JP2024003804A - Inclusion evaluation method - Google Patents

Inclusion evaluation method Download PDF

Info

Publication number
JP2024003804A
JP2024003804A JP2023189584A JP2023189584A JP2024003804A JP 2024003804 A JP2024003804 A JP 2024003804A JP 2023189584 A JP2023189584 A JP 2023189584A JP 2023189584 A JP2023189584 A JP 2023189584A JP 2024003804 A JP2024003804 A JP 2024003804A
Authority
JP
Japan
Prior art keywords
test piece
inclusion
nonmetallic
evaluation method
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023189584A
Other languages
Japanese (ja)
Other versions
JP7408007B1 (en
Inventor
健 鈴木
Takeshi Suzuki
真魅 砂子
Manami Sunako
諄 仁田
Jun Nitta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2023189584A priority Critical patent/JP7408007B1/en
Application granted granted Critical
Publication of JP7408007B1 publication Critical patent/JP7408007B1/en
Publication of JP2024003804A publication Critical patent/JP2024003804A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

To provide an inclusion evaluation method which enables stable evaluation on a metal test piece having hardness less than HV400.SOLUTION: An inclusion evaluation method is provided, comprising: performing heat treatment on a metal test piece including nonmetallic inclusions of 10 μm or more in size to achieve hardness less than HV400; causing hydrogen to penetrate into the test piece with hardness less than HV400; performing a destructive test on the test piece penetrated with hydrogen to cause destruction of the test piece originating from the nonmetallic inclusions of 10 μm or more in size; and measuring dimensions of the nonmetallic inclusions that has originated the destruction.SELECTED DRAWING: Figure 5

Description

この発明は、金属材料中に含まれる介在物について評価する介在物評価方法に関する。 The present invention relates to an inclusion evaluation method for evaluating inclusions contained in a metal material.

金属材料においては、その中に含まれる非金属介在物が疲労破壊の起点となることが知られている。このため、金属材料中に含まれる非金属介在物を評価することは重要である。 It is known that non-metallic inclusions contained in metallic materials become the starting point of fatigue fracture. Therefore, it is important to evaluate nonmetallic inclusions contained in metallic materials.

従来の介在物評価方法としては、特許文献1のように、水素を侵入させた金属材料製の試験片に対して破壊試験としての引張試験を行うものがある。この介在物評価方法では、引張試験によって破壊の起点となった非金属介在物を同定すると共に寸法を測定して評価する。 As a conventional inclusion evaluation method, as in Patent Document 1, there is a method in which a tensile test as a destructive test is performed on a test piece made of a metal material into which hydrogen has penetrated. In this inclusion evaluation method, nonmetallic inclusions that are the origin of fracture are identified by a tensile test, and their dimensions are measured and evaluated.

かかる従来の介在物評価方法では、水素の侵入によって引張試験による非金属介在物を起点とする破壊を生じやすくし、非金属介在物の評価を迅速に行わせることができながら、評価の安定性も確保できる。 In such conventional inclusion evaluation methods, hydrogen penetration tends to cause fractures originating from nonmetallic inclusions in a tensile test, and while it is possible to quickly evaluate nonmetallic inclusions, the stability of the evaluation is can also be secured.

しかし、水素の侵入によって非金属介在物を起点とする破壊が生じやすくなるのは、硬さHV400以上の金属材料製の試験片である。このため、従来の介在物評価方法は、引張試験等の破壊試験に際して大型の引張機が必要になっていた。このため、より小型の装置で簡易的に破壊試験を行える方法が望まれていた。 However, test pieces made of metal materials with hardness of HV400 or higher are more likely to suffer fractures originating from non-metallic inclusions due to the intrusion of hydrogen. For this reason, the conventional inclusion evaluation method requires a large tensile machine for destructive tests such as tensile tests. For this reason, there has been a desire for a method that can easily perform destructive tests using smaller equipment.

特開2009-65789号公報Japanese Patent Application Publication No. 2009-65789

解決しようとする問題点は、破壊試験に際して大型の試験機が必要であった点である。 The problem to be solved is that a large testing machine was required for destructive testing.

本発明は、10μm以上の非金属介在物を含む金属材料製の試験片を熱処理によって硬さHV400未満とし、前記硬さHV400未満の試験片に水素を侵入させ、前記水素を侵入させた試験片に対して破壊試験を行い、前記10μm以上の非金属介在物を起点とする破壊を前記試験片に生じさせ、前記破壊の起点となった非金属介在物の寸法を測定する、介在物評価方法を提供する。 The present invention provides a test piece made of a metal material containing non-metallic inclusions of 10 μm or more, heat-treated to have a hardness of less than HV400, hydrogen penetrated into the test piece having a hardness of less than HV400, and the hydrogen penetrated test piece. A method for evaluating inclusions, in which a destructive test is performed on the specimen, a fracture is caused in the test piece starting from the nonmetallic inclusion of 10 μm or more, and the size of the nonmetallic inclusion that is the origin of the fracture is measured. I will provide a.

本発明は、硬さHV400未満の金属材料製の試験片に対して破壊試験を行うため、より小型の試験機で簡易的に破壊試験を行うことができる。 In the present invention, since a destructive test is performed on a test piece made of a metal material having a hardness of less than HV400, the destructive test can be easily performed using a smaller testing machine.

図1は、本発明の実施例に係る介在物評価方法に用いられる試験片を概略的に示す側面図である。FIG. 1 is a side view schematically showing a test piece used in an inclusion evaluation method according to an example of the present invention. 図2は、実施例に係る焼き戻し温度と試験片の硬さとの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the tempering temperature and the hardness of the test piece according to the example. 図3は、実施例に係る試験片への水素チャージを示す概念図である。FIG. 3 is a conceptual diagram showing hydrogen charging to a test piece according to an example. 図4は、実施例に係る試験片に対する引張試験を示す概念図である。FIG. 4 is a conceptual diagram showing a tensile test on a test piece according to an example. 図5は、実施例に係る非金属介在物の寸法の概念的な極値統計グラフである。FIG. 5 is a conceptual extreme value statistical graph of the dimensions of nonmetallic inclusions according to the example. 図6は、試験片の硬さがHV600、HV500、HV370のそれぞれにおいて、円相当径の分布を示すグラフである。FIG. 6 is a graph showing the distribution of equivalent circle diameters for test pieces with hardnesses of HV600, HV500, and HV370.

本発明は、より小型の試験機で簡易的に破壊試験を行うという目的を、10μm以上の非金属介在物を含む金属材料製の試験片に対し、熱処理によって硬さHV400未満とし、水素を侵入させ、破壊試験を行うことによって実現した。 The purpose of the present invention is to easily perform a destructive test using a smaller testing machine, by heat treating a test piece made of a metal material containing non-metallic inclusions of 10 μm or more to a hardness of less than HV400, and by infiltrating hydrogen. This was achieved by conducting a destructive test.

すなわち、介在物評価方法は、10μm以上の非金属介在物1を含む金属材料製の試験片3を熱処理によって硬さHV400未満とし、硬さHV400未満の試験片3に水素を侵入させ、水素を侵入させた試験片3に対して破壊試験を行い、10μm以上の非金属介在物1を起点とする破壊を試験片3に生じさせ、破壊の起点となった非金属介在物1の寸法を測定する。 That is, in the inclusion evaluation method, a test piece 3 made of a metal material containing a non-metallic inclusion 1 of 10 μm or more is heat-treated to have a hardness of less than HV400, and hydrogen is allowed to penetrate into the test piece 3 having a hardness of less than HV400. A destructive test is performed on the intruded test piece 3, a fracture is caused in the test piece 3 starting from a non-metallic inclusion 1 of 10 μm or more, and the size of the non-metallic inclusion 1 that is the origin of the fracture is measured. do.

介在物評価方法では、破壊の起点となった非金属介在物の種類を同定してもよい。 In the inclusion evaluation method, the type of nonmetallic inclusion that is the origin of the fracture may be identified.

また、介在物評価方法では、破壊の起点となった非金属介在物1の寸法の分布関数を求め、この分布関数により金属材料の清浄度を評価してもよい。 In addition, in the inclusion evaluation method, a distribution function of the dimensions of the non-metallic inclusion 1 that is the starting point of destruction may be determined, and the cleanliness of the metal material may be evaluated using this distribution function.

また、試験片3は、線材から切り出され、線材の外周面によって構成される未加工の外周面3aを有してもよい。この場合、破壊の起点となった非金属介在物1の試験片3の外周面3aからの位置を測定する。 Moreover, the test piece 3 may have an unprocessed outer circumferential surface 3a that is cut out from a wire and constituted by the outer circumferential surface of the wire. In this case, the position of the nonmetallic inclusion 1, which is the starting point of the fracture, from the outer circumferential surface 3a of the test piece 3 is measured.

図1は、本発明の実施例に係る介在物評価方法に用いられる試験片を概略的に示す側面図である。 FIG. 1 is a side view schematically showing a test piece used in an inclusion evaluation method according to an example of the present invention.

本実施例の介在物評価方法では、10μm以上の非金属介在物1(図4)を含む金属材料製の試験片3を、熱処理によって硬さHV400未満とする。 In the inclusion evaluation method of this example, a test piece 3 made of a metal material containing a nonmetallic inclusion 1 (FIG. 4) of 10 μm or more is heat-treated to have a hardness of less than HV400.

本実施例の試験片3は、金属材料としてのばね鋼、例えばSAE9254の線材から切り出されたものである。この試験片3は、線材の形状に応じ、断面円形の棒状である丸棒状となっており、外周面3aが線材の外周面そのままの未加工面となっている。試験片3の軸方向の両側は、つかみ部4を構成する。軸方向とは、試験片3の軸心に沿った方向をいう。 The test piece 3 of this example is cut from a spring steel as a metal material, for example, a SAE9254 wire. This test piece 3 has a round bar shape with a circular cross section in accordance with the shape of the wire rod, and the outer circumferential surface 3a is an unprocessed surface that is the same as the outer circumferential surface of the wire rod. Both sides of the test piece 3 in the axial direction constitute gripping portions 4 . The axial direction refers to the direction along the axis of the test piece 3.

本実施例において、試験片3の軸方向長さは、150mm、試験片3の径は、9.8mm、標点間距離及びつかみ部4の軸方向長さは、それぞれ50mmとなっている。 In this example, the axial length of the test piece 3 is 150 mm, the diameter of the test piece 3 is 9.8 mm, and the distance between gauges and the axial length of the grip portion 4 are each 50 mm.

ただし、試験片3の形状及びサイズはこれに限られるものではない。例えばJIS4号試験片等としてもよい。また、金属材料としては、10μm以上の非金属介在物1を含む金属材料であれば、ばね鋼以外であってもよい。 However, the shape and size of the test piece 3 are not limited to this. For example, it may be a JIS No. 4 test piece. Further, the metal material may be other than spring steel as long as it contains non-metallic inclusions 1 of 10 μm or more.

試験片3が10μm以上の非金属介在物1を含むか否かは、介在物評価方法の適用前において不明であるが、後述の引張試験によって非金属介在物1が起点となって破壊が生じれば、10μm以上の非金属介在物1を含むこととなる。 Although it is unclear before applying the inclusion evaluation method whether the test piece 3 contains non-metallic inclusions 1 with a diameter of 10 μm or more, the tensile test described below shows that fracture occurs starting from the non-metallic inclusions 1. If so, nonmetallic inclusions 1 of 10 μm or more are included.

熱処理は、その結果として試験片3を硬さHV400未満とするものであればよく、金属材料に応じて焼き戻し、焼きなまし、焼きならし、焼き入れ等の適宜のものが採用される。本実施例の熱処理は、焼き戻しであり、硬さHV400以上の試験片3を硬さHV400未満にする。 Any heat treatment may be used as long as the hardness of the test piece 3 is less than HV400, and appropriate heat treatment such as tempering, annealing, normalizing, quenching, etc. may be adopted depending on the metal material. The heat treatment in this example is tempering, and the test piece 3 having a hardness of HV400 or more is made to have a hardness of less than HV400.

図2は、焼き戻し温度と試験片の硬さとの関係を示すグラフである。 FIG. 2 is a graph showing the relationship between tempering temperature and hardness of a test piece.

図2のように、試験片3を400度、455度、580度、700度で焼き戻すと、試験片3の硬さは、それぞれHV600、HV500、HV370、HV280となる。本実施例では、580度で焼き戻して試験片3の硬さをHV370としている。焼き戻し時間は、約30分である。なお、焼き戻し時間は、一例であり、試験片3の材質や焼き戻し温度や硬さ等に応じて適宜設定可能である。図2において、直線は、近似直線である。 As shown in FIG. 2, when the test piece 3 is tempered at 400 degrees, 455 degrees, 580 degrees, and 700 degrees, the hardness of the test piece 3 becomes HV600, HV500, HV370, and HV280, respectively. In this example, the hardness of the test piece 3 is set to HV370 by tempering at 580 degrees. Tempering time is approximately 30 minutes. Note that the tempering time is just an example, and can be set as appropriate depending on the material, tempering temperature, hardness, etc. of the test piece 3. In FIG. 2, the straight line is an approximate straight line.

なお、試験片3の硬さは、HV400未満であればよいので、HV280とし、或いは近似直線に基づき、570度程度で焼き戻して、よりHV400に近づけてもよい。 Note that the hardness of the test piece 3 only needs to be less than HV400, so it may be set to HV280, or it may be tempered at about 570 degrees based on an approximate straight line to bring it closer to HV400.

熱処理によって試験片3の硬さをHV400未満とした後は、その試験片3に水素を侵入させる。以下において、水素を侵入させることを「水素チャージ」と称する。 After the hardness of the test piece 3 is reduced to less than HV400 by heat treatment, hydrogen is allowed to penetrate into the test piece 3. In the following, the intrusion of hydrogen will be referred to as "hydrogen charging."

図3は、試験片3への水素チャージを示す概念図である。 FIG. 3 is a conceptual diagram showing hydrogen charging to the test piece 3.

水素チャージは、図3のように、例えば、水素チャージ用の溶液5に試験片3を所定時間浸漬することで行われる。例えば、試験片3を50℃、20mass%のチオシアン酸アンモニウム水溶液に48時間浸漬する。 Hydrogen charging is performed, for example, by immersing the test piece 3 in a solution 5 for hydrogen charging for a predetermined period of time, as shown in FIG. For example, the test piece 3 is immersed in a 20 mass% ammonium thiocyanate aqueous solution at 50° C. for 48 hours.

なお、水素チャージ方法は、これに限られるものではなく、例えば、試験片3を水素ガスに暴露する方法、塩化ナトリウムとチオシアン酸アンモニウムの水溶液や硫酸と亜ヒ酸の水溶液等の電解液に浸漬しながら電流を印加する方法がある。 Note that the hydrogen charging method is not limited to this, for example, a method of exposing the test piece 3 to hydrogen gas, a method of immersing it in an electrolytic solution such as an aqueous solution of sodium chloride and ammonium thiocyanate, an aqueous solution of sulfuric acid and arsenite, etc. There is a method of applying current while

また、金属材料に水素チャージを行ってから、試験片3を形成してもよい。この場合、水素チャージ前の金属材料を、焼き戻しによってHV400未満としておく。 Alternatively, the test piece 3 may be formed after hydrogen charging the metal material. In this case, the metal material before hydrogen charging is tempered to have an HV of less than 400.

かかる水素チャージと焼き戻しとが10μm以上の非金属介在物1を含む試験片3に対して行われると、次に行われる引張試験において10μm以上の試験片3中最大の非金属介在物1を起点とする破壊が生じやすくなる。 When such hydrogen charging and tempering are performed on the test piece 3 containing nonmetallic inclusions 1 of 10 μm or more, the largest nonmetallic inclusion 1 in the test piece 3 of 10 μm or more will be removed in the next tensile test. Destruction at the starting point is more likely to occur.

引張試験は、水素チャージされた試験片3に対して行われ、10μm以上の非金属介在物1を起点とする破壊を試験片3に生じさせる。なお、引張試験は、水素チャージ後に行うのが好ましいが、水素チャージ中に行ってもよい。また、引張試験に代えて、疲労試験や衝撃試験等の他の破壊試験を行ってもよい。 The tensile test is performed on the hydrogen-charged test piece 3, and the test piece 3 is caused to fracture starting from the nonmetallic inclusions 1 of 10 μm or more. Note that the tensile test is preferably conducted after hydrogen charging, but may be conducted during hydrogen charging. Further, instead of the tensile test, other destructive tests such as a fatigue test or an impact test may be performed.

図4は、試験片3に対する引張試験を示す概念図である。 FIG. 4 is a conceptual diagram showing a tensile test on the test piece 3.

本実施例において、引張試験では、試験片3の両側を把持して引張速度20mm/minで引張り、試験片3の標点間に10μm以上の非金属介在物1を起点とする破壊を生じさせる。なお、非金属介在物1を起点とする破壊とは、試験片3の破面7上に破壊の起点となった非金属介在物1が露出する破壊をいう。 In this example, in the tensile test, both sides of the test piece 3 are gripped and pulled at a tensile speed of 20 mm/min to cause a fracture starting from a nonmetallic inclusion 1 of 10 μm or more between the gauge marks of the test piece 3. . Note that the fracture originating from the nonmetallic inclusion 1 refers to a fracture in which the nonmetallic inclusion 1, which is the origin of the fracture, is exposed on the fracture surface 7 of the test piece 3.

かかる引張試験では、本実施例では、水素チャージ前の試験片3の硬さがHV400未満であるため、水素チャージ前の硬さがHV400以上の場合と比較して、試験機(図示せず)に対する負荷が小さい。結果として、水素チャージ前の硬さがHV400以上の場合に対し、より小型の試験機で簡易的に試験を行うことができ、或いは試験機の保護を図ることができる。 In such a tensile test, in this example, since the hardness of the test piece 3 before hydrogen charging is less than HV400, compared to the case where the hardness before hydrogen charging is HV400 or more, a tester (not shown) was used. The load on it is small. As a result, in cases where the hardness before hydrogen charging is HV400 or higher, the test can be easily performed using a smaller testing machine, or the testing machine can be protected.

試験片3の破壊後は、この破壊の起点となった非金属介在物1の種類を同定する。本実施例の非金属介在物1の種類は、Al-Ca-Si-Mg-O系である。ただし、非金属介在物1の種類は、金属材料によって異なる。 After the test piece 3 is fractured, the type of nonmetallic inclusion 1 that caused the fracture is identified. The type of nonmetallic inclusions 1 in this example is Al--Ca--Si--Mg--O type. However, the type of nonmetallic inclusions 1 differs depending on the metal material.

ここでの同定は、非金属介在物1の種類を一定の確実性をもって特定することをいう。このため、直接、非金属介在物1の成分を検出する同定の他、間接的に同定することも可能である。 Identification here refers to specifying the type of nonmetallic inclusion 1 with a certain degree of certainty. Therefore, in addition to direct identification by detecting the components of the nonmetallic inclusions 1, indirect identification is also possible.

間接的な同定では、例えば、予め同種の金属材料から作成した試験片3に対して水素チャージせずに疲労試験を行い、破壊の起点となった非金属介在物の種類を特定しておき、本実施例の介在物評価方法による非金属介在物1を疲労試験の非金属介在物と同種であると推定してもよい。 In indirect identification, for example, a fatigue test is performed on a test piece 3 made from the same type of metal material in advance without hydrogen charging to identify the type of nonmetallic inclusion that was the origin of the fracture. The nonmetallic inclusions 1 obtained by the inclusion evaluation method of this example may be estimated to be the same type as the nonmetallic inclusions in the fatigue test.

また、複数の同種の試験片3に対して介在物評価方法を適用する場合、一部の試験片3について非金属介在物1の成分を検出し、残りの試験片3については破壊の起点となった非金属介在物1が成分を検出した一部の試験片3の非金属介在物1と同種であると推定してもよい。 In addition, when applying the inclusion evaluation method to multiple test pieces 3 of the same type, the components of nonmetallic inclusions 1 are detected for some of the test pieces 3, and the remaining test pieces 3 are detected as the starting point of fracture. It may be estimated that the nonmetallic inclusions 1 that have become the same as the nonmetallic inclusions 1 of some of the test pieces 3 whose components were detected.

さらに、複数の同種の試験片3に対して介在物評価方法を適用する場合、後述する分布直線9を求め、一部の試験片3について非金属介在物1の成分を検出し、その非金属介在物1が分布直線9の信頼区間に位置するようなとき、それによって残りの試験片3の非金属介在物を成分を検出した一部の試験片3の非金属介在物1と同種であると推定してもよい。 Furthermore, when applying the inclusion evaluation method to multiple test pieces 3 of the same type, the distribution line 9 described later is obtained, the components of the nonmetallic inclusions 1 are detected for some of the test pieces 3, and the nonmetallic When the inclusion 1 is located in the confidence interval of the distribution straight line 9, the nonmetallic inclusions in the remaining test pieces 3 are of the same type as the nonmetallic inclusions 1 in some of the detected test pieces 3. It may be assumed that

また、非金属介在物1の寸法が10μm以上である限り、同種の非金属介在物1であると推定してもよい。つまり、本実施例では、非金属介在物1を実質的に同定しないことも可能である。 Further, as long as the size of the nonmetallic inclusions 1 is 10 μm or more, it may be assumed that the nonmetallic inclusions 1 are of the same type. That is, in this example, it is also possible not to substantially identify the nonmetallic inclusions 1.

かかる同定の前又は後或いは同定に代えて、試験片3の破壊後は、非金属介在物1の寸法の測定が行われる。本実施例において、非金属介在物1の寸法の測定は、電子顕微鏡(SEM)を用いて破面観察を行い、長径、短径、及び円相当径を測定する。 Before or after such identification, or instead of identification, after the test piece 3 is destroyed, the dimensions of the nonmetallic inclusions 1 are measured. In this example, the dimensions of the nonmetallic inclusions 1 are measured by observing the fracture surface using an electron microscope (SEM) and measuring the major axis, minor axis, and equivalent circle diameter.

円相当径は、非金属介在物1と同一の面積を持つ円の直径をいう。なお、円相当径に代えて、長径及び短径による平均径を非金属介在物1の寸法として測定してもよい。 The equivalent circle diameter refers to the diameter of a circle having the same area as the nonmetallic inclusion 1. Note that instead of the equivalent circle diameter, the average diameter of the major axis and the minor axis may be measured as the dimension of the nonmetallic inclusion 1.

このように、本実施例では、破壊の起点となった試験片3中の最大非金属介在物1の寸法を確実に測定することができ、硬さHV400未満の金属材料製の試験片3に対する安定した評価を行うことができる。 In this way, in this example, it is possible to reliably measure the size of the largest non-metallic inclusion 1 in the test piece 3 that was the starting point of fracture, and it is possible to reliably measure the size of the largest non-metallic inclusion 1 in the test piece 3, which is the starting point of fracture. Stable evaluation can be performed.

また、本実施例では、破壊の起点となった試験片3中の最大非金属介在物1の試験片3の外周面3aからの位置を測定する。なお、この位置は、径方向での距離として得る。ここで、試験片3の外周面3aが線材の外周面からなる。このため、本実施例では、線材外周面からの非金属介在物1の位置情報を得ることができる。この位置情報は、従来の材料を各種規格の試験片形状に加工する方法では得られないものである。 Furthermore, in this example, the position of the largest nonmetallic inclusion 1 in the test piece 3, which was the starting point of fracture, from the outer circumferential surface 3a of the test piece 3 is measured. Note that this position is obtained as a distance in the radial direction. Here, the outer circumferential surface 3a of the test piece 3 is made of the outer circumferential surface of a wire rod. Therefore, in this embodiment, positional information of the nonmetallic inclusion 1 from the outer circumferential surface of the wire can be obtained. This positional information cannot be obtained by conventional methods of processing materials into test piece shapes that meet various standards.

本実施例の評価では、さらに測定された非金属介在物1の寸法の分布関数を求め、この分布関数により金属材料の清浄度を評価する。具体的には、極値統計を用いて分布関数としての分布直線を求める。 In the evaluation of this example, a distribution function of the dimensions of the measured nonmetallic inclusions 1 is further determined, and the cleanliness of the metal material is evaluated using this distribution function. Specifically, a distribution straight line as a distribution function is determined using extreme value statistics.

なお、分布関数を求めるに際しては、複数の試験片3に対して、焼戻し、水素チャージ、及び引張試験を行い、破壊の起点となった非金属介在物1の寸法を測定しておく。そして、図5のように縦軸を累積確率とし、同横軸を最大介在物の円相当径として、破壊の起点となった非金属介在物1の寸法をプロットした極値統計グラフを生成する。なお、図5では、極値統計グラフを概念的にのみ示している。 In addition, when determining the distribution function, tempering, hydrogen charging, and tensile testing are performed on a plurality of test pieces 3, and the dimensions of the nonmetallic inclusions 1 that are the origin of fracture are measured. Then, as shown in Fig. 5, an extreme value statistical graph is generated in which the vertical axis is the cumulative probability and the horizontal axis is the equivalent circle diameter of the largest inclusion, and the dimensions of the nonmetallic inclusion 1 that is the origin of the fracture are plotted. . Note that FIG. 5 shows the extreme value statistical graph only conceptually.

この極値統計グラフに基づき、回帰直線としての分布直線9を求めることができる。この分布直線9を用いることで、金属材料中における最大の非金属介在物1の寸法を予測することができる。つまり、金属材料の清浄度を評価できる。清浄度は、金属材料中に含まれる非金属介在物1の度合いをいう。本実施例において、清浄度は、金属材料中の最大の非金属介在物1の寸法で判断する。 Based on this extreme value statistical graph, a distribution line 9 as a regression line can be determined. By using this distribution straight line 9, the size of the largest nonmetallic inclusion 1 in the metal material can be predicted. In other words, the cleanliness of metal materials can be evaluated. The cleanliness refers to the degree of non-metallic inclusions 1 contained in the metal material. In this example, the cleanliness is determined based on the size of the largest nonmetallic inclusion 1 in the metal material.

このようにして、本実施例の介在物評価方法では、疲労試験と同様に、最大の非金属介在物1の正確な予測ができる。すなわち、介在物評価方法は、硬さHV400未満の金属材料製の試験片3に対して試験片3中の最大の非金属介在物1を起点に破壊できる。そして、破壊の起点となった非金属介在物1の寸法を測定することを通じて、安定した評価を行わせることが可能となる。 In this manner, the inclusion evaluation method of this example allows accurate prediction of the largest nonmetallic inclusion 1, similar to the fatigue test. That is, in the inclusion evaluation method, a test piece 3 made of a metal material having a hardness of less than HV400 can be destroyed starting from the largest non-metallic inclusion 1 in the test piece 3. Then, by measuring the dimensions of the nonmetallic inclusions 1 that are the origin of the fracture, it becomes possible to perform stable evaluation.

図6は、試験片3の硬さがHV600、HV500、HV370のそれぞれにおいて、円相当径の分布を示すグラフである。 FIG. 6 is a graph showing the distribution of equivalent circle diameters for test pieces 3 having hardnesses of HV600, HV500, and HV370.

この図6は、硬さがHV600、HV500、HV370のそれぞれにおいて、複数の試験片3を焼き戻し、水素チャージし、引張試験し、測定された非金属介在物1の円相当径をグラフ化したものである。なお、HV600、HV500、HV370のサンプル数は、それぞれ45、15、10である。 FIG. 6 is a graph of the equivalent circular diameters of nonmetallic inclusions 1 measured by tempering, hydrogen charging, and tensile testing a plurality of test pieces 3 with hardnesses of HV600, HV500, and HV370. It is something. Note that the numbers of samples for HV600, HV500, and HV370 are 45, 15, and 10, respectively.

図6の縦軸は、円相当径であり、横軸は、試験片3の硬さであり、グラフ中の数値は、円相当径の平均値を示す。また、グラフ中の誤差範囲は、最大値と最小値の範囲を示す。 The vertical axis of FIG. 6 is the equivalent circle diameter, the horizontal axis is the hardness of the test piece 3, and the numerical values in the graph indicate the average value of the equivalent circle diameter. Furthermore, the error range in the graph indicates the range between the maximum value and the minimum value.

図6のように、HV600、HV500、HV370の何れにおいても、非金属介在物1の寸法の最大値、最小値、及び平均値が同程度となっており、HV400未満でも試験片3中における最大の非金属介在物1の測定がHV400以上と同様に安定してできている。 As shown in Fig. 6, the maximum value, minimum value, and average value of the dimensions of nonmetallic inclusions 1 are approximately the same in all of HV600, HV500, and HV370, and even under HV400, the maximum value in specimen 3 The measurement of non-metallic inclusions 1 is as stable as in the case of HV400 or higher.

なお、HV370は、非金属介在物1の寸法の最大値が43μmであり、最小値が13μmである。このHV370のように、非金属介在物1の寸法が13μm~43μmであると、試験片3の硬さがHV400未満であっても、安定して最大の非金属介在物1を起点とした破壊を生じさせ、起点となった非金属介在物1の寸法を測定可能とする。 In addition, in HV370, the maximum value of the dimension of the nonmetallic inclusion 1 is 43 μm, and the minimum value is 13 μm. If the size of the nonmetallic inclusion 1 is 13 μm to 43 μm, as in this HV370, even if the hardness of the test piece 3 is less than HV400, the fracture will be stable starting from the largest nonmetallic inclusion 1. It is possible to measure the dimensions of the non-metallic inclusion 1 which is the starting point.

この傾向は、非金属介在物1の寸法が10μm以上の範囲において見ることができる。非金属介在物1の寸法の上限は、非金属介在物1が試験片3に含まれ得る限り制限はなく、図示はしないが、例えば非金属介在物1の寸法が500μmであっても、同様の傾向が見られる。 This tendency can be seen in a range where the size of the nonmetallic inclusions 1 is 10 μm or more. There is no upper limit to the size of the non-metallic inclusions 1 as long as the non-metallic inclusions 1 can be included in the test piece 3, and although not shown, even if the size of the non-metallic inclusions 1 is 500 μm, the same A trend can be seen.

1 非金属介在物
3 試験片
1 Nonmetallic inclusions 3 Test piece

しかし、破壊の起点となった非金属介在物の線材外周面からの位置情報は、従来の材料を各種規格の試験片形状に加工する方法では得られなかった。
However , positional information from the outer peripheral surface of the wire of the nonmetallic inclusion that was the origin of the fracture could not be obtained by conventional methods of processing materials into test piece shapes that meet various standards.

解決しようとする問題点は、破壊の起点となった非金属介在物の線材外周面からの位置情報が、従来の材料を各種規格の試験片形状に加工する方法では得られない点である。
The problem to be solved is that positional information from the outer peripheral surface of the wire of nonmetallic inclusions that are the origin of fracture cannot be obtained by conventional methods of processing materials into test piece shapes that meet various standards.

本発明は、非金属介在物を含む線材から切り出され、前記線材の外周面からなる外周面を有する金属材料製の試験片に水素を侵入させ、前記水素を侵入させた試験片に対して破壊試験を行い、前記非金属介在物を起点とする破壊を前記試験片に生じさせ、前記破壊の起点となった非金属介在物の前記試験片の外周面からの位置を測定する、介在物評価方法を提供する。
The present invention involves infiltrating hydrogen into a test piece made of a metal material that is cut out from a wire rod containing non-metallic inclusions and having an outer peripheral surface made of the outer peripheral surface of the wire rod , and destroying the test piece into which the hydrogen has penetrated. Inclusion evaluation, in which a test is performed to cause fracture in the test piece starting from the non-metallic inclusion, and the position of the non-metallic inclusion that is the origin of the fracture from the outer circumferential surface of the test piece is measured. provide a method.

本発明は、破壊の起点となった非金属介在物の線材外周面からの位置情報を得ることができる。
The present invention can obtain positional information from the outer circumferential surface of the wire of the nonmetallic inclusion that is the origin of the fracture .

Claims (4)

非金属介在物を含む線材から切り出され、前記線材の外周面からなる外周面を有する金属材料製の試験片に水素を侵入させ、
前記水素を侵入させた試験片に対して破壊試験を行い、前記非金属介在物を起点とする破壊を前記試験片に生じさせ、
前記破壊の起点となった非金属介在物の前記試験片の外周面からの位置を測定する、 介在物評価方法。
Hydrogen is introduced into a test piece made of a metallic material that is cut from a wire containing non-metallic inclusions and has an outer circumferential surface formed from the outer circumferential surface of the wire;
A destructive test is performed on the test piece into which the hydrogen has penetrated, and the test piece is caused to fracture starting from the non-metallic inclusion,
An inclusion evaluation method, comprising: measuring the position of a nonmetallic inclusion that is the origin of the fracture from the outer peripheral surface of the test piece.
請求項1の介在物評価方法であって、
前記破壊の起点となった非金属介在物の寸法を測定する、
介在物評価方法。
The inclusion evaluation method according to claim 1,
measuring the dimensions of the nonmetallic inclusion that became the origin of the destruction;
Inclusion evaluation method.
請求項1の介在物評価方法であって、
前記破壊の起点となった非金属介在物の種類を同定する、
介在物評価方法。
The inclusion evaluation method according to claim 1,
identifying the type of nonmetallic inclusion that was the origin of the fracture;
Inclusion evaluation method.
請求項2の介在物評価方法であって、
前記破壊の起点となった非金属介在物の寸法の分布関数を求め、この分布関数により前記金属材料の清浄度を評価する、
介在物評価方法。

The inclusion evaluation method according to claim 2,
determining a distribution function of the dimensions of the nonmetallic inclusion that was the origin of the fracture, and evaluating the cleanliness of the metal material based on this distribution function;
Inclusion evaluation method.

JP2023189584A 2022-02-18 2023-11-06 Inclusion evaluation method Active JP7408007B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023189584A JP7408007B1 (en) 2022-02-18 2023-11-06 Inclusion evaluation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022023648A JP2023120677A (en) 2022-02-18 2022-02-18 Inclusion evaluation method
JP2023189584A JP7408007B1 (en) 2022-02-18 2023-11-06 Inclusion evaluation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022023648A Division JP2023120677A (en) 2022-02-18 2022-02-18 Inclusion evaluation method

Publications (2)

Publication Number Publication Date
JP7408007B1 JP7408007B1 (en) 2024-01-04
JP2024003804A true JP2024003804A (en) 2024-01-15

Family

ID=87797281

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022023648A Pending JP2023120677A (en) 2022-02-18 2022-02-18 Inclusion evaluation method
JP2023189584A Active JP7408007B1 (en) 2022-02-18 2023-11-06 Inclusion evaluation method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2022023648A Pending JP2023120677A (en) 2022-02-18 2022-02-18 Inclusion evaluation method

Country Status (1)

Country Link
JP (2) JP2023120677A (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2894987B1 (en) 2005-12-15 2008-03-14 Ascometal Sa SPRING STEEL, AND METHOD OF MANUFACTURING A SPRING USING THE SAME, AND SPRING REALIZED IN SUCH A STEEL
JP5345426B2 (en) 2009-03-18 2013-11-20 日本精工株式会社 Inclusion evaluation method
KR102244896B1 (en) 2019-05-31 2021-04-27 주식회사 포스코 Apparatus and method for torsion test of wire rod
JP7293090B2 (en) 2019-11-15 2023-06-19 山陽特殊製鋼株式会社 Rolling fatigue test method
CN112305192A (en) 2020-10-28 2021-02-02 宝钢特钢韶关有限公司 Method for detecting macroscopic inclusions in steel

Also Published As

Publication number Publication date
JP7408007B1 (en) 2024-01-04
JP2023120677A (en) 2023-08-30

Similar Documents

Publication Publication Date Title
JP5345426B2 (en) Inclusion evaluation method
Nicholas Step loading for very high cycle fatigue
JP2012088241A (en) Delayed fracture characteristic evaluation method for pc steel
KR20020018136A (en) Method of designing a shape, working stress and working conditions of a steel member
Karsch et al. Influence of hydrogen content and microstructure on the fatigue behaviour of steel SAE 52100 in the VHCF regime
JP2013124998A (en) Hydrogen embrittlement resistance characteristic evaluation method for thin steel sheet
Jiang et al. Corrosion fatigue performance of pre‐split steel wires for high strength bridge cables
JP6693130B2 (en) Method for evaluating hydrogen embrittlement resistance
JP7408007B1 (en) Inclusion evaluation method
James et al. Embrittlement failure of 51CrV4 leaf springs
JP2001264240A (en) Hydrogen enblittlement sensitivity evaluation method of steel product and steel product having excellent hydrogen enblittlement resistance
EP3889569B1 (en) Ambient-hydrogen-level assessment method and white-structure-damage-likelihood prediction method
Schumacher et al. Calculation of the fatigue limit of high‐strength steel specimens at different loading conditions based on inclusion sizes
JP2018163148A (en) Method and apparatus for evaluating sulfide stress corrosion cracking of steel material
JP2023127659A (en) Inclusion evaluation method
JP2000329726A (en) Evaluation method for hydrogen embrittlement susceptibility of steel product
US20180010222A1 (en) Nickel-chromium-iron alloys with improved resistance to stress corrosion cracking in nuclear environments
JP6607178B2 (en) Test method for stress corrosion cracking of pipes
JP7295412B2 (en) Evaluation method for metallic materials
KR20140084475A (en) Stress corrosion evaluation method for stainless steel by electrochemical technique
JP7167748B2 (en) Ultrasonic fatigue test specimen and ultrasonic fatigue test method
JP2015059880A (en) Method of estimating hydrogen-induced cracking resistance of calcium-added steel
RU2662479C1 (en) Method of evaluation of the life of steel cases of artillery shells
JP2022133622A (en) Measurement method of diameter of included object included in steel product
JP2015090314A (en) Hydrogen embrittlement prevention method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231107

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231219

R150 Certificate of patent or registration of utility model

Ref document number: 7408007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150