JP2024021438A - Resistor and manufacturing method of resistor - Google Patents

Resistor and manufacturing method of resistor Download PDF

Info

Publication number
JP2024021438A
JP2024021438A JP2022124262A JP2022124262A JP2024021438A JP 2024021438 A JP2024021438 A JP 2024021438A JP 2022124262 A JP2022124262 A JP 2022124262A JP 2022124262 A JP2022124262 A JP 2022124262A JP 2024021438 A JP2024021438 A JP 2024021438A
Authority
JP
Japan
Prior art keywords
resistor
electrode
electrodes
oxide film
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022124262A
Other languages
Japanese (ja)
Inventor
優 坂口
Yu Sakaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2022124262A priority Critical patent/JP2024021438A/en
Publication of JP2024021438A publication Critical patent/JP2024021438A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Details Of Resistors (AREA)

Abstract

To provide a resistor whose resistance value hardly changes, and a manufacturing method.SOLUTION: A resistor 1 includes a resistor body 2, a first electrode 3, a second electrode 4, and an oxide film 7. The resistor body 2 is made of metal. The first electrode 3 and the second electrode 4 are located at both ends of the lower surface 21 of the resistor body 2. The oxide film 7 is formed at least adjacent to the first electrode 3 and the second electrode 4 in an exposed surface 22 of the lower surface 21 of the resistor body 2 between the first electrode 3 and the second electrode 4.SELECTED DRAWING: Figure 2

Description

本開示は、一般に抵抗器及びその製造方法に関し、より詳細には、抵抗体とその両端部に位置する一対の端子とを備える抵抗器及びその製造方法に関する。 The present disclosure generally relates to a resistor and a method of manufacturing the same, and more particularly relates to a resistor including a resistor and a pair of terminals located at both ends of the resistor and a method of manufacturing the same.

特許文献1には、金属で構成された電流検出用の面実装型抵抗器が開示されている。この抵抗器では、抵抗体と一対の電極端子の一部の表裏面が樹脂中に埋設された状態でインサート成形されている。 Patent Document 1 discloses a surface-mounted resistor for current detection that is made of metal. In this resistor, the resistor and a pair of electrode terminals are insert-molded with the front and back surfaces of a portion thereof embedded in resin.

特開平11-186010号公報Japanese Patent Application Publication No. 11-186010

一方、樹脂モールドを行うと部品点数が増えてしまうので、それを省略する抵抗器も知られている。そのような抵抗器の場合、抵抗体の主面が露出しているので、実装時にはんだが端子を伝って抵抗体の実装面に到達することがあり、その場合ははんだが抵抗体に導通してしまう。この結果、抵抗器全体の抵抗値が変化してしまい、そのため電流検出精度が低下する。 On the other hand, since resin molding increases the number of parts, resistors that omit this are also known. In the case of such a resistor, the main surface of the resistor is exposed, so the solder may reach the mounting surface of the resistor through the terminal during mounting, and in that case, the solder may conduct to the resistor. It ends up. As a result, the resistance value of the entire resistor changes, resulting in a decrease in current detection accuracy.

本開示の目的は、抵抗値が変化しにくい抵抗器及びその製造方法を提供することにある。 An object of the present disclosure is to provide a resistor whose resistance value does not easily change and a method for manufacturing the same.

本開示の一態様に係る抵抗器は、抵抗体と、一対の電極と、酸化膜と、を備えている。抵抗体は、金属製である。前記一対の電極は、前記抵抗体の主面の両端部に位置している。前記酸化膜は、前記抵抗体の前記主面のうち前記一対の電極の間にある露出面において、少なくとも前記一対の電極との隣接部分に設けられている。 A resistor according to one aspect of the present disclosure includes a resistor, a pair of electrodes, and an oxide film. The resistor is made of metal. The pair of electrodes are located at both ends of the main surface of the resistor. The oxide film is provided on at least a portion adjacent to the pair of electrodes on an exposed surface between the pair of electrodes on the main surface of the resistor.

本開示の別の一態様に係る抵抗器の製造方法は、金属製の抵抗体の主面の両端部に、一対の電極を配置するステップと、前記抵抗体の前記主面のうち前記一対の電極の間の露出面において、少なくとも前記一対の電極との隣接部分にレーザ照射を行うことで、酸化膜を形成するステップと、を含む。 A method for manufacturing a resistor according to another aspect of the present disclosure includes a step of arranging a pair of electrodes at both ends of a main surface of a metal resistor; The method includes the step of forming an oxide film on an exposed surface between the electrodes by irradiating at least a portion adjacent to the pair of electrodes with a laser.

本開示の一態様に係る抵抗器又は別の一態様に係る抵抗器の製造方法によれば、抵抗値が変化しにくい抵抗器が得られる。 According to the resistor manufacturing method according to one aspect of the present disclosure or the resistor manufacturing method according to another aspect of the present disclosure, a resistor whose resistance value does not easily change can be obtained.

図1は、実施形態に係る抵抗器の縦断面図である。FIG. 1 is a longitudinal cross-sectional view of a resistor according to an embodiment. 図2は、同上の抵抗器の下面図である。FIG. 2 is a bottom view of the same resistor. 図3は、同上の抵抗器の一例の縦断面である。FIG. 3 is a longitudinal section of an example of the above resistor. 図4は、同上の抵抗器の製造方法の接合板準備工程を示す斜視図である。FIG. 4 is a perspective view showing a bonding plate preparation step in the method for manufacturing the same resistor as above. 図5は、同上の抵抗器の製造方法の接合板分割工程を示す斜視図である。FIG. 5 is a perspective view showing a joining plate dividing step in the method for manufacturing the same resistor as above. 図6は、同上の抵抗器の製造方法の中間電極加工工程を示す斜視図である。FIG. 6 is a perspective view showing an intermediate electrode processing step in the method for manufacturing the same resistor. 図7は、同上の抵抗器の製造方法の酸化膜形成工程を示す斜視図である。FIG. 7 is a perspective view showing an oxide film forming step in the method for manufacturing the same resistor. 図8は、同上の抵抗器の製造方法の個片切断工程を示す斜視図である。FIG. 8 is a perspective view showing a step of cutting into individual pieces in the method for manufacturing the same resistor.

(実施形態)
以下、実施形態に係る抵抗器及びその製造方法について、図面を参照して説明する。下記の実施形態において説明する各図は模式的な図であり、各構成要素の大きさや厚さそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。また、下記の実施形態で説明する構成は本開示の一例にすぎない。本開示は、下記の実施形態に限定されず、本開示の効果を奏することができれば、設計等に応じて種々の変更が可能である。
(Embodiment)
Hereinafter, a resistor and a method for manufacturing the same according to an embodiment will be described with reference to the drawings. Each figure described in the following embodiments is a schematic diagram, and the ratio of the size and thickness of each component does not necessarily reflect the actual size ratio. Moreover, the configuration described in the embodiment below is only an example of the present disclosure. The present disclosure is not limited to the embodiments described below, and various changes can be made depending on the design etc. as long as the effects of the present disclosure can be achieved.

(実施形態)
(1)抵抗器の基本構成
本開示は、各種電子機器に使用される抵抗器1及びその製造方法に関する。
(Embodiment)
(1) Basic configuration of resistor The present disclosure relates to a resistor 1 used in various electronic devices and a method for manufacturing the same.

図1に示すように、抵抗器1ははんだ6を介してプリント基板5に実装される。 As shown in FIG. 1, resistor 1 is mounted on printed circuit board 5 via solder 6. As shown in FIG.

抵抗器1は、板状の抵抗体2と、抵抗体2の下面21(主面の一例)の長手方向(図1の左右方向)両端部に設けられた第1電極3及び第2電極4と、を備える。電流は、第1電極3と第2電極4の間で抵抗体2内を長手方向に流れる。 The resistor 1 includes a plate-shaped resistor 2, and a first electrode 3 and a second electrode 4 provided at both ends in the longitudinal direction (left-right direction in FIG. 1) of a lower surface 21 (an example of the main surface) of the resistor 2. and. A current flows in the resistor 2 between the first electrode 3 and the second electrode 4 in the longitudinal direction.

抵抗体2は上面視にて矩形状を有する板である。抵抗体2は、合金製であり、例えば、銅ニッケル合金を含む。抵抗体2の平面視のサイズは、例えば、3.2mm×6.4mm、又は1.6mm×3.2mmである。 The resistor 2 is a plate having a rectangular shape when viewed from above. The resistor 2 is made of an alloy, and includes, for example, a copper-nickel alloy. The size of the resistor 2 in plan view is, for example, 3.2 mm x 6.4 mm or 1.6 mm x 3.2 mm.

第1電極3及び第2電極4は、抵抗体2とは別の種類の導電体で形成され、具体的には、抵抗体2より抵抗率が低い金属、例えば銅で構成されている。第1電極3及び第2電極4には、電気めっき又は、ディップによるスズめっき層が施されている。さらに、第1電極3及び第2電極4は、抵抗体2の長手方向の両端部において下面21に、溶接、クラッド、印刷等の方法で接合されている。第1電極3及び第2電極4の三辺(長手方向内側の辺を除く)は、平面視において、抵抗体2の辺と一致している。第1電極3及び第2電極4は、はんだ6を介してプリント基板5に端子として固定される。 The first electrode 3 and the second electrode 4 are formed of a different type of conductor from the resistor 2, and specifically, are made of a metal having a lower resistivity than the resistor 2, such as copper. The first electrode 3 and the second electrode 4 are provided with a tin plating layer by electroplating or dipping. Furthermore, the first electrode 3 and the second electrode 4 are joined to the lower surface 21 at both ends of the resistor 2 in the longitudinal direction by a method such as welding, cladding, or printing. The three sides of the first electrode 3 and the second electrode 4 (excluding the inner side in the longitudinal direction) coincide with the sides of the resistor 2 in plan view. The first electrode 3 and the second electrode 4 are fixed as terminals to the printed circuit board 5 via solder 6.

(2)酸化膜
抵抗器1は、図2に示すように、酸化膜7を有している。酸化膜7は、抵抗器1の下面21を他の導電材料から絶縁するため膜である。酸化膜7は、抵抗体2の下面21(主面の一例)のうち第1電極3、第2電極4の間にある露出面22の全体に形成されている。酸化膜7は、レーザの多数のパルスが平面視で隙間なく照射されて形成されている。酸化膜7は、酸化銅(CuO)、酸化銅(I)(CuO)、酸化ニッケル(II)(NiO)の少なくとも一つを含む。
(2) Oxide Film The resistor 1 has an oxide film 7, as shown in FIG. Oxide film 7 is a film for insulating lower surface 21 of resistor 1 from other conductive materials. The oxide film 7 is formed on the entire exposed surface 22 between the first electrode 3 and the second electrode 4 on the lower surface 21 (an example of the main surface) of the resistor 2 . The oxide film 7 is formed by irradiating a large number of laser pulses without gaps in plan view. Oxide film 7 contains at least one of copper oxide (CuO), copper (I) oxide (Cu 2 O), and nickel (II) oxide (NiO).

(3)抵抗器の効果
図3は、抵抗器1の実装時にはんだ6がプリント基板5から第1電極3を伝わって上がり、抵抗体2の下面21に到達した状態を示している。本実施形態では、はんだ6は酸化膜7によって遮られるので、はんだ6は抵抗体2に電気的に接続されない。したがって、抵抗器1の抵抗値が変化しにくい。従来であれば、はんだ6が抵抗体2の下面21に接触してしまうと、抵抗器1の抵抗値が変化してしまう。
(3) Effect of Resistor FIG. 3 shows a state in which the solder 6 rises from the printed circuit board 5 through the first electrode 3 and reaches the lower surface 21 of the resistor 2 when the resistor 1 is mounted. In this embodiment, the solder 6 is blocked by the oxide film 7, so the solder 6 is not electrically connected to the resistor 2. Therefore, the resistance value of resistor 1 is difficult to change. Conventionally, when the solder 6 comes into contact with the lower surface 21 of the resistor 2, the resistance value of the resistor 1 changes.

(4)抵抗器の製造方法
抵抗器1の製造方法は、以下の3つのステップを含んでいる。
(4) Method for manufacturing resistor The method for manufacturing resistor 1 includes the following three steps.

(4-1)第1のステップ
第1のステップは、第1電極3及び第2電極4を抵抗体2の下面21の両端部に配置するステップである。
(4-1) First Step The first step is a step of arranging the first electrode 3 and the second electrode 4 at both ends of the lower surface 21 of the resistor 2.

最初に、図4に示すように、平板状の接合板11を作成する。接合板11は、銅ニッケル合金を含む抵抗板12と銅板13とをクラッド接合して得られる。続いて、銅板13がスズめっきされる。 First, as shown in FIG. 4, a flat joining plate 11 is created. The bonding plate 11 is obtained by clad bonding a resistance plate 12 containing a copper-nickel alloy and a copper plate 13. Subsequently, the copper plate 13 is plated with tin.

次に、図5に示すように、接合板11を短冊状に切断して、幅が狭い長尺接合体111を作成する。長尺接合体111は、長尺抵抗板130と長尺銅板131とからなる。 Next, as shown in FIG. 5, the joining plate 11 is cut into strips to create a narrow long joined body 111. The long joined body 111 consists of a long resistance plate 130 and a long copper plate 131.

次に、図6に示すように、長尺接合体111の長尺銅板131を切削加工して、互いに離れた第1中間電極132及び第2中間電極133を形成する。 Next, as shown in FIG. 6, the long copper plate 131 of the long joined body 111 is cut to form a first intermediate electrode 132 and a second intermediate electrode 133 separated from each other.

(4-2)第2のステップ
第2のステップは、抵抗体2の下面21のうち第1電極3と第2電極4の間の露出面22にレーザ照射を行うことで、酸化膜7を形成するステップである。
(4-2) Second step The second step is to irradiate the exposed surface 22 of the lower surface 21 of the resistor 2 between the first electrode 3 and the second electrode 4 with a laser to remove the oxide film 7. This is the step of forming.

具体的には、図7に示すように、レーザ装置51を用いて、レーザ光52を長尺抵抗板130の下面134に照射する。この実施形態では、レーザ照射は露出面22の全体に行われる。なお、図7はレーザ照射を模式的に表現しており、厳密な意味で解釈されるべきはない。さらに具体的には、レーザ照射はパルス照射を断続的に繰り返すことによって、長尺抵抗板130の一部を溶融して複数のビードを形成する。なお、レーザ照射条件の一例は、レーザパワー300W,ビーム径0.08mm,速度100mm/sである。 Specifically, as shown in FIG. 7, a laser device 51 is used to irradiate the lower surface 134 of the long resistance plate 130 with laser light 52. In this embodiment, laser irradiation is applied to the entire exposed surface 22. Note that FIG. 7 schematically represents laser irradiation and should not be interpreted in a strict sense. More specifically, laser irradiation melts a portion of the long resistance plate 130 to form a plurality of beads by intermittently repeating pulse irradiation. Note that an example of laser irradiation conditions is a laser power of 300 W, a beam diameter of 0.08 mm, and a speed of 100 mm/s.

図2に示すように、複数のビードは、互いに重なり合う間隔で形成され、そのため隙間のない酸化膜7が得られる。なお、パルス照射を採用しているので、長尺抵抗板130全体を高温状態にすることなく、露出面22に酸化膜7を形成できる。 As shown in FIG. 2, the plurality of beads are formed at intervals such that they overlap with each other, so that an oxide film 7 with no gaps is obtained. Note that since pulse irradiation is employed, the oxide film 7 can be formed on the exposed surface 22 without bringing the entire long resistance plate 130 into a high temperature state.

(4-3)第3のステップ
最後に、図8に示すように、長尺接合体111を個片切断することによって、抵抗器1を切り出す。
(4-3) Third step Finally, as shown in FIG. 8, the resistor 1 is cut out by cutting the long joined body 111 into individual pieces.

(変形例)
上述の実施形態は、本開示の様々な実施形態の一つに過ぎない。上述の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下、上述の実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
(Modified example)
The embodiment described above is only one of various embodiments of the present disclosure. The embodiments described above can be modified in various ways depending on the design, etc., as long as the objective of the present disclosure can be achieved. Modifications of the above embodiment will be listed below. The modified examples described below can be applied in combination as appropriate.

上述の実施形態では、酸化膜7は抵抗体2の下面21の全体に形成されていたが、酸化膜は抵抗体の下面の一部に形成されていてもよい。特に、酸化膜は、一対の電極の間の露出面において、少なくとも一対の電極との隣接部分(所定幅の領域)に形成されていればよい。そのような変形例の一例を図3を用いて説明する。図3に示す抵抗器1の抵抗体2の平面視のサイズが3.2mm×6.4mm(図3の長辺の長さD1)の場合、電極3、4各々の長手方向長さD2を1.2mmであるとすれば、酸化膜7の長手方向幅D3、D4は各々、0.5mm~1.5mmの範囲にある。 In the embodiment described above, the oxide film 7 was formed on the entire lower surface 21 of the resistor 2, but the oxide film may be formed on a part of the lower surface of the resistor. In particular, the oxide film only needs to be formed on at least a portion adjacent to the pair of electrodes (an area of a predetermined width) on the exposed surface between the pair of electrodes. An example of such a modification will be explained using FIG. 3. When the size of the resistor 2 of the resistor 1 shown in FIG. 3 in plan view is 3.2 mm x 6.4 mm (length D1 of the long side in FIG. 3), the length D2 of each of the electrodes 3 and 4 in the longitudinal direction is If the width is 1.2 mm, the longitudinal widths D3 and D4 of the oxide film 7 are each in the range of 0.5 mm to 1.5 mm.

抵抗体及び電極の材料は、上述の実施形態に限定されない。 The materials of the resistor and electrodes are not limited to the embodiments described above.

電極の形状も特に限定されない。電極は、平面視において、抵抗体に対して長手方向又は短手方向にはみ出た部分を有していてもよい。 The shape of the electrode is also not particularly limited. The electrode may have a portion that protrudes from the resistor in the longitudinal direction or the lateral direction when viewed in plan.

第2のステップ(レーザ照射)の前に第3のステップ(個片切り出し)を行ってもよい。 A third step (cutting out individual pieces) may be performed before the second step (laser irradiation).

(態様)
本明細書には、以下の態様が開示されている。
(mode)
The following aspects are disclosed herein.

第1の態様に係る抵抗器(1)は、抵抗体(2)と、一対の電極(3、4)と、酸化膜(7)と、を備える。抵抗体(2)は、金属製である。一対の電極(3、4)は、抵抗体(2)の下面(21)の両端部に位置している。酸化膜(7)は、抵抗体(2)の下面(21)のうち一対の電極(3、4)の間にある露出面(22)において、少なくとも一対の電極(3、4)との隣接部分に設けられている。 A resistor (1) according to a first aspect includes a resistor (2), a pair of electrodes (3, 4), and an oxide film (7). The resistor (2) is made of metal. A pair of electrodes (3, 4) are located at both ends of the lower surface (21) of the resistor (2). The oxide film (7) is adjacent to at least one pair of electrodes (3, 4) on the exposed surface (22) between the pair of electrodes (3, 4) on the lower surface (21) of the resistor (2). provided in the section.

この態様によれば、たとえ抵抗器(1)の実装時にはんだ(6)がプリント基板(5)から一対の電極(3、4)を伝わって上がり、抵抗体(2)の下面(21)に到達したとしても、酸化膜(7)によって遮られるので、はんだ(6)は抵抗体(2)に電気的に接続されない。したがって、抵抗器(1)の抵抗値が変化しにくい。 According to this aspect, even when the resistor (1) is mounted, the solder (6) rises from the printed circuit board (5) through the pair of electrodes (3, 4) and reaches the bottom surface (21) of the resistor (2). Even if the solder (6) reaches the resistor (2), it is blocked by the oxide film (7), so the solder (6) is not electrically connected to the resistor (2). Therefore, the resistance value of the resistor (1) is difficult to change.

第2の態様に係る抵抗器(1)では、第1の態様において、酸化膜(7)は露出面(22)の全体に形成されている。 In the resistor (1) according to the second embodiment, the oxide film (7) is formed over the entire exposed surface (22) in the first embodiment.

この態様によれば、抵抗器(1)の抵抗値がより変化しにくくなる。 According to this aspect, the resistance value of the resistor (1) becomes more difficult to change.

第3の態様に係る抵抗器(1)では、第1又は第2の態様において、抵抗体(2)は銅ニッケル合金を含み、一対の電極(3、4)は銅を含む。 In the resistor (1) according to the third aspect, in the first or second aspect, the resistor (2) includes a copper-nickel alloy, and the pair of electrodes (3, 4) includes copper.

この態様によれば、抵抗値が変化しにくい抵抗器(1)が得られる。 According to this aspect, a resistor (1) whose resistance value hardly changes can be obtained.

第4の態様に係る抵抗器(1)は、第1~第3の態様のいずれか1つにおいて、酸化膜(7)は酸化銅、酸化銅(I)、酸化ニッケル(II)の少なくとも一つを含む。 In the resistor (1) according to the fourth aspect, in any one of the first to third aspects, the oxide film (7) is at least one of copper oxide, copper (I) oxide, and nickel (II) oxide. Including one.

この態様によれば、抵抗値が変化しにくい抵抗器(1)が得られる。 According to this aspect, a resistor (1) whose resistance value hardly changes can be obtained.

第5の態様に係る抵抗器(1)の製造方法は、金属製の抵抗体(2)の下面(21)の両端部に、一対の電極(3、4)を配置するステップと、抵抗体(2)の下面(21)のうち一対の電極(3、4)の間の露出面(22)において、少なくとも一対の電極(3、4)との隣接部分にレーザ照射を行うことで、酸化膜(7)を形成するステップと、を含む。 A method for manufacturing a resistor (1) according to a fifth aspect includes the steps of: arranging a pair of electrodes (3, 4) at both ends of a lower surface (21) of a metal resistor (2); On the exposed surface (22) between the pair of electrodes (3, 4) on the lower surface (21) of (2), laser irradiation is performed on at least a portion adjacent to the pair of electrodes (3, 4) to oxidize it. forming a membrane (7).

この態様によれば、たとえ抵抗器(1)の実装時に、はんだ(6)がプリント基板から一対の電極(3、4)を伝わって上がり、抵抗体(2)の下面(21)に到達したとしても、酸化膜(7)によって遮られるので、はんだ(6)は抵抗体(2)に電気的に接続されない。したがって、抵抗器(1)の抵抗値が変化しにくい。 According to this aspect, even when the resistor (1) is mounted, the solder (6) rises from the printed circuit board through the pair of electrodes (3, 4) and reaches the bottom surface (21) of the resistor (2). However, the solder (6) is not electrically connected to the resistor (2) because it is blocked by the oxide film (7). Therefore, the resistance value of the resistor (1) is difficult to change.

第6の態様に係る抵抗器(1)の製造方法では、第5の態様において、レーザ照射は露出面(22)の全体に行う。 In the method for manufacturing a resistor (1) according to the sixth aspect, in the fifth aspect, laser irradiation is performed on the entire exposed surface (22).

この態様によれば、抵抗器(1)の抵抗値がより変化しにくくなる。 According to this aspect, the resistance value of the resistor (1) becomes more difficult to change.

第7の抵抗器の製造方法は、第5又は第6の態様において、レーザ照射はパルス照射を繰り返す。 In the seventh method for manufacturing a resistor, in the fifth or sixth aspect, the laser irradiation is repeated by pulse irradiation.

この態様によれば、抵抗体(2)全体を高温状態にすることなく、露出面(22)に酸化膜(7)を形成できる。 According to this aspect, the oxide film (7) can be formed on the exposed surface (22) without bringing the entire resistor (2) into a high temperature state.

1 抵抗器
2 抵抗体
3 第1電極
4 第2電極
6 はんだ
7 酸化膜
21 下面(主面)
1 Resistor 2 Resistor 3 First electrode 4 Second electrode 6 Solder 7 Oxide film 21 Bottom surface (principal surface)

Claims (7)

金属製の抵抗体と、
前記抵抗体の主面の両端部に位置している一対の電極と、
前記抵抗体の前記主面のうち前記一対の電極の間にある露出面において、少なくとも前記一対の電極との隣接部分に設けられた酸化膜と、
を備える、抵抗器。
a metal resistor,
a pair of electrodes located at both ends of the main surface of the resistor;
an oxide film provided at least in a portion adjacent to the pair of electrodes on an exposed surface between the pair of electrodes on the main surface of the resistor;
A resistor.
前記酸化膜は前記露出面の全体に形成されている、
請求項1に記載の抵抗器。
the oxide film is formed on the entire exposed surface;
A resistor according to claim 1.
前記抵抗体は銅ニッケル合金を含み、
前記一対の電極は銅を含む、
請求項1又は2に記載の抵抗器。
The resistor includes a copper-nickel alloy,
the pair of electrodes include copper;
A resistor according to claim 1 or 2.
前記酸化膜は酸化銅、酸化銅(I)、酸化ニッケル(II)の少なくとも一つを含む、
請求項3に記載の抵抗器。
The oxide film contains at least one of copper oxide, copper (I) oxide, and nickel (II) oxide,
A resistor according to claim 3.
金属製の抵抗体の主面の両端部に、一対の電極を配置するステップと、
前記抵抗体の前記主面のうち前記一対の電極の間の露出面において、少なくとも前記一対の電極との隣接部分にレーザ照射を行うことで、酸化膜を形成するステップと、
を含む、抵抗器の製造方法。
arranging a pair of electrodes at both ends of the main surface of the metal resistor;
forming an oxide film on an exposed surface between the pair of electrodes of the main surface of the resistor by irradiating at least a portion adjacent to the pair of electrodes with a laser;
A method of manufacturing a resistor, including:
前記レーザ照射は前記露出面の全体に行う、
請求項5に記載の抵抗器の製造方法。
The laser irradiation is performed on the entire exposed surface,
A method for manufacturing a resistor according to claim 5.
前記レーザ照射はパルス照射を繰り返す、
請求項5又は6に記載の抵抗器の製造方法。
The laser irradiation repeats pulse irradiation,
A method for manufacturing a resistor according to claim 5 or 6.
JP2022124262A 2022-08-03 2022-08-03 Resistor and manufacturing method of resistor Pending JP2024021438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022124262A JP2024021438A (en) 2022-08-03 2022-08-03 Resistor and manufacturing method of resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022124262A JP2024021438A (en) 2022-08-03 2022-08-03 Resistor and manufacturing method of resistor

Publications (1)

Publication Number Publication Date
JP2024021438A true JP2024021438A (en) 2024-02-16

Family

ID=89855065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022124262A Pending JP2024021438A (en) 2022-08-03 2022-08-03 Resistor and manufacturing method of resistor

Country Status (1)

Country Link
JP (1) JP2024021438A (en)

Similar Documents

Publication Publication Date Title
JP4511614B2 (en) Electrical assembly
JP4358664B2 (en) Chip resistor and manufacturing method thereof
JP5970695B2 (en) Current detection resistor and its mounting structure
KR100730850B1 (en) Chip resistor and method for manufacturing same
JPH06224014A (en) Manufacture of electric resistor
JP4057462B2 (en) Chip resistor and manufacturing method thereof
JP2009218552A (en) Chip resistor and method of manufacturing the same
KR101064534B1 (en) Low resistance chip resistor of resistance metal plate and its manufacturing method
JP3993852B2 (en) Thermistor with symmetrical structure
JP2024021438A (en) Resistor and manufacturing method of resistor
JP3848247B2 (en) Chip resistor and manufacturing method thereof
EP1622174A1 (en) Electronic component and method for manufacturing same
JPH11162720A (en) Chip resistor and its adjusting method
JP3838560B2 (en) Chip resistor having low resistance value and manufacturing method thereof
JP3838559B2 (en) Chip resistor having low resistance value and manufacturing method thereof
JP3848245B2 (en) Chip resistor
JP3846986B2 (en) Manufacturing method of chip resistor
JP2006228980A (en) Chip resistor made of metal plate and its production process
JP2024021437A (en) Resistor and manufacturing method of resistor
JP2004022920A (en) Chip resistor having low resistance and its manufacturing method
JP2004022921A (en) Chip resistor having low-resistance and its manufacturing method
JP2004047603A (en) Resistor for current detection and its manufacture
JP2008103462A (en) Chip type network resistor, surface mounting component, and method for manufacturing the same
JP2013254983A (en) Chip resistor and manufacturing method of the same
JP2002374059A (en) Leadfree solder resistant wiring board