JP2001264240A - Hydrogen enblittlement sensitivity evaluation method of steel product and steel product having excellent hydrogen enblittlement resistance - Google Patents

Hydrogen enblittlement sensitivity evaluation method of steel product and steel product having excellent hydrogen enblittlement resistance

Info

Publication number
JP2001264240A
JP2001264240A JP2000081196A JP2000081196A JP2001264240A JP 2001264240 A JP2001264240 A JP 2001264240A JP 2000081196 A JP2000081196 A JP 2000081196A JP 2000081196 A JP2000081196 A JP 2000081196A JP 2001264240 A JP2001264240 A JP 2001264240A
Authority
JP
Japan
Prior art keywords
hydrogen
steel
steel material
hydrogen embrittlement
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000081196A
Other languages
Japanese (ja)
Other versions
JP3631090B2 (en
Inventor
Fumio Yuse
文雄 湯瀬
Takenori Nakayama
武典 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000081196A priority Critical patent/JP3631090B2/en
Publication of JP2001264240A publication Critical patent/JP2001264240A/en
Application granted granted Critical
Publication of JP3631090B2 publication Critical patent/JP3631090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of executing quick and highly sensitive evaluation of hydrogen embrittlement sensitivity relative to various steel products including a plated steel sheet, and a steel product having excellent hydrogen embrittlement resistance. SOLUTION: Correlation between the quantity of diffused hydrogen existing in a steel and a hydrogen embrittlement risk index H(%) obtained by the undermentiotted equation by a low distortion speed tensile test with a distortion speed below 1×10-4/sec is obtained beforehand relative to the same kind of steel product as a steel product which is an evaluation object. The quantity of diffused hydrogen existing in the steel of the steel product which is the evaluation object is measured, and a hydrogen embrittlement risk of the steel product is evaluated from the correlation based on the measured diffused hydrogen quantity. In the case of a plated steel sheet, anode electrolysis of a plating coat is preferably executed in alkali solution with pH of 10 or more before measurement of the diffused hydrogen quantity to dissolve and remove the coat. In the undermentioned equation, E0 is an elongation at the breaking time of a test piece of a steel product including substantially no diffusible hydrogen in the steel, and E1 is an elongation at the breaking time of a test piece of a steel product including diffused hydrogen in the steel. H(%)=100×(1-E1/E0).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、自動車関係ではバ
ンパー,ドアの補強部材など、土木建築関係では足場
材,ボルト等の締結部材など、あるいはタイヤスチール
コードや橋梁用ケーブルなどの各種ケーブル,ワイヤ材
など、軽量でかつ高強度、高耐食性が要求される各種高
強度鋼材における水素脆化の危険度を評価する方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variety of cables and wires, such as bumpers and door reinforcing members for automobiles, scaffolding materials and bolts for civil engineering and construction, and tire steel cords and bridge cables. The present invention relates to a method for evaluating the risk of hydrogen embrittlement in various high-strength steel materials, such as materials, which are required to be lightweight, have high strength and high corrosion resistance.

【0002】[0002]

【従来の技術】近年、自動車の燃費向上のため車体の軽
量化が進み、バンパー、ドア等の補強部材などに高強度
薄鋼板の採用が検討されるようになってきた。高強度化
の流れは、鋼構造物の大形化を招来し、これに伴い継ぎ
手の接合強度の向上が求められ、ボルト等の締結治具類
にも高強度化が求められている。また、タイヤスチール
コードや橋梁用ケーブルなどの各種ケーブル、ワイヤ材
なども同様の傾向がある。
2. Description of the Related Art In recent years, the weight of a vehicle body has been reduced in order to improve the fuel efficiency of an automobile, and the use of a high-strength thin steel plate for a reinforcing member such as a bumper or a door has been studied. The trend of increasing the strength leads to an increase in the size of the steel structure, and accordingly, an improvement in the joint strength of the joint is required, and a higher strength is also required for fastening jigs such as bolts. Also, various cables such as tire steel cords and bridge cables, and wire materials have the same tendency.

【0003】しかし、高強度鋼は、主に腐食環境下で実
機使用中の腐食反応にともなって鋼中に浸入する水素に
起因した水素脆化(遅れ破壊)が問題となる。また、薄
肉高強度化のために材料自体の耐食性向上が求められ、
その目的のために鋼板の表面に亜鉛めっきなどのめっき
皮膜を形成すると、さらに脆化が起こりやすくなること
が知られている。例えば、電気めっきでは、めっき前の
酸洗工程及びめっき工程などで、陰極反応により発生す
る水素が鋼板中に浸入し、また溶融めっきの場合では、
そのラインの加熱雰囲気中の水素が鋼板中に浸入し、い
ずれにおいても鋼板中に浸入した水素によって水素脆化
(めっき脆化)が引き起こされる。従って、実機使用を
検討する際に、水素脆化感受性(鋼中水素による脆化の
危険度)を評価することは非常に重要である。
However, high-strength steels have a problem of hydrogen embrittlement (delayed fracture) due to hydrogen entering the steels mainly due to a corrosion reaction during actual use in a corrosive environment. In addition, the corrosion resistance of the material itself is required to improve the thinness and strength,
It is known that when a plating film such as zinc plating is formed on the surface of a steel sheet for that purpose, embrittlement is more likely to occur. For example, in electroplating, hydrogen generated by the cathodic reaction in the pickling step and plating step before plating enters the steel sheet, and in the case of hot-dip plating,
Hydrogen in the heating atmosphere of the line penetrates into the steel sheet, and in any case, hydrogen infiltration into the steel sheet causes hydrogen embrittlement (plating embrittlement). Therefore, it is very important to evaluate the hydrogen embrittlement susceptibility (the risk of embrittlement by hydrogen in steel) when studying the use of an actual machine.

【0004】水素脆化感受性は、従来から定歪み試験法
や、定荷重試験法における破断時間などによって評価さ
れてきたが、最近の研究で、水素脆化に関与する水素は
拡散性水素と呼ばれる、室温で鋼中を拡散できる水素と
考えられるようになった。このため、特開平2−267
243号、特開平5−255738号、特開平6−25
745号に記載されているように、鋼中水素量は真空加
熱法により測定されるようになった。
[0004] The hydrogen embrittlement susceptibility has been conventionally evaluated by the breaking time in a constant strain test method or a constant load test method, but in recent studies, hydrogen involved in hydrogen embrittlement is called diffusible hydrogen. And hydrogen that can diffuse through steel at room temperature. For this reason, Japanese Patent Application Laid-Open No. 2-267
No. 243, JP-A-5-255736, JP-A-6-25
As described in No. 745, the amount of hydrogen in steel has been measured by the vacuum heating method.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記方
法により鋼中の拡散性水素量を測定して、これによって
水素脆化感受性を評価しても、水素脆化が原因と考えら
れる亜鉛めっきボルトなどの破断事故例は絶えない。こ
のことから、従来の水素脆化感受性評価試験では正確で
実用的な評価がなされていないことがわかる。
However, even when the amount of diffusible hydrogen in steel is measured by the above-described method and the susceptibility to hydrogen embrittlement is evaluated by using the method, galvanized bolts and the like which are considered to be caused by hydrogen embrittlement can be obtained. There have been many breakage accidents. This indicates that accurate and practical evaluation has not been performed in the conventional hydrogen embrittlement susceptibility evaluation test.

【0006】その理由は以下のように考えられる。従来
の鋼中水素分析では、例えば亜鉛めっき鋼材などでは、
亜鉛めっき皮膜が形成されたまま分析されるので、めっ
き処理の際にめっき皮膜中に導入された多量の水素が測
定された水素量に含まれてしまい、測定水素量が水素脆
化に関与する鋼中拡散性水素を正確に反映していない。
また、めっき皮膜を除去することも行われているが、除
去方法が機械的除去や酸浸漬による溶解に依っている。
機械的除去の場合、研磨や研削の際に発生した熱により
鋼中の水素が放出されてしまう。また、ボルトやネジな
どの複雑な形状の対象材では除去に限界がある。一方、
酸浸漬による溶解では、腐食による水素が発生する。い
ずれの場合も正確な鋼中の拡散性水素の分析ができてい
ない。
The reason is considered as follows. In conventional analysis of hydrogen in steel, for example, for galvanized steel,
Since the analysis is performed while the zinc plating film is formed, a large amount of hydrogen introduced into the plating film during the plating treatment is included in the measured hydrogen amount, and the measured hydrogen amount contributes to hydrogen embrittlement. Does not accurately reflect diffusible hydrogen in steel.
Although the plating film is also removed, the removal method depends on mechanical removal or dissolution by acid immersion.
In the case of mechanical removal, the heat generated during polishing or grinding releases hydrogen in the steel. In addition, there is a limit in removal of a target material having a complicated shape such as a bolt or a screw. on the other hand,
Dissolution by acid immersion generates hydrogen by corrosion. In any case, accurate analysis of diffusible hydrogen in steel has not been performed.

【0007】また、鋼中の水素量が正確に測定されたと
しても、従来の水素脆化感受性評価試験は、定歪み法、
定荷重法、実際にボルトを締め付ける実体試験によって
行われていたため、次の問題がある。評価に長時間を有
し、また評価に多数の試験片が必要である。さらに、め
っき処理や実機使用時に浸入するような微量な水素量で
は、試験片が破断に至らないので水素脆化による危険度
が判断し難い。
[0007] Even if the amount of hydrogen in steel is accurately measured, the conventional hydrogen embrittlement susceptibility evaluation test uses a constant strain method,
The following problems arise because the test was performed by the constant load method and the actual test of actually tightening the bolts. The evaluation has a long time and a large number of test pieces are required for the evaluation. Furthermore, when the amount of hydrogen is so small as to enter during plating or actual use, the test piece does not break, and it is difficult to determine the degree of risk due to hydrogen embrittlement.

【0008】図3は、1380MPa強度の鋼板(○、
●)、1180MPa強度の鋼板(△、▲)、780M
Pa強度の鋼板(□、■)について、従来法で求めた鋼
中の拡散性水素量とループ型定歪み試験による破断まで
の時間との関係を示したものであり、図中の●、▲、■
で示した鋼中拡散性水素量では水素脆化により破断した
が、拡散性水素量が0.1ppm 程度以下の微量な範囲で
は、100hrかけて試験しても、いずれの材料も破断
せず、一応水素脆化が起こらないものとされる。しか
し、実際には水素脆化により破断するものがあり、従来
法では正確には水素脆化感受性を評価できないことがわ
かる。
FIG. 3 shows a steel plate having a strength of 1380 MPa (○,
●) Steel plate with 1180 MPa strength (△, ▲), 780M
The graph shows the relationship between the amount of diffusible hydrogen in steel obtained by the conventional method and the time until fracture in a loop-type constant strain test for steel sheets (□, Δ) with Pa strength. , ■
In the case of the amount of diffusible hydrogen in steel indicated by, fracture occurred due to hydrogen embrittlement, but in the minute range where the amount of diffusible hydrogen was about 0.1 ppm or less, even when tested for 100 hours, none of the materials broke, It is assumed that hydrogen embrittlement does not occur temporarily. However, in fact, there are some fractures due to hydrogen embrittlement, and it is understood that hydrogen embrittlement susceptibility cannot be accurately evaluated by the conventional method.

【0009】上記図3の結果は、以下の試験によって得
たものである。焼き入れ焼き戻し処理により引張強さを
1380MPa、1180MPa、780MPa前後に
変化させた厚さ1.5mmの高張力鋼板に電気亜鉛めっき
処理を行い、めっき鋼板試料を作製した。めっき条件
は、陰極電流効率を変化させる目的で硫酸浴を用い、浴
温:室温〜50℃、電流密度:0.1〜100A/dm
2、pH:1〜5と変化させて行った。その後、得られ
ためっき鋼板を酸(塩酸)浸漬してめっき皮膜を溶解除
去した後、真空加熱法(昇温速度:12℃/min )にて
鋼中の水素量を測定した。一方、前記めっき鋼板から試
験片を採取し、ループ型定歪み遅れ破壊試験機を使用し
て、応力(引張強さの0.9倍)を負荷し、100hr
を限度として破断時間を測定した。前記定歪み遅れ破壊
試験機は、従来からボルト試験などで行われているもの
である。
The results shown in FIG. 3 are obtained by the following tests. An electrogalvanizing process was performed on a 1.5 mm-thick high-strength steel sheet whose tensile strength was changed to about 1380 MPa, 1180 MPa, or 780 MPa by quenching and tempering to prepare a plated steel sheet sample. The plating conditions were such that a sulfuric acid bath was used for the purpose of changing the cathode current efficiency, bath temperature: room temperature to 50 ° C., current density: 0.1 to 100 A / dm.
2. The pH was changed from 1 to 5. Thereafter, the obtained plated steel sheet was immersed in acid (hydrochloric acid) to dissolve and remove the plating film, and then the amount of hydrogen in the steel was measured by a vacuum heating method (heating rate: 12 ° C./min). On the other hand, a test piece was sampled from the plated steel sheet and subjected to a stress (0.9 times the tensile strength) using a loop-type constant-strain delayed fracture tester for 100 hours.
The rupture time was measured up to the limit. The constant strain delay fracture tester has been conventionally performed by a bolt test or the like.

【0010】本発明は、上記問題に鑑みなされたもの
で、めっき鋼板を含む各種鋼材に対して、迅速かつ高感
度の水素脆化感受性を評価することができる方法、およ
び耐水素脆性に優れた鋼材を提供することを目的とする
ものである。
The present invention has been made in view of the above-mentioned problems, and provides a method capable of quickly and highly sensitively evaluating hydrogen embrittlement susceptibility of various steel materials including plated steel sheets, and an excellent hydrogen embrittlement resistance. It is intended to provide a steel material.

【0011】[0011]

【課題を解決するための手段】本発明の鋼材の水素脆化
感受性評価方法は、請求項1に記載したように、予め評
価対象である鋼材と同種の鋼材について、鋼中に存在す
る拡散水素量と、歪み速度が1×10-4/sec 以下の低
歪み速度引っ張り試験によって下記式で求めた水素脆化
危険度指数(%)との相関関係を求めておき、評価対象
である鋼材の鋼中に存在する拡散水素量を測定し、測定
した拡散水素量に基づいて前記相関関係からこの鋼材の
水素脆化危険度を評価する方法である。 水素脆化危険度指数(%)=100×(1−E1/E
0) ここで、E0は実質的に鋼中に拡散性水素を含まない鋼
材の試験片の破断時の伸び、E1は鋼中に拡散水素を含
む鋼材の試験片の破断時の伸びである。
According to the method for evaluating the hydrogen embrittlement susceptibility of a steel material according to the present invention, as set forth in claim 1, for a steel material of the same kind as a steel material to be evaluated in advance, the diffusion hydrogen existing in the steel is determined. The correlation between the amount and the hydrogen embrittlement risk index (%) determined by the following equation by a low strain rate tensile test having a strain rate of 1 × 10 −4 / sec or less was determined, and the steel material to be evaluated was evaluated. This is a method of measuring the amount of diffused hydrogen present in steel and evaluating the risk of hydrogen embrittlement of the steel material from the correlation based on the measured amount of diffused hydrogen. Hydrogen embrittlement risk index (%) = 100 × (1-E1 / E)
0) Here, E0 is the elongation at break of a steel test piece substantially containing no diffusible hydrogen in steel, and E1 is the elongation at break of a steel test piece containing diffusible hydrogen in steel.

【0012】前記鋼中の拡散水素量は、鋼材を室温から
250℃まで1〜20℃/minの昇温速度で昇温する
間に放出される水素の全量とするのがよい。また、拡散
水素量は質量分析計を用いて昇温分析により測定するこ
とが好ましい。
The amount of diffused hydrogen in the steel is preferably the total amount of hydrogen released while the temperature of the steel is raised from room temperature to 250 ° C. at a rate of 1 to 20 ° C./min. Further, it is preferable that the amount of diffused hydrogen is measured by a temperature rising analysis using a mass spectrometer.

【0013】めっき皮膜が被覆されためっき鋼材の場
合、請求項4に記載したように、鋼中の拡散水素量を測
定するに際し、測定前にめっき皮膜をpH10以上のア
ルカリ溶液中でアノード電解して溶解除去することが好
ましい。めっき鋼材としては、引張り強さTS≧780
Mpa以上で、めっき皮膜が亜鉛又は亜鉛合金によって
形成された鋼材が含まれる。
In the case of a plated steel material coated with a plating film, when measuring the amount of diffused hydrogen in the steel as described in claim 4, the plating film is subjected to anodic electrolysis in an alkaline solution having a pH of 10 or more before the measurement. It is preferred to dissolve away. For plated steel, tensile strength TS ≧ 780
Includes steel materials with a plating film of Mpa or more and formed of zinc or a zinc alloy.

【0014】また、本発明の耐水素脆性に優れた鋼材
は、請求項6に記載したように、TS≧780Mpa以
上で、亜鉛又は亜鉛合金めっき皮膜が形成されためっき
鋼材であって、請求項4に記載した水素脆化感受性評価
方法によって水素脆化危険度指数が30%以下と評価さ
れたものである。
Further, the steel material excellent in hydrogen embrittlement resistance according to the present invention is, as described in claim 6, a plated steel material having TS ≧ 780 Mpa or more and having a zinc or zinc alloy plating film formed thereon. According to the hydrogen embrittlement susceptibility evaluation method described in 4, the hydrogen embrittlement risk index was evaluated to be 30% or less.

【0015】[0015]

【発明の実施の形態】発明者らは、めっき皮膜の有無や
種類、下地の鋼材組成や成分などによらず、水素脆化に
影響を及ぼす鋼中の拡散性水素の正確な定量方法を確立
し、それにより鋼材の水素脆化を正確に迅速に評価でき
る方法、ひいては、優れた耐水素脆化を確実に発揮しう
るような鋼材の開発を期して研究を進めた結果、 (1) 鋼中の拡散性水素量の正確な定量 (2) 微量水素含有鋼材の短時間での高感度の水素脆化感
受性評価試験法を確立するに至り、本発明を完成したも
のである。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors have established an accurate method for quantifying diffusible hydrogen in steel, which affects hydrogen embrittlement, irrespective of the presence or absence and type of plating film and the composition and composition of the underlying steel material. As a result, we conducted a study to develop a method that can accurately and quickly evaluate hydrogen embrittlement of steel materials, and furthermore, develop steel materials that can reliably exhibit excellent hydrogen embrittlement resistance. Accurate determination of the amount of diffusible hydrogen in steel (2) The present invention has been completed by establishing a highly sensitive test method for evaluating hydrogen embrittlement susceptibility of steel containing trace amounts of hydrogen in a short time.

【0016】まず、鋼中の拡散性水素量の測定方法につ
いて説明する。本測定で重要な点は、測定する水素量は
鋼材中の拡散性水素である点であり、この水素量は、好
ましくは室温から250℃まで昇温速度を1〜20℃/
min として昇温分析を行い、昇温する間に放出される水
素の全量とするのがよい。具体的な測定手法としては、
質量分析計にて昇温分析を行い、前記温度範囲で放出さ
れる水素の積分値を拡散性水素量とすればよい。
First, a method for measuring the amount of diffusible hydrogen in steel will be described. An important point in this measurement is that the amount of hydrogen to be measured is diffusible hydrogen in the steel material, and the amount of hydrogen is preferably increased at a rate of 1 to 20 ° C / min from room temperature to 250 ° C.
It is preferable to perform the temperature rise analysis as min and to use the total amount of hydrogen released during the temperature rise. As a specific measurement method,
A mass spectrometer may be used to perform temperature rising analysis, and the integrated value of hydrogen released in the above temperature range may be defined as the amount of diffusible hydrogen.

【0017】昇温分析の際の昇温速度として1〜20℃
/min が推奨されるのは、1℃/min 未満では分析時間
が遅すぎて効率が悪く、一方20℃/min 超では鋼材の
内部からの水素放出が不十分となるからである。また、
250℃までの放出量を測定するのは、250℃超で放
出される水素は、室温で鋼中を拡散できないため、水素
脆化には関与しないと考えられるからである。
The temperature rise rate in the temperature rise analysis is 1 to 20 ° C.
The reason why / min is recommended is that if it is less than 1 ° C / min, the analysis time is too slow and the efficiency is low, while if it exceeds 20 ° C / min, the hydrogen release from the inside of the steel becomes insufficient. Also,
The release amount up to 250 ° C. is measured because hydrogen released above 250 ° C. cannot diffuse into steel at room temperature and is considered not to be involved in hydrogen embrittlement.

【0018】放出水素量を測定する手法としては、グリ
セリン法等の方法もあるが、高い測定精度が得られる質
量分析計を用いることが好ましい。特に、大気圧イオン
化質量分析計(APIMS)は好適である。この質量分
析計は、大気圧の下でArガス雰囲気中で水素を検出す
るものであるが、大気圧下で測定することができるため
に、一般的な真空雰囲気で水素を検出する質量分析計と
異なり、真空引きに要する時間が省けるうえ、真空引き
時における鋼材からの水素放出を抑制できる利点があ
り、検出精度に優れる。
As a method for measuring the amount of released hydrogen, there is a method such as a glycerin method, but it is preferable to use a mass spectrometer capable of obtaining high measurement accuracy. In particular, an atmospheric pressure ionization mass spectrometer (APIMS) is suitable. This mass spectrometer detects hydrogen in an Ar gas atmosphere under atmospheric pressure. However, since it can be measured under atmospheric pressure, a mass spectrometer that detects hydrogen in a general vacuum atmosphere is used. Unlike this, the time required for evacuation can be saved, and there is an advantage that the release of hydrogen from the steel material during evacuation can be suppressed, and the detection accuracy is excellent.

【0019】ところで、例えば亜鉛めっき皮膜等のめっ
き皮膜を有する鋼材では、めっき皮膜そのものにも非常
に多量の水素が含まれており、皮膜と鋼材とを同時に測
定すれば、水素脆化に関与する鋼中の拡散性水素量を求
めることができない。このため、本発明では、めっき皮
膜を有する鋼材については、めっき皮膜を除去して鋼中
の拡散性水素量を測定することが必要である。
Incidentally, in a steel material having a plating film such as a zinc plating film, a very large amount of hydrogen is also contained in the plating film itself, and if the film and the steel material are measured simultaneously, they are involved in hydrogen embrittlement. The amount of diffusible hydrogen in steel cannot be determined. Therefore, in the present invention, it is necessary to measure the amount of diffusible hydrogen in the steel after removing the plating film from the steel material having the plating film.

【0020】めっき皮膜の除去方法としては、pH10
以上のアルカリ溶液中でのアノード電解によって溶解除
去することが好ましい。pHを10以上とするのは、p
H10以上のアルカリ溶液では鋼材が腐食しないために
水素発生を伴わないからである。この場合、pHの上限
としてはpH14、より好ましくはpH13.5とする
ことが望ましい。また、アノード電解によれば、電流密
度などを制御することによりめっき皮膜の厚さや性状が
異なっても皮膜をきれいに除去することができる。すな
わち、単にアルカリ溶液に浸漬するだけでは、めっきネ
ジのネジ底部等の微小凹部に付着しためっき皮膜は除去
できないが、アノード電解によれば電位や電流を制御す
ることにより、かかる部分のめっき皮膜も容易に除去す
ることができる。
[0020] As a method of removing the plating film, the pH 10
It is preferable to dissolve and remove by anodic electrolysis in the above alkaline solution. The reason for setting the pH to 10 or more is that p
This is because an alkaline solution of H10 or more does not cause hydrogen generation because the steel material does not corrode. In this case, the upper limit of the pH is desirably pH 14, more preferably pH 13.5. Further, according to the anodic electrolysis, even if the thickness and properties of the plating film are different by controlling the current density and the like, the film can be removed cleanly. In other words, simply immersing in an alkaline solution cannot remove the plating film adhered to the minute recesses such as the screw bottom of the plating screw. However, according to the anodic electrolysis, the plating film in such a portion can also be removed by controlling the potential and current. It can be easily removed.

【0021】次に、微量水素を含有した鋼材の水素脆化
の危険度に対する短時間、高感度の評価試験法について
説明する。本発明では、低歪み速度引っ張り試験法(S
SRT)を行い、下記式にて定義される水素脆化危険度
指数(%)によって水素脆化感受性を評価する。 水素脆化危険度指数(%)=100×(1−E1/E
0) ここで、E0は実質的に鋼中に拡散水素を含まない鋼材
の試験片の破断時の伸び、E1は鋼中に拡散水素を含む
鋼材の試験片の破断時の伸びである。
Next, a short-time and high-sensitivity evaluation test method for the danger of hydrogen embrittlement of a steel material containing a trace amount of hydrogen will be described. In the present invention, the low strain rate tensile test method (S
SRT) to evaluate the hydrogen embrittlement susceptibility according to the hydrogen embrittlement risk index (%) defined by the following equation. Hydrogen embrittlement risk index (%) = 100 × (1-E1 / E)
0) Here, E0 is the elongation at break of a test piece of a steel material containing substantially no diffused hydrogen in steel, and E1 is the elongation at break of a test piece of a steel material containing diffused hydrogen in the steel.

【0022】SSRTは負荷応力を増加させながら試験
片を破断させるために、定加重試験法、定歪み試験法と
異なり、短時間で迅速かつ高感度に水素脆化に対する危
険度を評価することができる。SSRT試験片の形状
は、板状、棒状、切り欠きの有無などいずれの形状でも
よいが、破断領域となる試験片の平行部における歪み速
度が1×10-4/sec 以下の歪み速度を用いる。この歪
み速度を超える速度で試験を行うと感受性が低下する。
一方、歪み速度は遅いほど感受性が向上するため遅いほ
うが良いが、試験効率を考慮して適宜決定することがで
きる。なお、水素脆化危険度指数は、試験片の伸びを測
定して、破断時の伸び値を用いて算出するようにした
が、棒状試験片を用いる場合では、伸び値の代わりに絞
り値を用いることができる。
The SSRT is different from the constant weight test method and the constant strain test method in that the risk of hydrogen embrittlement can be quickly and quickly evaluated with high sensitivity, unlike the constant load test method and the constant strain test method, in order to break the test piece while increasing the applied stress. it can. The shape of the SSRT test piece may be any shape such as a plate shape, a bar shape, and the presence or absence of a notch, but a strain rate of 1 × 10 −4 / sec or less in a parallel portion of the test piece to be a fracture area is used. . Testing at rates above this strain rate will reduce sensitivity.
On the other hand, the lower the strain rate, the better the sensitivity because the sensitivity is improved. However, the strain rate can be appropriately determined in consideration of the test efficiency. The hydrogen embrittlement risk index was calculated by measuring the elongation of the test piece and using the elongation value at break.However, when a rod-shaped test piece was used, the aperture value was changed to the elongation value instead of the elongation value. Can be used.

【0023】評価対象の鋼材と同種(成分、組織、機械
的特性が同等)の鋼材について鋼中の拡散性水素量を種
々変化させた試験鋼材を準備し、この試験鋼材について
上記SSRTを行うことによって、この種の鋼材におけ
る鋼中の拡散性水素量と水素脆化危険度指数(%)との
相関関係が求まる。この相関関係は図(グラフ)で示す
ことができる。一旦、前記相関係が求まれば、それ以降
は同種の鋼材については、適宜、評価すべき鋼材の鋼中
の拡散性水素量を前記手法で測定するだけで、水素脆化
危険度指数を容易に知ることができ、水素脆化感受性評
価を迅速、正確に行うことができる。
[0023] For a steel material of the same type (equivalent in composition, structure, and mechanical properties) as the steel material to be evaluated, a test steel material in which the amount of diffusible hydrogen in the steel is variously changed is prepared, and the SSRT is performed on the test steel material. Thus, a correlation between the amount of diffusible hydrogen in the steel and the hydrogen embrittlement risk index (%) in this type of steel is obtained. This correlation can be shown in a diagram (graph). Once the phase relationship is determined, for the same type of steel material thereafter, the hydrogen embrittlement risk index can be easily determined by appropriately measuring the amount of diffusible hydrogen in the steel of the steel material to be evaluated by the method described above. The hydrogen embrittlement susceptibility can be quickly and accurately evaluated.

【0024】例えば、亜鉛めっき工場では、予め母材鋼
板について前記相関関係を求めておくことにより、めっ
き後の鋼材の鋼中の拡散性水素量を測定するだけで、水
素脆化危険度指数を直ちに知ることができ、この水素脆
化危険度指数を水素脆化管理指標とすることができる。
For example, in a galvanizing plant, the correlation is determined in advance for a base steel sheet, so that the hydrogen embrittlement risk index can be calculated simply by measuring the amount of diffusible hydrogen in the steel of the plated steel. The hydrogen embrittlement risk index can be used immediately as a hydrogen embrittlement management index.

【0025】具体的には、後述する実施例において得ら
れた図1の相関関係によれば、1380MPa強度の亜
鉛めっき鋼板では、鋼中拡散性水素量を水素脆化を起こ
すか否かの基準指数値(30%)と比較することによ
り、鋼中拡散性水素量を0.05ppm以下にすればよ
いことがわかり、この値以下になるように水素量を管理
すればよい。
More specifically, according to the correlation shown in FIG. 1 obtained in the examples described later, in a galvanized steel sheet having a strength of 1380 MPa, the amount of diffusible hydrogen in the steel is determined by a criterion for determining whether or not hydrogen embrittlement occurs. By comparing with the index value (30%), it is found that the amount of diffusible hydrogen in steel should be set to 0.05 ppm or less, and the amount of hydrogen should be controlled to be equal to or less than this value.

【0026】亜鉛めっき工程中の、鋼中への水素浸入量
を低減させるには、めっき条件、具体的には陰極電流効
率を変化させることが有効である。例えば、めっき工程
中の初期に陰極電流効率を80%以上(望ましくは95
%以上)にし、水素発生を抑えて鋼表面に緻密なめっき
皮膜を形成させることで、水素の鋼材中への浸入を防止
することができる。
In order to reduce the amount of hydrogen penetrating into steel during the galvanizing step, it is effective to change the plating conditions, specifically, the cathode current efficiency. For example, at the initial stage during the plating process, the cathode current efficiency is increased to 80% or more (preferably 95%).
% Or more), and by suppressing the generation of hydrogen to form a dense plating film on the steel surface, it is possible to prevent hydrogen from penetrating into the steel material.

【0027】本発明の水素脆化感受性評価方法によれ
ば、鋼材の成分や組織、まためっきの種類に依存しない
ため、亜鉛(合金)めっき鋼材等の種々の鋼材に対して
水素脆化感受性を有効に評価することができる。さら
に、めっき工程、酸洗い工程で浸入する水素のみなら
ず、実機使用中において鋼材中に浸入する水素のいずれ
の水素に対しても評価することができる。このため、め
っき皮膜のない鋼材に対しても有効である。
According to the method for evaluating susceptibility to hydrogen embrittlement of the present invention, the susceptibility to hydrogen embrittlement of various steel materials, such as zinc (alloy) plated steel, is not dependent on the composition and structure of the steel material and the type of plating. Can be evaluated effectively. Furthermore, it is possible to evaluate not only hydrogen entering in the plating step and the pickling step, but also any hydrogen entering the steel material during actual use. For this reason, it is effective for steel materials without a plating film.

【0028】本発明を利用することにより、従来では評
価できなかった微量の拡散性水素含有鋼材に対しても、
高感度かつ迅速に定量評価が可能となる。そして、使用
する環境下での水素浸入量などを把握することによっ
て、適切な材料の選択が可能となる。また、従来では危
険とされていた高強度鋼材でも本発明によりその水素脆
化感受性を正確に評価することで、実機使用が可能とな
る場合があり、新たな高強度鋼材選択の評価基準として
極めて有効である。
By utilizing the present invention, even a small amount of diffusible hydrogen-containing steel which could not be evaluated conventionally can be used.
Highly sensitive and rapid quantitative evaluation is possible. Then, by grasping the amount of infiltration of hydrogen and the like in the environment of use, it is possible to select an appropriate material. In addition, by accurately evaluating the hydrogen embrittlement susceptibility of the present invention even in a high-strength steel material that has been regarded as dangerous in the past, it may be possible to use the actual machine, and it is extremely useful as an evaluation criterion for selecting a new high-strength steel material. It is valid.

【0029】以下、実施例によって本発明をさらに説明
するが、本発明はかかる実施例によって限定的に解釈さ
れるものではない。
Hereinafter, the present invention will be further described with reference to examples, but the present invention is not construed as being limited to such examples.

【0030】[0030]

【実施例】実施例1 焼き入れ焼き戻し処理により引張強さを1380MP
a、1180MPa、780MPa前後に変化させた厚
さ1.5mmの高張力鋼板に電気亜鉛めっき処理を行い、
めっき鋼板試料を作製した。めっき条件は、陰極電流効
率を変化させる目的で硫酸浴を用い、浴温:室温〜50
℃、電流密度:0.1〜100A/dm2、pH:1〜
5と変化させて行った。
Example 1 Tensile strength of 1380MP by quenching and tempering
a, electrogalvanizing a high-strength steel sheet with a thickness of 1.5 mm changed to around 1180 MPa and 780 MPa,
A plated steel sheet sample was prepared. The plating conditions were such that a sulfuric acid bath was used for the purpose of changing the cathode current efficiency, bath temperature: room temperature to 50.
° C, current density: 0.1-100 A / dm 2 , pH: 1
5 was performed.

【0031】得られためっき鋼板をpH13のNaOH
溶液中でアノード電解を3〜10分間行って、めっき皮
膜を完全に溶解除去した後、大気圧イオン化質量分析計
(APIMS)を用いて室温〜250℃までの昇温分析
(昇温速度12℃/sec)を行い、その間に発生した水素
量(すなわち拡散性水素量)を測定した。また、同めっ
き鋼板試料より試験片を採取し、SSRT(歪み速度:
9.7×10-6/sec)により破断時の伸びを測定し、
水素脆化危険度指数(%)を求めた。
The obtained plated steel sheet was treated with NaOH of pH 13
After performing anodic electrolysis in the solution for 3 to 10 minutes to completely dissolve and remove the plating film, a temperature increase analysis from room temperature to 250 ° C. (at a temperature increase rate of 12 ° C.) using an atmospheric pressure ionization mass spectrometer (APIMS). / sec), and the amount of hydrogen generated during that time (ie, the amount of diffusible hydrogen) was measured. In addition, a test piece was sampled from the plated steel sheet sample and subjected to SSRT (strain rate:
9.7 × 10 −6 / sec) to measure the elongation at break,
The hydrogen embrittlement risk index (%) was determined.

【0032】各強度毎に、拡散性水素量と水素脆化危険
度指数との関係を整理し、グラフにした。その結果を図
1に示す。図中、○,●は1380MPa強度の鋼板
を、△,▲は1180MPa強度の鋼板を、□,■は7
80MPa強度の鋼板を示す。●,▲,■は水素脆化を
起こすか否かの基準指数30%を超える不適格なものを
示す。図1より、従来法では評価できなかった0.1pp
m 以下の低水素量の範囲でも水素脆化感受性を高感度に
定量評価できることがわかる。また、図1より、例えば
1380MPaのめっき鋼板では、鋼中拡散性水素量を
a=0.05ppm以下、1180MPaの鋼板ではb
=0.07ppm以下、780MPaの鋼板ではc=
0.09ppm以下にめっき条件を管理することで、水
素脆化を起こさないめっき鋼板を得ることができること
がわかる。
The relationship between the amount of diffusible hydrogen and the hydrogen embrittlement risk index for each strength was organized and graphed. The result is shown in FIG. In the figure, ○ and ● represent a steel plate having a strength of 1380 MPa, Δ and ▲ represent a steel plate having a strength of 1180 MPa,
1 shows a steel plate of 80 MPa strength. ●, ▲, △ indicate ineligible ones exceeding the reference index of 30% for hydrogen embrittlement. From Fig. 1, 0.1pp which could not be evaluated by the conventional method
It can be seen that the hydrogen embrittlement susceptibility can be quantitatively evaluated with high sensitivity even in the low hydrogen amount range of m or less. Also, from FIG. 1, for example, in a 1380 MPa plated steel sheet, the amount of diffusible hydrogen in the steel is a = 0.05 ppm or less.
= 0.07 ppm or less, c =
It can be seen that by controlling the plating conditions to 0.09 ppm or less, a plated steel sheet free from hydrogen embrittlement can be obtained.

【0033】実施例2 引張強さが1200MPaになるように熱処理条件を調
整して製作したボルトに、めっき条件を変化させて亜鉛
めっきを行い、20本を一組として、締め付け試験を行
った。締め付け直後、室温で4日間放置、7日間放置、
30日放置の段階で、破断しているボルトの数を測定し
た。
Example 2 A bolt manufactured by adjusting the heat treatment conditions so that the tensile strength becomes 1200 MPa was subjected to zinc plating while changing the plating conditions, and a set of 20 bolts was subjected to a tightening test. Immediately after tightening, leave at room temperature for 4 days, leave for 7 days,
At the stage of standing for 30 days, the number of broken bolts was measured.

【0034】一方、同一条件で作製したボルトについ
て、実施例2と同様にして鋼中拡散性水素量と水素脆化
危険度指数との関係を求めた。その結果を表1、図2に
示す。これらの結果より、早期に破断したボルトは水素
脆化危険度指数が高く、30日放置でも破断しないボル
トの水素脆化危険度指数はいずれも30%以下であるこ
とがわかる。この水素脆化危険度指数が30%に相当す
る拡散性水素量は概ね0.07ppm である。これより、
同種のめっきボルトの鋼中拡散水素量を測定し、その値
が0.07ppm 以下であれば水素脆化を起こさないもの
と評価することができる。
On the other hand, for bolts produced under the same conditions, the relationship between the amount of diffusible hydrogen in steel and the hydrogen embrittlement risk index was determined in the same manner as in Example 2. The results are shown in Table 1 and FIG. From these results, it can be seen that the bolts that fractured early have a high hydrogen embrittlement risk index, and the bolts that do not break even after standing for 30 days all have a hydrogen embrittlement risk index of 30% or less. The amount of diffusible hydrogen corresponding to the hydrogen embrittlement risk index of 30% is approximately 0.07 ppm. Than this,
The amount of hydrogen diffused in steel of the same type of plated bolt is measured, and if the value is 0.07 ppm or less, it can be evaluated that hydrogen embrittlement does not occur.

【0035】[0035]

【表1】 [Table 1]

【0036】なお、30日経過後も破断せず、鋼中拡散
性水素量が低い試料は、めっき時の陰極電流効率を高く
したものである。従って、陰極電流効率を制御すること
で鋼中拡散性水素量を制御可能なことがわかる。
The sample which did not break even after 30 days and had a low amount of diffusible hydrogen in steel had a high cathode current efficiency during plating. Therefore, it is understood that the amount of diffusible hydrogen in steel can be controlled by controlling the cathode current efficiency.

【0037】[0037]

【発明の効果】本発明の評価方法によれば、特に引張り
強さが780以上の高強度を有する鋼材に対して、めっ
き皮膜の有無にかかわらず、鋼材の水素脆化感受性を短
期間で高感度かつ定量評価することができ、さらに従来
法では評価できなかった微量の水素量域でも高感度で評
価することができる。このため、本発明の評価方法によ
って得られた水素脆化危険度指数はめっき工場の製造管
理指標として、あるいは実機を構成する鋼材の破断予測
の指標として有効に利用することができる。また、本発
明の鋼材は、水素の浸入が避けられない亜鉛系のめっき
皮膜を有する鋼材でありながら、水素脆化危険度指数が
30%以下であるので、水素脆化を起こさず、高信頼性
の高強度亜鉛系めっき鋼材として利用することができ
る。
According to the evaluation method of the present invention, it is possible to increase the hydrogen embrittlement susceptibility of a steel material in a short time, especially for a steel material having a high tensile strength of 780 or more, regardless of the presence of a plating film. Sensitivity and quantitative evaluation can be performed, and evaluation can be performed with high sensitivity even in a small amount of hydrogen, which cannot be evaluated by the conventional method. For this reason, the hydrogen embrittlement risk index obtained by the evaluation method of the present invention can be effectively used as a production management index of a plating plant or an index of prediction of fracture of a steel material constituting an actual machine. Further, the steel material of the present invention has a hydrogen embrittlement risk index of 30% or less even though it is a steel material having a zinc-based plating film in which infiltration of hydrogen cannot be avoided. It can be used as a high-strength zinc-based galvanized steel material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における鋼中拡散性水素量とSSRT
によって求めた水素脆化危険度指数との関係を3種の鋼
材について示したグラフである。
FIG. 1 shows the amount of diffusible hydrogen in steel and SSRT in Example 1.
Is a graph showing the relationship with the hydrogen embrittlement risk index obtained by the above method for three types of steel materials.

【図2】実施例2のボルト締め付け試験における破断日
数と水素脆化危険度指数との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the number of days to break and the hydrogen embrittlement risk index in the bolt tightening test of Example 2.

【図3】従来法により測定した鋼中拡散性水素量とルー
プ型定歪み試験によって測定した破断時間との関係を示
すグラフである。
FIG. 3 is a graph showing the relationship between the amount of diffusible hydrogen in steel measured by a conventional method and the rupture time measured by a loop-type constant strain test.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G050 AA01 BA04 CA05 DA01 EA01 EC06 2G055 AA03 AA07 BA02 BA14 BA20 CA23 EA01 EA08 FA01 FA06 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G050 AA01 BA04 CA05 DA01 EA01 EC06 2G055 AA03 AA07 BA02 BA14 BA20 CA23 EA01 EA08 FA01 FA06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 予め評価対象である鋼材と同種の鋼材に
ついて、鋼中に存在する拡散水素量と、歪み速度が1×
10-4/sec 以下の低歪み速度引っ張り試験によって下
記式で求めた水素脆化危険度指数(%)との相関関係を
求めておき、 評価対象である鋼材の鋼中に存在する拡散水素量を測定
し、測定した拡散水素量に基づいて前記相関関係からこ
の鋼材の水素脆化危険度を評価する鋼材の水素脆化感受
性評価方法。 水素脆化危険度指数(%)=100×(1−E1/E
0) ここで、E0は実質的に鋼中に拡散性水素を含まない鋼
材の試験片の破断時の伸び、E1は鋼中に拡散水素を含
む鋼材の試験片の破断時の伸びである。
1. For a steel material of the same kind as a steel material to be evaluated in advance, the amount of diffused hydrogen present in the steel and the strain rate are 1 ×
Correlation with the hydrogen embrittlement risk index (%) obtained by the following equation by a low strain rate tensile test of 10 −4 / sec or less is obtained, and the amount of diffused hydrogen present in the steel of the steel material to be evaluated And a method for evaluating hydrogen embrittlement susceptibility of a steel material, wherein the risk of hydrogen embrittlement of the steel material is evaluated from the correlation based on the measured amount of diffused hydrogen. Hydrogen embrittlement risk index (%) = 100 × (1-E1 / E)
0) Here, E0 is the elongation at break of a steel test piece substantially containing no diffusible hydrogen in steel, and E1 is the elongation at break of a steel test piece containing diffusible hydrogen in steel.
【請求項2】 鋼中の拡散水素量は鋼材を室温から25
0℃まで1〜20℃/minの昇温速度で昇温する間に
放出される水素の全量とする請求項1に記載した鋼材の
水素脆化感受性評価方法。
2. The amount of hydrogen diffused in steel is set at room temperature to 25%.
The method for evaluating hydrogen embrittlement susceptibility of steel according to claim 1, wherein the total amount of hydrogen released during heating at a heating rate of 1 to 20 ° C / min up to 0 ° C is defined as the total amount of hydrogen.
【請求項3】 拡散水素量は質量分析計を用いて昇温分
析により測定する請求項2に記載した鋼材の水素脆化感
受性評価方法。
3. The method for evaluating hydrogen embrittlement susceptibility of a steel material according to claim 2, wherein the amount of diffused hydrogen is measured by temperature rise analysis using a mass spectrometer.
【請求項4】 鋼材は表面にめっき皮膜が形成されため
っき鋼材であり、鋼中の拡散水素量を測定するに際し、
測定前にめっき皮膜をpH10以上のアルカリ溶液中で
アノード電解して溶解除去する請求項1〜3のいずれか
1項に記載した鋼材の水素脆化感受性評価方法。
4. A steel material is a plated steel material having a plating film formed on a surface thereof. When measuring the amount of diffused hydrogen in the steel,
The method for evaluating hydrogen embrittlement susceptibility of a steel material according to any one of claims 1 to 3, wherein the plating film is dissolved and removed by anodic electrolysis in an alkaline solution having a pH of 10 or more before the measurement.
【請求項5】 めっき鋼材は、引張り強さTS≧780
Mpa以上で、めっき皮膜が亜鉛又は亜鉛合金によって
形成された鋼材である請求項4に記載した鋼材の水素脆
化感受性評価方法。
5. The plated steel material has a tensile strength TS ≧ 780.
5. The method for evaluating hydrogen embrittlement susceptibility of a steel material according to claim 4, wherein the plating material is a steel material having a Mpa or more and a plating film formed of zinc or a zinc alloy.
【請求項6】 請求項5に記載した方法によって評価さ
れためっき鋼材であって、水素脆化危険度指数が30%
以下である耐水素脆性に優れた鋼材。
6. A plated steel material evaluated by the method according to claim 5, wherein the hydrogen embrittlement risk index is 30%.
The following steel materials with excellent hydrogen embrittlement resistance.
JP2000081196A 2000-03-23 2000-03-23 Method for evaluating susceptibility to hydrogen embrittlement of steel and steel with excellent hydrogen embrittlement resistance Expired - Fee Related JP3631090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000081196A JP3631090B2 (en) 2000-03-23 2000-03-23 Method for evaluating susceptibility to hydrogen embrittlement of steel and steel with excellent hydrogen embrittlement resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000081196A JP3631090B2 (en) 2000-03-23 2000-03-23 Method for evaluating susceptibility to hydrogen embrittlement of steel and steel with excellent hydrogen embrittlement resistance

Publications (2)

Publication Number Publication Date
JP2001264240A true JP2001264240A (en) 2001-09-26
JP3631090B2 JP3631090B2 (en) 2005-03-23

Family

ID=18598162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000081196A Expired - Fee Related JP3631090B2 (en) 2000-03-23 2000-03-23 Method for evaluating susceptibility to hydrogen embrittlement of steel and steel with excellent hydrogen embrittlement resistance

Country Status (1)

Country Link
JP (1) JP3631090B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009955A (en) * 2003-06-18 2005-01-13 National Institute Of Advanced Industrial & Technology Method for deciding austenite stainless steel
JP2006051543A (en) * 2004-07-15 2006-02-23 Nippon Steel Corp Hot press method for high strength automotive member made of cold rolled or hot rolled steel sheet, or al-based plated or zn-based plated steel sheet, and hot pressed parts
JP2007262557A (en) * 2006-03-30 2007-10-11 Jfe Steel Kk Galvanizing solution, galvanization method and method of evaluating hydrogen embrittlement sensitivity of steel product
KR100862850B1 (en) 2007-11-06 2008-10-09 주식회사 포스코 Method for measuring trap activation energy of hydrogen in metal using hydrogen discharging rate with heating
JP2009069004A (en) * 2007-09-13 2009-04-02 Nippon Steel Corp Device and method for evaluating hydrogen embrittlement of thin steel sheet
JP2012047629A (en) * 2010-08-27 2012-03-08 Japan Steel Works Ltd:The Method for evaluating embrittlement sensitivity in high-pressure hydrogen environment of high-strength low-alloy steel
CN102455342A (en) * 2010-11-02 2012-05-16 西安航空动力控制科技有限公司 Method for rapidly testing electroplated hydrogen embrittlement
JP2012159486A (en) * 2011-02-03 2012-08-23 Nippon Telegr & Teleph Corp <Ntt> Hydrogen embrittlement prediction method
JP2014228294A (en) * 2013-05-20 2014-12-08 日本電信電話株式会社 Analytic method
JP2016130638A (en) * 2015-01-13 2016-07-21 日本電信電話株式会社 Method for evaluating hydrogen embrittlement characteristics
CN107014744A (en) * 2017-04-24 2017-08-04 湘潭大学 A kind of Reinforcing Steel Bar In Reinforced Concrete Structure corrosion ratio monitoring device and monitoring method
JP2022072595A (en) * 2020-10-30 2022-05-17 Jfeスチール株式会社 Method of preparing sample for analyzing absorbed hydrogen in steel, analyzing method of absorbed hydrogen in steel, prediction method of brittle deterioration caused by diffusible hydrogen in steel plate, and certification method of steel plate test result
JP2022072594A (en) * 2020-10-30 2022-05-17 Jfeスチール株式会社 Method of preparing sample for analyzing absorbed hydrogen in steel, analyzing method of absorbed hydrogen in steel, prediction method of brittle deterioration caused by diffusible hydrogen in steel plate, and certification method of steel plate test result

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220252490A1 (en) 2019-06-26 2022-08-11 Nippon Telegraph And Telephone Corporation Evaluation Method for Hydrogen Embrittlement of Rebar

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009955A (en) * 2003-06-18 2005-01-13 National Institute Of Advanced Industrial & Technology Method for deciding austenite stainless steel
JP2006051543A (en) * 2004-07-15 2006-02-23 Nippon Steel Corp Hot press method for high strength automotive member made of cold rolled or hot rolled steel sheet, or al-based plated or zn-based plated steel sheet, and hot pressed parts
JP2007262557A (en) * 2006-03-30 2007-10-11 Jfe Steel Kk Galvanizing solution, galvanization method and method of evaluating hydrogen embrittlement sensitivity of steel product
JP2009069004A (en) * 2007-09-13 2009-04-02 Nippon Steel Corp Device and method for evaluating hydrogen embrittlement of thin steel sheet
KR100862850B1 (en) 2007-11-06 2008-10-09 주식회사 포스코 Method for measuring trap activation energy of hydrogen in metal using hydrogen discharging rate with heating
JP2012047629A (en) * 2010-08-27 2012-03-08 Japan Steel Works Ltd:The Method for evaluating embrittlement sensitivity in high-pressure hydrogen environment of high-strength low-alloy steel
CN102455342A (en) * 2010-11-02 2012-05-16 西安航空动力控制科技有限公司 Method for rapidly testing electroplated hydrogen embrittlement
JP2012159486A (en) * 2011-02-03 2012-08-23 Nippon Telegr & Teleph Corp <Ntt> Hydrogen embrittlement prediction method
JP2014228294A (en) * 2013-05-20 2014-12-08 日本電信電話株式会社 Analytic method
JP2016130638A (en) * 2015-01-13 2016-07-21 日本電信電話株式会社 Method for evaluating hydrogen embrittlement characteristics
CN107014744A (en) * 2017-04-24 2017-08-04 湘潭大学 A kind of Reinforcing Steel Bar In Reinforced Concrete Structure corrosion ratio monitoring device and monitoring method
CN107014744B (en) * 2017-04-24 2019-06-18 湘潭大学 A kind of Reinforcing Steel Bar In Reinforced Concrete Structure corrosion ratio monitoring device and monitoring method
JP2022072595A (en) * 2020-10-30 2022-05-17 Jfeスチール株式会社 Method of preparing sample for analyzing absorbed hydrogen in steel, analyzing method of absorbed hydrogen in steel, prediction method of brittle deterioration caused by diffusible hydrogen in steel plate, and certification method of steel plate test result
JP2022072594A (en) * 2020-10-30 2022-05-17 Jfeスチール株式会社 Method of preparing sample for analyzing absorbed hydrogen in steel, analyzing method of absorbed hydrogen in steel, prediction method of brittle deterioration caused by diffusible hydrogen in steel plate, and certification method of steel plate test result
JP7327353B2 (en) 2020-10-30 2023-08-16 Jfeスチール株式会社 Method for preparing samples for hydrogen analysis in steel, method for analyzing hydrogen in steel, method for predicting brittle deterioration of steel plate due to diffusible hydrogen, and method for verifying inspection results of steel plate
JP7380523B2 (en) 2020-10-30 2023-11-15 Jfeスチール株式会社 Method for preparing samples for hydrogen analysis in steel, method for hydrogen analysis in steel, method for predicting brittle deterioration due to diffusible hydrogen in steel sheets, and method for certifying inspection results for steel sheets

Also Published As

Publication number Publication date
JP3631090B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
JP3631090B2 (en) Method for evaluating susceptibility to hydrogen embrittlement of steel and steel with excellent hydrogen embrittlement resistance
Allely et al. Anticorrosion mechanisms of aluminized steel for hot stamping
Venezuela et al. Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions
AU2014240655B2 (en) Hot-dip Al-Zn alloy coated steel sheet and method for producing same
JP5777098B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
JP2009069008A (en) Test piece for steel sheet hydrogen embrittlement evaluation, and steel sheet hydrogen embrittlement evaluation method
JP2016180658A (en) Method for evaluating delayed fracture property of metal material and metal material
Shibayama et al. An evaluation method for hydrogen embrittlement of high strength steel sheets using U-bend specimens
WO2019186940A1 (en) Evaluation method of hydrogen embrittlement characteristics
JP6128102B2 (en) Method for evaluating delayed fracture characteristics of metal material and metal material
JP4872407B2 (en) Zinc plating solution, galvanizing method, and evaluation method for hydrogen embrittlement susceptibility of steel
JP4823991B2 (en) Evaluation method for hydrogen embrittlement of thin steel sheet
JP4519680B2 (en) Accelerated testing method for stress corrosion cracking
Deng et al. Effect of Zn addition on the stress corrosion cracking of as-cast BCC Mg-11Li based alloys
Zhang Evaluation of susceptibility to hydrogen embrittlement—A rising step load testing method
JP2018159701A (en) Evaluation method of hydrogen embrittlement resistance
JP2013044716A (en) Method for measuring amount of hydrogen penetrated into metal and method for monitoring amount of hydrogen penetrated into metal portion of moving body
JP2008203218A (en) Method for evaluating delayed fracture resistance of high-strength molten zinc plated steel plate
KR102305208B1 (en) Method of measuring bonding strength of coated steel sheet using tensile test
Conde et al. Stress corrosion cracking behaviour of 8090 Al–Li alloy at 313 K. The effect of grain structure
WO2019186898A1 (en) Method for evaluating hydrogen embrittlement characteristics
Puiggali et al. A critical study of stress corrosion cracking testing methods for stainless steels in hot chloride media
JP5821586B2 (en) Evaluation method of delayed fracture characteristics of high strength steel sheet
Stevenson Formability of Galvanized Steels-Revisited
Groeneveld et al. Mechanical testing methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees