JP2005009955A - Method for deciding austenite stainless steel - Google Patents

Method for deciding austenite stainless steel Download PDF

Info

Publication number
JP2005009955A
JP2005009955A JP2003172974A JP2003172974A JP2005009955A JP 2005009955 A JP2005009955 A JP 2005009955A JP 2003172974 A JP2003172974 A JP 2003172974A JP 2003172974 A JP2003172974 A JP 2003172974A JP 2005009955 A JP2005009955 A JP 2005009955A
Authority
JP
Japan
Prior art keywords
stainless steel
hydrogen environment
embrittlement
austenitic stainless
environment embrittlement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003172974A
Other languages
Japanese (ja)
Other versions
JP3867142B2 (en
Inventor
Kiyoshi Yokogawa
清志 横川
Seiji Fukuyama
誠司 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003172974A priority Critical patent/JP3867142B2/en
Publication of JP2005009955A publication Critical patent/JP2005009955A/en
Application granted granted Critical
Publication of JP3867142B2 publication Critical patent/JP3867142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the efficiency of research development or the like, by estimating the hydrogen environmental embrittlement of austenite stainless steel, based on chemical components to efficiently decide the same. <P>SOLUTION: The hydrogen environmental embrittlement index defined by calculation equation (1) is calculated to estimate the degree of the hydrogen environmental embrittlement of austenite stainless steel caused by hydrogen gas. Herein, in the calculation equation (1), Ni(%), Cr(%), Mo(%), Mn(%) and Si(%) are the weight percentages of the chemical components of austenite stainless steel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水素環境下でのオーステナイト系ステンレス鋼の判定方法である。更に詳しくは、例えば水素環境下で使用されるオーステナイト系ステンレス鋼を効率的に開発したいとき、水素環境下での機械的性質を予測し判定するためのオーステナイト系ステンレス鋼の判定方法に関する。
【0002】
【従来の技術】
ステンレス鋼は、錆びにくい等の特徴から、エネルギー分野を始めあらゆる分野に使用されている。ステンレス鋼は、表面に形成される薄い緻密な不働態皮膜により耐食性を有している。しかし、このステンレス鋼の環境脆化現象は、色々な形態で現れている。水素ガス雰囲気はもとより、一般に水分を含む環境下においては、この水分により発生する水素が脆化の主因と考えられている。又、硫化水素等の場合もある。
【0003】
しかし、ステンレス鋼中に含まれる水素の量は、極微量であること等から十分な研究がなされていない。従って、その化学成分依存性は、公知のNi成分説とNi当量説によっていた。水素環境脆化については、特にマルテンサイト変態でNi当量説が有力視され、この計算式(2)、(3)の結果を当てはめ、水素環境脆化を予測し判定を行っている。
【0004】

Figure 2005009955
一般に、化学成分による指標は、例えば、硫化水素環境下においての耐食性等を考慮したステンレス鋼管の開発もなされている(特許文献1,2参照)。
【0005】
【特許文献1】
特開2000−303148号公報
【特許文献2】
特開平8−176742号公報
【0006】
【発明が解決しようとする課題】
しかしながら、前記した従来の水素脆環境下の脆化判定方法は、実情に合うものではなく、計算上の結果と事例との間で相違することが多く修正を繰り返しているのが原状であり、この結果、現状の予測判定方法は、確実性に乏しいものとなっている。そのため、試験回数を多くし、実情に近い計算式を求める努力がなされているが、研究開発コスト低減を図るには試験回数(サンプルの種類、数量等)を少なくすることが望ましい。
【0007】
水素環境下である脆化特性を備えたオーステナイト系ステンレス鋼を効率的に開発したとき、理想的にはその脆化の状態を正確に予測し、そのステンレス鋼の化学成分の選定、成分比等が選択がなされることであり、そのためにその予測が確実なものであることが望ましい。特に、Ni当量説において、後述するように、水素環境下のオーステナイト系ステンレス鋼に適用する場合は、炭素と窒素の影響には依存していないのが実情である。本発明は、前述した課題を解決するために以下の目的を達成する。
【0008】
本発明の目的は、オーステナイト系ステンレス鋼の水素環境脆化を化学成分で予測し評価・判定するためのオーステナイト系ステンレス鋼の判定方法を提供することにある。
本発明の他の目的は、水素環境脆化の評価・判定効率を高めて実験検証の回数を少なくできるオーステナイト系ステンレス鋼の判定方法を提供することにある。
【0009】
【課題を解決するための手段】
発明1のオーステナイト系ステンレス鋼の判定方法は、水素環境下にあるオーステナイト系ステンレス鋼の脆化を判定する方法であって、
Figure 2005009955
ただし、Ni(%)、Cr(%)、Mo(%)、Mn(%)、及びSi(%)は、前記オーステナイト系ステンレス鋼の化学成分の重量%を意味し、
前記計算式(1)により定義される水素環境脆化指標を求め、
この水素環境脆化指標にもとづき前記オーステナイト系ステンレス鋼が水素ガス雰囲気により脆化する水素環境脆化の程度を予測し判定することを特徴としている。
【0010】
発明2のオーステナイト系ステンレス鋼の判定方法は、発明1において、前記オーステナイト系ステンレス鋼の水素環境脆化は、歪誘起マルテンサイト変態に依存することを特徴としている。
【0011】
本発明の発明者は、オーステナイト系ステンレス鋼の水素環境脆化特性を研究してきた結果、オーステナイト系ステンレス鋼の水素環境脆化は、歪誘起マルテンサイト変態に原因があることが判明した。これによると、歪誘起マルテンサイト変態はオーステナイト相の安定度に依存し、又、オーステナイト相の安定度はNi当量に依存する。しかし、オーステナイト系ステンレス鋼の水素環境脆化を前述のNi当量説で単純に予測するのは困難であった。
【0012】
特に炭素・窒素の元素は、オーステナイト相を安定化させ、歪誘起マルテンサイト変態を抑制させることは知られている。しかし、本発明は、炭素・窒素の添加は水素環境脆化を必ずしも改善しないことを、即ち、オーステナイト系ステンレス鋼の水素環境脆化は炭素・窒素に単純に依存していないことを明らかにし、新たな方法を提案するものである。
【0013】
【発明の実施の形態】
以下、本発明の水素環境脆化指標を導き出した過程を実施の形態として図表に基づいて詳細に説明する。図1は、本発明の計算式(1)にもとづき、市販のオーステナイト系ステンレス鋼の水素環境脆化の程度を表した図である。図1の縦軸は水素環境脆化度(通常不活性ガス雰囲気中での引張破断時の断面収縮率で水素環境中での破断時の断面収縮率を除したもの)を示し、横軸は計算式(1)で定義した水素環境脆化指標を示す。この図1によれば、水素環境脆化度は水素環境脆化指標が増加すると1.0に近づき、水素環境脆化は小さくなっている。図1の水素環境脆化度の値が1.0は脆化が無いことを示し、水素環境脆化度の値が1.0より小さくなるに従い脆化の程度は大きくなることを示している。
【0014】
この水素環境脆化度の変化の傾向は、程度の差はあるものの水素環境脆化指標の%増加に伴い、水素環境脆化度は途中で減少することなく1.0に近くなる傾向を示している。水素環境脆化指標値が大きくなるなるに従って、水素環境脆化が無くなる傾向に変化していることを意味している。即ち水素環境脆化指標が増加しある一定値以上になると、水素環境脆化度が定常状態に変化する傾向を示しこれは実情にも合っている。
【0015】
図2は、市販のオーステナイト系ステンレス鋼の水素環境脆化度を温度の影響による程度を示す図であり、各種鋼材におけるデータをプロットしたものである。図2の横軸は試験環境温度であり、縦軸は水素環境脆化度を示す。この図2のSUS304ステンレス鋼1、SUS304(S)(SUS304を鋭敏化熱処理したもの)ステンレス鋼2を例にとると、温度の上昇とともに脆化が大きくなり、150K近傍で脆化が急激に大きくなる変節過程を示し、200K近傍が最大となっている。この傾向は、他の鋼材についても同様である。
【0016】
次に、図2で示された鋼材の最大温度である200Kにおける水素環境脆化度に及ぼす前記計算式(2)のNi当量の影響を図3に示す。図2の縦軸は水素環境脆化度を示し、横軸は計算式(2)で定義した水素環境脆化指標を示す。これによると、Ni当量の増加とともに水素環境脆化度は1.0に近づき、水素環境脆化は小さくなる傾向にはあるが、Ni当量が28%近傍で水素環境脆化度の値が一旦1.0より小さい方向に変化し、途中で水素環境脆化は一時的に大きくなっている。
【0017】
この結果は、従来の計算式(2)の指標は実際の水素環境脆化の変化と合わない疑念の持たれる結果となっている。Ni当量の増加に伴う水素環境脆化度は、常に同方向の変化の関係になっていない。即ち、Ni当量を水素環境下におけるオーステナイト系ステンレス鋼に適用することは、指標として不適切であることを意味している。次にNi当量に関わる炭素含有量の影響についての検証結果を説明する。
【0018】
オーストナイト系ステンレス鋼の水素環境脆化に及ぼす炭素及び窒素の影響を調べるために、11%Ni・17%Cr・2%Mo型オーステナイト系ステンレス鋼を母合金としてそれぞれ炭素、窒素を添加して水素環境脆化試験を行った。母合金の歪誘起マルテンサイト変態に及ぼす炭素・窒素の影響としては、いずれの添加もオーステナイト相を安定化する効果を示し、前述した計算式(3)で表すNi当量の式の傾向を示した。水素環境脆化に及ぼす炭素の影響を図4に示す。図4の縦軸は水素環境脆化度を示し、横軸は計算式(3)で定義したNi当量を示す。比較のために炭素・窒素を添加していないオーステナイト系ステンレス鋼の水素環境脆化も示した。炭素添加により脆化の小さくなるNi当量が小さくなっている。
【0019】
又、水素環境脆化に及ぼす窒素の影響を図5に示す。図5の縦軸は水素環境脆化度を示し、横軸は計算式(3)で定義したNi当量を示す。比較のために炭素・窒素を添加していないオーステナイト系ステンレス鋼の水素環境脆化も示した。炭素とは異なり、脆化は窒素量の増加とともに緩やかに小さくなっている。このように、オーステナト系ステンレス鋼の水素環境脆化に及ぼす炭素及び窒素の影響は、単純な歪誘起マルテンサイト変態異存性でないことが検証できる。
【0020】
以上のことから、オーステナイト系ステンレス鋼の水素環境脆化は、歪誘起マルテンサイト変態に原因はあるものの、単に歪誘起マルテンサイト変態の大小のみでは決定することはできない。これは、炭素、窒素を含有するNi当量では、決まらないことを意味している。本発明は、これらを解決し水素環境脆化の程度が歪誘起マルテンサイト変態に依存し、その大小で判定できるようにしている。
【0021】
本発明は、数多くの化学成分を持つオーステナイト系ステンレス鋼の水素環境脆化を簡単便に評価する尺度として、特異な成分異存性を示す炭素・窒素を除いた化学成分によるNi当量を用いた水素環境脆計算式を提案するものである。この結果は、図1に示すとおり、計算式(1)に従った水素環境脆化指標による水素環境脆化度が、水素環境脆化指標の増加とともに常に1.0に近づく傾向、即ち水素環境脆化が小さくなることを示している。結果的に、この計算式(1)の水素環境脆化指標は、指標として水素環境脆化挙動をよく示す結果となり、正確な予測が可能となる。
【0022】
【実施例】
図6は、本発明による水素環境脆化指標にもとづいて、新たに溶製したオーステナイト系ステンレス鋼の歪誘起マルテンサイト変態に及ぼす温度の影響を示したものである。溶製したオーステナイト系ステンレス鋼は、17Cr−2MoをベースにNiを11〜20%加え、残りがFeからなるものであり、炭素(0.001%)と窒素(0.001〜0.02%)は最低値にしたものである。このオーステナイト系ステンレス鋼の水素環境脆化指標は、24%〜34%の範囲となった。
【0023】
図6の横軸は温度を示し、縦軸は歪誘起マルテンサイトをフエライト量で換算したフェライト相当量を示す。歪誘起マルテンサイト変態は水素環境脆化指標の増加とともに、変態開始温度及び最大変態量の減少が認められ、水素環境脆化指標は、歪誘起マルテンサイト変態もよく対応したものとなっている。
【0024】
図7は、図6に示した溶製したオーステナイト系ステンレス鋼の水素環境脆化に及ぼす水素環境脆化指標の影響を示した一例であり、温度200Kにおける値をプロットしたものである。このプロットされた溶製したオーステナイト系ステンレス鋼は、17Cr−2MoをベースにNiを10〜15%加え、残りがFeからなるものであり、炭素と窒素は最低値にしたものである。このオーステナイト系ステンレス鋼の水素環境脆化は、24%〜29%の範囲となった。図7の縦軸は水素環境脆化温度を示し、横軸は本発明の水素環境脆化指標を示す。水素環境脆化指標の増加とともに常に減少し、水素環境脆化指標が27%で水素環境脆化度が1.0になり、水素環境脆化が無くなっている。このように、本発明の水素環境脆化指標は、オーステナイト系ステンレス鋼の水素環境脆化挙動によく対応している。
【0025】
【発明の効果】
本発明のオーステナイト系ステンレス鋼の判定方法は、広くオーステナイト系ステンレス鋼の水素環境脆化の程度を予測する判定方法であって、水素環境脆化指標は、水素環境脆化によく対応した計算式となった。このため、予測判定を効率よく行うことができることとなったために従来に比し実験回数を減少させることができる。この結果、所望の特性を備えたオーステナイト系ステンレス鋼を開発するとき、実験効率の向上が図れるので開発速度が速くなる。
【図面の簡単な説明】
【図1】図1は、本発明に関わり、市販のオーステナイト系ステンレス鋼の水素環境脆化に及ぼす水素環境脆化指標の影響を示した図である。
【図2】図2は、市販のオーステナイト系ステンレス鋼の水素環境脆化に及ぼす温度の影響を示した図である。
【図3】図3は、市販のオーステナイト系ステンレス鋼の水素環境脆化に及ぼすNi当量の影響を示した図である。
【図4】図4は、オーステナイト系ステンレス鋼の水素環境脆化に及ぼす炭素含有量の影響を示した図である。
【図5】図5は、オーステナイト系ステンレス鋼の水素環境脆化に及ぼす窒素含有量の影響を示した図である。
【図6】図6は、水素環境脆化指標にもとづいて溶製したオーステナイト系ステンレス鋼の歪誘起マルテンサイト変態に及ぼす温度の影響を示した図である。
【図7】図7は、水素環境脆化最大温度である200Kにおける溶製したオーステナイト系ステンレス鋼の水素環境脆化度に及ぼす水素環境脆化指標の影響を示した図である。
【符号の説明】
1…SUS304ステンレス鋼
2…SUS304(S)ステンレス鋼[0001]
BACKGROUND OF THE INVENTION
The present invention is a method for determining austenitic stainless steel in a hydrogen environment. More specifically, for example, when it is desired to efficiently develop austenitic stainless steel used in a hydrogen environment, the present invention relates to a method for determining austenitic stainless steel for predicting and determining mechanical properties in a hydrogen environment.
[0002]
[Prior art]
Stainless steel is used in various fields including the energy field because of its features such as resistance to rust. Stainless steel has corrosion resistance due to a thin dense passive film formed on the surface. However, the environmental embrittlement phenomenon of stainless steel appears in various forms. In an environment containing moisture as well as a hydrogen gas atmosphere, hydrogen generated by this moisture is considered to be the main cause of embrittlement. There are also cases such as hydrogen sulfide.
[0003]
However, the amount of hydrogen contained in stainless steel has not been sufficiently studied because it is extremely small. Therefore, the chemical component dependency was based on the known Ni component theory and Ni equivalent theory. Regarding hydrogen environment embrittlement, the Ni equivalent theory is considered to be particularly prominent in the martensitic transformation, and the results of the calculation formulas (2) and (3) are applied to predict and judge the hydrogen environment embrittlement.
[0004]
Figure 2005009955
In general, as an index based on chemical components, for example, a stainless steel pipe has been developed in consideration of corrosion resistance in a hydrogen sulfide environment (see Patent Documents 1 and 2).
[0005]
[Patent Document 1]
JP 2000-303148 A [Patent Document 2]
JP-A-8-176742 [0006]
[Problems to be solved by the invention]
However, the conventional embrittlement determination method under the hydrogen embrittlement environment described above does not match the actual situation, and it is the original state that there are many differences between the calculation result and the case and the correction is repeated. As a result, the current prediction determination method has poor certainty. For this reason, efforts have been made to increase the number of tests and obtain a calculation formula that is close to the actual situation, but it is desirable to reduce the number of tests (sample type, quantity, etc.) in order to reduce research and development costs.
[0007]
When an austenitic stainless steel with the embrittlement characteristics under a hydrogen environment is efficiently developed, ideally the state of the embrittlement is accurately predicted, the chemical composition of the stainless steel, the component ratio, etc. It is desirable that the prediction is reliable. In particular, in the Ni equivalent theory, as described later, when applied to an austenitic stainless steel in a hydrogen environment, the actual situation is not dependent on the influence of carbon and nitrogen. The present invention achieves the following objects in order to solve the aforementioned problems.
[0008]
An object of the present invention is to provide a method for judging austenitic stainless steel for predicting, evaluating and judging hydrogen environment embrittlement of austenitic stainless steel by chemical components.
Another object of the present invention is to provide a method for determining austenitic stainless steel that can increase the evaluation / determination efficiency of hydrogen environment embrittlement and reduce the number of experimental verifications.
[0009]
[Means for Solving the Problems]
The determination method of the austenitic stainless steel of the invention 1 is a method for determining embrittlement of the austenitic stainless steel in a hydrogen environment,
Figure 2005009955
However, Ni (%), Cr (%), Mo (%), Mn (%), and Si (%) mean the weight percent of the chemical component of the austenitic stainless steel,
A hydrogen environment embrittlement index defined by the calculation formula (1) is obtained,
Based on this hydrogen environment embrittlement index, the austenitic stainless steel is characterized by predicting and judging the degree of hydrogen environment embrittlement in which the austenitic stainless steel is embrittled in a hydrogen gas atmosphere.
[0010]
The determination method of the austenitic stainless steel of the invention 2 is characterized in that, in the invention 1, hydrogen environment embrittlement of the austenitic stainless steel depends on a strain-induced martensitic transformation.
[0011]
As a result of studying the hydrogen environment embrittlement characteristics of austenitic stainless steel, the inventors of the present invention have found that the hydrogen environment embrittlement of austenitic stainless steel is caused by strain-induced martensitic transformation. According to this, the strain-induced martensitic transformation depends on the stability of the austenite phase, and the stability of the austenite phase depends on the Ni equivalent. However, it has been difficult to simply predict hydrogen environment embrittlement of austenitic stainless steel by the Ni equivalent theory described above.
[0012]
In particular, it is known that carbon / nitrogen elements stabilize the austenite phase and suppress strain-induced martensitic transformation. However, the present invention reveals that the addition of carbon and nitrogen does not necessarily improve the hydrogen environment embrittlement, that is, the hydrogen environment embrittlement of austenitic stainless steel does not simply depend on carbon and nitrogen, A new method is proposed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the process of deriving the hydrogen environment embrittlement index of the present invention will be described in detail with reference to the drawings as an embodiment. FIG. 1 is a view showing the degree of hydrogen environment embrittlement of a commercially available austenitic stainless steel based on the calculation formula (1) of the present invention. The vertical axis in FIG. 1 indicates the degree of hydrogen environment embrittlement (usually, the cross-sectional shrinkage at the time of fracture in a hydrogen environment divided by the cross-sectional shrinkage at the time of tensile fracture in an inert gas atmosphere). The hydrogen environment embrittlement index defined by the calculation formula (1) is shown. According to FIG. 1, the degree of hydrogen environment embrittlement approaches 1.0 as the hydrogen environment embrittlement index increases, and the hydrogen environment embrittlement decreases. The hydrogen environment embrittlement value 1.0 in FIG. 1 indicates that there is no embrittlement, and the degree of embrittlement increases as the hydrogen environment embrittlement value decreases from 1.0. .
[0014]
The tendency of the change in the degree of hydrogen embrittlement shows that the degree of hydrogen environment embrittlement tends to be close to 1.0 without decreasing along the way as the hydrogen environment embrittlement index increases by%. ing. This means that as the hydrogen environment embrittlement index value increases, the hydrogen environment embrittlement tends to disappear. That is, when the hydrogen environment embrittlement index increases to a certain value or more, the hydrogen environment embrittlement degree tends to change to a steady state, which matches the actual situation.
[0015]
FIG. 2 is a diagram showing the degree of hydrogen environment embrittlement of commercially available austenitic stainless steel due to the influence of temperature, and plots data for various steel materials. The horizontal axis in FIG. 2 represents the test environment temperature, and the vertical axis represents the degree of hydrogen environment embrittlement. Taking SUS304 stainless steel 1 and SUS304 (S) (sensitized heat-treated SUS304) stainless steel 2 in FIG. 2 as an example, the embrittlement increases with increasing temperature, and the embrittlement increases rapidly at around 150K. The transition process is shown, and the vicinity of 200K is the maximum. This tendency is the same for other steel materials.
[0016]
Next, FIG. 3 shows the influence of the Ni equivalent in the calculation formula (2) on the degree of hydrogen environment embrittlement at 200 K, which is the maximum temperature of the steel shown in FIG. The vertical axis in FIG. 2 indicates the degree of hydrogen environment embrittlement, and the horizontal axis indicates the hydrogen environment embrittlement index defined by the calculation formula (2). According to this, as the Ni equivalent increases, the hydrogen environment embrittlement degree approaches 1.0 and the hydrogen environment embrittlement tends to decrease. However, when the Ni equivalent is near 28%, the value of the hydrogen environment embrittlement degree once increases. It changes in a direction smaller than 1.0, and hydrogen environment embrittlement temporarily increases in the middle.
[0017]
As a result, there is a suspicion that the index of the conventional formula (2) does not match the actual change in hydrogen embrittlement. The degree of hydrogen environment embrittlement associated with an increase in Ni equivalent is not always in the same direction of change. That is, applying Ni equivalent to austenitic stainless steel in a hydrogen environment means that it is inappropriate as an index. Next, the verification result about the influence of the carbon content related to Ni equivalent will be described.
[0018]
In order to investigate the influence of carbon and nitrogen on hydrogen environment embrittlement of austenitic stainless steel, carbon and nitrogen were added to 11% Ni / 17% Cr / 2% Mo type austenitic stainless steel as a master alloy, respectively. Hydrogen environment embrittlement test was conducted. As for the influence of carbon and nitrogen on the strain-induced martensitic transformation of the master alloy, both additions showed the effect of stabilizing the austenite phase and showed the tendency of the Ni equivalent formula expressed by the above-described calculation formula (3). . The effect of carbon on hydrogen environment embrittlement is shown in FIG. The vertical axis in FIG. 4 indicates the degree of hydrogen environment embrittlement, and the horizontal axis indicates the Ni equivalent defined by the calculation formula (3). For comparison, hydrogen environment embrittlement of austenitic stainless steel without addition of carbon and nitrogen was also shown. Ni equivalent which becomes less brittle by carbon addition is smaller.
[0019]
FIG. 5 shows the influence of nitrogen on hydrogen environment embrittlement. The vertical axis in FIG. 5 indicates the degree of hydrogen environment embrittlement, and the horizontal axis indicates the Ni equivalent defined by the calculation formula (3). For comparison, hydrogen environment embrittlement of austenitic stainless steel without addition of carbon and nitrogen was also shown. Unlike carbon, embrittlement decreases gradually with increasing nitrogen content. Thus, it can be verified that the influence of carbon and nitrogen on hydrogen environment embrittlement of austenitic stainless steel is not a simple strain-induced martensitic transformation heterogeneity.
[0020]
From the above, hydrogen environment embrittlement of austenitic stainless steel cannot be determined only by the magnitude of strain-induced martensitic transformation, although it is caused by strain-induced martensitic transformation. This means that the Ni equivalent containing carbon and nitrogen is not determined. The present invention solves these problems so that the degree of hydrogen environment embrittlement depends on the strain-induced martensitic transformation and can be determined by its magnitude.
[0021]
The present invention is a hydrogen scale that uses Ni equivalents of chemical components excluding carbon and nitrogen, which show unique component dissimilarity, as a measure for easily evaluating hydrogen environment embrittlement of austenitic stainless steels with many chemical components. We propose an environmental brittle calculation formula. As shown in FIG. 1, this result shows that the hydrogen environment embrittlement index according to the hydrogen environment embrittlement index according to the calculation formula (1) always tends to approach 1.0 as the hydrogen environment embrittlement index increases, that is, the hydrogen environment. It shows that embrittlement is reduced. As a result, the hydrogen environment embrittlement index of the calculation formula (1) is a result showing well the hydrogen environment embrittlement behavior as an index, and accurate prediction is possible.
[0022]
【Example】
FIG. 6 shows the influence of temperature on the strain-induced martensitic transformation of a newly melted austenitic stainless steel based on the hydrogen environment embrittlement index according to the present invention. The melted austenitic stainless steel is based on 17Cr-2Mo with Ni added in an amount of 11 to 20%, and the remainder is made of Fe. Carbon (0.001%) and nitrogen (0.001 to 0.02%) ) Is the lowest value. The hydrogen environment embrittlement index of this austenitic stainless steel was in the range of 24% to 34%.
[0023]
In FIG. 6, the horizontal axis indicates the temperature, and the vertical axis indicates the ferrite equivalent amount obtained by converting the strain-induced martensite into the ferrite amount. Strain-induced martensitic transformation is accompanied by an increase in the hydrogen environment embrittlement index and a decrease in the transformation start temperature and maximum transformation amount. The hydrogen environment embrittlement index corresponds well to the strain-induced martensitic transformation.
[0024]
FIG. 7 is an example showing the influence of the hydrogen environment embrittlement index on the hydrogen environment embrittlement of the melted austenitic stainless steel shown in FIG. 6, and the values at a temperature of 200 K are plotted. The melted austenitic stainless steel plotted is composed of 17Cr-2Mo based on Ni and 10 to 15% of Ni, with the remainder made of Fe, with carbon and nitrogen at the lowest values. Hydrogen environment embrittlement of this austenitic stainless steel was in the range of 24% to 29%. The vertical axis in FIG. 7 represents the hydrogen environment embrittlement temperature, and the horizontal axis represents the hydrogen environment embrittlement index of the present invention. The hydrogen environment embrittlement index always decreases as the hydrogen environment embrittlement index increases. When the hydrogen environment embrittlement index is 27%, the hydrogen environment embrittlement degree is 1.0, and the hydrogen environment embrittlement is eliminated. Thus, the hydrogen environment embrittlement index of the present invention corresponds well to the hydrogen environment embrittlement behavior of austenitic stainless steel.
[0025]
【The invention's effect】
The determination method of the austenitic stainless steel of the present invention is a determination method for widely predicting the degree of hydrogen environment embrittlement of austenitic stainless steel, and the hydrogen environment embrittlement index is a calculation formula that corresponds well to hydrogen environment embrittlement It became. For this reason, since prediction determination can be performed efficiently, the number of experiments can be reduced as compared with the prior art. As a result, when developing austenitic stainless steel having desired characteristics, the experimental efficiency can be improved, and the development speed is increased.
[Brief description of the drawings]
FIG. 1 is a diagram showing the influence of a hydrogen environment embrittlement index on hydrogen environment embrittlement of a commercially available austenitic stainless steel in connection with the present invention.
FIG. 2 is a graph showing the effect of temperature on hydrogen environment embrittlement of commercially available austenitic stainless steel.
FIG. 3 is a graph showing the effect of Ni equivalent on hydrogen environment embrittlement of commercially available austenitic stainless steel.
FIG. 4 is a graph showing the effect of carbon content on hydrogen environment embrittlement of austenitic stainless steel.
FIG. 5 is a graph showing the influence of nitrogen content on hydrogen environment embrittlement of austenitic stainless steel.
FIG. 6 is a graph showing the effect of temperature on strain-induced martensitic transformation of austenitic stainless steel melted based on the hydrogen environment embrittlement index.
FIG. 7 is a diagram showing the influence of the hydrogen environment embrittlement index on the degree of hydrogen environment embrittlement of the austenitic stainless steel produced at 200 K which is the maximum hydrogen environment embrittlement temperature.
[Explanation of symbols]
1 ... SUS304 stainless steel 2 ... SUS304 (S) stainless steel

Claims (2)

水素環境下にあるオーステナイト系ステンレス鋼の脆化を判定する方法であって、
Figure 2005009955
ただし、Ni(%)、Cr(%)、Mo(%)、Mn(%)、及びSi(%)は、前記オーステナイト系ステンレス鋼の化学成分の重量%を意味し、
前記計算式(1)により定義される水素環境脆化指標を求め、
この水素環境脆化指標にもとづき前記オーステナイト系ステンレス鋼が水素ガス雰囲気により脆化する水素環境脆化の程度を予測し判定する
ことを特徴とするオーステナイト系ステンレス鋼の判定方法。
A method for determining embrittlement of austenitic stainless steel in a hydrogen environment,
Figure 2005009955
However, Ni (%), Cr (%), Mo (%), Mn (%), and Si (%) mean the weight percent of the chemical component of the austenitic stainless steel,
A hydrogen environment embrittlement index defined by the calculation formula (1) is obtained,
An austenitic stainless steel judgment method characterized by predicting and judging the degree of hydrogen environment embrittlement of the austenitic stainless steel based on the hydrogen environment embrittlement index.
請求項1に記載のオーステナイト系ステンレス鋼の判定方法において、
前記オーステナイト系ステンレス鋼の水素環境脆化は、歪誘起マルテンサイト変態に依存することを特徴とするオーステナイト系ステンレス鋼の判定方法。
In the determination method of the austenitic stainless steel according to claim 1,
The determination method of austenitic stainless steel, wherein hydrogen environment embrittlement of the austenitic stainless steel depends on strain-induced martensitic transformation.
JP2003172974A 2003-06-18 2003-06-18 Method for judging austenitic stainless steel Expired - Lifetime JP3867142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172974A JP3867142B2 (en) 2003-06-18 2003-06-18 Method for judging austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003172974A JP3867142B2 (en) 2003-06-18 2003-06-18 Method for judging austenitic stainless steel

Publications (2)

Publication Number Publication Date
JP2005009955A true JP2005009955A (en) 2005-01-13
JP3867142B2 JP3867142B2 (en) 2007-01-10

Family

ID=34096927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172974A Expired - Lifetime JP3867142B2 (en) 2003-06-18 2003-06-18 Method for judging austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP3867142B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093453A1 (en) 2007-01-31 2008-08-07 National Institute Of Advanced Industrial Science And Technology Austenite based stainless steel and method of dehydrogenating the same
WO2010016378A1 (en) 2008-08-06 2010-02-11 独立行政法人産業技術総合研究所 Austenitic stainless steel and process for hydrogenation of same
JP2016130638A (en) * 2015-01-13 2016-07-21 日本電信電話株式会社 Method for evaluating hydrogen embrittlement characteristics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102561A (en) * 1980-01-14 1981-08-17 Nippon Steel Corp Chemical container with superior corrosion resistance and superior embrittlement resistant characteristic during use at high temperature
JP2001264240A (en) * 2000-03-23 2001-09-26 Kobe Steel Ltd Hydrogen enblittlement sensitivity evaluation method of steel product and steel product having excellent hydrogen enblittlement resistance
JP2001303203A (en) * 2000-04-20 2001-10-31 Sumitomo Metal Ind Ltd High strength martensitic stainless steel and oil well pipe using the same
JP2004339569A (en) * 2003-05-15 2004-12-02 Nippon Steel Corp Stainless steel sheet for solid high polymer type fuel cell separator, its production method, and its forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102561A (en) * 1980-01-14 1981-08-17 Nippon Steel Corp Chemical container with superior corrosion resistance and superior embrittlement resistant characteristic during use at high temperature
JP2001264240A (en) * 2000-03-23 2001-09-26 Kobe Steel Ltd Hydrogen enblittlement sensitivity evaluation method of steel product and steel product having excellent hydrogen enblittlement resistance
JP2001303203A (en) * 2000-04-20 2001-10-31 Sumitomo Metal Ind Ltd High strength martensitic stainless steel and oil well pipe using the same
JP2004339569A (en) * 2003-05-15 2004-12-02 Nippon Steel Corp Stainless steel sheet for solid high polymer type fuel cell separator, its production method, and its forming method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
横川清志 外3名: ""鋭敏化したオーステナイト系ステンレス鋼の歪誘起マルテンサイト変態と低温水素環境脆性"", 熱処理 VOL.38 NO.5, JPNX006041271, 1998, JP, pages 233 - 235, ISSN: 0000769807 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093453A1 (en) 2007-01-31 2008-08-07 National Institute Of Advanced Industrial Science And Technology Austenite based stainless steel and method of dehydrogenating the same
WO2010016378A1 (en) 2008-08-06 2010-02-11 独立行政法人産業技術総合研究所 Austenitic stainless steel and process for hydrogenation of same
JP2016130638A (en) * 2015-01-13 2016-07-21 日本電信電話株式会社 Method for evaluating hydrogen embrittlement characteristics

Also Published As

Publication number Publication date
JP3867142B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
Rouillard et al. Corrosion of 9Cr steel in CO2 at intermediate temperature II: Mechanism of carburization
Koyama et al. Hydrogen embrittlement susceptibility of Fe-Mn binary alloys with high Mn content: effects of stable and metastable ε-martensite, and Mn concentration
Saunders et al. The calculation of TTT and CCT diagrams for general steels
Pint et al. Performance of Al‐rich oxidation resistant coatings for Fe‐base alloys
Nishimura et al. SCC evaluation of type 304 and 316 austenitic stainless steels in acidic chloride solutions using the slow strain rate technique
Thomas et al. The effect of absorbed hydrogen on the corrosion of steels: review, discussion, and implications
Santos et al. Influence of sigma phase formation on pitting corrosion of an aged UNS S31803 duplex stainless steel
da Rocha et al. Evaluation of the martensitic transformations in austenitic stainless steels
Craig Clarifying the applicability of PREN equations: a short focused review
Fukumoto et al. Prediction of σ phase formation in Fe–Cr–Ni–Mo–N alloys
JP3867142B2 (en) Method for judging austenitic stainless steel
Durán et al. Fatigue crack propagation prediction by cyclic plasticity damage accumulation models
Seifert et al. Corrosion properties of a complex multi‐phase martensitic stainless steel depending on the tempering temperature
CN112946061B (en) TRIP steel plate nondestructive strength detection device and method
Lekakh et al. Effect of spallation on oxidation kinetics of heat-resistant Cr–Ni austenitic steels on air and combustion atmosphere
Vitek et al. Improved ferrite number prediction in stainless steel arc welds using artificial neural networks—part 2: neural network results
Vasudevan et al. Bayesian neural network analysis of ferrite number in stainless steel welds
JP2000329726A (en) Evaluation method for hydrogen embrittlement susceptibility of steel product
Lee Thermodynamic assessment of liquid Mn-Fe-C system by unified interaction parameter model
CN104870996B (en) Method of analysing iron melt
Nishimura Effect of specimen width on stress corrosion cracking of type 304 stainless steel
Bhadeshia et al. Design of creep-resistant steels: success & failure of models
CN108368596A (en) With the corrosive ferritic stainless steel and its manufacturing method for automobile exhaust system of improved pitting corrosion resistance and resistance to condensate
Hoffmeister Modeling the effect of chloride content on hydrogen sulfide corrosion of pure iron by coupling of phase and polarization behavior
JPH0543991A (en) Steel bar for magnetic graduation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Ref document number: 3867142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term