイトを含むベイナイト相の形成のしやすさの程度を表す値であり、含有される合金元素量と、加速冷却の程度に依存する値である。The cooling stop temperature for accelerated cooling shall be in the range of 550 ° C or higher (SCT + 30 ° C) or lower.
When the cooling stop temperature for accelerated cooling is less than 550 ° C., a martensite phase is easily formed as a main phase, and a desired structure having a bainite phase as a main phase is hardly formed. On the other hand, when the temperature exceeds (SCT + 30 ° C.), a large amount of ferrite and pearlite are generated, making it difficult to stably secure desired characteristics.
Here, SCT is the following equation (2)
SCT (℃) = 750−270C−90Mn + 4Si (25−CR) −80Mo−30 (Cu + Ni) (2)
(Here, C, Mn, Si, Mo, Cu, and Ni indicate the content (% by mass) in the steel, and CR indicates the average cooling rate (° C./s) in accelerated cooling.)
Is a value that represents the degree of ease of forming a bainite phase containing martensite inside, and is a value that depends on the amount of alloy elements contained and the degree of accelerated cooling.
加速冷却を停止した後、本発明では、巻取りまでの間を、(SCT−20℃)〜(SCT+30℃)の温度域での滞留時間が10〜60sとなる放冷処理又は徐冷処理を施す。これにより、鋼板表面が復熱し、板厚方向の温度分布が均一化し、フェライトの生成を抑制しつつ、マルテンサイトを含むベイナイト相が生成しやすくする。上記した温度域での滞留時間が10s未満では、復熱が不十分で、表層のマルテンサイト量が不足する。一方、60sを超えると、ベイナイトが粒成長し、靭性が低下するうえ、鋼板の生産性が低下する。このため、加速冷却停止から巻取りまでの間を、(SCT−20℃)〜(SCT+30℃)の温度域での滞留時間が10〜60sとなる放冷処理又は徐冷処理とした。 In the present invention, after accelerating cooling is stopped, during the period until winding, a cooling process or a slow cooling process in which the residence time in the temperature range of (SCT−20 ° C.) to (SCT + 30 ° C.) is 10 to 60 s. Apply. As a result, the surface of the steel plate is reheated, the temperature distribution in the plate thickness direction is made uniform, and the bainite phase containing martensite is easily generated while suppressing the generation of ferrite. When the residence time in the above temperature range is less than 10 s, recuperation is insufficient and the surface martensite amount is insufficient. On the other hand, when it exceeds 60 s, bainite grows and the toughness decreases, and the productivity of the steel sheet decreases. For this reason, the period from the accelerated cooling stop to the winding is set as a cooling treatment or a slow cooling treatment in which the residence time in the temperature range of (SCT−20 ° C.) to (SCT + 30 ° C.) is 10 to 60 seconds.
ついで、コイル状に巻取る。巻取温度は430℃以上(SCT−50℃)以下とする。巻取温度が430℃未満では、Cの拡散が抑えられ、主相であるベイナイト中にマルテンサイト相が生成しない。一方、(SCT−50℃)超えでは、パーライトが生成し、所望の組織を生成することができなくなる。 Then, it is wound in a coil shape. The coiling temperature should be 430 ° C or higher (SCT-50 ° C) or lower. When the coiling temperature is less than 430 ° C., the diffusion of C is suppressed, and the martensite phase is not generated in the bainite that is the main phase. On the other hand, if it exceeds (SCT-50 ° C.), pearlite is produced, and a desired tissue cannot be produced.
以下、さらに実施例に基づき、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブ(肉厚:220mm)とした。これらスラブを1200℃に加熱し、表2に示す条件で、粗圧延と仕上圧延からなる熱間圧延を施し、ついで仕上圧延終了後、表2に示す冷却条件で加速冷却及び放冷処理を施し、表2に示す条件でコイル状に巻き取り、放冷し、板厚:12〜16mmの熱延鋼板(熱延鋼帯)とした。
得られた熱延鋼板(熱延鋼帯)から、試験片を採取し、組織観察、引張試験、衝撃試験、塗装焼付処理後の引張試験を実施し、組織、引張特性、靭性、塗装焼付処理後の引張特性を評価した。なお、評価方法はつぎのとおりである。Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (wall thickness: 220 mm) by a continuous casting method. These slabs are heated to 1200 ° C., subjected to hot rolling consisting of rough rolling and finish rolling under the conditions shown in Table 2, and then subjected to accelerated cooling and cooling treatment under the cooling conditions shown in Table 2 after finishing rolling. These were wound into a coil shape under the conditions shown in Table 2 and allowed to cool to obtain a hot rolled steel sheet (hot rolled steel strip) having a thickness of 12 to 16 mm.
Samples are taken from the obtained hot-rolled steel sheet (hot-rolled steel strip) and subjected to structure observation, tensile test, impact test, and tensile test after paint baking treatment, and the structure, tensile properties, toughness, paint baking treatment Later tensile properties were evaluated. The evaluation method is as follows.
(1)組織観察
得られた熱延鋼板から組織観察用試験片を採取し、圧延方向断面を研磨、腐食し、光学顕微鏡(倍率:1000倍)、又は走査型電子顕微鏡(倍率:1000倍)で、表層(表面から1mmの位置)及び板厚中央位置で各5視野以上観察し、撮像した。得られた組織写真について画像解析装置で、組織の種類、組織分率を測定した。得られた結果を表3に示す。(1) Microstructure observation A specimen for microstructural observation is collected from the obtained hot-rolled steel sheet, the cross section in the rolling direction is polished and corroded, and an optical microscope (magnification: 1000 times) or a scanning electron microscope (magnification: 1000 times). Then, at least 5 fields of view were observed at the surface layer (position 1 mm from the surface) and the center position of the plate thickness and imaged. About the obtained structure | tissue photograph, the kind of structure | tissue and the tissue fraction were measured with the image-analysis apparatus. The obtained results are shown in Table 3.
(2)引張試験
得られた熱延鋼板の表層(表面から板厚方向に2mmまでの領域)及び板厚中央位置から、圧延方向と平行方向が、引張方向となるようにJIS 5号引張試験片(GL:50mm)を採取し、JIS Z 2241 の規定に準拠して引張試験を実施し、引張特性(降伏強さ、引張強さ、全伸び、一様伸び)、を測定した。なお、表層(表面から板厚方向に2mmまでの領域)での引張試験片は、表面から1mmの位置が厚さ方向中央位置となるように、採取し、試験片厚さを1.6mmとした。また板厚中央位置での引張試験片は、表層(表面から板厚方向に2mmまでの領域)を切削により除去して、板厚中央位置が厚さ方向中央位置となるようにして作製した。得られた結果を表4に示す。(2) Tensile test JIS No. 5 tensile test so that the direction parallel to the rolling direction is the tensile direction from the surface layer of the obtained hot-rolled steel sheet (area from the surface to 2 mm in the sheet thickness direction) and the sheet thickness center position. A piece (GL: 50 mm) was collected and subjected to a tensile test in accordance with the provisions of JIS Z 2241 to measure tensile properties (yield strength, tensile strength, total elongation, uniform elongation). In addition, the tensile test piece in the surface layer (region from the surface to 2 mm in the plate thickness direction) was sampled so that the position of 1 mm from the surface was the central position in the thickness direction, and the thickness of the test piece was set to 1.6 mm. . Further, the tensile test piece at the center position of the plate thickness was prepared by removing the surface layer (region from the surface to 2 mm in the plate thickness direction) by cutting so that the center position of the plate thickness becomes the center position in the thickness direction. Table 4 shows the obtained results.
(3)衝撃試験
得られた熱延鋼板の板厚中央部から、圧延方向に直交する方向が長手方向となるようにVノッチ試験片(幅10mm)を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、破面遷移温度vTrs(℃)を求め、靭性を評価した。得られた結果を表4に示す。(3) Impact test V-notch test piece (width 10mm) was sampled from the center of the thickness of the obtained hot-rolled steel sheet so that the direction perpendicular to the rolling direction was the longitudinal direction, and conformed to the provisions of JIS Z 2242 Then, a Charpy impact test was performed to determine the fracture surface transition temperature vTrs (° C.) and toughness was evaluated. Table 4 shows the obtained results.
(4)塗装焼付処理後の引張試験
得られた熱延鋼板の表層(表面から板厚方向に2mmまでの領域)及び板厚中央位置から、圧延方向と平行方向が、引張方向となるようにJIS 5号引張試験片(GL:50mm)を採取した。そして、該引張試験片に、室温で、2%の予歪を付与した後、塗装焼付け処理と同等の熱処理(250℃×60min)を施して、(2)と同様に引張試験を実施し、降伏強さ(変形応力)、降伏伸びを測定し、塗装焼付け硬化量を求めた。得られた結果を表4に示す。(4) Tensile test after paint baking treatment From the surface layer of the obtained hot-rolled steel sheet (region from the surface to 2 mm in the sheet thickness direction) and the center position of the sheet thickness, the direction parallel to the rolling direction is the tensile direction. A JIS No. 5 tensile test piece (GL: 50 mm) was collected. And after giving 2% pre-strain to the tensile test piece at room temperature, it was subjected to the same heat treatment (250 ° C. × 60 min) as the coating baking process, and the tensile test was carried out in the same manner as (2). Yield strength (deformation stress) and yield elongation were measured to determine the amount of paint bake hardening. Table 4 shows the obtained results.
表1〜4の結果から、本発明例はいずれも、ベイナイト相を主相とする組織を有し、降伏強さYS:450MPa以上のX65級の高強度、及び、vTrsが−80℃以下の高靭性を有し、表層及び板厚方向中心部での一様伸びが10%以上となる優れた変形特性を示し、かつ、塗装焼付け処理を施された後も、降伏伸びの発生は認められず、塗装焼付け硬化量も40MPa以下と、塗装焼付け硬化性も低い鋼板となっていた。
一方、本発明範囲を外れる比較例は、強度が不足しているか、靭性が低下しているか、伸び特性が低下しているか、降伏伸びが発生しており、ラインパイプ用高強度熱延鋼板として所望の特性を確保できていない。From the results of Tables 1 to 4, all of the examples of the present invention have a structure having a bainite phase as a main phase, a yield strength YS: high strength of X65 grade of 450 MPa or more, and vTrs of −80 ° C. or less. It has high toughness, exhibits excellent deformation characteristics with a uniform elongation of 10% or more at the surface layer and in the center in the plate thickness direction, and yield elongation has been observed even after paint baking. The paint bake hardening amount was 40MPa or less, and the steel was also low in paint bake hardenability.
On the other hand, the comparative example out of the scope of the present invention is insufficient in strength, has reduced toughness, has deteriorated elongation characteristics, or has yield elongation, as a high-strength hot-rolled steel sheet for line pipes. Desired characteristics are not secured.
また、本発明例の熱延鋼板を、ロールを用いた冷間成形により電縫鋼管とし、さらに縮径圧延を施して、外径406mmφの鋼管とした。なお、縮径圧延では管軸方向に3.5%以上の引張歪(造管歪)を付与した。得られた電縫鋼管に、さらに250℃×60minの熱処理を施した。得られた鋼管から、管軸方向を引張方向とする弧状引張試験片を採取し、API 5L規格に準じて、引張試験を実施したが、降伏伸びの発生はなく、しかも4%以上の一様伸びを示し、優れた変形特性を有する電縫鋼管となっていることを確認した。これらの鋼管は、曲げ加工を施されても、座屈の発生が抑制された鋼管である。 Further, the hot rolled steel sheet of the present invention example was made into an electric resistance steel pipe by cold forming using a roll, and further subjected to diameter reduction rolling to obtain a steel pipe having an outer diameter of 406 mmφ. In the diameter reduction rolling, a tensile strain (tube making strain) of 3.5% or more was applied in the tube axis direction. The obtained ERW steel pipe was further subjected to heat treatment at 250 ° C. for 60 minutes. From the obtained steel pipe, an arc-shaped tensile test piece with the pipe axis direction as the tensile direction was collected, and a tensile test was carried out according to the API 5L standard. It was confirmed that the ERW steel pipe showed elongation and had excellent deformation characteristics. These steel pipes are steel pipes in which the occurrence of buckling is suppressed even when subjected to bending.
Claims (8)
C:0.04〜0.08%、 Si:0.50%以下、
Mn:0.8〜2.2%、 P:0.02%以下、
S:0.006%以下、 Al:0.1%以下、
N:0.008%以下、 Cr:0.05〜0.8%
を含み、さらにNb:0.01〜0.08%、V:0.001〜0.12%、Ti:0.005〜0.04%を、下記(1)式を満足するように含有し、残部がFe及び不可避的不純物からなる組成であり、
鋼板表面から板厚方向に2mmまでの領域である表層が、ベイナイトを主相とし、体積率で0.5〜4%のマルテンサイトを第二相とし、さらに、合計の体積率で10%以下のフェライト相、パーライト、セメンタイトのうちから選択される一種以上を、第三相として含む組織を有し、
前記鋼板の表層以外の領域である板厚中央部が、ベイナイトを主相とし、体積率で0.5〜4%のマルテンサイトを第二相とし、さらに、合計の体積率20%以下のフェライト相、パーライト、セメンタイトのうちから選択される一種以上を、第三相として含む組織を有し、
一様伸びが10%以上を示すことを特徴とする高張力熱延鋼板。
記
0.05 ≦ Nb+V+Ti ≦ 0.20 ・・・(1)
ここで、Nb、V、Tiは、鋼中の含有量(質量%)を示す。 % By mass
C: 0.04 to 0.08%, Si: 0.50% or less,
Mn: 0.8-2.2%, P: 0.02% or less,
S: 0.006% or less, Al: 0.1% or less,
N: 0.008% or less, Cr: 0.05-0.8%
In addition, Nb: 0.01 to 0.08%, V: 0.001 to 0.12%, Ti: 0.005 to 0.04% are contained so as to satisfy the following formula (1), and the balance is composed of Fe and inevitable impurities. Yes,
The surface layer, which is the area from the steel sheet surface to 2 mm in the thickness direction, has bainite as the main phase, 0.5 to 4% martensite in the volume ratio as the second phase, and ferrite with a total volume ratio of 10% or less. Having a structure containing at least one selected from a phase, pearlite, and cementite as a third phase,
The central portion of the thickness, which is a region other than the surface layer of the steel plate, has bainite as the main phase, 0.5 to 4% martensite by volume ratio as the second phase, and a ferrite phase having a total volume ratio of 20% or less, Having a structure containing at least one selected from pearlite and cementite as a third phase,
A high-tensile hot-rolled steel sheet characterized by a uniform elongation of 10% or more.
Record
0.05 ≦ Nb + V + Ti ≦ 0.20 (1)
Here, Nb, V, and Ti show content (mass%) in steel.
前記鋼素材は、質量%で、
C:0.04〜0.08%、 Si:0.50%以下、
Mn:0.8〜2.2%、 P:0.02%以下、
S:0.006%以下、 Al:0.1%以下、
N:0.008%以下、 Cr:0.05〜0.8%
を含み、さらにNb:0.01〜0.08%、V:0.001〜0.12%、Ti:0.005〜0.04%を、下記(1)式を満足するように調整して含有し、残部がFe及び不可避的不純物からなる組成であり、
前記鋼素材の前記加熱を1100〜1250℃の範囲の温度とし、
前記熱間圧延における仕上圧延の、930℃以下の温度域における累積圧下率を50%以上、圧延終了温度を760℃以上とし、
前記加速冷却を、前記仕上圧延終了後直ちに、7〜50℃/sの平均冷却速度CRで冷却を開始し、550℃以上、下記(2)式で定義される温度SCT+30℃以下の範囲の冷却停止温度で冷却を停止する処理とし、
該加速冷却を停止した後、前記巻取りまでの間、(SCT−20℃)〜(SCT+30℃)の温度域での滞留時間が10〜60sである放冷処理又は徐冷処理を施し、
前記巻取温度を、430℃以上(SCT−50℃)以下とし、
得られた高張力熱延鋼板は、鋼板表面から板厚方向に2mmまでの領域である表層が、ベイナイトを主相とし、体積率で0.5〜4%のマルテンサイトを第二相とし、さらに、合計の体積率で10%以下のフェライト相、パーライト、セメンタイトのうちから選択される一種以上を、第三相として含む組織を有し、前記鋼板の表層以外の領域である板厚中央部が、ベイナイトを主相とし、体積率で0.5〜4%のマルテンサイトを第二相とし、さらに、合計の体積率20%以下のフェライト相、パーライト、セメンタイトのうちから選択される一種以上を、第三相として含む組織を有し、一様伸びが10%以上を示す
ことを特徴とする高張力熱延鋼板の製造方法。
記
0.05 ≦ Nb+V+Ti ≦ 0.20 ・・・(1)
ここで、Nb、V、Tiは、鋼中の含有量(質量%)を示す。
SCT(℃)=750−270C−90Mn+4Si(25−CR)−80Mo−30(Cu+Ni)・・・(2)
ここで、C、Mn、Si、Mo、Cu、Niは、鋼中の含有量(質量%)を示し、
CRは、加速冷却における平均冷却速度(℃/s)を示す。 The steel material is heated and then hot-rolled to form a hot-rolled sheet. Immediately after the hot-rolling, the hot-rolled sheet is subjected to accelerated cooling and then wound into a coil at a coiling temperature. A method of manufacturing a steel sheet,
The steel material is mass%,
C: 0.04 to 0.08%, Si: 0.50% or less,
Mn: 0.8-2.2%, P: 0.02% or less,
S: 0.006% or less, Al: 0.1% or less,
N: 0.008% or less, Cr: 0.05-0.8%
And Nb: 0.01 to 0.08%, V: 0.001 to 0.12%, Ti: 0.005 to 0.04%, adjusted so as to satisfy the following formula (1), and the balance from Fe and inevitable impurities And the composition
The heating of the steel material is a temperature in the range of 1100-1250 ° C,
In the finish rolling in the hot rolling, the cumulative rolling reduction in the temperature range of 930 ° C or lower is 50% or more, the rolling end temperature is 760 ° C or higher,
Immediately after completion of the finish rolling, the accelerated cooling starts at an average cooling rate CR of 7 to 50 ° C./s, and is cooled in the range of 550 ° C. or higher and temperature SCT + 30 ° C. or lower defined by the following formula (2). Processing to stop cooling at the stop temperature,
After stopping the accelerated cooling, until the winding, a cooling treatment or a slow cooling treatment in which the residence time in the temperature range of (SCT-20 ° C.) to (SCT + 30 ° C.) is 10 to 60 seconds,
The winding temperature is set to 430 ° C or higher (SCT-50 ° C) or lower ,
In the obtained high-tensile hot-rolled steel sheet, the surface layer that is a region from the steel sheet surface to 2 mm in the sheet thickness direction has bainite as the main phase, volume ratio of 0.5 to 4% martensite as the second phase, One or more selected from ferrite phase, pearlite, and cementite with a total volume ratio of 10% or less, and having a structure containing as a third phase, the plate thickness central portion that is a region other than the surface layer of the steel plate, One or more selected from ferrite phase, pearlite, and cementite having a volume ratio of 0.5 to 4% martensite as the second phase and a total volume ratio of 20% or less as the second phase. A method for producing a high-tensile hot-rolled steel sheet, characterized by having a structure included as a phase and a uniform elongation of 10% or more .
Record
0.05 ≦ Nb + V + Ti ≦ 0.20 (1)
Here, Nb, V, and Ti show content (mass%) in steel.
SCT (℃) = 750−270C−90Mn + 4Si (25−CR) −80Mo−30 (Cu + Ni) (2)
Here, C, Mn, Si, Mo, Cu, and Ni indicate the content (% by mass) in the steel,
CR indicates an average cooling rate (° C./s) in accelerated cooling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013551228A JP5812115B2 (en) | 2011-12-27 | 2012-12-21 | High-tensile hot-rolled steel sheet and manufacturing method thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011285906 | 2011-12-27 | ||
JP2011285906 | 2011-12-27 | ||
JP2013551228A JP5812115B2 (en) | 2011-12-27 | 2012-12-21 | High-tensile hot-rolled steel sheet and manufacturing method thereof |
PCT/JP2012/008211 WO2013099192A1 (en) | 2011-12-27 | 2012-12-21 | High-tension hot rolled steel sheet and method for manufacturing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2013099192A1 JPWO2013099192A1 (en) | 2015-04-30 |
JP5812115B2 true JP5812115B2 (en) | 2015-11-11 |
Family
ID=48696734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013551228A Active JP5812115B2 (en) | 2011-12-27 | 2012-12-21 | High-tensile hot-rolled steel sheet and manufacturing method thereof |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140352852A1 (en) |
EP (1) | EP2799575B1 (en) |
JP (1) | JP5812115B2 (en) |
KR (1) | KR101664635B1 (en) |
CN (1) | CN104011245B (en) |
IN (1) | IN2014KN01252A (en) |
WO (1) | WO2013099192A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3050990B1 (en) * | 2013-12-25 | 2018-11-14 | Nippon Steel & Sumitomo Metal Corporation | Electric resistance welded steel pipe for oil well |
CN106133175B (en) * | 2014-03-31 | 2018-09-07 | 杰富意钢铁株式会社 | The high deformability line-pipes steel and its manufacturing method and welded still pipe of resistance to distortion aging property and the characteristic good of resistance to HIC |
JP6369347B2 (en) * | 2015-02-13 | 2018-08-08 | Jfeスチール株式会社 | High-strength thick-walled spiral steel pipe for conductor casing for deep well and manufacturing method thereof |
KR102004072B1 (en) * | 2015-03-27 | 2019-07-25 | 제이에프이 스틸 가부시키가이샤 | High-strength steel, method for manufacturing high-strength steel, steel pipe and method for manufacturing steel pipe |
KR102002717B1 (en) * | 2015-03-27 | 2019-07-23 | 제이에프이 스틸 가부시키가이샤 | High-strength steel, method for manufacturing high-strength steel, steel pipe, and method for manufacturing steel pipe |
CN110291215B (en) * | 2017-01-20 | 2022-03-29 | 蒂森克虏伯钢铁欧洲股份公司 | Hot-rolled flat steel product consisting of a complex phase steel with a predominantly bainitic structure and method for producing such a flat steel product |
CN109722611B (en) | 2017-10-27 | 2020-08-25 | 宝山钢铁股份有限公司 | Steel for low-yield-ratio ultrahigh-strength continuous oil pipe and manufacturing method thereof |
MX2020001538A (en) * | 2017-10-30 | 2020-07-13 | Nippon Steel Corp | Hot-rolled steel sheet and manufacturing method therefor. |
JP6773021B2 (en) * | 2017-12-27 | 2020-10-21 | Jfeスチール株式会社 | Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method |
EP3514253B1 (en) * | 2018-01-23 | 2020-10-14 | SSAB Technology AB | Hot-rolled steel & method for manufacturing hot-rolled steel |
CN112313357B (en) * | 2018-06-29 | 2021-12-31 | 日本制铁株式会社 | Steel pipe and steel plate |
RU2696920C1 (en) * | 2018-07-30 | 2019-08-07 | Акционерное общество "Выксунский металлургический завод" | Method of production of rolled stock for pipes of main pipelines with simultaneous provision of uniform elongation and cold resistance |
WO2020039979A1 (en) * | 2018-08-23 | 2020-02-27 | Jfeスチール株式会社 | Hot rolled steel plate and manufacturing method thereof |
JP7284380B2 (en) * | 2019-02-08 | 2023-05-31 | 日本製鉄株式会社 | Electric resistance welded steel pipes for line pipes |
KR102255818B1 (en) * | 2019-06-24 | 2021-05-25 | 주식회사 포스코 | High strength steel for a structure having excellent corrosion resistance and manufacturing method for the same |
JP6973681B2 (en) * | 2019-11-20 | 2021-12-01 | Jfeスチール株式会社 | Hot-rolled steel sheet for electric-sewn steel pipe and its manufacturing method, electric-sewn steel pipe and its manufacturing method, line pipe, building structure |
US20240229200A1 (en) * | 2020-04-02 | 2024-07-11 | Jfe Steel Corporation | Electric resistance welded steel pipe and method for producing the same |
CN116145022B (en) * | 2021-11-19 | 2024-03-08 | 宝山钢铁股份有限公司 | Low yield ratio steel plate with yield strength not lower than 900MPa and manufacturing method thereof |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0653912B2 (en) | 1989-09-08 | 1994-07-20 | 川崎製鉄株式会社 | High toughness ERW steel pipe with excellent reel barge layability |
JP4277405B2 (en) | 2000-01-26 | 2009-06-10 | Jfeスチール株式会社 | Manufacturing method of hot-rolled steel sheet for high-strength ERW steel pipe excellent in low temperature toughness and weldability |
JP4466320B2 (en) | 2004-10-27 | 2010-05-26 | Jfeスチール株式会社 | Manufacturing method of low yield ratio ERW steel pipe for line pipe |
JP4336294B2 (en) | 2004-11-16 | 2009-09-30 | 新日本製鐵株式会社 | Manufacturing method of high strength steel pipe for pipelines with excellent deformation characteristics after aging |
JP4696615B2 (en) * | 2005-03-17 | 2011-06-08 | 住友金属工業株式会社 | High-tensile steel plate, welded steel pipe and manufacturing method thereof |
US8715430B2 (en) * | 2005-04-04 | 2014-05-06 | Nippon Steel & Sumitomo Metal Corporation | High strength steel plate and high strength welded pipe excellent in ductile fracture characteristic and methods of production of same |
JP5092358B2 (en) * | 2006-11-09 | 2012-12-05 | Jfeスチール株式会社 | Manufacturing method of high strength and tough steel sheet |
CN102046829B (en) * | 2008-05-26 | 2013-03-13 | 新日铁住金株式会社 | High-strength hot-rolled steel sheet for line pipe excellent in low-temperature toughness and ductile-fracture-stopping performance and process for producing the same |
CA2844718C (en) * | 2009-01-30 | 2017-06-27 | Jfe Steel Corporation | Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof |
JP5481976B2 (en) * | 2009-07-10 | 2014-04-23 | Jfeスチール株式会社 | High strength hot rolled steel sheet for high strength welded steel pipe and method for producing the same |
KR101511614B1 (en) * | 2009-11-25 | 2015-04-13 | 제이에프이 스틸 가부시키가이샤 | Method for manufacturing welded steel pipe for linepipe having high compressive strength and excellent sour gas resistance |
JP5742123B2 (en) * | 2010-07-16 | 2015-07-01 | Jfeスチール株式会社 | High-tensile hot-rolled steel sheet for high-strength welded steel pipe for line pipe and method for producing the same |
JP5776377B2 (en) * | 2011-06-30 | 2015-09-09 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet for welded steel pipes for line pipes with excellent sour resistance and method for producing the same |
KR101638707B1 (en) * | 2011-07-20 | 2016-07-11 | 제이에프이 스틸 가부시키가이샤 | Low yield ratio and high-strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same |
-
2012
- 2012-12-21 EP EP12863451.6A patent/EP2799575B1/en active Active
- 2012-12-21 US US14/368,857 patent/US20140352852A1/en not_active Abandoned
- 2012-12-21 JP JP2013551228A patent/JP5812115B2/en active Active
- 2012-12-21 KR KR1020147018457A patent/KR101664635B1/en active IP Right Grant
- 2012-12-21 WO PCT/JP2012/008211 patent/WO2013099192A1/en active Application Filing
- 2012-12-21 IN IN1252KON2014 patent/IN2014KN01252A/en unknown
- 2012-12-21 CN CN201280065034.8A patent/CN104011245B/en active Active
Also Published As
Publication number | Publication date |
---|---|
IN2014KN01252A (en) | 2015-10-16 |
EP2799575A4 (en) | 2015-10-28 |
CN104011245B (en) | 2017-03-01 |
EP2799575A1 (en) | 2014-11-05 |
EP2799575B1 (en) | 2016-12-21 |
KR20140099321A (en) | 2014-08-11 |
US20140352852A1 (en) | 2014-12-04 |
KR101664635B1 (en) | 2016-10-10 |
WO2013099192A8 (en) | 2014-06-26 |
CN104011245A (en) | 2014-08-27 |
JPWO2013099192A1 (en) | 2015-04-30 |
WO2013099192A1 (en) | 2013-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5812115B2 (en) | High-tensile hot-rolled steel sheet and manufacturing method thereof | |
JP5195469B2 (en) | Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness | |
KR101333854B1 (en) | Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same | |
JP5609383B2 (en) | High strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same | |
JP5679114B2 (en) | Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same | |
JP5533024B2 (en) | Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness | |
JP5499734B2 (en) | Ultra-thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
WO2010087512A1 (en) | Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor | |
JP5418251B2 (en) | Manufacturing method of thick-walled high-tensile hot-rolled steel sheet with excellent HIC resistance | |
JP5499731B2 (en) | Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same | |
JP5553093B2 (en) | Thick high-tensile hot-rolled steel sheet with excellent low-temperature toughness | |
WO2013002413A1 (en) | High strength hot-rolled steel sheet for welded steel line pipe having excellent souring resistance, and method for producing same | |
JP5151233B2 (en) | Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same | |
JP5742123B2 (en) | High-tensile hot-rolled steel sheet for high-strength welded steel pipe for line pipe and method for producing the same | |
JP5867444B2 (en) | High strength hot rolled steel sheet with excellent toughness and method for producing the same | |
JP5401863B2 (en) | Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness | |
JP5521482B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
JP6128042B2 (en) | Low yield ratio high strength spiral steel pipe pile and manufacturing method thereof | |
JP5347540B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
JP5521484B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
JP2009174020A (en) | Method for producing hot-rolled steel sheet which is excellent in ductile cracking-arresting characteristic and sour-resistance | |
JP6123734B2 (en) | Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and method for manufacturing the same | |
JP5533025B2 (en) | Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness | |
KR101889186B1 (en) | High-strength hot-rolled steel plate having excellent hydrogen induced cracking resistance and dwtt toughness at low temperature, and method for manufacturing the same | |
JP5413496B2 (en) | Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150803 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150825 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150907 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5812115 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |