JP6369347B2 - High-strength thick-walled spiral steel pipe for conductor casing for deep well and manufacturing method thereof - Google Patents

High-strength thick-walled spiral steel pipe for conductor casing for deep well and manufacturing method thereof Download PDF

Info

Publication number
JP6369347B2
JP6369347B2 JP2015026555A JP2015026555A JP6369347B2 JP 6369347 B2 JP6369347 B2 JP 6369347B2 JP 2015026555 A JP2015026555 A JP 2015026555A JP 2015026555 A JP2015026555 A JP 2015026555A JP 6369347 B2 JP6369347 B2 JP 6369347B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
strength
spiral
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015026555A
Other languages
Japanese (ja)
Other versions
JP2016148096A (en
Inventor
聡太 後藤
聡太 後藤
岡部 能知
能知 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015026555A priority Critical patent/JP6369347B2/en
Publication of JP2016148096A publication Critical patent/JP2016148096A/en
Application granted granted Critical
Publication of JP6369347B2 publication Critical patent/JP6369347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、油井やガス井の掘削時に、井戸の土留めとして用いられるコンダクターケーシング用として好適なスパイラル鋼管に係り、とくに水深3,000m以上に存在する深海油田や深海ガス田の開発に用いられる井戸(以下、深井戸ともいう)向け、コンダクターケーシング用として好適な、高強度厚肉スパイラル鋼管およびその製造方法に関する。   The present invention relates to a spiral steel pipe suitable for a conductor casing used for retaining a well when excavating an oil well or a gas well, and in particular, a well used for developing a deep sea oil field or a deep sea gas field existing at a depth of 3,000 m or more. The present invention relates to a high-strength thick spiral steel pipe suitable for a conductor casing (hereinafter also referred to as a deep well) and a method for manufacturing the same.

コンダクターケーシングは、油井やガス井の掘削作業の初期段階に、油井管を外圧から保護する、井戸の土留めとして用いられている。従来から、コンダクターケーシングは、UOE鋼管とコネクター(ねじ加工された鍛造部材)とを接合して製造されてきた。   Conductor casings are used as earth retainings for wells that protect oil well pipes from external pressure during the early stages of oil and gas well drilling. Conventionally, a conductor casing has been manufactured by joining a UOE steel pipe and a connector (threaded forged member).

通常、コンダクターケーシングには、鋼管と鍛造部材との接合部の残留応力除去や、水素割れ防止のために、600℃以上の温度範囲で溶接後熱処理(以下、SR処理ともいう)が施される。そのため、SR処理による強度の低下を抑制し、SR処理後でも所望の強度を保持できる耐SR処理性に優れる鋼管が要望されていた。   Usually, the conductor casing is subjected to post-weld heat treatment (hereinafter also referred to as SR treatment) in a temperature range of 600 ° C. or higher in order to remove residual stress at the joint between the steel pipe and the forged member and to prevent hydrogen cracking. . Therefore, there has been a demand for a steel pipe excellent in SR treatment resistance that can suppress a decrease in strength due to SR treatment and can maintain a desired strength even after SR treatment.

このような要望に対し、特許文献1には、重量%で、C:0.03〜0.09%、Si:0.05〜0.20%、Mn:1.2〜2.0%、Nb:0.005〜0.05%、Ti:0.005〜0.02%、Al:0.01%未満を含み、あるいはさらにCu:0.50%以下、Ni:0.50%以下、Cr:0.5%以下、Mo:0.30%以下、Ca:0.0005〜0.0025%のうち1種または2種以上を含有する降伏強さ551MPa以上の母材部と、C:0.03〜0.07%、Si:0.05〜0.30%、Mn:1.2〜2.0%、Ni:0.5〜2.5%、Mo:0.3〜1.0%、O:0.015〜0.035%を含有し、更にCu:0.50%以下、Cr:1.0%以下、V:0.10%以下、Ti:0.03%未満のうち1種または2種以上を含有する降伏強さ551MPa以上の溶接金属と、を有し、SR処理前後の溶接部靭性に優れた高強度高靭性鋼管が記載されている。   In response to such a request, Patent Document 1 describes, in weight percent, C: 0.03-0.09%, Si: 0.05-0.20%, Mn: 1.2-2.0%, Nb: 0.005-0.05%, Ti: 0.005-0.02. %, Al: less than 0.01%, or Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.5% or less, Mo: 0.30% or less, Ca: 0.0005 to 0.0025%, one or more And a base metal part containing 551 MPa or more of yield strength, and C: 0.03-0.07%, Si: 0.05-0.30%, Mn: 1.2-2.0%, Ni: 0.5-2.5%, Mo: 0.3-1.0%, O : 0.015-0.035% in addition, Cu: 0.50% or less, Cr: 1.0% or less, V: 0.10% or less, Ti: Less than 0.03%, one or more of Yield strength 551MPa or more A high strength and high toughness steel pipe having a weld metal and excellent weld zone toughness before and after SR treatment.

また、特許文献2には、API X80グレード以上の高強度鋼板の製造方法が記載されている。特許文献2に記載された技術は、質量%で、C:0.03%以上0.07%未満、Si:0.01〜0.5%、Mn:0.5〜2%、Mo:0.1〜0.5%、Al:0.08%以下を含有し、Ti:0.005〜0.035%、Nb:0.005〜0.07%、V:0.005〜0.1%の1種または2種以上を含有し、Ceq値が0.32以上であり、さらに原子%でMo、Ti、Nb、Vの合計量が0.14%以上で、かつ原子%でのC量との比である[C]/([Mo]+[Ti]+[Nb]+[V])が0.6〜1.7である鋼を、1100〜1250℃の温度に加熱し、750℃以上の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で400〜600℃の温度まで加速冷却を行い、その後0.5℃/市場の昇温速度で550〜700℃までの再加熱を行う高強度鋼板の製造方法である。これにより、10nm以下の微細炭化物を分散析出させることができ、溶接後に行う応力除去焼鈍(SR)後においても、多量の合金元素を含有することなく優れた強度と靭性を有する、耐SR特性に優れた高強度鋼板が得られるとしている。   Patent Document 2 describes a method for producing a high-strength steel plate of API X80 grade or higher. The technique described in Patent Document 2 is mass%, C: 0.03% or more and less than 0.07%, Si: 0.01 to 0.5%, Mn: 0.5 to 2%, Mo: 0.1 to 0.5%, Al: 0.08% or less. Containing Ti: 0.005 to 0.035%, Nb: 0.005 to 0.07%, V: 0.005 to 0.1%, or one or more of them, Ceq value is 0.32 or more, and further, Mo, Ti, in atomic% [C] / ([Mo] + [Ti] + [Nb] + [V]), which is the ratio of the total amount of Nb and V to 0.14% or more and the amount of C in atomic%, is 0.6 to 1.7. A steel is heated to a temperature of 1100 to 1250 ° C, hot-rolled at a rolling finish temperature of 750 ° C or higher, and then subjected to accelerated cooling to a temperature of 400 to 600 ° C at a cooling rate of 5 ° C / s or higher. This is a method for producing a high-strength steel sheet that is reheated to 550 to 700 ° C. at 0.5 ° C./market heating rate. As a result, fine carbides of 10 nm or less can be dispersed and precipitated, and even after stress relief annealing (SR) performed after welding, it has excellent strength and toughness without containing a large amount of alloy elements. An excellent high-strength steel sheet is obtained.

特許文献3には、API X100グレード以上で、耐SR特性および変形性能に優れた高強度鋼板の製造方法が記載されている。特許文献3に記載された技術は、質量%で、C:0.03〜0.10%、Si:0.01〜0.5%、Mn:1.5〜2.5%、Mo:0.1〜0.5%、Al:0.08%以下を含み、さらにTi:0.005〜0.035%、Nb:0.005〜0.07%、V:0.005〜0.1%の1種又は2種以上を含有し、PCM値が0.19〜0.25、P値が0.20以上を満たす組成の鋼を、1100〜1300℃の温度に加熱し、750℃以上の圧延終了温度で熱間圧延した後、20℃/s以上の冷却速度で350〜550℃の温度まで加速冷却し、その後直ちに0.5℃/s以上の昇温速度で550〜700℃まで再加熱する高強度鋼板の製造方法である。これにより、ミクロ組織が板厚中心部で面積率2%〜10%の島状マルテンサイトを含むベイナイト組織で、板厚方向全断面において円相当径10nm以下のMo主体の複合炭化物が1μmあたり30個以上分散し、その総析出量が0.03質量%以上である組織を有し、耐SR特性および変形性能に優れた高強度鋼板が得られるとしている。 Patent Document 3 describes a method for producing a high-strength steel sheet having an API X100 grade or higher and excellent in SR resistance and deformation performance. The technology described in Patent Document 3 includes, in mass%, C: 0.03-0.10%, Si: 0.01-0.5%, Mn: 1.5-2.5%, Mo: 0.1-0.5%, Al: 0.08% or less, In addition, steel with a composition that contains one or more of Ti: 0.005-0.035%, Nb: 0.005-0.07%, V: 0.005-0.1%, with a PCM value of 0.19-0.25 and a P value of 0.20 or more. , Heated to a temperature of 1100-1300 ° C, hot-rolled at a rolling end temperature of 750 ° C or higher, accelerated to a temperature of 350-550 ° C at a cooling rate of 20 ° C / s or higher, and then immediately cooled to 0.5 ° C / This is a method for producing a high-strength steel sheet that is reheated to 550 to 700 ° C. at a temperature rising rate of s or more. As a result, the microstructure is a bainite structure containing island-like martensite with an area ratio of 2% to 10% at the center of the plate thickness, and the composite carbide mainly composed of Mo with a circle equivalent diameter of 10 nm or less per 1 μm 2 in the entire cross section in the plate thickness direction. It is said that a high-strength steel sheet having a structure in which 30 or more are dispersed and the total precipitation amount is 0.03% by mass or more and excellent in SR resistance and deformation performance is obtained.

特開2001-158939号公報Japanese Patent Laid-Open No. 2001-158939 特開2004-269964号公報JP 2004-269964 A 特開2008-274405号公報JP 2008-274405 A

エネルギー資源の枯渇という観点から、最近では、従来に比べて深い水深の油田、ガス田等の開発が促進され、そこで用いられるコンダクターケーシング(深井戸向けコンダクターケーシング)においては、20in程度の径のものが要求されるようになっている。特許文献1に記載された技術で製造された鋼管はUOE鋼管であり、この方法で上記したようなサイズのパイプを得るためには、生産性が著しく低下するという問題がある。また、特許文献2、3に記載された技術で製造された厚鋼板は、耐SR特性の改善のために、熱間圧延後の加速冷却に引続いて再加熱を施し微細な複合炭化物を析出させることを必要とし、生産工程が複雑になり、生産性が低下するという問題もある。   From the viewpoint of depletion of energy resources, the development of oil and gas fields with deeper water depth has been promoted recently, and the conductor casing (conductor casing for deep wells) used there has a diameter of about 20 inches. Is now required. The steel pipe manufactured by the technique described in Patent Document 1 is a UOE steel pipe, and in order to obtain a pipe having the above-described size by this method, there is a problem that productivity is remarkably lowered. In addition, the thick steel plates manufactured by the techniques described in Patent Documents 2 and 3 are subjected to accelerated cooling after hot rolling to precipitate fine composite carbides in order to improve the SR resistance. There is also a problem that the production process becomes complicated and the productivity is lowered.

本発明は、かかる従来技術の問題を解決し、深井戸向けコンダクターケーシング用として好適な、高強度で高靭性、さらに耐SR処理性に優れた高強度厚肉スパイラル鋼管およびその製造方法を提供することを目的とする。   The present invention provides a high-strength, thick-walled spiral steel pipe that is suitable for deep-well conductor casings and has high strength, high toughness, and excellent resistance to SR treatment, and a method for producing the same. For the purpose.

なお、ここでいう「高強度」とは、API X80グレード以上の高強度、すなわち、降伏強さYS:555MPa以上、引張強さTS:625MPa以上である場合をいう。また、ここでいう「高靭性」とは、試験温度:−40℃でのシャルピー衝撃試験吸収エネルギーvE−40が27J以上である場合をいう。また、ここでいう「厚肉」とは、肉厚:15mm以上である場合をいう。特に深海埋設用には肉厚20mm以上を用いる場合が多い。また、「耐SR処理性に優れた」とは、600℃以上のSR処理を施したのちにおいても、スパイラル鋼管の円周方向の強度が、API X80グレードの強度を維持している場合をいうものとする。 Here, “high strength” refers to a case where the strength is API X80 grade or higher, that is, yield strength YS: 555 MPa or more and tensile strength TS: 625 MPa or more. The term “high toughness” as used herein refers to a case where Charpy impact test absorbed energy vE −40 at a test temperature of −40 ° C. is 27 J or more. Further, “thick” here means a case where the thickness is 15 mm or more. Especially for deep-sea burial, a thickness of 20 mm or more is often used. “Excellent SR treatment resistance” means that the strength of the spiral steel pipe in the circumferential direction maintains the strength of API X80 grade even after SR treatment at 600 ° C. or higher. Shall.

上記した目的を達成するため、本発明者らは、深井戸向けコンダクターケーシング用として好適な、スパイラル鋼管の強度、靭性、耐SR処理性に及ぼす各種要因、とくに耐SR処理性に及ぼす、鋼管素材である熱延鋼板の組成、熱延条件の影響について、鋭意検討した。   In order to achieve the above-mentioned object, the present inventors have proposed a steel pipe material which has various effects on the strength, toughness and SR treatment resistance of a spiral steel pipe, particularly on the SR treatment resistance, which is suitable for a conductor casing for deep wells. The composition of the hot-rolled steel sheet and the influence of hot-rolling conditions were studied earnestly.

その結果、600℃以上、好ましくは750℃未満のSR処理後においても、スパイラル鋼管の強度が、API X80以上を維持できるためには、鋼管素材である熱延鋼板で、粒径20nm未満の微細なNb析出物(析出Nb)量を、Nb換算で含有Nb量の75%以下とする必要があることを見出した。微細なNb析出物(析出Nb)量が、含有Nb量の75%超えでは、600℃以上の温度に加熱されるSR処理時の降伏強さYSの低下を抑制できないことを知見した。   As a result, in order to maintain the strength of spiral steel pipes of API X80 or higher even after SR treatment at 600 ° C or higher, preferably lower than 750 ° C, a hot-rolled steel plate, which is a steel pipe material, has a fine particle size of less than 20 nm It has been found that the amount of Nb precipitates (deposited Nb) needs to be 75% or less of the Nb content in terms of Nb. It has been found that when the amount of fine Nb precipitates (precipitated Nb) exceeds 75% of the amount of contained Nb, the decrease in yield strength YS during SR treatment heated to a temperature of 600 ° C. or higher cannot be suppressed.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.01〜0.12%、Si:0.05〜0.50%、Mn:1.0〜2.2%、P:0.03%以下、S:0.005%以下、Al:0.001〜0.10%、N:0.006%以下、Nb:0.010〜0.100%、Ti:0.001〜0.050%を含み、残部Fe及び不可避的不純物からなる組成と、体積率で90%以上のベイニティックフェライト相を主相とし、該主相と、体積率で10%以下(0%を含む)の第二相とからなり、前記ベイニティックフェライト相の平均粒径が10μm以下であり、かつ粒径:20nm未満の微細なNb析出物が、Nb換算で、全Nb量に対する比率(%)で、75%以下分散してなる組織と、を有することを特徴とする深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管。
(2)(1)において、前記組成に加えてさらに、質量%で、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管。
(4)熱延鋼板を、スパイラル造管機で連続的にスパイラル状に巻きながら、該熱延鋼板の幅方向端面同士を溶接するスパイラル鋼管の製造方法であって、前記熱延鋼板を、質量%で、C:0.01〜0.12%、Si:0.05〜0.50%、Mn:1.0〜2.2%、P:0.03%以下、S:0.005%以下、Al:0.001〜0.10%、N:0.006%以下、Nb:0.010〜0.100%、Ti:0.001〜0.050%を含み、残部Fe及び不可避的不純物からなる組成の鋼素材に、加熱温度:1150〜1250℃の温度域で均熱する加熱を施したのち、仕上圧延終了温度:750℃以上とする熱間圧延を施し、該熱間圧延終了後、板厚中央部温度で750℃〜650℃の温度域での平均冷却速度が8〜70℃/sとなるように加速冷却を施し、巻取温度:400〜580℃で巻き取る工程を施して製造された厚肉熱延鋼板とすることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管の製造方法。
(5)(4)において、前記組成に加えてさらに、質量%で、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管の製造方法。
(6)(4)または(5)において、前記組成に加えてさらに、質量%で、Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管の製造方法。
(7)(1)ないし(3)のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管の両管端に螺子部材を取り付けてなる深井戸向け高強度厚肉コンダクターケーシング。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.01 to 0.12%, Si: 0.05 to 0.50%, Mn: 1.0 to 2.2%, P: 0.03% or less, S: 0.005% or less, Al: 0.001 to 0.10%, N: 0.006 % Or less, Nb: 0.010 to 0.100%, Ti: 0.001 to 0.050%, the composition composed of the balance Fe and inevitable impurities, and a bainitic ferrite phase with a volume ratio of 90% or more as the main phase, the main phase And a second phase having a volume fraction of 10% or less (including 0%), the bainitic ferrite phase having an average particle size of 10 μm or less, and a fine Nb precipitate having a particle size of less than 20 nm A high-strength, thick-walled spiral steel pipe for a conductor casing for deep wells, characterized in that, in terms of Nb, the structure is a structure in which the ratio (%) to the total Nb amount is 75% or less.
(2) In (1), in addition to the above composition, in addition to mass, V: 0.1% or less, Mo: 0.5% or less, Cr: 0.5% or less, Cu: 0.5% or less, Ni: 1.0% or less, B : A high-strength thick-walled spiral steel pipe for a conductor casing for deep wells, characterized in that the composition contains one or more selected from 0.0030% or less.
(3) In (1) or (2), in addition to the above-described composition, the composition further contains one or two selected from Ca: 0.0005 to 0.0050% and REM: 0.0005 to 0.0050% by mass%. A high-strength thick-walled spiral steel pipe for conductor casings for deep wells, characterized by having a composition.
(4) A method for manufacturing a spiral steel pipe in which the end faces in the width direction of the hot-rolled steel sheet are welded together while continuously winding the hot-rolled steel sheet in a spiral shape with a spiral pipe making machine. %, C: 0.01 to 0.12%, Si: 0.05 to 0.50%, Mn: 1.0 to 2.2%, P: 0.03% or less, S: 0.005% or less, Al: 0.001 to 0.10%, N: 0.006% or less, Nb : Steel containing 0.010 to 0.100%, Ti: 0.001 to 0.050%, and the balance Fe and unavoidable impurities are heated to a temperature of 1150 to 1250 ° C. Rolling end temperature: Hot rolling at 750 ° C. or higher is performed, and after the hot rolling is finished, the average cooling rate in the temperature range of 750 ° C. to 650 ° C. is 8 to 70 ° C./s at the plate thickness center temperature. Conductor cake for deep wells, characterized in that it is a thick hot-rolled steel sheet manufactured by performing a cooling process at a coiling temperature of 400 to 580 ° C. A manufacturing method for high-strength thick-walled spiral steel pipes
(5) In (4), in addition to the above composition, in addition to mass, V: 0.1% or less, Mo: 0.5% or less, Cr: 0.5% or less, Cu: 0.5% or less, Ni: 1.0% or less, B : A method for producing a high-strength thick spiral steel pipe for a conductor casing for deep wells, characterized in that the composition contains one or more selected from 0.0030% or less.
(6) In addition to (4) or (5), in addition to the above composition, the composition further contains one or two selected from Ca: 0.0005 to 0.0050% and REM: 0.0005 to 0.0050% by mass%. A method for producing a high-strength thick-walled spiral steel pipe for a conductor casing for deep wells, characterized by having a composition.
(7) A high-strength thick conductor casing for deep wells, in which screw members are attached to both ends of the high-strength thick spiral steel pipe for conductor casings for deep wells according to any one of (1) to (3).

本発明によれば、深井戸向けコンダクターケーシング用として好適な、API X80級以上の高強度で高靭性、さらに耐SR処理性に優れた高強度厚肉スパイラル鋼管を容易に、かつ安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、600℃以上に加熱するSR処理後においても、API X80級以上の強度を保持したコンダクターケーシングとすることができるという効果もある。   According to the present invention, it is possible to easily and inexpensively manufacture a high-strength thick-walled spiral steel pipe that is suitable for a deep well conductor casing and has high strength and high toughness of API X80 class or more and excellent SR treatment resistance. It has a remarkable industrial effect. In addition, according to the present invention, there is also an effect that a conductor casing having strength of API X80 or higher can be obtained even after SR treatment heated to 600 ° C. or higher.

スパイラル鋼管の製造工程の概略を示す説明図である。It is explanatory drawing which shows the outline of the manufacturing process of a spiral steel pipe.

本発明高強度厚肉スパイラル鋼管は、深井戸向けコンダクターケーシング用として好適な高強度厚肉スパイラル鋼管である。ここでいう「高強度厚肉スパイラル鋼管」とは、母材部強度がAPI X80グレード以上の高強度を有する、肉厚:15mm以上の厚肉スパイラル鋼管である。なお、API X80グレード以上とは、円周方向引張強度が、降伏強さYS:555MPa以上、引張強さTS:625MPa以上を保持する場合をいう。   The high-strength thick-walled spiral steel pipe of the present invention is a high-strength thick-walled spiral steel pipe suitable for a conductor casing for deep wells. The term “high-strength thick-walled spiral steel pipe” as used herein refers to a thick-walled spiral steel pipe having a base material strength of a high strength of API X80 grade or higher and a wall thickness of 15 mm or more. “API X80 grade or higher” refers to the case where the tensile strength in the circumferential direction is maintained at yield strength YS: 555 MPa or higher and tensile strength TS: 625 MPa or higher.

本発明高強度厚肉スパイラル鋼管は、質量%で、C:0.01〜0.12%、Si:0.05〜0.50%、Mn:1.0〜2.2%、P:0.03%以下、S:0.005%以下、Al:0.001〜0.10%、N:0.006%以下、Nb:0.010〜0.100%、Ti:0.001〜0.050%を含み、あるいはさらに、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上、および/または、Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%のうちから選ばれた1種または2種、を含み、残部Fe及び不可避的不純物からなる組成を有する。   The high-strength thick-walled spiral steel pipe of the present invention is in mass%, C: 0.01 to 0.12%, Si: 0.05 to 0.50%, Mn: 1.0 to 2.2%, P: 0.03% or less, S: 0.005% or less, Al: 0.001 0.10%, N: 0.006% or less, Nb: 0.010-0.100%, Ti: 0.001-0.050% included, or V: 0.1% or less, Mo: 0.5% or less, Cr: 0.5% or less, Cu: 0.5 %, Ni: 1.0% or less, B: One or more selected from 0.0030% or less, and / or Ca: 0.0005 to 0.0050%, REM: 0.0005 to 0.0050% It has 1 or 2 types, and has a composition which consists of remainder Fe and unavoidable impurities.

まず、本発明高強度厚肉スパイラル鋼管の組成限定理由について説明する。以下、とくに断わらない限り、組成における質量%は単に%で記す。   First, the reasons for limiting the composition of the high strength thick spiral steel pipe of the present invention will be described. Hereinafter, unless otherwise specified, the mass% in the composition is simply expressed as%.

C:0.01〜0.12%
Cは、鋼管の強度増加に寄与する重要な元素であり、所望の高強度を確保するためには0.01%以上の含有を必要とする。一方、0.12%を超えて多量に含有すると、溶接性が低下する。このため、Cは0.01〜0.12%の範囲に限定した。なお、好ましくは0.03〜0.10%、より好ましくは0.03〜0.08%である。
C: 0.01-0.12%
C is an important element that contributes to increasing the strength of the steel pipe, and needs to be contained in an amount of 0.01% or more in order to ensure the desired high strength. On the other hand, if the content exceeds 0.12%, weldability deteriorates. For this reason, C was limited to the range of 0.01 to 0.12%. In addition, Preferably it is 0.03-0.10%, More preferably, it is 0.03-0.08%.

Si:0.05〜0.50%
Siは、固溶強化により、鋼管の強度増加に寄与する元素であり、このような効果を得て、所望の高強度を確保するためには0.05%以上の含有を必要とする。一方、0.50%を、超えて過剰に含有すると、スパイラル溶接部にMA(島状マルテンサイト)などの硬質相を生じやすく、溶接HAZ靭性を低下させる。このようなことから、Siは0.05〜0.50%の範囲に限定した。なお、好ましくは0.05〜0.30%である。
Si: 0.05-0.50%
Si is an element that contributes to an increase in strength of the steel pipe by solid solution strengthening. To obtain such an effect and ensure a desired high strength, the Si content needs to be 0.05% or more. On the other hand, if it exceeds 0.50% and excessively contained, a hard phase such as MA (island martensite) is likely to be generated in the spiral welded portion, and the weld HAZ toughness is lowered. For these reasons, Si was limited to the range of 0.05 to 0.50%. In addition, Preferably it is 0.05 to 0.30%.

Mn:1.0〜2.2%
Mnは、鋼管の強度増加に寄与する元素であり、所望の高強度を確保するためには1.0%以上の含有を必要とする。一方、2.2%を超えて多量に含有すると、Siと同様に、MAを生成しやすくし、溶接性を低下させる。このため、Mnは1.0〜2.2%の範囲に限定した。なお、好ましくは1.2〜2.0%である。
Mn: 1.0-2.2%
Mn is an element that contributes to increasing the strength of the steel pipe, and needs to be contained in an amount of 1.0% or more in order to ensure the desired high strength. On the other hand, if the content exceeds 2.2%, MA is likely to be produced and weldability is deteriorated similarly to Si. For this reason, Mn was limited to the range of 1.0 to 2.2%. In addition, Preferably it is 1.2 to 2.0%.

P:0.03%以下
Pは、鋼中に不純物として存在し、しかも結晶粒界等に偏析し易く、低温靭性等鋼管特性に悪影響を及ぼす元素であり、できるだけ低減することが好ましいが、0.03%までは許容できる。このようなことから、Pは0.03%以下に限定した。なお、好ましくは0.02%以下である。なお、過度の低減は、精錬コストの高騰を招くため、0.001%以上とすることが好ましい。
P: 0.03% or less
P is an element that is present as an impurity in steel and easily segregates at grain boundaries and has an adverse effect on steel pipe properties such as low-temperature toughness, and is preferably reduced as much as possible, but is acceptable up to 0.03%. Therefore, P is limited to 0.03% or less. In addition, Preferably it is 0.02% or less. In addition, excessive reduction leads to an increase in refining costs, so 0.001% or more is preferable.

S:0.005%以下
Sは、鋼中では、MnS等の粗大な硫化物系介在物として存在し、延性や靭性の低下を招くため、できるだけ低減することが望ましいが、0.005%までは許容できる。このようなことから、Sは0.005%以下に限定した。なお、好ましくは0.004%以下である。なお、過度の低減は、精錬コストの高騰を招くため、0.0001%以上とすることが好ましい。
S: 0.005% or less
S is present in the steel as coarse sulfide inclusions such as MnS and causes a decrease in ductility and toughness. Therefore, it is desirable to reduce it as much as possible, but 0.005% is acceptable. For these reasons, S is limited to 0.005% or less. In addition, Preferably it is 0.004% or less. In addition, excessive reduction leads to a rise in refining costs, so 0.0001% or more is preferable.

Al:0.001〜0.10%
Alは、鋼の脱酸剤として有用に作用する元素であり、このような効果を得るためには、0.001%以上含有する必要がある。一方、0.10%を超えて多量に含有すると、Al酸化物を生成し、鋼の清浄度を低下させる。このため、Alは0.001〜0.10%の範囲に限定した。なお、好ましくは0.005〜0.08%である。
Al: 0.001 to 0.10%
Al is an element usefully acting as a deoxidizer for steel. In order to obtain such an effect, it is necessary to contain 0.001% or more. On the other hand, when it contains more than 0.10% in a large amount, an Al oxide is generated, and the cleanliness of the steel is lowered. For this reason, Al was limited to the range of 0.001 to 0.10%. In addition, Preferably it is 0.005-0.08%.

N:0.006%以下
Nは、鋼中では不可避的不純物として存在し、固溶してあるいは窒化物を形成して、鋼管の母材部あるいはスパイラル溶接部の靭性低下を招く。このため、できるだけ低減することが望ましいが、0.006%までは許容できる。このようなことから、Nは0.006%以下に限定した。
N: 0.006% or less
N exists as an unavoidable impurity in steel and forms a solid solution or forms a nitride, leading to a reduction in the toughness of the base material portion or spiral welded portion of the steel pipe. For this reason, it is desirable to reduce it as much as possible, but it is acceptable up to 0.006%. For these reasons, N is limited to 0.006% or less.

Nb:0.010〜0.100%
Nbは、本発明では重要な元素である。鋼素材(スラブ)加熱時に、鋼中にNb炭窒化物として存在し、オーステナイト粒の粗大化を抑制し、組織微細化に寄与する元素である。また、Nbは、600℃以上に加熱するSR処理時に微細析出し、SR処理後の鋼管母材部の強度低下を抑制する。このような効果を得るためには、0.010%以上の含有を必要とする。一方、0.100%を超える過剰の含有は、鋼管の靭性に悪影響を及ぼし、コンダクターケーシング用として所望の靭性を確保できないという懸念がある。このため、Nbは0.010〜0.100%の範囲に限定した。なお、好ましくは、0.020〜0.080%である。
Nb: 0.010 to 0.100%
Nb is an important element in the present invention. It is an element that exists as Nb carbonitride in steel during the heating of steel materials (slabs), suppresses coarsening of austenite grains, and contributes to refinement of the structure. Further, Nb is finely precipitated during the SR treatment that is heated to 600 ° C. or higher, and suppresses the strength reduction of the steel pipe base material portion after the SR treatment. In order to obtain such an effect, a content of 0.010% or more is required. On the other hand, an excessive content exceeding 0.100% adversely affects the toughness of the steel pipe, and there is a concern that desired toughness cannot be secured for a conductor casing. For this reason, Nb was limited to the range of 0.010 to 0.100%. In addition, Preferably, it is 0.020 to 0.080%.

Ti:0.001〜0.050%
Tiは、Nと結合しTi窒化物を形成し、鋼管靭性に悪影響を及ぼすNを固定し、鋼管靭性を向上させる作用を有する。このような効果を得るためには、0.001%以上の含有を必要とする。一方、0.050%を超えて含有すると、鋼管靭性の著しい低下を招く。このため、Tiは0.001〜0.050%の範囲に限定した。なお、好ましくは0.005〜0.030%である。
Ti: 0.001 to 0.050%
Ti combines with N to form Ti nitride, fixes N which adversely affects steel pipe toughness, and has an effect of improving steel pipe toughness. In order to obtain such an effect, a content of 0.001% or more is required. On the other hand, if the content exceeds 0.050%, the steel pipe toughness is significantly reduced. For this reason, Ti was limited to the range of 0.001 to 0.050%. In addition, Preferably it is 0.005-0.030%.

上記した成分が基本の成分であるが、基本の組成に加えてさらに、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上、および/または、Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%のうちから選ばれた1種または2種、を含有してもよい。   The above components are basic components. In addition to the basic composition, V: 0.1% or less, Mo: 0.5% or less, Cr: 0.5% or less, Cu: 0.5% or less, Ni: 1.0% or less, B : One or two or more selected from 0.0030% or less, and / or Ca: 0.0005 to 0.0050%, REM: One or two selected from 0.0005 to 0.0050% Also good.

V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上
V、Mo、Cr、Cu、Ni、Bはいずれも、焼入れ性向上を介して、鋼管の強度増加に寄与する元素であり、必要に応じて、選択して含有できる。これらの元素の含有は、とくに、肉厚が15mm以上の厚肉の場合に、パーライト、ポリゴナルフェライトの生成を防止し、所望の強度、靭性を確保するうえで有効である。このような効果を得るためには、V:0.005%以上、Mo:0.05%以上、Cr:0.05%以上、Cu:0.05%以上、Ni:0.05%以上、B:0.0005%以上、含有することが望ましい。一方、V:0.1%、Mo:0.5%、Cr:0.5%、Cu:0.5%、Ni:1.0%、B:0.0030%を、それぞれ超える含有は、溶接性および靱性の低下を招くとともに、材料コストの高騰を招く。このため、含有する場合には、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下に、それぞれ限定することが好ましい。なお、より好ましくはV:0.08%以下、Mo:0.45%以下、Cr:0.3%以下、Cu:0.35%以下、Ni:0.35%以下、B:0.0025%以下である。
V: 0.1% or less, Mo: 0.5% or less, Cr: 0.5% or less, Cu: 0.5% or less, Ni: 1.0% or less, B: 0.0030% or less
V, Mo, Cr, Cu, Ni, and B are all elements that contribute to increasing the strength of the steel pipe through the improvement of hardenability, and can be selected and contained as necessary. The inclusion of these elements is effective in preventing the formation of pearlite and polygonal ferrite and ensuring the desired strength and toughness, particularly when the thickness is 15 mm or more. In order to obtain such effects, V: 0.005% or more, Mo: 0.05% or more, Cr: 0.05% or more, Cu: 0.05% or more, Ni: 0.05% or more, B: 0.0005% or more desirable. On the other hand, V: 0.1%, Mo: 0.5%, Cr: 0.5%, Cu: 0.5%, Ni: 1.0%, B: exceeding 0.0030%, respectively, lead to deterioration of weldability and toughness and material cost Invite the soaring. For this reason, if contained, it should be limited to V: 0.1% or less, Mo: 0.5% or less, Cr: 0.5% or less, Cu: 0.5% or less, Ni: 1.0% or less, B: 0.0030% or less, respectively. Is preferred. More preferably, V is 0.08% or less, Mo is 0.45% or less, Cr is 0.3% or less, Cu is 0.35% or less, Ni is 0.35% or less, and B is 0.0025% or less.

Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%のうちから選ばれた1種または2種
Ca、REMはいずれも、伸展したMnS等の硫化物系介在物を球状の硫化物系介在物とする介在物の形態制御に寄与する元素であり、必要に応じて選択して含有できる。このような効果を得るためには、Ca、REMともに0.0005%以上含有する必要がある。一方、Ca、REMとも0.0050%を超えて含有すると、酸化物系介在物が増加し、靱性を低下させる。このため、含有する場合には、Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%の範囲に限定することが好ましい。
One or two selected from Ca: 0.0005 to 0.0050%, REM: 0.0005 to 0.0050%
Both Ca and REM are elements that contribute to the form control of inclusions in which sulfide-type inclusions such as expanded MnS are spherical sulfide-type inclusions, and can be selected and contained as necessary. In order to obtain such an effect, both Ca and REM must be contained by 0.0005% or more. On the other hand, when both Ca and REM contain more than 0.0050%, oxide inclusions increase and toughness decreases. For this reason, when it contains, it is preferable to limit to Ca: 0.0005-0.0050% and REM: 0.0005-0.0050%.

上記した成分以外の残部は、Fe及び不可避的不純物からなる。   The balance other than the components described above consists of Fe and inevitable impurities.

本発明高強度厚肉スパイラル鋼管は、上記した組成を有し、体積率で90%以上のベイニティックフェライト相を主相とし、該主相と、体積率で10%以下(0%を含む)の第二相とからなり、前記ベイニティックフェライト相の平均粒径が10μm以下であり、かつ粒径:20nm未満の微細なNb析出物が、Nb換算で、全Nb量に対する比率(%)で、75%以下分散してなる組織を有する厚肉のスパイラル鋼管である。   The high-strength thick spiral steel pipe of the present invention has the above-described composition, and has a bainitic ferrite phase of 90% or more by volume ratio as a main phase, and the main phase and 10% or less (including 0%) by volume ratio. ), The average particle size of the bainitic ferrite phase is 10 μm or less, and the fine Nb precipitate having a particle size of less than 20 nm is a ratio (%) to the total Nb amount in terms of Nb. ) And a thick-walled spiral steel pipe having a structure in which 75% or less is dispersed.

主相:体積率で90%以上のベイニティックフェライト相
深井戸向けコンダクターケーシング用として所望の高強度、靭性を兼備させるために、本発明スパイラル鋼管では、体積率で90%以上のベイニティックフェライト相を主相とする組織を有する。なお、ここでいうベイニティックフェライト相には、アシキュラーフェライト相をも含むものとする。ベイニティックフェライト相が90%未満、すなわち主相以外の第二相が10%以上となると、所望の靭性を確保できなくなる。主相以外の第二相としては、パーライト、縮退パーライト、ベイナイト相、マルテンサイト相などの硬質相が例示できる。このようなことから、主相であるベイニティックフェライト相の体積率は90%以上に限定した。なお、好ましくは95%以上である。
Main phase: Bainitic ferrite phase with a volume ratio of 90% or more In order to combine the desired high strength and toughness for conductor casings for deep wells, the spiral steel pipe of the present invention has a bainitic with a volume ratio of 90% or more. It has a structure whose main phase is a ferrite phase. Note that the bainitic ferrite phase here also includes an acicular ferrite phase. If the bainitic ferrite phase is less than 90%, that is, the second phase other than the main phase is 10% or more, the desired toughness cannot be secured. Examples of the second phase other than the main phase include hard phases such as pearlite, degenerate pearlite, bainite phase, and martensite phase. For this reason, the volume fraction of the bainitic ferrite phase that is the main phase is limited to 90% or more. In addition, Preferably it is 95% or more.

ベイニティックフェライト相の平均粒径:10μm以下
深井戸向けコンダクターケーシング用として、所望の高強度、靭性を兼備させるために、本発明では、主相であるベイニティックフェライト相を平均粒径が10μm以下と微細な組織とする。平均粒径が10μmを超えて大きくなると、所望の高靭性を保持することができなくなる。このため、主相であるベイニティックフェライト相の平均粒径は10μm以下に限定した。なお、ここでいう「粒径」は、SEM/EBSD法で、隣接する結晶粒の間の方位差を求め、方位差が15°以内の領域の大きさをいうものとする。
Average particle size of bainitic ferrite phase: 10 μm or less In order to combine desired high strength and toughness for conductor casings for deep wells, the average particle size of the bainitic ferrite phase is the main phase in the present invention. The microstructure is 10 μm or less. When the average particle size exceeds 10 μm, the desired high toughness cannot be maintained. For this reason, the average particle size of the bainitic ferrite phase that is the main phase is limited to 10 μm or less. The “grain size” here refers to the size of a region where the orientation difference is within 15 ° by obtaining the orientation difference between adjacent crystal grains by the SEM / EBSD method.

粒径:20nm未満の微細なNb析出物:Nb換算で、全Nb量に対する比率(%)で、75%以下
SR処理前に未析出であったNbは、600℃以上の温度範囲で施されるSR処理の最中に20nm未満の微細なNb析出物(主として炭窒化物)として析出し、SR処理中の回復・再結晶による降伏強さの低下を抑制する作用、すなわち優れた耐SR処理性を付与する作用、を有する。このため、本発明では、鋼管母材部に析出した、粒径:20nm未満の微細なNb析出物を、Nb換算で、全Nb量に対する比率(%)が、75%以下となるようにする。微細なNb析出物の析出量が、Nb換算で、75%を超えると、SR処理の際にオストワルド成長が生じ、Nb炭窒化物の消滅・粗大化が起こり、回復・再結晶による降伏強度低下を抑制することが困難になり、所望の耐SR処理性を確保できなくなる。このため、粒径:20nm未満の微細なNb析出物量はNb換算で、全Nb量に対する比率(%)で、75%以下に限定した。なお、析出強化により、母材部の高強度化を図るためには、粒径:20nm未満の微細なNb析出物量は、Nb換算で、全Nb量に対する比率(%)で、20%以上とすることが好ましい。
Particle size: Fine Nb precipitates of less than 20 nm: Nb conversion, ratio (%) to the total Nb amount, 75% or less Nb that was not precipitated before SR treatment was applied in a temperature range of 600 ° C or higher During the SR treatment, it precipitates as fine Nb precipitates (mainly carbonitrides) of less than 20 nm and suppresses the decrease in yield strength due to recovery and recrystallization during SR treatment, that is, excellent SR resistance treatment Has an effect of imparting sex. For this reason, in the present invention, fine Nb precipitates having a particle size of less than 20 nm deposited on the steel pipe base material portion are made to have a ratio (%) to the total Nb amount of 75% or less in terms of Nb. . When the amount of fine Nb precipitates exceeds 75% in terms of Nb, Ostwald growth occurs during SR treatment, Nb carbonitrides disappear and coarsen, and the yield strength decreases due to recovery and recrystallization. It becomes difficult to suppress this, and the desired SR processing resistance cannot be ensured. For this reason, the amount of fine Nb precipitates having a particle diameter of less than 20 nm is limited to 75% or less in terms of Nb, as a ratio (%) to the total Nb amount. In order to increase the strength of the base material by precipitation strengthening, the amount of fine Nb precipitates having a particle size of less than 20 nm is 20% or more in terms of Nb conversion (%) with respect to the total Nb amount. It is preferable to do.

なお、ここでいう「粒径:20nm未満の微細なNb析出物量」は、スパイラル鋼管の母材部から採取した電解抽出用試験片を、電解液(10%アセチルアセトン−1%塩化テトラメチルアンモニウム−メタノール溶液)中で電解し、得られた電解残渣について、孔径:0.02μmのフィルターでろ過し、フィルターを通過したNb量を分析して得られた値を用いるものとする。   The “particle size: the amount of fine Nb precipitates of less than 20 nm” referred to here is obtained by using an electrolytic solution (10% acetylacetone-1% tetramethylammonium chloride— The electrolytic residue obtained by electrolysis in a methanol solution) is filtered through a filter having a pore size of 0.02 μm, and the value obtained by analyzing the amount of Nb that has passed through the filter is used.

本発明高強度厚肉スパイラル鋼管は、上記した組成、上記した組織を有する厚肉熱延鋼板(熱延鋼帯)1を素材として、冷間で、例えば図1に示すように、いわゆるスパイラル造管工程を経て、所定寸法のスパイラル鋼管6とされたのち、所定長さに切断されて、製造される。   The high-strength thick-walled spiral steel pipe of the present invention is made of a thick-walled hot-rolled steel sheet (hot-rolled steel strip) 1 having the above-described composition and structure as described above. Through the pipe process, the spiral steel pipe 6 having a predetermined size is obtained, and then cut into a predetermined length to be manufactured.

素材として用いる熱延鋼板(熱延鋼帯)は、上記した組成の鋼素材に、次に示す工程を経て製造された板厚:15mm以上、好ましくは26mm以下の厚肉熱延鋼板(熱延鋼帯)とする。   The hot-rolled steel sheet (hot-rolled steel strip) used as the raw material is a thick-walled hot-rolled steel sheet (hot-rolled steel) having a thickness of 15 mm or more, preferably 26 mm or less, manufactured through the following steps on the steel material having the above composition. Steel strip).

なお、鋼素材の製造方法については、本発明では特に限定する必要はないが、上記した組成の溶鋼を転炉等の常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法でスラブ等の鋳片(鋼素材)とすることが好ましい。なお、連続鋳造法に代えて、造塊−分塊圧延法を用いて鋼素材(鋼片)としてもなんら問題はない。   In addition, although it is not necessary to specifically limit the manufacturing method of the steel material in the present invention, the molten steel having the above composition is melted by a conventional melting method such as a converter, and a normal casting method such as a continuous casting method is used. It is preferable to use a slab or other slab (steel material). In addition, it replaces with a continuous casting method and there is no problem even if it uses as a steel raw material (steel piece) using an ingot-making-slabbing method.

上記した組成の鋼素材に、加熱温度を1150〜1250℃の温度域の温度とする加熱を施したのち、粗圧延と仕上圧延からなり、仕上圧延終了温度:750℃以上とする熱間圧延を施す。   The steel material having the above composition is heated to a temperature in the temperature range of 1150 to 1250 ° C., and then comprises hot rolling and rough rolling and finish rolling, and finish rolling finish temperature: 750 ° C. or higher. Apply.

加熱温度:1150〜1250℃
熱延鋼板の靱性向上のためには、結晶粒の微細化が期待できる程度の低い加熱温度とすることが好ましいが、加熱温度が1150℃未満では、加熱温度が低すぎて、未溶解炭化物の固溶が進まず、API X80グレード以上の所望の高強度を確保できない場合がある。一方、加熱温度が1250℃を超える高温では、オーステナイト(γ)粒の粗大化が生じ、靭性が低下するうえ、スケール生成量の増加を招き、表面性状の悪化を招く恐れがある。また、過剰な高温で加熱すると、エネルギーロスの増大を招き、経済的に不利になる。このため、鋼素材の加熱温度は、1150〜1250℃の温度域の温度とした。なお、当該加熱温度での均熱保持(加熱時間)は、60min以上とすることが、スラブの加熱温度均一化の観点からも好ましい。
Heating temperature: 1150-1250 ° C
In order to improve the toughness of the hot-rolled steel sheet, it is preferable to set the heating temperature to such a low level that crystal grains can be expected to be fine.However, if the heating temperature is less than 1150 ° C, the heating temperature is too low and the undissolved carbide In some cases, solid solution does not progress and the desired high strength of API X80 grade or higher cannot be secured. On the other hand, when the heating temperature is higher than 1250 ° C., the austenite (γ) grains are coarsened, the toughness is reduced, the amount of scale is increased, and the surface properties may be deteriorated. In addition, heating at an excessively high temperature causes an increase in energy loss, which is economically disadvantageous. For this reason, the heating temperature of the steel material was set to a temperature range of 1150 to 1250 ° C. In addition, it is preferable from the viewpoint of uniformizing the heating temperature of the slab that the soaking at the heating temperature (heating time) is 60 minutes or more.

粗圧延は、所定の寸法形状のシートバーとすることができればよく、とくに限定する必要はない。仕上圧延では、仕上圧延終了温度:750℃以上に調整する。なお、この温度は、表面温度である。   The rough rolling is not particularly limited as long as it can be a sheet bar having a predetermined size and shape. In finish rolling, the finish rolling finish temperature is adjusted to 750 ° C or higher. This temperature is the surface temperature.

仕上圧延終了温度:750℃以上
仕上圧延終了温度が、750℃未満では、フェライト変態が開始し、生成した粗大なフェライトが加工されるため、強度の低下を招く。このため、仕上圧延終了温度は、750℃以上に限定した。なお、仕上圧延では、板厚中心温度で930℃以下の未再結晶温度域での圧下率を20%以上に調整することが好ましい。未再結晶温度域での圧下率が20%未満では、未再結晶温度域での圧下率が少なく、フェライトの核生成サイトが少なく、フェライト粒の微細化を達成できない恐れがある。そのため、未再結晶温度域での圧下率は20%以上に調整することが好ましい。なお、圧延機への負荷の観点から、熱間圧延での累積圧下率は95%以下とすることが好ましい。
Finish rolling end temperature: 750 ° C. or more If the finish rolling end temperature is less than 750 ° C., ferrite transformation starts and the generated coarse ferrite is processed, resulting in a decrease in strength. For this reason, the finish rolling finish temperature was limited to 750 ° C. or higher. In the finish rolling, it is preferable to adjust the rolling reduction in the non-recrystallization temperature range of 930 ° C. or less at the plate thickness center temperature to 20% or more. If the rolling reduction in the non-recrystallization temperature region is less than 20%, the rolling reduction in the non-recrystallization temperature region is small, and the ferrite nucleation sites are small, and the ferrite grains may not be refined. Therefore, it is preferable to adjust the rolling reduction in the non-recrystallization temperature range to 20% or more. From the viewpoint of the load on the rolling mill, the cumulative rolling reduction in hot rolling is preferably 95% or less.

本発明では、上記した熱間圧延を終了したのち、直ちに、好ましくは5s以内に、冷却を開始し、板厚中央部温度で750℃〜650℃の温度域での平均冷却速度が8〜70℃/sとなる加速冷却を施し、巻取温度:400〜580℃の範囲の温度で、コイル状に巻き取る。なお、コイル状に巻き取った後は、放冷する。   In the present invention, immediately after the above-described hot rolling is finished, cooling is started preferably within 5 s, and the average cooling rate in the temperature range of 750 ° C. to 650 ° C. at the plate thickness center temperature is 8 to 70. Accelerated cooling is performed at a temperature of ℃ / s, and the coil is wound in a coil shape at a temperature in the range of 400 to 580 ° C. In addition, after winding up in a coil shape, it cools.

加速冷却の750℃〜650℃の温度域での平均冷却速度:8〜70℃/s
750℃〜650℃の温度域での平均冷却速度が8℃/s未満では、冷却速度が遅く、生成する組織が、平均粒径が10μm超の粗大なポリゴナルフェライト相とパーライトとなり、深井戸向けコンダクターケーシング用として要求される靭性、強度を確保できなくなる。一方、平均冷却速度が70℃/sを超えると、マルテンサイト相が生成し、靭性が低下する恐れがある。そのため、750℃〜650℃の温度域での平均冷却速度を8〜70℃/sの範囲に限定した。なお、好ましくは10〜50℃/sである。上記した温度はいずれも、板厚中央部温度である。
Average cooling rate in the temperature range of 750 ° C to 650 ° C for accelerated cooling: 8 to 70 ° C / s
When the average cooling rate in the temperature range of 750 ° C to 650 ° C is less than 8 ° C / s, the cooling rate is slow, and the resulting structure becomes a coarse polygonal ferrite phase with an average particle size exceeding 10 μm and pearlite, deep well The toughness and strength required for conductor casings cannot be secured. On the other hand, when the average cooling rate exceeds 70 ° C./s, a martensite phase is generated and the toughness may be lowered. Therefore, the average cooling rate in the temperature range of 750 ° C. to 650 ° C. is limited to the range of 8 to 70 ° C./s. In addition, Preferably it is 10-50 degreeC / s. All the above-mentioned temperatures are plate thickness center temperature.

なお、加速冷却の冷却停止温度は、板表面温度で、400〜620℃の温度域の温度とすることが好ましい。加速冷却の冷却停止温度が、400〜620℃の温度域を外れると、所望の巻取温度:400〜580℃を安定して確保できなくなる。   The cooling stop temperature for accelerated cooling is preferably a temperature in the temperature range of 400 to 620 ° C., which is the plate surface temperature. If the cooling stop temperature of accelerated cooling is out of the temperature range of 400 to 620 ° C, the desired coiling temperature: 400 to 580 ° C cannot be secured stably.

巻取温度:400〜580℃
巻取温度が580℃を超えると、粒径:20nm未満の微細なNb析出物の析出が促進される。そのため、巻取工程を経た熱延鋼板中の、粒径:20nm未満の微細なNb析出物量はNb換算で、全Nb量に対する比率(%)が75%を超える。一方、巻取温度が400℃を下回ると、Nb炭窒化物の析出が不十分となり、X80級以上の高強度を確保できなくなる場合がある。このため、巻取温度は400〜580℃の範囲に限定した。これにより、粒径:20nm未満の微細なNb析出物が、Nb換算で、全Nb量に対する比率(%)で、75%以下で分散した組織を確保でき、600℃以上の温度域で実施されるSR処理における降伏強さの低下を防止できる。なお、巻取温度は、好ましくは460〜550℃である。上記した温度はいずれも、板表面温度である。
Winding temperature: 400 ~ 580 ℃
When the coiling temperature exceeds 580 ° C., precipitation of fine Nb precipitates having a particle size of less than 20 nm is promoted. Therefore, the amount of fine Nb precipitates having a particle size of less than 20 nm in the hot-rolled steel sheet that has undergone the winding process exceeds 75% in terms of Nb, and the ratio (%) to the total Nb amount exceeds 75%. On the other hand, when the coiling temperature is lower than 400 ° C., the precipitation of Nb carbonitride becomes insufficient, and it may be impossible to secure a high strength of X80 grade or higher. For this reason, winding temperature was limited to the range of 400-580 degreeC. As a result, a fine Nb precipitate with a particle size of less than 20 nm can be obtained in a Nb equivalent, with a ratio (%) to the total Nb content of 75% or less. It is possible to prevent a decrease in yield strength in the SR process. In addition, winding temperature becomes like this. Preferably it is 460-550 degreeC. All of the above temperatures are plate surface temperatures.

上記した製造条件で得られた熱延鋼板は、体積率で90%以上のベイニティックフェライト相を主相とし、残部が体積率で10%以下(0%を含む)のベイニティックフェライト相以外の第二相からなり、主相の平均粒径が10μm以下で、かつ粒径:20nm未満の微細なNb析出物が、Nb換算で、全Nb量に対する比率(%)で、75%以下分散した組織を有し、スパイラル鋼管の円周方向に該当する熱延鋼板の圧延方向に対し30°方向の強度が、API X80グレード以上の高強度、すなわち、降伏強さYS:555MPa以上の高強度を有する。また、上記した製造条件で得られた熱延鋼板は、スパイラル鋼管の円周方向に該当する熱延鋼板の圧延方向に対し30°方向の試験温度:−40℃でのシャルピー衝撃試験の吸収エネルギーvE−40が27J以上となる低温靭性を有する熱延鋼板である。 The hot-rolled steel sheet obtained under the above-mentioned production conditions has a bainitic ferrite phase with a volume ratio of 90% or more as the main phase and the balance bainitic ferrite phase with a volume ratio of 10% or less (including 0%). A fine Nb precipitate with an average particle size of the main phase of 10 μm or less and a particle size of less than 20 nm is 75% or less in terms of Nb conversion (%) with respect to the total Nb content. It has a distributed structure, and the strength in the direction of 30 ° relative to the rolling direction of the hot-rolled steel sheet corresponding to the circumferential direction of the spiral steel pipe is high strength of API X80 grade or higher, that is, yield strength YS: 555 MPa or higher. Has strength. In addition, the hot-rolled steel sheet obtained under the above-described manufacturing conditions is the absorbed energy of the Charpy impact test at a test temperature of 30 ° relative to the rolling direction of the hot-rolled steel plate corresponding to the circumferential direction of the spiral steel pipe: −40 ° C. It is a hot-rolled steel sheet having low temperature toughness with vE- 40 of 27 J or more.

コイル状に巻き取られた上記特性を有する熱延鋼板(熱延鋼帯)1は、冷間で、例えば図1に示すように、巻き戻され、巻き戻された熱延鋼板1の幅方向端部を、エッジミラー等の端面加工機2で開先加工(トリミング)を施し、その後、スパイラル造管機3でスパイラル状に加工し、ついで隣接する熱延鋼板1の端部同士をスパイラル溶接機4(内面溶接用41、外面溶接用42)で内面および外面から溶接する常用の、いわゆるスパイラル造管工程を経てスパイラル鋼管6とされたのち、所定寸法に切断される。なお、スパイラル造管工程における溶接(スパイラル溶接)には、通常、サブマージアーク溶接法が用いられるが、スパイラル溶接部が母材部と同等あるいはそれ以上の強度、靭性を有するように溶接条件を調整することは言うまでもないが、スパイラル溶接部は、余盛を削除することがないため、溶接部の強度、靭性をとくに限定する必要はない。また、本発明では、サブマージアーク溶接法と同程度の効率で溶接することができる溶接法であればサブマージアーク溶接法に代えて使用することができ、サブマージアーク溶接法に限定されないことはいうまでもない。   A hot-rolled steel sheet (hot-rolled steel strip) 1 having the above characteristics wound in a coil shape is cold, for example, as shown in FIG. The end is subjected to groove processing (trimming) with an end face processing machine 2 such as an edge mirror, and then processed into a spiral shape with a spiral pipe making machine 3, and then the ends of adjacent hot rolled steel sheets 1 are spiral welded to each other. After being made into a spiral steel pipe 6 through a so-called spiral pipe making process that is commonly used for welding from the inner surface and the outer surface by the machine 4 (inner surface welding 41, outer surface welding 42), it is cut to a predetermined dimension. For welding in spiral pipe making processes (spiral welding), the submerged arc welding method is usually used, but the welding conditions are adjusted so that the spiral welded part has the same strength or toughness as the base metal part. Needless to say, since the spiral welded portion does not delete the surplus, it is not necessary to limit the strength and toughness of the welded portion. Further, in the present invention, any welding method that can be welded with the same efficiency as the submerged arc welding method can be used in place of the submerged arc welding method, and is not limited to the submerged arc welding method. Nor.

以下、実施例に基づき、さらに本発明について具体的に説明する。   Hereinafter, the present invention will be described more specifically based on examples.

表1に示す溶鋼を転炉で溶製し、連続鋳造法でスラブ(鋳片:肉厚250mm)とし、鋼素材とした。   Molten steel shown in Table 1 was melted in a converter, and slabs (cast slab: thickness 250 mm) were formed by a continuous casting method to obtain steel materials.

得られた鋼素材を、表2に示す条件(加熱温度(℃)×加熱時間)で再加熱したのち、粗圧延と仕上圧延とからなる熱間圧延を施し、熱延鋼板とした。なお、熱間圧延は、表2に示す、未再結晶温度域での圧下率(%)、仕上圧延終了温度(℃)、の条件の圧延で行なった。仕上圧延終了後、直ちに冷却を開始し、板厚中心温度で、表2に示す条件(750〜650℃の温度域での平均冷却速度、冷却停止温度)で冷却する加速冷却を施し、表2に示す巻取温度でコイル状に巻き取り、鋼管素材とした。   The obtained steel material was reheated under the conditions shown in Table 2 (heating temperature (° C.) × heating time), and then subjected to hot rolling consisting of rough rolling and finish rolling to obtain a hot rolled steel sheet. The hot rolling was performed under the conditions shown in Table 2 with the rolling reduction (%) in the non-recrystallization temperature range and the finish rolling finishing temperature (° C.). Immediately after finishing rolling, cooling is started, and accelerated cooling is performed at the sheet thickness center temperature under the conditions shown in Table 2 (average cooling rate in the temperature range of 750 to 650 ° C., cooling stop temperature). The coil was wound into a coil shape at the winding temperature shown in FIG.

Figure 0006369347
Figure 0006369347

Figure 0006369347
Figure 0006369347

得られた熱延鋼板を鋼管素材として、スパイラル状に巻きながら熱延鋼板の幅方向端面同士を、内外面からそれぞれサブマージアーク溶接法を用いて溶接することでスパイラル鋼管とした。サブマージアーク溶接は、入熱:35kJ/cmで、ワイヤーとフラックス(リンカーン社製)を組み合わせて、溶接部が母材部と同等あるいはそれ以上の強度を有するように調整した。   The obtained hot-rolled steel sheet was used as a steel pipe material, and the end faces in the width direction of the hot-rolled steel sheet were welded from the inner and outer surfaces by using a submerged arc welding method while being spirally wound to form a spiral steel pipe. In the submerged arc welding, the heat input was 35 kJ / cm, and a wire and a flux (manufactured by Lincoln) were combined so that the welded portion was adjusted to have a strength equal to or higher than that of the base material portion.

得られたスパイラル鋼管から、試験片を採取して、組織観察、引張試験、衝撃試験、SR処理試験を実施した。試験方法はつぎのとおりである。
(1)組織観察
得られたスパイラル鋼管の母材部から組織観察用試験片を採取し、管軸方向断面(L断面)の肉厚中央位置が観察面となるように研磨し、腐食(腐食液:ナイタール)し、走査型電子顕微鏡SEM(倍率:1000倍)を用いて組織を観察し、少なくとも2視野で撮像した。得られた組織写真を用いて、画像解析し、組織の同定と、各相の分率を求めた。
Test pieces were sampled from the obtained spiral steel pipe and subjected to structure observation, tensile test, impact test, and SR treatment test. The test method is as follows.
(1) Microstructure observation A specimen for microstructural observation is taken from the base material part of the obtained spiral steel pipe and polished so that the central position of the thickness of the cross section in the tube axis direction (L cross section) becomes the observation surface. Liquid: Nital), and the tissue was observed using a scanning electron microscope SEM (magnification: 1000 times) and imaged in at least two fields of view. Using the obtained tissue photograph, image analysis was performed to determine the tissue identification and the fraction of each phase.

なお、結晶粒径は、SEM/EBSD(Electron Back Scattering Diffraction)法で、隣接する結晶粒の間の方位差を求め、方位差が15°以内の領域の大きさをもとめ、得られた大きさの算術平均を当該結晶粒の粒径とした。
また、得られたスパイラル鋼管の母材部から、電解抽出用試験片を採取し、電解液(10%アセチルアセトン−1%塩化テトラメチルアンモニウム−メタノール溶液)中で、電流密度:20mA/cmで電解した。得られた電解残渣を、液に溶かし、アルミフィルター(孔径:0.02μm)で捕集し、アルミフィルターを通過した液について、ICP発光分光法でNb量を分析し、粒径20nm未満の析出Nb量を求め、全Nb量に対する比率(%)として析出Nb量比を算出した。
The crystal grain size was obtained by calculating the orientation difference between adjacent crystal grains using the SEM / EBSD (Electron Back Scattering Diffraction) method, and determining the size of the region where the orientation difference was within 15 °. Was the grain size of the crystal grains.
In addition, a test piece for electrolytic extraction was taken from the base material of the obtained spiral steel pipe, and the current density was 20 mA / cm 2 in an electrolytic solution (10% acetylacetone-1% tetramethylammonium chloride-methanol solution). Electrolyzed. The obtained electrolytic residue was dissolved in the liquid, collected with an aluminum filter (pore size: 0.02 μm), and the liquid that passed through the aluminum filter was analyzed for Nb content by ICP emission spectroscopy. The amount of precipitated Nb was calculated as a ratio (%) to the total amount of Nb.

(2)引張試験
得られたスパイラル鋼管の母材部から、引張方向が円周方向となるように、ASTM A 370の規定に準拠して、板状引張試験片を採取し、引張特性(降伏強さYS、引張強さTS)を求めた。
(3)衝撃試験
得られたスパイラル鋼管の母材部から、ASTM A 370の規定に準拠して、試験片長手方向が円周方向(C方向)となるように、Vノッチ試験片を採取し、試験温度:−40℃でシャルピー衝撃試験を各3本実施し、吸収エネルギーvE−40(J)を求め、3本の平均値を当該鋼管のvE−40とした。
(4)SR処理試験
得られたスパイラル鋼管の母材部から試験材を採取し、採取した試験材を、表5に示すSR処理を想定した加熱温度に保持した熱処理炉に装入し、試験材の温度が(加熱温度−10℃)に到達した時点から、表4に示す所定の保持時間経過した後、熱処理炉から取り出し、放冷した。熱処理済みの試験材から、引張方向が円周方向となるように、ASTM A 370の規定に準拠して、板状引張試験片を採取し、引張特性(降伏強さYS、引張強さTS)を求めた。なお、SR処理前後の降伏強さの差ΔYSを算出した。SR処理後の強度が低い場合には、ΔYSは負となる。また参考として、SR処理後の試験材から電解抽出用試片を採取し、(1)と同様に、析出Nb量比を求めた。
(2) Tensile test In accordance with ASTM A 370, plate-like tensile test specimens were collected from the base material of the obtained spiral steel pipe so that the tensile direction would be the circumferential direction, and tensile properties (yield) Strength YS and tensile strength TS) were determined.
(3) Impact test V-notch specimens were taken from the base material of the spiral steel pipe obtained so that the longitudinal direction of the specimen was the circumferential direction (C direction) in accordance with ASTM A370. , Test temperature: Three Charpy impact tests were conducted at −40 ° C., the absorbed energy vE −40 (J) was determined, and the average value of the three was taken as vE −40 of the steel pipe.
(4) SR treatment test Test material was collected from the base material of the obtained spiral steel pipe, and the collected test material was placed in a heat treatment furnace maintained at a heating temperature assuming the SR treatment shown in Table 5, and tested. From the time when the temperature of the material reached (heating temperature −10 ° C.), after a predetermined holding time shown in Table 4, it was taken out from the heat treatment furnace and allowed to cool. In accordance with ASTM A 370, a tensile test (yield strength YS, tensile strength TS) is taken from the heat-treated test material in accordance with ASTM A 370 so that the tensile direction is the circumferential direction. Asked. Note that the yield strength difference ΔYS before and after the SR treatment was calculated. If the strength after SR processing is low, ΔYS is negative. For reference, a specimen for electrolytic extraction was collected from the test material after SR treatment, and the amount ratio of precipitated Nb was determined in the same manner as (1).

本実施例では、管軸方向(L方向)でSR処理前後の引張強さTSの変化を求めたが、本発明例の熱延鋼板を用いれば、Nb炭窒化物の析出形態に異方性が無いため、試験片採取方向によらず、SR処理後に、API X80以上の強度を得ることができることは明らかである。   In this example, the change in the tensile strength TS before and after the SR treatment was obtained in the tube axis direction (L direction). If the hot-rolled steel sheet of the present invention example was used, the precipitation form of Nb carbonitride was anisotropic. Therefore, it is clear that the strength of API X80 or higher can be obtained after SR treatment regardless of the specimen collection direction.

得られた結果を、表3、表4に示す。   The obtained results are shown in Tables 3 and 4.

Figure 0006369347
Figure 0006369347

Figure 0006369347
Figure 0006369347

本発明例はいずれも、深井戸向けコンダクターケーシング用として好適な、API X80グレードである、降伏強さYS:555MPa以上、引張強さTS:625MPa以上の高強度と、優れた低温靭性とを有し、しかも600℃以上に加熱されるSR処理後にも強度の低下が少なく、X80グレード以上の高強度を保持し、また低温靭性の低下も少なく、優れた耐SR処理性をも保持したスパイラル鋼管となっている。一方、本発明の範囲を外れる比較例は、強度が不足しているか、低温靭性が低下しているか、耐SR処理性が低下している。   All examples of the present invention are API X80 grade suitable for conductor casings for deep wells, and have high strength with yield strength YS: 555 MPa or more, tensile strength TS: 625 MPa or more, and excellent low temperature toughness. In addition, spiral steel pipes with little reduction in strength after SR treatment heated to 600 ° C or higher, high strength of X80 grade or higher, little reduction in low-temperature toughness, and excellent SR treatment resistance It has become. On the other hand, in the comparative examples that are outside the scope of the present invention, the strength is insufficient, the low-temperature toughness is lowered, or the SR process resistance is lowered.

1 熱延鋼板(熱延鋼帯)
2 端面加工機(エッジミラー)
3 スパイラル造管機(成形ロール)
4 スパイラル溶接機
5 ロール保持冶具
6 スパイラル鋼管
1 Hot-rolled steel sheet (hot-rolled steel strip)
2 End face processing machine (edge mirror)
3 Spiral pipe making machine (forming roll)
4 Spiral welder 5 Roll holding jig 6 Spiral steel pipe

Claims (7)

質量%で、
C :0.01〜0.12%、 Si:0.05〜0.50%、
Mn:1.0〜2.2%、 P :0.03%以下、
S :0.005%以下、 Al:0.001〜0.10%、
N :0.006%以下、 Nb:0.010〜0.100%、
Ti:0.001〜0.050%
を含み、残部Fe及び不可避的不純物からなる組成と、
体積率で90%以上のベイニティックフェライト相を主相とし、該主相と、体積率で10%以下(0%を含む)の第二相とからなり、前記ベイニティックフェライト相の平均粒径が10μm以下であり、かつ粒径:20nm未満の微細なNb析出物が、Nb換算で、全Nb量に対する比率(%)で、75%以下分散してなる組織と、
を有することを特徴とする高靭性、さらに耐SR処理性に優れた深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管。
% By mass
C: 0.01 to 0.12%, Si: 0.05 to 0.50%,
Mn: 1.0-2.2%, P: 0.03% or less,
S: 0.005% or less, Al: 0.001 to 0.10%,
N: 0.006% or less, Nb: 0.010 to 0.100%,
Ti: 0.001 to 0.050%
Including the balance Fe and inevitable impurities,
The main phase is a bainitic ferrite phase having a volume ratio of 90% or more, and is composed of the main phase and a second phase having a volume ratio of 10% or less (including 0%). A structure in which fine Nb precipitates having a particle size of 10 μm or less and a particle size of less than 20 nm are dispersed by 75% or less in a ratio (%) to the total Nb amount in terms of Nb,
A high-strength, thick-walled spiral steel pipe for conductor casings for deep wells with excellent toughness and SR resistance, characterized by having
前記組成に加えてさらに、質量%で、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1に記載の深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管。   In addition to the above composition, it is further selected by mass% from V: 0.1% or less, Mo: 0.5% or less, Cr: 0.5% or less, Cu: 0.5% or less, Ni: 1.0% or less, B: 0.0030% or less. The high-strength thick-walled spiral steel pipe for a conductor casing for deep wells according to claim 1, wherein the composition contains one kind or two or more kinds. 前記組成に加えてさらに、質量%で、Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項1または請求項2に記載の深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管。   2. In addition to the above composition, the composition further comprises one or two kinds selected from Ca: 0.0005 to 0.0050% and REM: 0.0005 to 0.0050% by mass%. The high-strength thick spiral steel pipe for conductor casings for deep wells according to claim 2. 熱延鋼板を、スパイラル造管機で連続的にスパイラル状に巻きながら、該熱延鋼板の幅方向端面同士を溶接するスパイラル鋼管の製造方法であって、
前記熱延鋼板を、質量%で、
C :0.01〜0.12%、 Si:0.05〜0.50%、
Mn:1.0〜2.2%、 P :0.03%以下、
S :0.005%以下、 Al:0.001〜0.10%、
N :0.006%以下、 Nb:0.010〜0.100%、
Ti:0.001〜0.050%
を含み、残部Fe及び不可避的不純物からなる組成の鋼素材に、
加熱温度:1150〜1250℃の温度域で均熱する加熱を施したのち、仕上圧延終了温度:750℃以上とする熱間圧延を施し、該熱間圧延終了後、板厚中央部温度で750℃〜650℃の温度域での平均冷却速度が8〜70℃/sとなるように加速冷却を施し、巻取温度:400〜580℃で巻き取る工程を施して製造された厚肉熱延鋼板とし、前記スパイラル鋼管を、前記組成と、体積率で90%以上のベイニティックフェライト相を主相とし、該主相と、体積率で10%以下(0%を含む)の第二相とからなり、前記ベイニティックフェライト相の平均粒径が10μm以下であり、かつ粒径:20nm未満の微細なNb析出物が、Nb換算で、全Nb量に対する比率(%)で、75%以下分散してなる組織とを有し、高強度で高靭性、さらに耐SR処理性に優れたスパイラル鋼管とすることを特徴とする深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管の製造方法。
A method for producing a spiral steel pipe, in which hot-rolled steel sheets are continuously wound in a spiral shape by a spiral pipe making machine while welding the end faces in the width direction of the hot-rolled steel sheets,
The hot-rolled steel sheet in mass%,
C: 0.01 to 0.12%, Si: 0.05 to 0.50%,
Mn: 1.0-2.2%, P: 0.03% or less,
S: 0.005% or less, Al: 0.001 to 0.10%,
N: 0.006% or less, Nb: 0.010 to 0.100%,
Ti: 0.001 to 0.050%
In the steel material of the composition consisting of the balance Fe and unavoidable impurities,
Heating temperature: After heating soaking in a temperature range of 1150 to 1250 ° C, finish rolling finish temperature: Hot rolling to 750 ° C or higher is performed. Thick-walled hot-rolled steel manufactured by applying accelerated cooling so that the average cooling rate in the temperature range from ℃ to 650 ℃ is 8 to 70 ℃ / s, and performing a winding process at a coiling temperature of 400 to 580 ℃ A steel plate , the spiral steel pipe, the composition and a bainitic ferrite phase having a volume ratio of 90% or more as a main phase, the second phase having a volume ratio of 10% or less (including 0%). A fine Nb precipitate having an average particle size of the bainitic ferrite phase of 10 μm or less and a particle size of less than 20 nm is 75% in terms of Nb in terms of the ratio (%) to the total Nb content. % and a less dispersed becomes the tissue, characterized by excellent spiral pipe with high toughness, yet resistant SR processibility high strength High-strength thickness method of manufacturing a meat spiral steel pipe for a well for conductor casing.
前記組成に加えてさらに、質量%で、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項4に記載の深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管の製造方法。   In addition to the above composition, it is further selected by mass% from V: 0.1% or less, Mo: 0.5% or less, Cr: 0.5% or less, Cu: 0.5% or less, Ni: 1.0% or less, B: 0.0030% or less. The method for producing a high-strength thick-walled spiral steel pipe for a conductor casing for deep wells according to claim 4, wherein the composition contains one or more kinds. 前記組成に加えてさらに、質量%で、Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項4または5に記載の深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管の製造方法。   5. In addition to the composition, the composition further comprises one or two selected from Ca: 0.0005 to 0.0050% and REM: 0.0005 to 0.0050% by mass%. 5. A method for producing a high-strength thick spiral steel pipe for a conductor casing for deep wells according to 5. 請求項1ないし3のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管の両管端に螺子部材を取り付けてなる深井戸向け高強度厚肉コンダクターケーシング。   A high-strength thick conductor casing for deep wells, wherein screw members are attached to both ends of the high-strength thick-walled spiral steel pipe for conductor casings for deep wells according to any one of claims 1 to 3.
JP2015026555A 2015-02-13 2015-02-13 High-strength thick-walled spiral steel pipe for conductor casing for deep well and manufacturing method thereof Active JP6369347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015026555A JP6369347B2 (en) 2015-02-13 2015-02-13 High-strength thick-walled spiral steel pipe for conductor casing for deep well and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015026555A JP6369347B2 (en) 2015-02-13 2015-02-13 High-strength thick-walled spiral steel pipe for conductor casing for deep well and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016148096A JP2016148096A (en) 2016-08-18
JP6369347B2 true JP6369347B2 (en) 2018-08-08

Family

ID=56687717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015026555A Active JP6369347B2 (en) 2015-02-13 2015-02-13 High-strength thick-walled spiral steel pipe for conductor casing for deep well and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6369347B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569745B2 (en) * 2018-01-29 2019-09-04 Jfeスチール株式会社 Hot rolled steel sheet for coiled tubing and method for producing the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3117696C2 (en) * 1981-04-28 1983-08-18 Mannesmann AG, 4000 Düsseldorf Casing for the petroleum-natural gas extraction industry
JP3445997B2 (en) * 1996-07-15 2003-09-16 Jfeスチール株式会社 Manufacturing method of high strength and high toughness hot rolled steel strip
JP3376850B2 (en) * 1997-03-27 2003-02-10 日本鋼管株式会社 Manufacturing method of high strength and toughness hot rolled steel sheet
JP3780956B2 (en) * 2002-02-07 2006-05-31 Jfeスチール株式会社 High strength steel plate with excellent SR resistance and method for producing the same
JP4341396B2 (en) * 2003-03-27 2009-10-07 Jfeスチール株式会社 High strength hot rolled steel strip for ERW pipes with excellent low temperature toughness and weldability
JP4940882B2 (en) * 2005-10-18 2012-05-30 Jfeスチール株式会社 Thick high-strength hot-rolled steel sheet and manufacturing method thereof
JP4978146B2 (en) * 2005-10-18 2012-07-18 Jfeスチール株式会社 Thick high-strength hot-rolled steel sheet and manufacturing method thereof
JP5195469B2 (en) * 2009-01-30 2013-05-08 Jfeスチール株式会社 Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP5533024B2 (en) * 2010-02-26 2014-06-25 Jfeスチール株式会社 Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP5679114B2 (en) * 2011-02-24 2015-03-04 Jfeスチール株式会社 Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5776398B2 (en) * 2011-02-24 2015-09-09 Jfeスチール株式会社 Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
WO2013099192A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 High-tension hot rolled steel sheet and method for manufacturing same
KR101702793B1 (en) * 2012-09-13 2017-02-03 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JP2016148096A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP5999284B1 (en) High-strength thick-walled electric resistance welded steel pipe for conductor casing for deep well and manufacturing method thereof, and high-strength thick-walled conductor casing for deep well
JP5857400B2 (en) Welded steel pipe for high compressive strength line pipe and manufacturing method thereof
JP6015879B1 (en) High-strength thick-walled electric resistance welded steel pipe for conductor casing for deep well and manufacturing method thereof, and high-strength thick-walled conductor casing for deep well
JP5561119B2 (en) Welded steel pipe for high compressive strength sour line pipe and manufacturing method thereof
US11214847B2 (en) High-strength hot-rolled steel sheet for electric resistance welded steel pipe and manufacturing method therefor
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
WO2011065578A1 (en) Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
WO2012036148A1 (en) Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
JP5481976B2 (en) High strength hot rolled steel sheet for high strength welded steel pipe and method for producing the same
JP6015602B2 (en) High toughness, high ductility, high strength hot-rolled steel sheet and method for producing the same
JP6572963B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP6149776B2 (en) High toughness, high ductility, high strength hot-rolled steel sheet and method for producing the same
WO2016185741A1 (en) High-strength electric-resistance-welded steel pipe, method for producing steel sheet for high-strength electric-resistance-welded steel pipe, and method for producing high-strength electric-resistance-welded steel pipe
JP2023022159A (en) Steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen-induced cracking (hic) resistance, and method of manufacturing steel thereof
JP4949541B2 (en) Duplex oil well steel pipe and method for producing the same
JP5867276B2 (en) ERW steel pipe
JP6369347B2 (en) High-strength thick-walled spiral steel pipe for conductor casing for deep well and manufacturing method thereof
JP6319129B2 (en) High-strength thick-walled spiral steel pipe for conductor casing for deep well and manufacturing method thereof
CN111655873A (en) Steel material for line pipe, method for producing same, and method for producing line pipe
WO2021100534A1 (en) Hot rolled steel sheet for electroseamed steel pipe and method for producing same, electroseamed steel pipe and method for producing same, line pipe, and building structure
JP2005290553A (en) Steel plate excellent in machinability, toughness and weldability, and method for production thereof
CN111655872B (en) Steel material for line pipe, method for producing same, and method for producing line pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6369347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250