JP2016130638A - Method for evaluating hydrogen embrittlement characteristics - Google Patents

Method for evaluating hydrogen embrittlement characteristics Download PDF

Info

Publication number
JP2016130638A
JP2016130638A JP2015003879A JP2015003879A JP2016130638A JP 2016130638 A JP2016130638 A JP 2016130638A JP 2015003879 A JP2015003879 A JP 2015003879A JP 2015003879 A JP2015003879 A JP 2015003879A JP 2016130638 A JP2016130638 A JP 2016130638A
Authority
JP
Japan
Prior art keywords
reinforcing bar
hydrogen embrittlement
test
hydrogen
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015003879A
Other languages
Japanese (ja)
Other versions
JP6342820B2 (en
Inventor
憲宏 藤本
Norihiro Fujimoto
憲宏 藤本
康弘 東
Yasuhiro Azuma
康弘 東
孝 澤田
Takashi Sawada
孝 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015003879A priority Critical patent/JP6342820B2/en
Publication of JP2016130638A publication Critical patent/JP2016130638A/en
Application granted granted Critical
Publication of JP6342820B2 publication Critical patent/JP6342820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate hydrogen embrittlement characteristics taking into consideration the damage of a reinforcing-bar in a manufacturing process of a reinforced concrete structure.SOLUTION: A reinforcing-bar is taken out of a reinforced concrete structure, and the reinforcing-bar is immersed in a neutral or alkaline solution. Then, while electrochemically charging hydrogen to the reinforcing-bar immersed in the solution, a dynamic load is applied thereto so as to conduct a rupture test. Thereby an effect due to the difference of a damage degree by a material for the reinforced concrete structure to hydrogen embrittlement characteristics can be quantitatively measured.SELECTED DRAWING: Figure 1

Description

本発明は、水素脆化特性評価方法に関する。   The present invention relates to a method for evaluating hydrogen embrittlement characteristics.

鋼材は水素を含むと延性が失われ、強度が著しく低下する。この現象は水素脆化と呼ばれている。   When steel contains hydrogen, the ductility is lost and the strength is significantly reduced. This phenomenon is called hydrogen embrittlement.

従来、高力ボルトの水素脆化の試験結果から、高力ボルトのねじ(切欠き)部分において水素侵入が顕著であり、切欠き形状が鋭角であるほど局所的な水素侵入量は大きくなることが知られている。また、腐食反応等により切欠き部分の角度が鈍化すると元の形状に比べて局所的な水素侵入量が小さくなることが知られている。   Conventionally, from the hydrogen embrittlement test results of high-strength bolts, hydrogen penetration is noticeable in the thread (notch) part of high-strength bolts, and the sharper the notch shape, the greater the amount of local hydrogen penetration. It has been known. In addition, it is known that when the angle of the notched portion becomes dull due to a corrosion reaction or the like, the local hydrogen penetration amount becomes smaller than the original shape.

PC(プレストレストコンクリート)に用いられる鉄筋(以下、PC鉄筋と略す)の水素脆化特性の評価では、酸性溶液中での腐食反応により試験片に水素をチャージし、この試験片に荷重をかけ、荷重をかけてから破断するまでの時間を測定する。PC鉄筋は、一般的に丸棒状のものが多く、局所的に水素が侵入し凝集されるような部位はない。したがって、PC鉄筋の場合、前記した高力ボルトのように材料が腐食されても、評価結果に影響を及ぼさない。このことから、上記のような鉄筋を腐食させる溶液中を用いた水素脆化特性の評価であっても、製品として使用される前、すなわち新品材料の水素脆化特性の評価方法としては、充分な方法であると言える。   In the evaluation of hydrogen embrittlement characteristics of rebars (hereinafter abbreviated as PC rebars) used in PC (prestressed concrete), hydrogen is charged to the test piece by a corrosion reaction in an acidic solution, and a load is applied to the test piece. Measure the time from applying a load to breaking. PC rebars are generally round rods, and there are no sites where hydrogen penetrates locally and aggregates. Therefore, in the case of PC rebar, even if the material is corroded like the high-strength bolt described above, the evaluation result is not affected. Therefore, even when evaluating the hydrogen embrittlement characteristics using a solution that corrodes the reinforcing bar as described above, it is sufficient as a method for evaluating the hydrogen embrittlement characteristics of a new material before it is used as a product. It can be said that it is a simple method.

しかし、PC構造物の製造時のコンクリートを流し込む工程において、コンクリートに含まれる骨材により鉄筋に損傷が発生することがある。ここでコンクリート中の雰囲気は中性またはアルカリ性であるため、鉄筋の腐食反応は抑制され、鉄筋に形成された損傷の形状は変化せず、損傷として形成された切欠き部の水素侵入量は大きくなると考えられる。   However, in the process of pouring the concrete at the time of manufacturing the PC structure, the reinforcing bars may be damaged by the aggregate contained in the concrete. Here, since the atmosphere in the concrete is neutral or alkaline, the corrosion reaction of the reinforcing bar is suppressed, the shape of the damage formed in the reinforcing bar does not change, and the amount of hydrogen intrusion at the notch formed as damage is large. It is considered to be.

南雲道彦、「鋼の力学的挙動に及ぼす水素の影響」、鉄と鋼、Vol.90(2004)、No.10、p766-775、2004年Michihiko Nagumo, “Effect of hydrogen on the mechanical behavior of steel”, Iron and Steel, Vol. 90 (2004), No. 10, p766-775, 2004 「高力ボルトの遅れ破壊特性評価ガイドブック」、JSSCテクニカルレポートNo.91、p7、p126、社団法人日本鋼構造協会、2010年"Guidebook for Evaluation of Delayed Fracture Properties of High Strength Bolts", JSSC Technical Report No.91, p7, p126, Japan Steel Structure Association, 2010 「20%チオシアン酸アンモニウム溶液中でのPC鉄筋の水素脆化試験方法」、p1、p3、社団法人腐食防食協会、JSCE S 1201(2012)、2012年"Testing method for hydrogen embrittlement of PC rebar in 20% ammonium thiocyanate solution", p1, p3, Japan Corrosion and Corrosion Protection Association, JSCE S 1201 (2012), 2012 「大日ポール・各製造工程」、[online]、[平成26年12月16日検索]、インターネット<URL:http://www.dainichi-x.co.jp/technology/seizou.html>“Dainichi Paul, each manufacturing process”, [online], [Search on December 16, 2014], Internet <URL: http://www.dainichi-x.co.jp/technology/seizou.html>

しかし、従来のPC鉄筋等、鉄筋コンクリート構造物に用いられる鉄筋の水素脆化特性の評価では、鉄筋コンクリート構造物の製造工程における鉄筋の損傷を考慮しておらず、実際の使用環境下での水素脆化特性の評価を行うことはできなかった。そこで、本発明は、前記した問題を解決し、鉄筋コンクリート構造物の製造工程における鉄筋の損傷を考慮した水素脆化特性を行うことを課題とする。   However, the evaluation of hydrogen embrittlement characteristics of rebars used in reinforced concrete structures such as conventional PC rebars does not consider the damage of rebars in the manufacturing process of reinforced concrete structures, and hydrogen embrittlement in the actual usage environment. It was not possible to evaluate the chemical properties. Then, this invention makes it a subject to solve the above-mentioned problem and to perform the hydrogen embrittlement characteristic which considered the damage of the reinforcement in the manufacturing process of a reinforced concrete structure.

前記した課題を解決するため、本発明は、鉄筋コンクリート構造物から鉄筋を取り出すステップと、前記鉄筋を中性またはアルカリ性の溶液に浸漬するステップと、前記溶液に浸漬させた鉄筋に電気化学的に水素をチャージし、力学的な負荷を加えて試験を行うステップと、を含んだことを特徴とする。   In order to solve the above-described problems, the present invention includes a step of taking out a reinforcing bar from a reinforced concrete structure, a step of immersing the reinforcing bar in a neutral or alkaline solution, and electrochemical hydrogenation in the reinforcing bar immersed in the solution. Charging, and applying a mechanical load to perform the test.

本発明によれば、鉄筋コンクリート構造物の製造工程における鉄筋の損傷を考慮した水素脆化特性を行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, the hydrogen embrittlement characteristic which considered the damage of the reinforcing bar in the manufacturing process of a reinforced concrete structure can be performed.

図1は、本実施形態の水素脆化特性評価方法の手順を示すフローチャートである。FIG. 1 is a flowchart showing the procedure of the hydrogen embrittlement characteristic evaluation method of this embodiment. 図2は、評価試験装置の模式図である。FIG. 2 is a schematic diagram of an evaluation test apparatus. 図3は、本実施形態の水素脆化特性評価方法による実験結果を示すグラフである。FIG. 3 is a graph showing experimental results by the method for evaluating hydrogen embrittlement characteristics of the present embodiment.

以下、図面を参照しながら、本発明を実施するための形態(実施形態)について説明する。なお、本発明は本実施形態に限定されない。   Hereinafter, embodiments (embodiments) for carrying out the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.

(実施形態)
本実施形態の水素脆化特性評価方法の手順を、図1を用いて説明する。まず、評価者は、製品化した鉄筋コンクリート構造物(例えば、PC構造物)のコンクリートを、ハンマー等を用いて粉砕し、鉄筋コンクリート構造物から鉄筋を取り出す(S1)。次に、評価者は、取り出した鉄筋を溶液に浸漬させる(S2)。この溶液は、鉄筋が腐食しない溶液であり、例えば、中性やアルカリ性水溶液である。その後、評価者は、溶液内の鉄筋の電位を制御することにより、電気化学的に鉄筋に水素をチャージし、鉄筋に力学的な負荷を加えて破断試験を行う(S3)。なお、鉄筋の力学的な負荷は予め適宜決めればよいが、例えば、鉄筋に所定の荷重をかければよく、そのときの荷重は実設備の負荷(鉄筋の引張強度に対して応力比0.7程度)を基準に決定すればよい。また、破断試験は、鉄筋への水素のチャージをした後で行ってもよいし、水素のチャージをしながら行ってもよい。
(Embodiment)
The procedure of the hydrogen embrittlement characteristic evaluation method of this embodiment will be described with reference to FIG. First, the evaluator pulverizes a commercial reinforced concrete structure (for example, PC structure) concrete using a hammer or the like, and takes out the reinforcing bar from the reinforced concrete structure (S1). Next, the evaluator immerses the extracted reinforcing bars in the solution (S2). This solution is a solution in which the reinforcing bars do not corrode, and is, for example, a neutral or alkaline aqueous solution. Thereafter, the evaluator controls the potential of the reinforcing bar in the solution to electrochemically charge the reinforcing bar with hydrogen, and applies a mechanical load to the reinforcing bar to perform a fracture test (S3). It should be noted that the mechanical load of the reinforcing bar may be appropriately determined in advance. For example, a predetermined load may be applied to the reinforcing bar. Degree). Further, the fracture test may be performed after charging the reinforcing bars with hydrogen or while charging the hydrogen.

このようにすることで、鉄筋コンクリート構造物の製造工程において鉄筋に生じる損傷が及ぼす鉄筋の水素脆化特性への影響を定量的に評価することできる。その結果、鉄筋コンクリート構造物に用いる材料を適切に選定することができる。   By doing in this way, the influence on the hydrogen embrittlement characteristic of the reinforcement which the damage which arises in a reinforcement in the manufacturing process of a reinforced concrete structure exerts can be evaluated quantitatively. As a result, the material used for the reinforced concrete structure can be appropriately selected.

(実験結果)
次に、本実施形態の水素脆化特性評価方法による実験結果を説明する。鉄筋は、組織の違いにより硬さの異なる鉄筋A,Bそれぞれについて、鉄筋Aは引張強度σB=1450MPa、φ=9mm、鉄筋Bは引張強度σB=1620MPa、φ=7mmの新品丸棒鉄筋と、PC構造物から取り出した鉄筋(新品丸棒鉄筋と同じ鋼種)とを用いた。鉄筋の長さはそれぞれ全長45cm、鉄筋のうち溶液に浸漬される部位の長さは3cmとした。
(Experimental result)
Next, experimental results by the hydrogen embrittlement characteristic evaluation method of this embodiment will be described. Reinforcing bars are reinforcing bars A and B having different hardness depending on the structure. Reinforcing bar A has a tensile strength σB = 1450 MPa and φ = 9 mm, and reinforcing bar B has a new round bar reinforcing bar with tensile strengths σB = 1620 MPa and φ = 7 mm. A rebar taken out from the PC structure (the same steel type as a new round bar rebar) was used. The length of each reinforcing bar was 45 cm, and the length of the part of the reinforcing bar immersed in the solution was 3 cm.

図2に評価試験装置の模式図を示す。この評価試験装置により、鉄筋(試験片5)を容器1内の溶液に浸漬させ、試験片5を作用極とし、ポテンショスタット2、参照極3および対極4を用いて水素のチャージを行った。そして、試験片5に水素のチャージをした状態で、おもり6等により引張方向に負荷をかけた。   FIG. 2 shows a schematic diagram of the evaluation test apparatus. With this evaluation test apparatus, the reinforcing bar (test piece 5) was immersed in the solution in the container 1, the test piece 5 was used as a working electrode, and hydrogen was charged using the potentiostat 2, the reference electrode 3 and the counter electrode 4. And in the state which charged the test piece 5 with hydrogen, the load was applied in the tension | pulling direction with the weight 6 grade | etc.,.

容器1内の溶液は、1wt%NH4SCNを添加した1M NaHCO3水溶液(pH8.3)を用いた。また、参照極3として銀塩化銀電極(SSE)を用い、対極4として白金線を用いた。電位は、ポテンショスタット2により、−1000mVvs.SSEに制御した。このような環境下で、試験片5の表面に水素を発生させ、試験片5に水素をチャージした。そして、この水素がチャージされた試験片5への荷重は引張強度に対する荷重(応力比)0.55〜0.9とした。そして、この試験片5への荷重(応力)を0.55から0.05ずつ増やし、各応力条件について3回ずつ試験を実施し、3回すべてで試験時間200hを越えて破断しない荷重を調べた。   The solution in the container 1 was a 1M NaHCO 3 aqueous solution (pH 8.3) to which 1 wt% NH 4 SCN was added. A silver / silver chloride electrode (SSE) was used as the reference electrode 3, and a platinum wire was used as the counter electrode 4. The potential is -1000 mVvs. Controlled to SSE. Under such an environment, hydrogen was generated on the surface of the test piece 5 and the test piece 5 was charged with hydrogen. And the load to the test piece 5 charged with this hydrogen was made into the load (stress ratio) 0.55-0.9 with respect to tensile strength. Then, the load (stress) on the test piece 5 was increased from 0.55 to 0.05, and the test was performed three times for each stress condition, and the load that did not break after the test time of 200 h was investigated in all three times. It was.

図3に、上記の条件での実験結果を示す。図3に示すグラフの横軸は鉄筋の破断時間、縦軸は応力比を示す。グラフ上のプロットは破断した時の結果である。鉄筋Aでは新品丸棒鉄筋は0.85σB、PC構造物から取り出した鉄筋は0.55σBまで破断しなかったのに対して、鉄筋Bでは新品丸棒鉄筋、PC構造物から取り出し鉄筋ともに0.8σBまで破断しなかった。   FIG. 3 shows the experimental results under the above conditions. The horizontal axis of the graph shown in FIG. 3 represents the breaking time of the reinforcing bars, and the vertical axis represents the stress ratio. The plot on the graph is the result when it breaks. In rebar A, the new round bar rebar was 0.85σB, and the rebar taken out from the PC structure did not break down to 0.55σB, whereas in rebar B, both the new round bar rebar and the PC structure taken out from the PC structure were 0. It did not break to 8σB.

この結果は、鉄筋Aでは製造工程において生じた損傷が鉄筋の水素脆化特性を低下させることを示している。これに対して、鉄筋Bでは製造工程における損傷の程度が鉄筋Aに比べて小さく、新品丸棒鉄筋と比べても水素脆化特性に大きな違いが見られなかったと推測される。   This result shows that in the reinforcing bar A, the damage caused in the manufacturing process reduces the hydrogen embrittlement characteristic of the reinforcing bar. On the other hand, it is presumed that in the reinforcing bar B, the degree of damage in the manufacturing process is smaller than that of the reinforcing bar A, and the hydrogen embrittlement characteristics were not significantly different from those of the new round bar reinforcing bar.

また、本実施形態の水素脆化特性評価方法を用いることで鉄筋コンクリート構造物における鉄筋の材料の違いによる損傷の程度の違いが水素脆化特性に及ぼす影響を定量的に評価することが可能であることを示している。   In addition, by using the hydrogen embrittlement characteristic evaluation method of the present embodiment, it is possible to quantitatively evaluate the influence of the degree of damage on the hydrogen embrittlement characteristics due to the difference in the material of the reinforcing bars in the reinforced concrete structure. It is shown that.

一方、従来の酸性溶液中で鉄筋の水素のチャージを行った場合、製造工程において生じた鉄筋の損傷は腐食反応により鈍化するため、このような明確な差は生じない。特に、比較的低い荷重で破断を起こすような鉄筋について、鉄筋の損傷の影響を反映した結果を得ることができない。   On the other hand, when the reinforcing bar is charged with hydrogen in a conventional acidic solution, the damage of the reinforcing bar generated in the manufacturing process is slowed down by the corrosion reaction, so that such a clear difference does not occur. In particular, for a reinforcing bar that breaks at a relatively low load, it is not possible to obtain a result reflecting the influence of the reinforcing bar damage.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形が実施可能であることは明白である。例えば、鉄筋コンクリート構造物からの鉄筋の取り出しを、コンクリートを流しこむ工程の後等、鉄筋コンクリート構造物の製造工程の途中で行ってもよい。また、鉄筋の力学的な負荷は引張試験により行ってもよく、この場合、破断したときの応力値や歪み量、破断したときの断面収縮率等を指標に評価すればよい。   It should be noted that the present invention is not limited to the embodiment described above, and that many modifications can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious. For example, you may perform extraction of the reinforcement from a reinforced concrete structure in the middle of the manufacturing process of a reinforced concrete structure, such as after the process of pouring concrete. Further, the mechanical load of the reinforcing bars may be performed by a tensile test. In this case, the stress value or strain amount at the time of fracture, the cross-sectional shrinkage rate at the time of fracture, and the like may be evaluated.

1 容器
2 ポテンショスタット
3 参照極
4 対極
5 試験片
1 container 2 potentiostat 3 reference electrode 4 counter electrode 5 test piece

Claims (3)

鉄筋コンクリート構造物から鉄筋を取り出すステップと、
前記鉄筋を中性またはアルカリ性の溶液に浸漬するステップと、
前記溶液に浸漬させた鉄筋に電気化学的に水素をチャージし、力学的な負荷を加えて試験を行うステップと、
を含んだことを特徴とする水素脆化特性評価方法。
Removing the rebar from the reinforced concrete structure;
Immersing the rebar in a neutral or alkaline solution;
Electrochemically charging hydrogen to the rebar immersed in the solution and applying a mechanical load to perform the test;
A method for evaluating hydrogen embrittlement characteristics, comprising:
前記試験は、前記鉄筋の破断試験であり、前記破断試験により前記鉄筋が破断したときの応力値により、前記鉄筋の水素脆化特性評価を行うことを特徴する請求項1に記載の水素脆化特性評価方法。   2. The hydrogen embrittlement according to claim 1, wherein the test is a fracture test of the reinforcing bar, and the hydrogen embrittlement characteristic of the reinforcing bar is evaluated based on a stress value when the reinforcing bar is broken by the breaking test. Characterization method. 前記試験は、前記鉄筋の引張試験であり、前記引張試験により前記鉄筋が破断したときの応力値、歪み量、および、断面収縮率の少なくともいずれかにより、前記鉄筋の水素脆化特性評価を行うことを特徴とする請求項1に記載の水素脆化特性評価方法。   The test is a tensile test of the reinforcing bar, and the hydrogen embrittlement characteristic evaluation of the reinforcing bar is performed based on at least one of a stress value, a strain amount, and a cross-sectional shrinkage rate when the reinforcing bar is broken by the tensile test. The method for evaluating hydrogen embrittlement characteristics according to claim 1.
JP2015003879A 2015-01-13 2015-01-13 Hydrogen embrittlement characteristics evaluation method Active JP6342820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015003879A JP6342820B2 (en) 2015-01-13 2015-01-13 Hydrogen embrittlement characteristics evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015003879A JP6342820B2 (en) 2015-01-13 2015-01-13 Hydrogen embrittlement characteristics evaluation method

Publications (2)

Publication Number Publication Date
JP2016130638A true JP2016130638A (en) 2016-07-21
JP6342820B2 JP6342820B2 (en) 2018-06-13

Family

ID=56415865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003879A Active JP6342820B2 (en) 2015-01-13 2015-01-13 Hydrogen embrittlement characteristics evaluation method

Country Status (1)

Country Link
JP (1) JP6342820B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113092354A (en) * 2021-03-09 2021-07-09 山东科技大学 Experimental device and method for simulating corrosion of reinforcing steel bars at filling false bottom of coastal metal ore
CN115931538A (en) * 2022-12-07 2023-04-07 中国石油大学(华东) Method for measuring influence degree of hydrogen on metal stress corrosion cracking in acidic environment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329726A (en) * 1999-05-19 2000-11-30 Nippon Steel Corp Evaluation method for hydrogen embrittlement susceptibility of steel product
JP2001264240A (en) * 2000-03-23 2001-09-26 Kobe Steel Ltd Hydrogen enblittlement sensitivity evaluation method of steel product and steel product having excellent hydrogen enblittlement resistance
JP2005009955A (en) * 2003-06-18 2005-01-13 National Institute Of Advanced Industrial & Technology Method for deciding austenite stainless steel
JP2007263924A (en) * 2006-03-30 2007-10-11 Railway Technical Res Inst Method for estimating strength characteristics of reinforcement of existing structure
JP2009020058A (en) * 2007-07-13 2009-01-29 Kobelco Kaken:Kk Method for predicting embrittlement state of reinforcement in reinforced concrete
JP2011153896A (en) * 2010-01-27 2011-08-11 Nippon Telegr & Teleph Corp <Ntt> Tensile tester
JP2012088241A (en) * 2010-10-21 2012-05-10 Nippon Steel Corp Delayed fracture characteristic evaluation method for pc steel
JP2012159486A (en) * 2011-02-03 2012-08-23 Nippon Telegr & Teleph Corp <Ntt> Hydrogen embrittlement prediction method
JP2013221196A (en) * 2012-04-18 2013-10-28 Takenaka Komuten Co Ltd Zn-Al ALLOY-PLATED REINFORCING BAR AND METHOD FOR MANUFACTURING THE SAME
JP2013257290A (en) * 2012-06-14 2013-12-26 Sumitomo Rubber Ind Ltd Breakdown test method of rubber crosslinked body
JP2014041073A (en) * 2012-08-23 2014-03-06 Nippon Telegr & Teleph Corp <Ntt> Steel material evaluation method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329726A (en) * 1999-05-19 2000-11-30 Nippon Steel Corp Evaluation method for hydrogen embrittlement susceptibility of steel product
JP2001264240A (en) * 2000-03-23 2001-09-26 Kobe Steel Ltd Hydrogen enblittlement sensitivity evaluation method of steel product and steel product having excellent hydrogen enblittlement resistance
JP2005009955A (en) * 2003-06-18 2005-01-13 National Institute Of Advanced Industrial & Technology Method for deciding austenite stainless steel
JP2007263924A (en) * 2006-03-30 2007-10-11 Railway Technical Res Inst Method for estimating strength characteristics of reinforcement of existing structure
JP2009020058A (en) * 2007-07-13 2009-01-29 Kobelco Kaken:Kk Method for predicting embrittlement state of reinforcement in reinforced concrete
JP2011153896A (en) * 2010-01-27 2011-08-11 Nippon Telegr & Teleph Corp <Ntt> Tensile tester
JP2012088241A (en) * 2010-10-21 2012-05-10 Nippon Steel Corp Delayed fracture characteristic evaluation method for pc steel
JP2012159486A (en) * 2011-02-03 2012-08-23 Nippon Telegr & Teleph Corp <Ntt> Hydrogen embrittlement prediction method
JP2013221196A (en) * 2012-04-18 2013-10-28 Takenaka Komuten Co Ltd Zn-Al ALLOY-PLATED REINFORCING BAR AND METHOD FOR MANUFACTURING THE SAME
JP2013257290A (en) * 2012-06-14 2013-12-26 Sumitomo Rubber Ind Ltd Breakdown test method of rubber crosslinked body
JP2014041073A (en) * 2012-08-23 2014-03-06 Nippon Telegr & Teleph Corp <Ntt> Steel material evaluation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
小林正人 他: "初期き裂を模擬した切欠き試験片によるASR損傷鉄筋の水素脆化割れの可能性の検討", 材料と環境, vol. 59, JPN6018010031, 2010, pages 136 - 142, ISSN: 0003762251 *
小林正人 他: "高アルカリ塩化物環境下における炭素鋼の脆化割れに及ぼすひずみ速度と水素発生電流の影響", 材料と環境, vol. 59, JPN6018010029, 2010, pages 129 - 135, ISSN: 0003762250 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113092354A (en) * 2021-03-09 2021-07-09 山东科技大学 Experimental device and method for simulating corrosion of reinforcing steel bars at filling false bottom of coastal metal ore
CN115931538A (en) * 2022-12-07 2023-04-07 中国石油大学(华东) Method for measuring influence degree of hydrogen on metal stress corrosion cracking in acidic environment
CN115931538B (en) * 2022-12-07 2023-08-22 中国石油大学(华东) Method for measuring influence degree of hydrogen in acidic environment on metal stress corrosion cracking

Also Published As

Publication number Publication date
JP6342820B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
US11486815B2 (en) Method and system for predicting corrosion fatigue life of prestressed concrete bridges
Li et al. Corrosion propagation of prestressing steel strands in concrete subject to chloride attack
Zhang et al. Fatigue behavior of corroded prestressed concrete beams
Kashani et al. Impact of corrosion on low-cycle fatigue degradation of reinforcing bars with the effect of inelastic buckling
Gamboa et al. Material influence on the stress corrosion cracking of rock bolts
Imperatore et al. Experimental behavior and analytical modeling of corroded steel rebars under compression
JP6352851B2 (en) Hydrogen embrittlement susceptibility evaluation method
Tavio et al. Tensile strength/yield strength (TS/YS) ratios of high-strength steel (HSS) reinforcing bars
Tamai et al. Impact resistance of RC beams with reinforcement corrosion: Experimental observations
Islam et al. Chloride-induced corrosion behavior of stainless steel and carbon steel reinforcing bars in sound and cracked concrete
Blikharskyy et al. Corrosion of reinforce bars in RC constructions
JP6342820B2 (en) Hydrogen embrittlement characteristics evaluation method
Iordachescu et al. Damage tolerance and failure analysis of tie-down cables after long service life in a cable-stayed bridge
Toribio et al. Effect of cold drawing on susceptibility to hydrogen embrittlement of prestressing steel
JP2014041073A (en) Steel material evaluation method
Tijani et al. Combined effect of broken rope components and corrosion on damage evolution through its lifetime
JP6267669B2 (en) Evaluation method
Al-Duheisat et al. Effect of deformation conditions on the corrosion behavior of the low alloy structural steel girders
Seong1b et al. Tensile behavior of new 2,200 MPa and 2,400 MPa strands according to various types of mono anchorage
Nepal et al. Assessment of concrete damage and strength degradation caused by reinforcement corrosion
Biondini et al. Life-cycle performance of concrete bridges exposed to corrosion and seismic hazard
Dacuan et al. Mechanical properties of corroded-damaged reinforced concrete pile-supporting wharves
El-Amoush et al. Cathodic polarization behavior of the structural steel wires under different prestressing conditions
Ayop et al. Critical study of corrosion damaged concrete structures
Li et al. Nonlinear FEM Simulation of Structural Performance of CorrodedRC Columns subjected to Axial Compression

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180517

R150 Certificate of patent or registration of utility model

Ref document number: 6342820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150