JP2024005489A - Method for purifying anionic surface active agent - Google Patents

Method for purifying anionic surface active agent Download PDF

Info

Publication number
JP2024005489A
JP2024005489A JP2022105689A JP2022105689A JP2024005489A JP 2024005489 A JP2024005489 A JP 2024005489A JP 2022105689 A JP2022105689 A JP 2022105689A JP 2022105689 A JP2022105689 A JP 2022105689A JP 2024005489 A JP2024005489 A JP 2024005489A
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
contact
acidic cation
anionic surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022105689A
Other languages
Japanese (ja)
Other versions
JP7123463B1 (en
Inventor
博之 春日井
Hiroyuki Kasugai
秀悟 榊原
Shugo Sakakibara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2022105689A priority Critical patent/JP7123463B1/en
Application granted granted Critical
Publication of JP7123463B1 publication Critical patent/JP7123463B1/en
Publication of JP2024005489A publication Critical patent/JP2024005489A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for purifying an anionic surface active agent which efficiently reduces metallic ions without causing precipitation during treatment.
SOLUTION: A method for purifying an anionic surface active agent includes: a contact step 1 of bringing an alkali component into contact with an ion exchange resin containing a strong acid cation exchange resin; and a contact step 2 of bringing an anionic surface active agent into contact with the ion exchange resin obtained in the contact step 1. The contact step 1 brings the alkali component into contact with the ion exchange resin, and thereby adsorbs a cationic component to the ion exchange resin. The contact step 2 replaces metallic ions contained in the anionic surface active agent with a cationic component that has been previously adsorbed to the ion exchange resin in the contact step 1, and removes the metallic ions from the anionic surface active agent.
SELECTED DRAWING: None
COPYRIGHT: (C)2024,JPO&INPIT

Description

本開示は、アニオン界面活性剤の精製方法に関する。 The present disclosure relates to a method for purifying anionic surfactants.

電子部品や半導体等のデバイスの製造及び精密加工の技術分野などにおいて、界面活性剤を含有した高機能洗浄剤が使用されている。シリコンウエハーや半導体などの製造工程において生じる恐れのある汚染物質や付着物には、パーティクルと呼ばれるゴミや塵埃、種々の金属イオンなどが挙げられる。半導体上にパーティクルがあると、回路が断線するなどして、不良動作を起こしてしまう。その結果、半導体が使用できなくなり、製品の歩留まりが低下する。また、半導体の金属配線上に金属イオンがのっていると、電流が漏れて半導体が正常に動作しなくなるという事態が起こり得る。金属イオンの存在は、電気的特性の変動に起因する不十分な性能など、製造されたデバイスに対して重大な問題を呈する可能性がある。このように、パーティクルの存在は、半導体の品質に著しく影響を及ぼす。さらに、近年はスマートフォンやパソコン等のデバイスの小型化が目覚ましく、それらに使用される半導体についても小型化が進んでいる。小型化された半導体は、回路の線幅が細くなっており、より小さなパーティクルによって回路の変形等が起こるため、より高い精度のパーティクル除去が必要となる。そのため、金属イオンの濃度をより低減した、精製度の高い界面活性剤が望まれている。 High-performance cleaning agents containing surfactants are used in the technical fields of manufacturing and precision processing of devices such as electronic parts and semiconductors. Contaminants and deposits that may be generated in the manufacturing process of silicon wafers, semiconductors, etc. include dirt and dust called particles, and various metal ions. If particles are present on the semiconductor, the circuit may break or otherwise malfunction. As a result, the semiconductor becomes unusable and the yield of products decreases. Further, if metal ions are placed on the metal wiring of a semiconductor, a situation may occur in which current leaks and the semiconductor does not operate normally. The presence of metal ions can present significant problems to manufactured devices, such as poor performance due to variations in electrical properties. Thus, the presence of particles significantly affects the quality of semiconductors. Furthermore, in recent years, devices such as smartphones and personal computers have become significantly smaller, and the semiconductors used in these devices have also become smaller. In miniaturized semiconductors, the line width of circuits has become narrower, and smaller particles can cause deformation of the circuits, so it is necessary to remove particles with higher precision. Therefore, a highly purified surfactant with a lower metal ion concentration is desired.

従来から、アニオン界面活性剤の精製方法については、一般的な濃縮、晶析、抽出による方法の他に、限外濾過膜を用いて濾過する方法(例えば特許文献1参照)や、イオン交換膜を用いた電気透析により精製する方法(例えば特許文献2参照)等が知られている。 Conventionally, methods for purifying anionic surfactants include, in addition to general methods of concentration, crystallization, and extraction, a method of filtration using an ultrafiltration membrane (see, for example, Patent Document 1), and a method of filtration using an ion exchange membrane. A method of purifying by electrodialysis using (for example, see Patent Document 2) is known.

また、有機スルホン酸のアルカリ金属塩を、強酸性カチオン交換樹脂を用いたイオン交換法に供して処理することにより、各種の金属イオン濃度を低減させる方法(例えば特許文献3参照)が知られている。 Furthermore, a method is known in which the concentration of various metal ions is reduced by subjecting an alkali metal salt of an organic sulfonic acid to an ion exchange method using a strongly acidic cation exchange resin (see, for example, Patent Document 3). There is.

特開平5-317654号公報Japanese Patent Application Publication No. 5-317654 特開昭62-63555号公報Japanese Unexamined Patent Publication No. 62-63555 特開2009-143842号公報Japanese Patent Application Publication No. 2009-143842

しかし、特許文献1又は特許文献2に開示されている濾過膜やイオン交換膜を用いた方法では、アニオン界面活性剤溶液が含有する金属イオン濃度を十分に低減すること、具体的には、金属イオン濃度を各種の金属イオン毎で数ppbの単位にまで低減することが難しいという問題がある。 However, in the method using a filtration membrane or ion exchange membrane disclosed in Patent Document 1 or Patent Document 2, it is necessary to sufficiently reduce the concentration of metal ions contained in the anionic surfactant solution. There is a problem in that it is difficult to reduce the ion concentration of each metal ion to a level of several ppb.

また、一部のアニオン界面活性剤は、金属塩や有機アミン塩などの状態では水溶性であるが、親水基がH(プロトン)と結合した酸型の状態では水に対する溶解度が著しく低下し、非水溶性となる。このような酸型で非水溶性となるアニオン界面活性剤を特許文献3に開示のイオン交換法で精製すると、金属イオンと強酸性カチオン交換樹脂のHとが交換反応し、金属イオンは低減できるものの、アニオン界面活性剤が酸型になって析出してしまい、精製を行うことが出来ない。 In addition, some anionic surfactants are water-soluble in the form of metal salts or organic amine salts, but their solubility in water decreases significantly in the acid form in which the hydrophilic group is bonded to H + (protons). , it becomes water-insoluble. When such acid-type, water-insoluble anionic surfactants are purified by the ion exchange method disclosed in Patent Document 3, metal ions and H + of the strongly acidic cation exchange resin undergo an exchange reaction, and metal ions are reduced. Although it is possible, the anionic surfactant becomes acidic and precipitates, making purification impossible.

そこで本開示は、アニオン界面活性剤について、精製途中で析出を起こすことなく、金属イオンを効率よく低減する精製方法を提供する。 Therefore, the present disclosure provides a purification method for efficiently reducing metal ions of an anionic surfactant without causing precipitation during purification.

上記課題を解決するため、本開示の技術は以下の手段をとる。
[1]強酸性カチオン交換樹脂を含むイオン交換樹脂にアルカリ成分を接触させる接触工程1と、前記接触工程1で得られたイオン交換樹脂にアニオン界面活性剤を接触させる接触工程2と、を含むことを特徴とするアニオン界面活性剤の精製方法。
[2]前記イオン交換樹脂が、強酸性カチオン交換樹脂のみからなる[1]に記載の精製方法。
[3]前記イオン交換樹脂が、強酸性カチオン交換樹脂と、強塩基性アニオン交換樹脂、弱塩基性アニオン交換樹脂、弱酸性カチオン交換樹脂、及びキレート交換樹脂から選ばれる少なくとも1つと、の混合樹脂である[1]に記載の精製方法。
[4]前記接触工程1が、強酸性カチオン交換樹脂を含むイオン交換樹脂にアルカリ成分を接触させた後に、更に強塩基性アニオン交換樹脂、弱塩基性アニオン交換樹脂、弱酸性カチオン交換樹脂、及びキレート交換樹脂から選ばれる少なくとも1つを混合させる工程1-1を含む[1]に記載の精製方法。
[5]前記アニオン界面活性剤が、HLBが20以下の酸成分の中和塩である請求項[1]~[4]のいずれかに記載の精製方法。
[6]前記アルカリ成分が、有機アミン、4級アンモニウム塩、及びアンモニアから選ばれる少なくとも1つである[1]~[4]のいずれかに記載の精製方法。
[7]前記アルカリ成分が、有機アミン、4級アンモニウム塩、及びアンモニアから選ばれる少なくとも1つである[5]に記載の精製方法。
In order to solve the above problems, the technology of the present disclosure takes the following measures.
[1] Includes a contact step 1 in which an alkali component is brought into contact with an ion exchange resin containing a strongly acidic cation exchange resin, and a contact step 2 in which an anionic surfactant is brought into contact with the ion exchange resin obtained in the contact step 1. A method for purifying an anionic surfactant, characterized by:
[2] The purification method according to [1], wherein the ion exchange resin comprises only a strongly acidic cation exchange resin.
[3] The ion exchange resin is a mixed resin of a strongly acidic cation exchange resin and at least one selected from a strongly basic anion exchange resin, a weakly basic anion exchange resin, a weakly acidic cation exchange resin, and a chelate exchange resin. The purification method according to [1].
[4] After the contacting step 1 brings the alkaline component into contact with the ion exchange resin containing the strongly acidic cation exchange resin, the contacting step 1 further includes a strongly basic anion exchange resin, a weakly basic anion exchange resin, a weakly acidic cation exchange resin, and The purification method according to [1], which includes step 1-1 of mixing at least one selected from chelate exchange resins.
[5] The purification method according to any one of claims [1] to [4], wherein the anionic surfactant is a neutralized salt of an acid component having an HLB of 20 or less.
[6] The purification method according to any one of [1] to [4], wherein the alkaline component is at least one selected from organic amines, quaternary ammonium salts, and ammonia.
[7] The purification method according to [5], wherein the alkaline component is at least one selected from organic amines, quaternary ammonium salts, and ammonia.

なお、本明細書において「A~B」で示される数値範囲は、特段の記載が無い限り、その上限及び下限を含む。つまり、「A~B」は「A以上、B以下」を意味する。 In this specification, the numerical range indicated by "A to B" includes its upper and lower limits, unless otherwise specified. In other words, "A to B" means "A or more and B or less".

以上説明した本開示の精製方法によれば、処理途中で析出を起こすことなく、アニオン界面活性剤から金属イオンを効率よく低減することができる。 According to the purification method of the present disclosure described above, metal ions can be efficiently reduced from an anionic surfactant without causing precipitation during treatment.

本開示のアニオン界面活性剤の精製方法は、イオン交換法による。強酸性カチオン交換樹脂を含むイオン交換樹脂にアルカリ成分を接触させる接触工程1と、前記接触工程1で得られたイオン交換樹脂にアニオン界面活性剤を接触させる接触工程2と、を含む。 The method for purifying the anionic surfactant of the present disclosure is based on an ion exchange method. The method includes a contact step 1 in which an alkali component is brought into contact with an ion exchange resin including a strongly acidic cation exchange resin, and a contact step 2 in which an anionic surfactant is brought into contact with the ion exchange resin obtained in the contact step 1.

≪接触工程1≫
接触工程1は、強酸性カチオン交換樹脂を含むイオン交換樹脂にアルカリ成分を接触させる工程である。イオン交換樹脂にアルカリ成分を接触させることにより、アルカリ成分由来のカチオン成分をイオン交換樹脂が含む強酸性カチオン交換樹脂に吸着させることができる。接触工程1は後述する工程1-1を含んでもよい。
≪Contact process 1≫
Contact step 1 is a step of bringing an alkali component into contact with an ion exchange resin including a strongly acidic cation exchange resin. By bringing the alkali component into contact with the ion exchange resin, the cation component derived from the alkali component can be adsorbed onto the strongly acidic cation exchange resin contained in the ion exchange resin. Contact step 1 may include step 1-1 described below.

<イオン交換樹脂>
イオン交換樹脂は、強酸性カチオン交換樹脂を含んでいればよく、強酸性カチオン交換樹脂のみで構成されていてもよいし、強酸性カチオン交換樹脂と他のイオン交換樹脂との混合樹脂であってもよい。他のイオン交換樹脂としては、弱酸性カチオン交換樹脂、強塩基性アニオン交換樹脂、弱塩基性アニオン交換樹脂、キレート交換樹脂等が挙げられ、これらは1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。各イオン交換樹脂の種類としては特に限定されず、公知のものを用いることができる。イオン交換樹脂の形状は、粒状に限定されることはなく、粉状、繊維状あるいは膜状でもかまわない。イオン交換樹脂の構造は、ゲル型であっても、マクロポーラス型であってもよい。
<Ion exchange resin>
The ion exchange resin only needs to contain a strongly acidic cation exchange resin, and may be composed only of a strongly acidic cation exchange resin, or may be a mixed resin of a strongly acidic cation exchange resin and another ion exchange resin. Good too. Examples of other ion exchange resins include weakly acidic cation exchange resins, strongly basic anion exchange resins, weakly basic anion exchange resins, and chelate exchange resins. You may use a combination of two or more species. The type of each ion exchange resin is not particularly limited, and known ones can be used. The shape of the ion exchange resin is not limited to granules, and may be powder, fiber, or film. The structure of the ion exchange resin may be a gel type or a macroporous type.

なお、イオン交換樹脂が、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂との組合せ、又は、強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂との組合せの場合には、金属イオンだけでなく不純物の陰イオンをも低減することができる。また、強酸性カチオン交換樹脂と弱酸性カチオン交換樹脂の組合せ、又は、強酸性カチオン交換樹脂とキレート樹脂の組合せの場合には、特定の金属イオンや多価金属イオンを除去することもできる。 In addition, when the ion exchange resin is a combination of a strongly acidic cation exchange resin and a strongly basic anion exchange resin, or a combination of a strongly acidic cation exchange resin and a weakly basic anion exchange resin, not only metal ions but also metal ions can be used. Impurity anions can also be reduced. Furthermore, in the case of a combination of a strongly acidic cation exchange resin and a weakly acidic cation exchange resin, or a combination of a strongly acidic cation exchange resin and a chelate resin, specific metal ions and polyvalent metal ions can also be removed.

強酸性カチオン交換樹脂とは、カチオン成分に対する吸着力が比較的高いカチオン交換樹脂であり、スルホン酸基(R-SO )等の強酸性交換基を官能基として持つものである。強酸性カチオン交換樹脂としては、例えば、アンバーライト(登録商標、以下同様)IR120B、IR124、200CT(共に米国デュポン社製)、デュオライト(登録商標、以下同様)C20、C21LF、C255LFH(共に米国デュポン社製)、ダイヤイオン(登録商標、以下同様)SK104H、SK110、SK1B(共に三菱ケミカル社製)等を使用できる。 A strongly acidic cation exchange resin is a cation exchange resin that has a relatively high adsorption power for cation components, and has a strong acid exchange group such as a sulfonic acid group (R-SO 3 H + ) as a functional group. Strongly acidic cation exchange resins include, for example, Amberlite (registered trademark, hereinafter the same) IR120B, IR124, 200CT (both manufactured by DuPont, USA), Duolite (registered trademark, hereinafter the same) C20, C21LF, C255LFH (both manufactured by DuPont, USA) SK104H, SK110, SK1B (both manufactured by Mitsubishi Chemical Corporation), etc. can be used.

弱酸性カチオン交換樹脂は、カチオン成分に対する吸着力が比較的低いカチオン交換樹脂であり、カルボン酸基(R-COO)等の弱酸性交換基を官能基として持つものである。弱酸性カチオン交換樹脂としては、例えば、アンバーライト IRC76、HPR8400(共に米国デュポン社製)、デュオライト C476(米国デュポン社製)ダイヤイオン WK10、WK11(共に三菱ケミカル社製)等を使用できる。 The weakly acidic cation exchange resin is a cation exchange resin that has a relatively low adsorption power for cation components, and has a weakly acidic exchange group such as a carboxylic acid group (R-COO H + ) as a functional group. As the weakly acidic cation exchange resin, for example, Amberlite IRC76, HPR8400 (both manufactured by DuPont, USA), Duolite C476 (both manufactured by DuPont, USA), Diaion WK10, WK11 (both manufactured by Mitsubishi Chemical), etc. can be used.

強塩基性アニオン交換樹脂とは、第4級アンモニウム塩基(R-N)等の強塩基性官能基が導入されたアニオン交換樹脂である。強塩基性アニオン交換樹脂としては、例えば、アンバーライト IRA400J、IRA402BL、IRA900J(共に米国デュポン社製)、デュオライト A113LF、A161JCL(共に米国デュポン社製)、ダイヤイオン SA10A、SA11A(共に三菱ケミカル社製)等のI型強塩基性アニオン交換樹脂、アンバーライト IRA410J、IRA910CT、HPR4010(共に米国デュポン社製)、デュオライト A116、A162LF(共に米国デュポン社製)、ダイヤイオン SA20A、SA20ALL(共に三菱ケミカル社製)等のII型強塩基性アニオン交換樹脂を使用できる。 The strongly basic anion exchange resin is an anion exchange resin into which a strong basic functional group such as a quaternary ammonium base (RN + R 1 R 2 R 3 ) is introduced. Strongly basic anion exchange resins include, for example, Amberlite IRA400J, IRA402BL, IRA900J (both manufactured by DuPont, USA), Duolite A113LF, A161JCL (both manufactured by DuPont, USA), Diaion SA10A, SA11A (both manufactured by Mitsubishi Chemical) ), Amberlite IRA410J, IRA910CT, HPR4010 (both manufactured by DuPont, USA), Duolite A116, A162LF (both manufactured by DuPont, USA), Diaion SA20A, SA20ALL (both manufactured by Mitsubishi Chemical) Type II strongly basic anion exchange resins such as those manufactured by Co., Ltd.) can be used.

弱塩基性アニオン交換樹脂は、第1~3級アミン等の弱塩基性官能基が導入されたアニオン交換樹脂である。弱塩基性アニオン交換樹脂としては、例えば、アンバーライト IRA67、IRA96SB、IRA98(共に米国デュポン社製)、デュオライト A368MS、A378D、A375LF(共に米国デュポン社製)、ダイヤイオン WA10、WA20(共に三菱ケミカル社製)等を使用できる。 The weakly basic anion exchange resin is an anion exchange resin into which a weakly basic functional group such as a primary to tertiary amine is introduced. Examples of weakly basic anion exchange resins include Amberlite IRA67, IRA96SB, and IRA98 (both manufactured by DuPont, USA), Duolite A368MS, A378D, and A375LF (both manufactured by DuPont, USA), and Diaion WA10 and WA20 (both manufactured by Mitsubishi Chemical). You can use products such as those manufactured by

キレート樹脂としては、例えば、アンバーライト IRC747UPS、IRC748(共に米国デュポン社製)、デュオライト C467(米国デュポン社製)、ダイヤイオン CR11、CR20(共に三菱ケミカル社製)等を使用できる。 As the chelate resin, for example, Amberlite IRC747UPS, IRC748 (both manufactured by DuPont, USA), Duolite C467 (made by DuPont, USA), Diaion CR11, CR20 (both manufactured by Mitsubishi Chemical), etc. can be used.

強酸性カチオン交換樹脂および弱酸性カチオン交換樹脂は、予め塩酸や硫酸等の酸を用いて対イオンをH型とし、イオン交換水や超純水等で十分洗浄するなどして使用するのが好ましい。また、後述する接触工程2により金属イオンを吸着した後には、イオン交換樹脂はアルカリ金属型となっているが、上記と同様の操作によりH型に再生して使用することができる。 For strongly acidic cation exchange resins and weakly acidic cation exchange resins, it is preferable to use an acid such as hydrochloric acid or sulfuric acid to change the counterion to H type in advance, and wash thoroughly with ion-exchanged water, ultrapure water, etc. before use. . Furthermore, after adsorbing metal ions in contact step 2, which will be described later, the ion exchange resin is in an alkali metal type, but it can be regenerated into an H type and used by the same operation as described above.

強塩基性アニオン交換樹脂および弱塩基性アニオン交換樹脂は、予めテトラメチルアンモニウム塩水溶液等の塩を用いて対イオンをOH型とし、イオン交換水や超純水等で十分洗浄するなどして使用するのが好ましい。また、カチオン交換樹脂の場合と同様に、OH型に再生したものを使用することができる。 For strongly basic anion exchange resins and weakly basic anion exchange resins, use a salt such as a tetramethylammonium salt aqueous solution to convert the counterion into OH type, and wash thoroughly with ion-exchanged water, ultrapure water, etc. before use. It is preferable to do so. Further, as in the case of cation exchange resins, those regenerated into OH type can be used.

<アルカリ成分>
イオン交換樹脂に接触させるアルカリ成分としては、公知のものであればよく、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチルアミン、ジエチルアミン、トリエチルアミン等の有機アミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチル(2-ヒドロキシエチル)アンモニウムヒドロキシド等の4級アンモニウム塩、アンモニア等が挙げられる。アルカリ成分は、例えばイオン交換能の観点から、有機アミン、4級アンモニウム塩、アンモニアが好ましく、有機アミン、アンモニアがより好ましく、有機アミンが更に好ましい。これらのアルカリ成分は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
<Alkaline component>
The alkaline component to be brought into contact with the ion exchange resin may be any known one, such as organic amines such as monoethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, and triethylamine, tetramethylammonium hydroxide, and tetraethylammonium hydroxyl. Examples include quaternary ammonium salts such as tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethyl(2-hydroxyethyl)ammonium hydroxide, and ammonia. The alkali component is preferably an organic amine, a quaternary ammonium salt, or ammonia, more preferably an organic amine or ammonia, and even more preferably an organic amine, from the viewpoint of ion exchange ability. These alkaline components may be used alone or in combination of two or more.

<アルカリ成分の接触方法>
接触工程1においてイオン交換樹脂にアルカリ成分を接触させる方法は特に限定はなく、カラム法でも、バッチ法でもよい。作業効率などの観点から、カラム法が好ましい。強酸性カチオン交換樹脂と他のイオン交換樹脂をカラム法で組み合わせて使用する場合は、複層又は混合のいずれの系でも使用できる。イオン交換カラムなどの公知の装置は、本開示の方法に従ってアルカリ成分液をイオン交換樹脂に接触させるために用いることができる。
<Method of contacting alkaline components>
The method of bringing the alkali component into contact with the ion exchange resin in contact step 1 is not particularly limited, and may be a column method or a batch method. From the viewpoint of work efficiency, etc., the column method is preferable. When a strongly acidic cation exchange resin and another ion exchange resin are used in combination in a column method, either a multilayer system or a mixed system can be used. Known equipment such as ion exchange columns can be used to contact the alkaline component liquid with the ion exchange resin according to the methods of the present disclosure.

アルカリ成分液をイオン交換樹脂に接触させてイオン交換処理する際の空間速度(SV)は、0.01~6.0h-1とするのが好ましく、0.1~6.0h-1とするのがより好ましい。 The space velocity (SV) when bringing the alkaline component liquid into contact with the ion exchange resin for ion exchange treatment is preferably 0.01 to 6.0 h -1 , and 0.1 to 6.0 h -1 . is more preferable.

≪工程1-1≫
工程1-1は、強酸性カチオン交換樹脂を含むイオン交換樹脂にアルカリ成分を接触させた後に、更に強塩基性アニオン交換樹脂、弱塩基性アニオン交換樹脂、弱酸性カチオン交換樹脂、及びキレート交換樹脂から選ばれる少なくとも1つ(すなわち、強酸性カチオン交換樹を含まないイオン交換樹脂)をイオン交換樹脂に混合させる工程である。接触工程1は、イオン交換樹脂にアルカリ成分を接触させて、強酸性カチオン交換樹脂にアルカリ成分由来のカチオン成分を吸着させることを目的とする。そのため、強酸性カチオン交換樹脂と強酸性カチオン交換樹脂以外のイオン交換樹脂を併用する場合、イオン交換樹脂はアルカリ成分との接触前に混合されてもよいし、工程1-1のように強酸性カチオン交換樹脂を含むイオン交換樹脂をアルカリ成分と接触させた後に、強酸性カチオン交換樹脂を含まないイオン交換樹脂と混合されてもよい。
≪Process 1-1≫
In step 1-1, after bringing an alkaline component into contact with an ion exchange resin containing a strongly acidic cation exchange resin, a strong basic anion exchange resin, a weakly basic anion exchange resin, a weakly acidic cation exchange resin, and a chelate exchange resin are further added. This is a step of mixing at least one selected from the following (that is, an ion exchange resin that does not contain a strongly acidic cation exchange resin) with an ion exchange resin. The purpose of the contact step 1 is to bring the ion exchange resin into contact with the alkaline component and to cause the strongly acidic cation exchange resin to adsorb the cation component derived from the alkaline component. Therefore, when using a strongly acidic cation exchange resin and an ion exchange resin other than the strongly acidic cation exchange resin, the ion exchange resin may be mixed before contacting with the alkaline component, or the strongly acidic cation exchange resin may be mixed before contacting with the alkaline component, or After the ion exchange resin containing the cation exchange resin is brought into contact with the alkaline component, it may be mixed with the ion exchange resin that does not contain the strongly acidic cation exchange resin.

≪接触工程2≫
接触工程2は、接触工程1で得られたイオン交換樹脂にアニオン界面活性剤を接触させる工程である。接触工程1でアルカリ成分を接触させたイオン交換樹脂にアニオン界面活性剤溶液を通液すると、溶液中の金属イオンがHではなくカチオン成分に交換される。その結果、アニオン界面活性剤は水溶性の中和塩を形成することができるため、アニオン界面活性剤の析出や分離が発生することなく、溶液中の金属イオンを低減することが可能となる。
≪Contact process 2≫
Contact step 2 is a step in which the ion exchange resin obtained in contact step 1 is brought into contact with an anionic surfactant. When the anionic surfactant solution is passed through the ion exchange resin that has been contacted with the alkali component in contacting step 1, the metal ions in the solution are exchanged into cationic components instead of H + . As a result, since the anionic surfactant can form a water-soluble neutralized salt, it is possible to reduce metal ions in the solution without precipitation or separation of the anionic surfactant.

<アニオン界面活性剤溶液>
アニオン界面活性剤溶液は、イオン交換水等のイオン交換法に適した溶媒にアニオン界面活性剤を溶解した溶液である。
<Anionic surfactant solution>
The anionic surfactant solution is a solution in which an anionic surfactant is dissolved in a solvent suitable for the ion exchange method, such as ion exchanged water.

<アニオン界面活性剤>
アニオン界面活性剤としては、特に制限はなく公知のものであればよい。アニオン界面活性剤溶液中に含まれる金属イオンの量や、イオン交換水等に対する溶解性の観点から、アニオン界面活性剤は対塩基との中和塩であることが好ましい。
<Anionic surfactant>
The anionic surfactant is not particularly limited and may be any known one. From the viewpoint of the amount of metal ions contained in the anionic surfactant solution and the solubility in ion-exchanged water, the anionic surfactant is preferably a neutralized salt with a base.

対塩基としては、特に制限はなく、公知のものであればよい。例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチルアミン、ジエチルアミン、トリエチルアミン等の有機アミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等の4級アンモニウム塩、アンモニア、水酸化ナトリウム等が挙げられる。これらの対塩基は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 The pair base is not particularly limited and may be any known one. For example, organic amines such as monoethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, triethylamine, quaternary ammonium salts such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide. , ammonia, sodium hydroxide and the like. These pair bases may be used alone or in combination of two or more.

対塩基との中和塩である界面活性剤としては、例えば、(1)ラウリルリン酸モノエタノールアミン塩、ポリオキシエチレン(EO2)ラウリルリン酸モノエタノールアミン塩、ポリオキシエチレン(EO4)ラウリルエーテルリン酸ナトリウム、ポリオキシエチレン(EO3)アルキル(C12-15)エーテルリン酸アンモニウム塩等のリン酸塩、(2)アルキルジフェニルエーテルジスルホン酸トリエタノールアミン塩、アルキルスルホン酸ナトリウム、ドデシルベンゼンスルホン酸トリエタノールアミン塩等の有機スルホン酸塩、(3)ポリオキシエチレン(EO3)トリデシルエーテルカルボン酸モノエタノールアミン塩、オクタン酸ナトリウム等のカルボン酸塩、(4)ラウリン酸ジエタノールアミン塩、パルミチン酸モノエタノールアミン塩、ステアリン酸トリエタノールアミン塩等の脂肪酸塩、(5)スチレン/マレイン酸共重合物アンモニウム塩、ジアリルアミン/マレイン酸共重合物アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリメタクリル酸ナトリウム塩、アクリル酸-メタクリル酸共重合物のナトリウム塩、イソブチレン-マレイン酸共重合物のナトリウム塩、メトキシPEGグラフトポリメタクリル酸ナトリウム塩等が挙げられる。これらの化合物は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of surfactants that are neutralized salts with counter bases include (1) lauryl phosphate monoethanolamine salt, polyoxyethylene (EO2) lauryl phosphate monoethanolamine salt, and polyoxyethylene (EO4) lauryl ether. Phosphates such as sodium phosphate, polyoxyethylene (EO3) alkyl (C12-15) ether ammonium phosphate, (2) alkyldiphenyl ether disulfonic acid triethanolamine salt, sodium alkyl sulfonate, dodecylbenzenesulfonic acid triethanol Organic sulfonates such as amine salts, (3) polyoxyethylene (EO3) tridecyl ether carboxylic acid monoethanolamine salts, carboxylates such as sodium octoate, (4) diethanolamine laurate, monoethanolamine palmitate salts, fatty acid salts such as stearic acid triethanolamine salts, (5) styrene/maleic acid copolymer ammonium salts, diallylamine/maleic acid copolymer ammonium salts, polyacrylic acid sodium salts, polymethacrylic acid sodium salts, acrylic acid Examples include sodium salt of -methacrylic acid copolymer, sodium salt of isobutylene-maleic acid copolymer, and methoxyPEG-grafted polymethacrylic acid sodium salt. These compounds may be used alone or in combination of two or more.

本開示に用いるアニオン界面活性剤は、例えば水溶性の観点から、有機概念図の計算式によるHLBが20以下である酸成分の中和塩であることが好ましく、HLBが15以下であることがより好ましい。なお、アニオン界面活性剤の酸成分とは、アニオン界面活性剤の親水基がHと結合した酸型の状態を意味する。 The anionic surfactant used in the present disclosure is preferably a neutralized salt of an acid component having an HLB of 20 or less according to the organic conceptual diagram calculation formula, for example from the viewpoint of water solubility, and preferably has an HLB of 15 or less. More preferred. Note that the acid component of the anionic surfactant means an acid type state in which the hydrophilic group of the anionic surfactant is bonded to H + .

<HLBの算出方法>
本開示におけるHLBは、有機概念図における有機性値(O)と無機性値(I)から、下記式(1)により算出された値である。
HLB=(I)/(O)×10・・・(1)
ここで、(O)および(I)は、炭素1個を有機性値「20」とし、その他の官能基については「有機概念図-基礎と応用-」(1984発行、甲田善生著、三共出版株式会社発行)の第13頁に記載の無機性基表に従い算出した。また、同文献に記載のない官能基である-O-P(O)(OH)については、同表に記載の>P-の値を使用した。
<How to calculate HLB>
HLB in the present disclosure is a value calculated from the organic value (O) and inorganic value (I) in the organic conceptual diagram using the following formula (1).
HLB=(I)/(O)×10...(1)
Here, for (O) and (I), one carbon has an organic value of "20", and other functional groups are described in "Organic Concept Diagram - Basics and Applications" (published in 1984, written by Yoshio Koda, Sankyo Publishing). Calculation was made according to the inorganic base table described on page 13 of ``Published by Co., Ltd.''. Furthermore, for -OP(O)(OH) 2 , which is a functional group not described in the same document, the value of >P- described in the same table was used.

<アニオン界面活性剤溶液の接触方法>
イオン交換樹脂にアニオン界面活性剤を接触させる方法は特に限定はなく、接触工程1においてイオン交換樹脂にアルカリ成分を接触させる際の方法と同様の方法で行うことができる。アニオン界面活性剤溶液をカチオン交換樹脂と接触させることにより、アニオン界面活性剤溶液に含まれる陽イオン(金属イオン)を除去することができる。一方、アニオン界面活性剤溶液をアニオン交換樹脂と接触させることにより、アニオン界面活性剤溶液に含まれる陰イオン(ハロゲンイオン等)を除去することができる。カチオン交換樹脂とアニオン交換樹脂を用いた混床イオン交換法では、金属イオンと陰イオンを同時に除去することが可能である。
<Method of contacting anionic surfactant solution>
The method of bringing the anionic surfactant into contact with the ion exchange resin is not particularly limited, and can be carried out in the same manner as the method used in contacting the ion exchange resin with the alkali component in contact step 1. By bringing the anionic surfactant solution into contact with the cation exchange resin, cations (metal ions) contained in the anionic surfactant solution can be removed. On the other hand, by bringing the anionic surfactant solution into contact with an anion exchange resin, anions (halogen ions, etc.) contained in the anionic surfactant solution can be removed. In the mixed bed ion exchange method using a cation exchange resin and an anion exchange resin, it is possible to remove metal ions and anions at the same time.

以上説明した精製方法により、アニオン界面活性剤溶液中の金属イオンはカチオン成分と交換されるため、生成されたアニオン界面活性剤は中和塩の形をとる。そのため、酸型になると非水溶性となるアニオン界面活性剤を精製しても、アニオン界面活性剤の析出を防ぎ、アニオン界面活性剤中の金属イオンを効率よく低減することが可能となる。 By the purification method described above, the metal ions in the anionic surfactant solution are exchanged with cationic components, so the produced anionic surfactant takes the form of a neutralized salt. Therefore, even if the anionic surfactant, which becomes water-insoluble in the acid form, is purified, precipitation of the anionic surfactant can be prevented and metal ions in the anionic surfactant can be efficiently reduced.

以下、本開示の構成及び効果をより具体的とする実施例および比較例を挙げるが、本開示はこれらの実施例に限定されるものではない。以下の実施例及び比較例において、%は質量%を意味する。表1は、各実施例および各比較例におけるアニオン界面活性剤の種類及び濃度と、イオン交換樹脂にアルカリ成分を接触させる処理条件とを示す。なお、表1中のHLBは、アニオン界面活性剤を酸型(酸成分)とした場合の有機概念図の計算式によるHLBを示す。 Examples and comparative examples that make the configuration and effects of the present disclosure more specific are listed below, but the present disclosure is not limited to these examples. In the following examples and comparative examples, % means mass %. Table 1 shows the type and concentration of the anionic surfactant in each Example and each Comparative Example, and the treatment conditions for bringing the alkaline component into contact with the ion exchange resin. Note that HLB in Table 1 indicates the HLB based on the formula of the organic conceptual diagram when the anionic surfactant is in the acid type (acid component).

<実施例1>
アニオン界面活性剤としてラウリルリン酸モノエタノールアミン塩175gをイオン交換水425gと配合して、濃度29.2%のアニオン界面活性剤溶液を調製し、これを試料とした。ラウリルリン酸モノエタノールアミン塩は、酸成分であるラウリルリン酸と対塩基であるモノエタノールアミンとの中和塩であり、ラウリルリン酸のHLBは11.2であった。強酸性カチオン交換樹脂として予め1N希塩酸を用いてH型に再生しておいたアンバーライト200CT(米国デュポン社製の商品名)100mlを、垂直にセットした内容量300mlのカラムに充填した。充填した強酸性カチオン交換樹脂を、1000gのイオン交換水にて十分に洗浄した後、24時間静置した。強酸性カチオン交換樹脂に接触させるアルカリ成分としてモノエタノールアミン15gをイオン交換水235gと配合して、アミン水溶液を調製した。調製したアミン水溶液及びカラム内の液温を15~25℃の範囲内で一定の温度に保ち、空間速度(SV)1.0h-1でカラムに通液して、処理(接触工程1)を行った。処理した強酸性カチオン交換樹脂を、1000gのイオン交換水にて十分に洗浄した。試料およびカラム内の液温を15~25℃の範囲内で一定の温度に保ち、空間速度(SV)1.0h-1で試料をカラムに通液して、処理(接触工程2)を行った。これにより、試料をイオン交換法に供し、金属イオン濃度を低減した精製アニオン界面活性剤溶液を得た。
<Example 1>
As an anionic surfactant, 175 g of lauryl phosphate monoethanolamine salt was blended with 425 g of ion-exchanged water to prepare an anionic surfactant solution with a concentration of 29.2%, which was used as a sample. Lauryl phosphate monoethanolamine salt is a neutralized salt of lauryl phosphoric acid as an acid component and monoethanolamine as a counter base, and the HLB of lauryl phosphate was 11.2. 100 ml of Amberlite 200CT (trade name, manufactured by DuPont, USA), which had been previously regenerated into the H type using 1N dilute hydrochloric acid as a strongly acidic cation exchange resin, was packed into a vertically set column with an internal capacity of 300 ml. The filled strongly acidic cation exchange resin was thoroughly washed with 1000 g of ion exchange water, and then left to stand for 24 hours. An aqueous amine solution was prepared by blending 15 g of monoethanolamine with 235 g of ion-exchanged water as an alkaline component to be brought into contact with the strongly acidic cation exchange resin. The treatment (contact step 1) was carried out by keeping the prepared aqueous amine solution and the liquid temperature in the column at a constant temperature within the range of 15 to 25 °C, and passing the solution through the column at a space velocity (SV) of 1.0 h -1 . went. The treated strongly acidic cation exchange resin was thoroughly washed with 1000 g of ion exchange water. The sample and the liquid temperature in the column were kept constant within the range of 15 to 25°C, and the sample was passed through the column at a space velocity (SV) of 1.0 h -1 to perform the treatment (contact step 2). Ta. Thereby, the sample was subjected to an ion exchange method to obtain a purified anionic surfactant solution with reduced metal ion concentration.

<実施例2>
実施例1と同様にして、表1に記載したアニオン界面活性剤をイオン交換水に溶解したアニオン界面活性剤溶液を調製し、これを試料とした。強酸性カチオン交換樹脂として予め1N希塩酸を用いてH型に再生しておいたアンバーライト200CT(米国デュポン社製の商品名)75mlと、強塩基性アニオン交換樹脂として予め1Nテトラメチルアンモニウム塩水溶液を用いてOH型に再生しておいたアンバーライトIRA900J(米国デュポン社製の商品名)75mlとを均一に混合した。当該混合樹脂を、垂直にセットした内容量300mlのカラムに充填した。充填した混合樹脂をイオン交換水にて十分に洗浄した後、24時間静置した。強酸性カチオン交換樹脂に接触させるアルカリ成分としてモノエタノールアミンをイオン交換水と配合して、アミン水溶液を調製した。調製したアミン水溶液及びカラム内の液温を15~25℃の範囲内で一定の温度に保ち、空間速度(SV)0.8h-1でカラムに通液して、処理(接触工程1)を行った。処理したイオン交換樹脂を、イオン交換水にて十分に洗浄した。試料およびカラム内の液温を15~25℃の範囲内で一定の温度に保ち、空間速度(SV)0.8h-1で試料をカラムに通液して、処理(接触工程2)を行った。これにより、試料をイオン交換法に供し、金属イオン濃度を低減した精製アニオン界面活性剤溶液を得た。
<Example 2>
In the same manner as in Example 1, an anionic surfactant solution was prepared by dissolving the anionic surfactants listed in Table 1 in ion-exchanged water, and this was used as a sample. 75 ml of Amberlite 200CT (trade name, manufactured by DuPont, USA), which had been regenerated into H-form using 1N dilute hydrochloric acid as a strong acidic cation exchange resin, and 1N tetramethylammonium salt aqueous solution as a strong basic anion exchange resin. 75 ml of Amberlite IRA900J (trade name, manufactured by DuPont, USA), which had been used and regenerated into an OH type, was mixed uniformly. The mixed resin was packed into a vertically set column with an internal volume of 300 ml. After thoroughly washing the filled mixed resin with ion-exchanged water, it was allowed to stand for 24 hours. An aqueous amine solution was prepared by blending monoethanolamine with ion-exchanged water as an alkaline component to be brought into contact with a strongly acidic cation exchange resin. The treatment (contact step 1) was carried out by keeping the prepared aqueous amine solution and the liquid temperature in the column at a constant temperature within the range of 15 to 25 °C, and passing the solution through the column at a space velocity (SV) of 0.8 h -1 . went. The treated ion exchange resin was thoroughly washed with ion exchange water. The sample and the liquid temperature in the column were kept constant within the range of 15 to 25°C, and the sample was passed through the column at a space velocity (SV) of 0.8 h -1 to perform the treatment (contact step 2). Ta. Thereby, the sample was subjected to an ion exchange method to obtain a purified anionic surfactant solution with reduced metal ion concentration.

<実施例3~9>
実施例1と同様にして、表1に記載したアニオン界面活性剤をイオン交換水に溶解したアニオン界面活性剤溶液を調製して、試料とした。表1に示す強酸性カチオン交換樹脂に接触させるアルカリ成分の水溶液を調製し、カラムに充填したイオン交換樹脂に通液し、処理(接触工程1)を行った。表1に示す空間速度で試料をカラムに通液して、処理(接触工程2)を行った。これにより、試料をイオン交換法に供し、金属イオン濃度を低減した精製アニオン界面活性剤溶液を得た。
<Examples 3 to 9>
In the same manner as in Example 1, an anionic surfactant solution in which the anionic surfactants shown in Table 1 were dissolved in ion-exchanged water was prepared and used as a sample. An aqueous solution of an alkaline component to be brought into contact with the strongly acidic cation exchange resin shown in Table 1 was prepared, and the solution was passed through the ion exchange resin packed in a column to perform treatment (contact step 1). The sample was passed through the column at the space velocity shown in Table 1 to perform the treatment (contact step 2). Thereby, the sample was subjected to an ion exchange method to obtain a purified anionic surfactant solution with reduced metal ion concentration.

<比較例1~3>
比較例1では、強酸性カチオン交換樹脂に塩基を接触させる処理(接触工程1)を行わなかったこと以外は、実施例1と同様に行った。比較例2では、強酸性カチオン交換樹脂を用いず、強塩基性アニオン交換樹脂のみによって、表1に示す空間速度で処理を行ったこと以外は、実施例2と同様に行った。比較例3では、実施例1と同じアニオン界面活性剤溶液を調製し、その後の精製処理を行わなかった。
<Comparative Examples 1 to 3>
Comparative Example 1 was carried out in the same manner as Example 1, except that the treatment of contacting the strongly acidic cation exchange resin with a base (contact step 1) was not performed. Comparative Example 2 was carried out in the same manner as in Example 2, except that the treatment was performed using only a strongly basic anion exchange resin without using a strongly acidic cation exchange resin at the space velocity shown in Table 1. In Comparative Example 3, the same anionic surfactant solution as in Example 1 was prepared, and the subsequent purification treatment was not performed.

Figure 2024005489000001
Figure 2024005489000001

表1において、各記号は以下の製品を示す。
CA:アンバーライト200CT(強酸性カチオン交換樹脂、ゲル型、米国デュポン社製)
AN:アンバーライトIRA900J(強塩基性アニオン交換樹脂、ゲル型、米国デュポン社製)
In Table 1, each symbol indicates the following product.
CA: Amberlite 200CT (strongly acidic cation exchange resin, gel type, manufactured by DuPont, USA)
AN: Amberlite IRA900J (strongly basic anion exchange resin, gel type, manufactured by DuPont, USA)

実施例1~9、比較例1~3で得られた精製アニオン界面活性剤溶液について、下記試験方法により、溶液における溶状(析出の有無等)と金属含有量とを評価・測定した。その結果を表2に示す。 Regarding the purified anionic surfactant solutions obtained in Examples 1 to 9 and Comparative Examples 1 to 3, the solubility (presence or absence of precipitation, etc.) and metal content in the solutions were evaluated and measured by the following test method. The results are shown in Table 2.

≪溶状の評価≫
精製アニオン界面活性剤溶液を目視で観察し、析出の有無等を評価した。
≪Evaluation of solution condition≫
The purified anionic surfactant solution was visually observed to evaluate the presence or absence of precipitation.

≪金属含有量≫
精製アニオン界面活性剤溶液を、ファーネス原子吸光光度計AA280Z(アジレント・テクノロジー社製の商品名)を用いたグラファイトファーネス式フレームレス原子化法による原子吸光分析法に供して、金属含有量を測定した。

Figure 2024005489000002
≪Metal content≫
The purified anionic surfactant solution was subjected to atomic absorption spectrometry using a graphite furnace flameless atomization method using a furnace atomic absorption spectrophotometer AA280Z (trade name manufactured by Agilent Technologies) to measure the metal content. .
Figure 2024005489000002

実施例1から9は、精製アニオン界面活性剤溶液の溶状は液状であり、析出は無かった。また、実施例1から9では、精製後の各金属含有量は各金属イオンにおいて100ppb以下に低減されていた。一方、比較例1では、イオン交換樹脂にアルカリ成分を接触させる接触工程1を行わなかったため、精製途中で析出があった。比較例2では、接触工程1においてカチオン交換樹脂を用いずアニオン交換樹脂のみで処理したため、金属含有量が各金属イオンにおいて90~4900ppbもあった。また、イオン交換処理を行っていない比較例3では、金属含有量が各金属イオンにおいて100~5000ppbもあった。 In Examples 1 to 9, the solution state of the purified anionic surfactant solution was liquid, and there was no precipitation. Further, in Examples 1 to 9, the content of each metal after purification was reduced to 100 ppb or less for each metal ion. On the other hand, in Comparative Example 1, since the contact step 1 of bringing the alkali component into contact with the ion exchange resin was not performed, precipitation occurred during purification. In Comparative Example 2, the metal content was as high as 90 to 4900 ppb for each metal ion because the contact step 1 was treated with only an anion exchange resin without using a cation exchange resin. Furthermore, in Comparative Example 3 in which ion exchange treatment was not performed, the metal content was as high as 100 to 5000 ppb for each metal ion.

Claims (7)

強酸性カチオン交換樹脂を含むイオン交換樹脂にアルカリ成分を接触させる接触工程1と、前記接触工程1で得られたイオン交換樹脂にアニオン界面活性剤を接触させる接触工程2と、を含むことを特徴とするアニオン界面活性剤の精製方法。 A contact step 1 in which an alkali component is brought into contact with an ion exchange resin containing a strongly acidic cation exchange resin, and a contact step 2 in which an anionic surfactant is brought into contact with the ion exchange resin obtained in the contact step 1. A method for purifying an anionic surfactant. 前記イオン交換樹脂が、強酸性カチオン交換樹脂のみからなる請求項1に記載の精製方法。 The purification method according to claim 1, wherein the ion exchange resin consists only of a strongly acidic cation exchange resin. 前記イオン交換樹脂が、強酸性カチオン交換樹脂と、強塩基性アニオン交換樹脂、弱塩基性アニオン交換樹脂、弱酸性カチオン交換樹脂、及びキレート交換樹脂から選ばれる少なくとも1つと、の混合樹脂である請求項1に記載の精製方法。 The ion exchange resin is a mixed resin of a strongly acidic cation exchange resin and at least one selected from a strongly basic anion exchange resin, a weakly basic anion exchange resin, a weakly acidic cation exchange resin, and a chelate exchange resin. Item 1. Purification method according to item 1. 前記接触工程1が、強酸性カチオン交換樹脂を含むイオン交換樹脂にアルカリ成分を接触させた後に、更に強塩基性アニオン交換樹脂、弱塩基性アニオン交換樹脂、弱酸性カチオン交換樹脂、及びキレート交換樹脂から選ばれる少なくとも1つを混合させる工程1-1を含む請求項1に記載の精製方法。 After the contacting step 1 brings an alkali component into contact with an ion exchange resin including a strongly acidic cation exchange resin, a strongly basic anion exchange resin, a weakly basic anion exchange resin, a weakly acidic cation exchange resin, and a chelate exchange resin are further added. The purification method according to claim 1, comprising step 1-1 of mixing at least one selected from the following. 前記アニオン界面活性剤が、HLBが20以下の酸成分の中和塩である請求項1~4のいずれか一項に記載の精製方法。 The purification method according to any one of claims 1 to 4, wherein the anionic surfactant is a neutralized salt of an acid component having an HLB of 20 or less. 前記アルカリ成分が、有機アミン、4級アンモニウム塩、及びアンモニアから選ばれる少なくとも1つである請求項1~4のいずれか一項に記載の精製方法。 The purification method according to any one of claims 1 to 4, wherein the alkaline component is at least one selected from organic amines, quaternary ammonium salts, and ammonia. 前記アルカリ成分が、有機アミン、4級アンモニウム塩、及びアンモニアから選ばれる少なくとも1つである請求項5に記載の精製方法。 The purification method according to claim 5, wherein the alkaline component is at least one selected from organic amines, quaternary ammonium salts, and ammonia.
JP2022105689A 2022-06-30 2022-06-30 Method for purifying anionic surfactant Active JP7123463B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022105689A JP7123463B1 (en) 2022-06-30 2022-06-30 Method for purifying anionic surfactant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022105689A JP7123463B1 (en) 2022-06-30 2022-06-30 Method for purifying anionic surfactant

Publications (2)

Publication Number Publication Date
JP7123463B1 JP7123463B1 (en) 2022-08-23
JP2024005489A true JP2024005489A (en) 2024-01-17

Family

ID=82942158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022105689A Active JP7123463B1 (en) 2022-06-30 2022-06-30 Method for purifying anionic surfactant

Country Status (1)

Country Link
JP (1) JP7123463B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117299234B (en) * 2023-11-28 2024-02-13 山东健奕宏生物制药有限公司 Lactitol ion exchange system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059160A (en) * 2000-08-11 2002-02-26 Daikin Ind Ltd Separation method of fluorine-containg anionic surfactant
JP2005213200A (en) * 2004-01-29 2005-08-11 Mitsui Chemicals Inc Method and apparatus for removing metal compound from nonionic surfactant, and application of the apparatus
JP2014508110A (en) * 2010-12-07 2014-04-03 ダウ グローバル テクノロジーズ エルエルシー Method for reducing inorganic substances from anionic surfactant solution
JP2016019958A (en) * 2014-07-16 2016-02-04 株式会社トクヤマ Method for purifying nonionic surfactant
JP2016022473A (en) * 2014-07-25 2016-02-08 竹本油脂株式会社 Purification processing method of betaine type surfactant, and purified betaine type surfactant
JP2017132700A (en) * 2016-01-26 2017-08-03 竹本油脂株式会社 Method for treating nonionic type surfactant and method for producing nonionic type surfactant having reduced metal ion concentration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059160A (en) * 2000-08-11 2002-02-26 Daikin Ind Ltd Separation method of fluorine-containg anionic surfactant
JP2005213200A (en) * 2004-01-29 2005-08-11 Mitsui Chemicals Inc Method and apparatus for removing metal compound from nonionic surfactant, and application of the apparatus
JP2014508110A (en) * 2010-12-07 2014-04-03 ダウ グローバル テクノロジーズ エルエルシー Method for reducing inorganic substances from anionic surfactant solution
JP2016019958A (en) * 2014-07-16 2016-02-04 株式会社トクヤマ Method for purifying nonionic surfactant
JP2016022473A (en) * 2014-07-25 2016-02-08 竹本油脂株式会社 Purification processing method of betaine type surfactant, and purified betaine type surfactant
JP2017132700A (en) * 2016-01-26 2017-08-03 竹本油脂株式会社 Method for treating nonionic type surfactant and method for producing nonionic type surfactant having reduced metal ion concentration

Also Published As

Publication number Publication date
JP7123463B1 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
US8846533B2 (en) Cleaning solution for substrate for semiconductor device
KR100355212B1 (en) Post-washing method
KR101855538B1 (en) Aqueous alkaline cleaning compositions and methods of their use
JP7123463B1 (en) Method for purifying anionic surfactant
TWI827592B (en) Method for removing metals in liquid, and anion exchange resin-mixed h-type chelating resin
KR20160010832A (en) Purification of phosphoric acid
JP2017119234A (en) Process for refining hydrophilic organic solvent
JP5717997B2 (en) Method for producing aqueous tetraalkylammonium salt solution
TW202225131A (en) Method for purifying organic solvent
US5702611A (en) Process for removing heavy metal ions by ion exchange
JPWO2008133322A1 (en) Processing method of developing waste liquid containing tetraalkylammonium ions
KR20190080193A (en) Method for purifying hydrogen peroxide solution using anion exchange resin and cation exchange resin
JP2730610B2 (en) Method for treating wastewater containing organic quaternary ammonium hydroxide
JP4561967B2 (en) Method and apparatus for recovering water from waste water containing tetraalkylammonium ions
JP7403902B1 (en) Method for producing organic sulfonic acid compound
CN101564673B (en) Liquid absorbent for absorbing copper ions
WO2015016230A1 (en) Preparation method of aqueous tetraalkyl ammonium salt solution
JP4081503B2 (en) Mixed bed type ion exchange resin
WO2022102263A1 (en) Purification method and purification apparatus for liquid to be processed containing tetraalkylammonium ions
JP2023059066A (en) Purification method for acid solution
KR102346921B1 (en) Mixed bed ion exchange resin comprising anion exchange resin and cation exchange resin, method for preparing the same and method for purifying hydrogen peroxide solution using the same
WO2024004452A1 (en) Weak base anion exchange resin purification method
JP3963599B2 (en) Acid component removal method
WO2022209392A1 (en) Method for purifying hydrolyzable organic solvent, and method for producing resin for purifying hydrolyzable organic solvent
JP2534861B2 (en) Method for producing high-purity hydrazine hydrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220630

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220803

R150 Certificate of patent or registration of utility model

Ref document number: 7123463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150