JP2015059880A - Method of estimating hydrogen-induced cracking resistance of calcium-added steel - Google Patents

Method of estimating hydrogen-induced cracking resistance of calcium-added steel Download PDF

Info

Publication number
JP2015059880A
JP2015059880A JP2013194858A JP2013194858A JP2015059880A JP 2015059880 A JP2015059880 A JP 2015059880A JP 2013194858 A JP2013194858 A JP 2013194858A JP 2013194858 A JP2013194858 A JP 2013194858A JP 2015059880 A JP2015059880 A JP 2015059880A
Authority
JP
Japan
Prior art keywords
mass
cao
calcium
hydrogen
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013194858A
Other languages
Japanese (ja)
Other versions
JP6032166B2 (en
Inventor
智治 石田
Tomoharu Ishida
智治 石田
孝平 古米
Kohei Furumai
孝平 古米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013194858A priority Critical patent/JP6032166B2/en
Publication of JP2015059880A publication Critical patent/JP2015059880A/en
Application granted granted Critical
Publication of JP6032166B2 publication Critical patent/JP6032166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To promptly estimate hydrogen-induced cracking resistance of calcium-added steel from compositions and composition distribution state of nonmetallic enclosures.SOLUTION: A hydrogen-induced cracking resistance estimation method of the present invention includes: observing 20 mmor more of a mirror polishing surface of a calcium-added steel with a scanning electron microscope; detecting nonmetallic enclosures at sizes equal to or larger than a predetermined size; analyzing a composition of each of the detected nonmetallic enclosures with an EDS; calculating a CaO fraction (mass%) and an AlOfraction (mass%) of each nonmetallic enclosure; calculating a ratio of CaO to AlO((mass% CaO)/(mass% AlO)) from the calculated CaO fraction and AlOfraction; counting particles of the nonmetallic enclosure for which the ratio ((mass%CaO)/(mass%AlO)) is not less than an arbitrary value selected from within a range from 1.0 to 10.0; and estimating hydrogen-induced cracking resistance of the calcium-added steel using a relational expression between an obtained particle count and a hydrogen-induced cracking resistance.

Description

本発明は、カルシウムの添加された溶鋼から採取した試料、カルシウムの添加された溶鋼を連続鋳造によって製造した鋳片、この鋳片を圧延して得た圧延鋼材、或いは、この圧延鋼材を造管して得た鋼管での非金属介在物の組成及び分布状態から耐水素誘起割れ特性を推定する方法に関する。   The present invention relates to a sample taken from molten steel to which calcium has been added, a slab produced by continuous casting of molten steel to which calcium has been added, a rolled steel obtained by rolling this slab, or a pipe made from this rolled steel. The present invention relates to a method for estimating the resistance to hydrogen-induced cracking from the composition and distribution of non-metallic inclusions in a steel pipe obtained as described above.

鋼製品には、脱酸生成物やスラグなどを起源とする酸化物系非金属介在物、鋼中の硫黄がマンガンなどと反応して析出・生成する硫化物系非金属介在物、鋼中の窒素がアルミニウムなどと反応して析出・生成する窒化物系非金属介在物など、種々の非金属介在物が存在する。ここでは、酸化物系非金属介在物、硫化物系非金属介在物、窒化物系非金属介在物などをまとめて非金属介在物と呼ぶ。   Steel products include oxide-based non-metallic inclusions originating from deoxidation products and slag, sulfide-based non-metallic inclusions in which sulfur in steel reacts with manganese, etc. There are various non-metallic inclusions such as nitride-based non-metallic inclusions that are precipitated and generated when nitrogen reacts with aluminum or the like. Here, oxide-based non-metallic inclusions, sulfide-based non-metallic inclusions, nitride-based non-metallic inclusions, and the like are collectively referred to as non-metallic inclusions.

鋼中に存在する非金属介在物は鋼製品の特性を劣化させる。例えば、石油輸送用や天然ガス輸送用のラインパイプ材として使用されるUOE鋼管や電気抵抗溶接鋼管においては、サワーガスの作用により非金属介在物、特に、高延伸性で圧延時に変形する硫化物系非金属介在物を起点として水素誘起割れ(「HIC;Hydrogen Induced Cracking」ともいう)が発生する。   Non-metallic inclusions present in the steel deteriorate the properties of the steel product. For example, in UOE steel pipes and electric resistance welded steel pipes used as line pipe materials for oil transportation and natural gas transportation, non-metallic inclusions, particularly sulfides that are deformable during rolling due to the action of sour gas. Hydrogen-induced cracking (also referred to as “HIC: Hydrogen Induced Cracking”) starts from non-metallic inclusions.

そこで、耐水素誘起割れ特性が要求される鋼製品では、水素誘起割れの原因となる、高延伸性の硫化物系非金属介在物であるマンガン−サルファイド(MnS)の生成を防止するために、溶鋼中にカルシウム(Ca)を添加し、鋼中の硫化物系非金属介在物を非延伸性であるカルシウム−サルファイド(CaS)に形態制御することが行われている。   Therefore, in steel products that require hydrogen-induced cracking resistance, in order to prevent the formation of manganese-sulfide (MnS), which is a highly extensible sulfide-based nonmetallic inclusion, which causes hydrogen-induced cracking, Calcium (Ca) is added to molten steel to control the form of sulfide-based nonmetallic inclusions in steel to non-stretchable calcium-sulfide (CaS).

溶鋼にカルシウムを添加することで、カルシウムは、酸素との親和力が強いことから脱酸生成物であるアルミナ(Al23)とも反応し、CaO−Al23系非金属介在物が生成される。溶鋼にカルシウムを添加する際、カルシウムが不足すると鋼中の硫黄と反応しきれずMnSを生成してしまい、カルシウムが過剰であると、高CaO濃度のCaO−Al23系非金属介在物が生成し、それぞれが耐水素誘起割れ特性の悪化の原因となる。そのため、鋼材の耐水素誘起割れ特性の向上には、溶鋼中の非金属介在物が適正な組成に形態制御されるように、カルシウムを添加することが必要となる。 By adding calcium to the molten steel, it reacts with the deoxidation product alumina (Al 2 O 3 ) due to its strong affinity with oxygen, and CaO—Al 2 O 3 nonmetallic inclusions are produced. Is done. When calcium is added to molten steel, if calcium is insufficient, it will not react with sulfur in the steel and MnS will be generated. If calcium is excessive, CaO-Al 2 O 3 -based non-metallic inclusions with high CaO concentration will be produced. And each causes deterioration of hydrogen-induced cracking resistance. Therefore, in order to improve the hydrogen-induced cracking resistance characteristics of the steel material, it is necessary to add calcium so that the form of nonmetallic inclusions in the molten steel is controlled to an appropriate composition.

こうした知見に基づき、溶鋼組成のみならず、非金属介在物組成を制御するための方法が報告されている。   Based on these findings, methods for controlling not only the molten steel composition but also the nonmetallic inclusion composition have been reported.

例えば、特許文献1には、耐水素誘起割れ特性の向上や連続鋳造機のタンディッシュノズルの閉塞防止を目的として、電解抽出法による鋼中のカルシウム系非金属介在物の分析方法が提案されている。特許文献1によれば、耐水素誘起割れ特性への影響が大きいCaO濃度の高い非金属介在物を、電解時に溶損させることなく確実に抽出することができるとしている。   For example, Patent Document 1 proposes a method for analyzing calcium-based nonmetallic inclusions in steel by electrolytic extraction for the purpose of improving hydrogen-induced cracking resistance and preventing clogging of a tundish nozzle of a continuous casting machine. Yes. According to Patent Document 1, non-metallic inclusions having a high CaO concentration that have a large influence on the hydrogen-induced cracking resistance can be reliably extracted without being melted during electrolysis.

また、特許文献2には、一次精錬終了後の溶鋼に対して二次精錬を行い、更に、二次精錬終了後の溶鋼に、溶鋼中の酸素濃度に応じてカルシウムを添加し、非金属介在物の形態制御を行うことによって、耐水素誘起割れ特性及び耐硫化物応力割れ特性に優れた高強度・高耐食性油井管用鋼材を溶製する方法が提案されており、特許文献3には、鋼中の非金属介在物の主成分をカルシウム、アルミニウム、酸素及び硫黄とし、非金属介在物中のCaO含有率が30〜80%、非金属介在物中のCaS含有率が25質量%以下、且つ、鋼中の窒素含有率と非金属介在物中のCaO含有率との比を所定の範囲内とする、耐水素誘起割れ特性に優れた鋼管用鋼が提案されている。   In Patent Document 2, secondary refining is performed on the molten steel after completion of primary refining, and calcium is added to the molten steel after completion of secondary refining according to the oxygen concentration in the molten steel. A method of melting a steel material for high strength and high corrosion resistance oil well pipe excellent in hydrogen-induced crack resistance and sulfide stress cracking resistance by controlling the shape of the material has been proposed. The main components of the nonmetallic inclusions are calcium, aluminum, oxygen and sulfur, the CaO content in the nonmetallic inclusions is 30 to 80%, the CaS content in the nonmetallic inclusions is 25% by mass or less, and Steel pipe steels excellent in hydrogen-induced cracking resistance have been proposed in which the ratio between the nitrogen content in steel and the CaO content in nonmetallic inclusions is within a predetermined range.

特開平6−174716号公報JP-A-6-174716 特開2011−89180号公報JP 2011-89180 A 特開2009−120899号公報JP 2009-120899 A

一般的な耐水素誘起割れ特性の評価法として知られるNACE(National Association of Corrosion Engineers)に規定される評価法は、試験溶液に試験片を96時間浸漬することが必要であり、鋳造直後に鋳片から切り出した試料を用いて評価試験しても、試験結果が得られるのは鋳造から4日以上経過した後となる。熱間圧延後や造管後の鋼材から切り出した試料を用いて評価試験する場合には、更に時間を要する。そのため、実際の製造工程では、耐水素誘起割れ試験の結果が得られてから次の製造工程に進む、或いは、見込みで工程を進めておくことが行われており、何れの場合も、耐水素誘起割れ試験結果が不合格の場合には、製造したものを不合格品として処分するしかなく、生産性の面から課題があった。   The evaluation method defined by NACE (National Association of Corrosion Engineers), which is known as a general method for evaluating hydrogen-induced crack resistance, requires that the test piece be immersed in a test solution for 96 hours. Even if an evaluation test is performed using a sample cut out from a piece, the test result is obtained after four or more days have passed since casting. When an evaluation test is performed using a sample cut out from a steel material after hot rolling or after pipe forming, more time is required. For this reason, in the actual manufacturing process, after the result of the hydrogen resistance-induced cracking test is obtained, the process proceeds to the next manufacturing process, or the process is advanced in anticipation. If the induced crack test result is rejected, the manufactured product must be disposed of as a rejected product, and there is a problem in terms of productivity.

そのため、できるだけ早い段階で耐水素誘起割れ特性を予測する方法が望まれていた。この予測方法としては、水素誘起割れの起点となる非金属介在物の組成及びその分布と耐水素誘起割れ特性とを関連付けることが有効と考えられる。   Therefore, a method for predicting the resistance to hydrogen-induced cracking as early as possible has been desired. As this prediction method, it is considered effective to relate the composition and distribution of non-metallic inclusions that are the starting point of hydrogen-induced cracking with the resistance to hydrogen-induced cracking.

この観点から、上記従来技術を検証すれば、上記従来技術には以下の問題がある。   From this point of view, if the prior art is verified, the prior art has the following problems.

即ち、特許文献1は、抽出された全非金属介在物の平均組成を定量する方法であり、本発明者らの調査の結果、この方法では、粗大な非金属介在物の情報の影響が大きくなり過ぎる傾向にあり、耐水素誘起割れ特性を評価する方法としては充分な精度が得られないことがわかった。   That is, Patent Document 1 is a method for quantifying the average composition of all extracted non-metallic inclusions. As a result of investigation by the present inventors, this method greatly affects the information of coarse non-metallic inclusions. It has been found that the accuracy tends to be excessive, and sufficient accuracy cannot be obtained as a method for evaluating the resistance to hydrogen-induced cracking.

また、特許文献2及び特許文献3には、電子顕微鏡を用いて非金属介在物を検査することが記述されているのみで、電子顕微鏡を用いて非金属介在物を検査する際の具体的な定量方法についての記載がない。   In addition, Patent Document 2 and Patent Document 3 only describe that non-metallic inclusions are inspected using an electron microscope. Specific details for inspecting non-metallic inclusions using an electron microscope are described. There is no description about the quantitative method.

本発明はこのような事情に鑑みてなされたもので、その目的とするところは、カルシウムの添加された溶鋼から採取した試料、カルシウムの添加された溶鋼を連続鋳造によって製造した鋳片、この鋳片を圧延して得た圧延鋼材、或いは、この圧延鋼材を造管して得た鋼管での耐水素誘起割れ特性を、これらでの非金属介在物の組成及び分布状態から迅速に推定することのできる、カルシウム添加鋼の耐水素誘起割れ特性の推定方法を提供することである。   The present invention has been made in view of such circumstances. The object of the present invention is a sample taken from molten steel to which calcium is added, a slab produced by continuous casting of molten steel to which calcium is added, and this casting. Prompt estimation of hydrogen-induced cracking resistance in rolled steel obtained by rolling a piece or steel pipe obtained by pipe-making this rolled steel from the composition and distribution of non-metallic inclusions It is an object of the present invention to provide a method for estimating hydrogen-induced cracking resistance of calcium-added steel.

本発明者らは、上記課題を解決するべく、カルシウム添加鋼の非金属介在物の存在状態を詳細に調査した。その結果、粒径が1μm程度以上の非金属介在物を対象とし、その組成及び分布状態を統計的に調べることにより、カルシウム添加鋼の耐水素誘起割れ特性を精度良く推定できることを知見した。   In order to solve the above-mentioned problems, the present inventors have investigated in detail the state of existence of non-metallic inclusions in calcium-added steel. As a result, it was found that the resistance to hydrogen-induced cracking of calcium-added steel can be accurately estimated by statistically examining the composition and distribution of non-metallic inclusions having a particle size of about 1 μm or more.

具体的には、多くの非金属介在物を対象とした測定・評価に好適に利用することのできる粒子解析機能を有する走査型電子顕微鏡(SEM;Scanning Electron Microscope)を使用し、この走査型電子顕微鏡に備えられているEDS(エネルギー分散型X線分析装置;Energy Dispersive X-ray Spectrometer)を用いて、カルシウム添加鋼中の非金属介在物の組成及びサイズを調査した。そして、1μm程度以上の大きさを有する非金属介在物を測定対象として個々の組成を調べ、非金属介在物のCaOとAl23との比((質量%CaO)/(質量%Al23))が、1.0ないし10.0の範囲で選択した任意の値以上である非金属介在物の個数を調べることで、カルシウム添加鋼の耐水素誘起割れ特性の迅速な評価ができることを知見した。これは、カルシウム添加鋼において、カルシウムが過剰になると、高CaO濃度のCaO−Al23系非金属介在物が生成し、これが耐水素誘起割れ特性の悪化の原因となることに基づいている。 Specifically, a scanning electron microscope (SEM; Scanning Electron Microscope) having a particle analysis function that can be suitably used for measurement and evaluation of many nonmetallic inclusions is used. The composition and size of nonmetallic inclusions in the calcium-added steel were investigated using an EDS (Energy Dispersive X-ray Spectrometer) provided in the microscope. Then, individual compositions were examined using non-metallic inclusions having a size of about 1 μm or more as a measurement target, and the ratio of non-metallic inclusions CaO to Al 2 O 3 ((mass% CaO) / (mass% Al 2 By examining the number of non-metallic inclusions whose O 3 )) is not less than an arbitrary value selected in the range of 1.0 to 10.0, the hydrogen-induced cracking resistance of calcium-added steel can be quickly evaluated. I found out. This is based on the fact that, in calcium-added steel, when calcium is excessive, CaO—Al 2 O 3 -based nonmetallic inclusions having a high CaO concentration are generated, which causes deterioration of hydrogen-induced cracking resistance. .

本発明は上記知見に基づきなされたものであり、その要旨は以下のとおりである。
[1]鋼中の非金属介在物の組成及び分布状態からカルシウム添加鋼の耐水素誘起割れ特性を推定する方法であって、
カルシウムの添加された溶鋼から採取された試料の鏡面研磨面、または、カルシウム添加鋼の鋳片、圧延鋼材若しくは圧延鋼材を造管した鋼管の鏡面研磨面の20mm2以上を測定対象領域として走査型電子顕微鏡で観察し、所定の大きさ以上の非金属介在物を検出し、検出された各非金属介在物をEDS(エネルギー分散型X線分析装置)によって組成分析する工程と、
EDSによる組成分析結果に基づき、下記の(1)式、(2)式、(3)式によって個々の非金属介在物のCaO分率(質量%)を算出する工程と、
EDSによる組成分析結果に基づき、下記の(4)式によって個々の非金属介在物のAl23分率(質量%)を算出する工程と、
(1)式〜(3)式によって算出されるCaO分率と(4)式によって算出されるAl23分率とから、個々の非金属介在物のCaOとAl23との比((質量%CaO)/(質量%Al23))を求める工程と、
比((質量%CaO)/(質量%Al23))が1.0ないし10.0の範囲で選択した任意の値以上である非金属介在物の粒子数を計数する工程と、
予め求めた、比((質量%CaO)/(質量%Al23))が1.0ないし10.0の範囲で選択した任意の値以上である非金属介在物の単位面積あたりの粒子数と、耐水素誘起割れ特性との関係式を用いて、耐水素誘起割れ特性を推定する工程と、
を有することを特徴とする、カルシウム添加鋼の耐水素誘起割れ特性の推定方法。
MnSとしてのS分率(質量%)=[Mn]×[S原子量]/[Mn原子量]…(1)
CaSとしてのCa分率(質量%)=([S]-[MnSとしてのS分率])×[Ca原子量]/[S原子量]…(2)
CaO分率(質量%)=([Ca]-[CaSとしてのCa分率])×[CaO原子量]/[Ca原子量]…(3)
Al2O3分率(質量%)=[Al]×[Al2O3原子量]/[2×Al原子量]…(4)
但し、(1)式における[Mn]は、EDSによる非金属介在物中のマンガン分析値(質量%)、(2)式における[S]は、EDSによる非金属介在物中の硫黄分析値(質量%)、(3)式における[Ca]は、EDSによる非金属介在物中のカルシウム分析値(質量%)、(4)式における[Al]は、EDSによる非金属介在物中のアルミニウム分析値(質量%)である。
[2]粒径が1μm以上の非金属介在物をEDSによる組成分析の対象とすることを特徴とする、上記[1]に記載のカルシウム添加鋼の耐水素誘起割れ特性の推定方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] A method for estimating hydrogen-resistant cracking characteristics of a calcium-added steel from the composition and distribution of nonmetallic inclusions in the steel,
Mirror-polished surface of a sample taken from the added molten steel calcium, or scanning slab of calcium added steel, a 20 mm 2 or more mirror-polished surface of the steel pipe obtained by pipe-making rolling steel or rolled steel as measured region A step of observing with an electron microscope, detecting non-metallic inclusions of a predetermined size or more, and analyzing the composition of each detected non-metallic inclusion with an EDS (energy dispersive X-ray analyzer);
Based on the composition analysis result by EDS, calculating the CaO fraction (mass%) of each non-metallic inclusion by the following formulas (1), (2), and (3):
A step of calculating the Al 2 O 3 fraction (% by mass) of each non-metallic inclusion based on the composition analysis result by EDS according to the following formula (4):
From the CaO fraction calculated by the formulas (1) to (3) and the Al 2 O 3 fraction calculated by the formula (4), the ratio of CaO and Al 2 O 3 of individual nonmetallic inclusions. Obtaining ((mass% CaO) / (mass% Al 2 O 3 ));
Counting the number of non-metallic inclusion particles whose ratio ((mass% CaO) / (mass% Al 2 O 3 )) is not less than an arbitrary value selected in the range of 1.0 to 10.0;
Particles per unit area of nonmetallic inclusions whose ratio ((mass% CaO) / (mass% Al 2 O 3 )) obtained in advance is not less than an arbitrary value selected in the range of 1.0 to 10.0 A process for estimating hydrogen-induced cracking resistance using a relational expression between the number and hydrogen-induced cracking resistance,
A method for estimating hydrogen-induced cracking resistance characteristics of a calcium-added steel.
S fraction (% by mass) as MnS = [Mn] × [S atomic weight] / [Mn atomic weight] (1)
Ca fraction (% by mass) as CaS = ([S]-[S fraction as MnS]) × [Ca atomic weight] / [S atomic weight] (2)
CaO fraction (mass%) = ([Ca]-[Ca fraction as CaS]) × [CaO atomic weight] / [Ca atomic weight] ... (3)
Al 2 O 3 fraction (mass%) = [Al] × [Al 2 O 3 atomic weight] / [2 × Al atomic weight] ... (4)
However, [Mn] in the formula (1) is the manganese analysis value (mass%) in the nonmetallic inclusions by EDS, and [S] in the formula (2) is the sulfur analysis value in the nonmetallic inclusions by EDS ( Mass%), [Ca] in the formula (3) is the analytical value of calcium in nonmetallic inclusions by EDS (mass%), and [Al] in the formula (4) is the analysis of aluminum in nonmetallic inclusions by EDS. Value (mass%).
[2] The method for estimating resistance to hydrogen-induced cracking of calcium-added steel according to [1] above, wherein nonmetallic inclusions having a particle size of 1 μm or more are subjected to composition analysis by EDS.

本発明によれば、鋼中の非金属介在物の組成分析結果に基づく比((質量%CaO)/(質量%Al23))が閾値以上の非金属介在物粒子数と、耐水素誘起割れ特性との相関関係から、耐水素誘起割れ特性を推定するので、従来に比較して迅速にカルシウム添加鋼の耐水素誘起割れ特性を評価することが可能となる。 According to the present invention, the number of nonmetallic inclusion particles whose ratio ((mass% CaO) / (mass% Al 2 O 3 )) based on the composition analysis result of nonmetallic inclusions in steel is equal to or greater than a threshold, and hydrogen resistance Since the hydrogen-induced crack resistance is estimated from the correlation with the induced crack characteristics, the hydrogen-induced crack resistance of the calcium-added steel can be evaluated more quickly than in the past.

3種類の試料(試料A、B、C)における比((質量%CaO)/(質量%Al23))の分布例を示す図である。Three samples (Sample A, B, C) is a diagram showing an example of the distribution of the ratio of ((wt% CaO) / (mass% Al 2 O 3)). 比((質量%CaO)/(質量%Al23))が10.0以上となる非金属介在物の個数と水素誘起割れ試験でのCARとの関係を示す図である。Is a graph showing the relationship between the ratio ((wt% CaO) / (mass% Al 2 O 3)) is CAR in number and hydrogen induced cracking test of nonmetallic inclusions of 10.0 or more.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

カルシウム添加鋼においては、カルシウムの添加が過剰になると、高CaO濃度のCaO−Al23系非金属介在物が生成し、これが水素誘起割れの起点となる。そこで、本発明では、鋼中に存在する非金属介在物のなかで、非金属介在物のCaOとAl23との比((質量%CaO)/(質量%Al23))が1.0ないし10.0の範囲で選択した任意の値以上となる非金属介在物の分布状態からカルシウム添加鋼の耐水素誘起割れ特性を推定する。 In calcium-added steel, when calcium is excessively added, a CaO—Al 2 O 3 -based nonmetallic inclusion having a high CaO concentration is generated, which becomes a starting point of hydrogen-induced cracking. Therefore, in the present invention, among the non-metallic inclusions present in the steel, the ratio of non-metallic inclusions CaO to Al 2 O 3 ((mass% CaO) / (mass% Al 2 O 3 )) The resistance to hydrogen-induced cracking of calcium-added steel is estimated from the distribution of non-metallic inclusions that are at least an arbitrary value selected in the range of 1.0 to 10.0.

従って、本発明では、鋼中に存在する数多くの非金属介在物粒子のそれぞれの組成を調査することが必要となる。また、鋼中の非金属介在物は偏在することもある。このような場合には、粗大な非金属介在物のみに捉われず、粒径が1μm程度以上の小さな非金属介在物をも含めて統計精度が得られるのに充分な数の非金属介在物粒子を調査対象とすることが重要となる。また、同時に、耐水素誘起割れ特性を評価するのに充分な披検面積を確保することが必要となる。   Accordingly, in the present invention, it is necessary to investigate the composition of each of the many nonmetallic inclusion particles present in the steel. Moreover, the nonmetallic inclusion in steel may be unevenly distributed. In such a case, a sufficient number of nonmetallic inclusions can be obtained to obtain statistical accuracy, including small nonmetallic inclusions having a particle size of about 1 μm or more, not limited to coarse nonmetallic inclusions. It is important to study particles. At the same time, it is necessary to secure a sufficient test area for evaluating the resistance to hydrogen-induced cracking.

これらを考慮すると、本発明においては、多くの非金属介在物を対象とした測定・評価に好適である、粒子解析機能を有する走査型電子顕微鏡を使用して鋼中の非金属介在物を調査することが最適である。この場合、非金属介在物の組成を定量分析することが必要であるので、EDSが備えられた走査型電子顕微鏡であることが最適である。EDSが備えられた、粒子解析機能を有する走査型電子顕微鏡を用いれば、比較的広い領域を測定対象とすることができ、数千個〜数万個という非金属介在物粒子の組成を自動的に調査することができる。検査対象試験片の前処理や走査型電子顕微鏡での観察・EDS分析の方法は、一般的な方法で構わない。   In view of these, in the present invention, a non-metallic inclusion in steel is investigated using a scanning electron microscope having a particle analysis function, which is suitable for measurement and evaluation of many non-metallic inclusions. It is best to do. In this case, since it is necessary to quantitatively analyze the composition of the nonmetallic inclusions, it is optimal to use a scanning electron microscope equipped with EDS. Using a scanning electron microscope equipped with an EDS and having a particle analysis function, a relatively wide area can be measured, and the composition of thousands to tens of thousands of nonmetallic inclusion particles is automatically set. Can be investigated. The pretreatment of the test specimen to be inspected, the observation with a scanning electron microscope, and the method of EDS analysis may be general methods.

対象とする非金属介在物の大きさは、測定領域や結果判明に必要とされる時間にも影響されるが、今回の調査では、およそ粒径1μm程度以上が適切であることが確認された。余り小さい粒子を対象にすると、観察倍率を高くしなければならないことに加え、試料表面状態の僅かな違いを反映した非金属介在物以外の情報も抽出してしまう可能性があり、大幅な時間の増大や評価精度の劣化に繋がる。   The size of the target non-metallic inclusions is affected by the measurement area and the time required to clarify the results, but in this survey, it was confirmed that a particle size of about 1 μm or more is appropriate. . If too small particles are targeted, the observation magnification must be increased, and information other than non-metallic inclusions that reflects slight differences in the sample surface condition may also be extracted, resulting in a significant amount of time. Leads to an increase in the accuracy and deterioration of the evaluation accuracy.

逆に、例えば粒径10μm以上を対象とした場合には、測定対象となる粒子数が少なくなり過ぎることから、全体的な非金属介在物組成を反映しない可能性がある。また、走査型電子顕微鏡のEDS組成分析では、加速電圧が15kV程度であっても、せいぜい表層から1μm程度の深さの情報しか得られないので、粒径10μm以上を対象とした場合には、例えば中心部と周囲部とで組成が異なる複合非金属介在物では、中心部の組成を評価できない可能性がある。つまり、対象とする非金属介在物の大きさを大きくし過ぎると、非金属介在物の組成を正確に把握できなくなる虞がある。   On the other hand, for example, when the particle size is 10 μm or more, the number of particles to be measured becomes too small, and thus there is a possibility that the entire nonmetallic inclusion composition is not reflected. Further, in the EDS composition analysis of the scanning electron microscope, even if the acceleration voltage is about 15 kV, only information about a depth of about 1 μm can be obtained from the surface layer. For example, in the case of composite non-metallic inclusions having different compositions at the central portion and the peripheral portion, the composition at the central portion may not be evaluated. In other words, if the size of the target nonmetallic inclusion is too large, the composition of the nonmetallic inclusion may not be accurately grasped.

測定面積が広いほど、測定対象粒子数が増えて評価精度は向上するが、測定に要する時間が長くなる。今回の調査結果では、およそ20mm2以上の鏡面研磨面を測定領域とすることで再現性の良い結果が得られた。実際には、必要とされる耐水素誘起割れ特性の推定精度や処理数などを考慮し、最適な条件を決定することが好ましい。 As the measurement area increases, the number of particles to be measured increases and the evaluation accuracy improves, but the time required for measurement increases. According to the result of this investigation, a reproducible result was obtained by setting a mirror-polished surface of approximately 20 mm 2 or more as a measurement region. In practice, it is preferable to determine the optimum conditions in consideration of the estimation accuracy of the required resistance to hydrogen-induced cracking and the number of treatments.

カルシウム添加鋼の耐水素誘起割れ特性を決定するのに重要な非金属介在物中の元素は、硫黄(S)、酸素(O)、カルシウム(Ca)、アルミニウム(Al)、マンガン(Mn)などであり、EDSによる非金属介在物の組成分析では、酸素を除き、これら元素について定量分析した。   Elements in non-metallic inclusions that are important for determining the resistance to hydrogen-induced cracking of calcium-added steel are sulfur (S), oxygen (O), calcium (Ca), aluminum (Al), manganese (Mn), etc. In the composition analysis of nonmetallic inclusions by EDS, these elements were quantitatively analyzed except for oxygen.

尚、本発明者らは、カルシウム添加鋼に含有される非金属介在物においては、マンガンはMnSとして存在し、カルシウムはCaS及びCaOとして存在し、アルミニウムはAl23として存在することを確認している。従って、この知見に基づく化学量論比を適用した計算方法により、EDSによる非金属介在物の組成分析結果を解析し、個々の非金属介在物中のCaOとAl23との比((質量%CaO)/(質量%Al23))を求める。 In addition, the present inventors confirmed that manganese is present as MnS, calcium is present as CaS and CaO, and aluminum is present as Al 2 O 3 in the non-metallic inclusions contained in the calcium-added steel. doing. Therefore, the compositional analysis result of nonmetallic inclusions by EDS is analyzed by a calculation method applying a stoichiometric ratio based on this knowledge, and the ratio of CaO to Al 2 O 3 in each nonmetallic inclusion (( Mass% CaO) / (mass% Al 2 O 3 )).

具体的には、以下のようにして個々の非金属介在物中のCaOとAl23との比((質量%CaO)/(質量%Al23))を求める。 Specifically, the ratio ((mass% CaO) / (mass% Al 2 O 3 )) of CaO and Al 2 O 3 in each non-metallic inclusion is determined as follows.

先ず、EDSによる非金属介在物の組成分析結果に基づき、下記の(1)式、(2)式、(3)式を順に計算して、個々の非金属介在物のCaO分率(質量%)を算出する。
MnSとしてのS分率(質量%)=[Mn]×[S原子量]/[Mn原子量]…(1)
CaSとしてのCa分率(質量%)=([S]-[MnSとしてのS分率])×[Ca原子量]/[S原子量]…(2)
CaO分率(質量%)=([Ca]-[CaSとしてのCa分率])×[CaO原子量]/[Ca原子量]…(3)
但し、(1)式における[Mn]は、EDSによる非金属介在物中のマンガン分析値(質量%)、(2)式における[S]は、EDSによる非金属介在物中の硫黄分析値(質量%)、(3)式における[Ca]は、EDSによる非金属介在物中のカルシウム分析値(質量%)である。
First, based on the composition analysis result of the nonmetallic inclusion by EDS, the following formulas (1), (2), and (3) are calculated in order, and the CaO fraction of each nonmetallic inclusion (mass%) ) Is calculated.
S fraction (% by mass) as MnS = [Mn] × [S atomic weight] / [Mn atomic weight] (1)
Ca fraction (% by mass) as CaS = ([S]-[S fraction as MnS]) × [Ca atomic weight] / [S atomic weight] (2)
CaO fraction (mass%) = ([Ca]-[Ca fraction as CaS]) × [CaO atomic weight] / [Ca atomic weight] ... (3)
However, [Mn] in the formula (1) is the manganese analysis value (mass%) in the nonmetallic inclusions by EDS, and [S] in the formula (2) is the sulfur analysis value in the nonmetallic inclusions by EDS ( (Mass%), [Ca] in the formula (3) is an analytical value (mass%) of calcium in non-metallic inclusions by EDS.

また、EDSによる非金属介在物の組成分析結果に基づき、下記の(4)式によって個々の非金属介在物のAl23分率(質量%)を算出する。
Al2O3分率(質量%)=[Al]×[Al2O3原子量]/[2×Al原子量]…(4)
但し、(4)式における[Al]は、EDSによる非金属介在物中のアルミニウム分析値(質量%)である。
Moreover, based on the composition analysis result of the nonmetallic inclusion by EDS, the Al 2 O 3 fraction (mass%) of each nonmetallic inclusion is calculated by the following equation (4).
Al 2 O 3 fraction (mass%) = [Al] × [Al 2 O 3 atomic weight] / [2 × Al atomic weight] ... (4)
However, [Al] in the formula (4) is an aluminum analysis value (mass%) in non-metallic inclusions by EDS.

次いで、(1)式〜(3)式によって算出されるCaO分率と(4)式によって算出されるAl23分率とから、個々の非金属介在物のCaOとAl23との比((質量%CaO)/(質量%Al23))を求める。 Next, from the CaO fraction calculated by the formulas (1) to (3) and the Al 2 O 3 fraction calculated by the formula (4), the non-metallic inclusions CaO and Al 2 O 3 Ratio ((mass% CaO) / (mass% Al 2 O 3 )).

そして、比((質量%CaO)/(質量%Al23))が1.0ないし10.0の範囲で選択した任意の値以上である非金属介在物の粒子数を計数し、予め求めておいた、比((質量%CaO)/(質量%Al23))が1.0ないし10.0の範囲で選択した任意の値以上である非金属介在物の単位面積あたりの粒子数と、耐水素誘起割れ特性との関係式を用いて、測定対象のカルシウム添加鋼の耐水素誘起割れ特性を推定する。 Then, the number of non-metallic inclusion particles whose ratio ((mass% CaO) / (mass% Al 2 O 3 )) is not less than an arbitrary value selected in the range of 1.0 to 10.0 is counted. The ratio ((mass% CaO) / (mass% Al 2 O 3 )) obtained is not less than an arbitrary value selected in the range of 1.0 to 10.0 per unit area of nonmetallic inclusions. Using the relational expression between the number of particles and the resistance to hydrogen-induced cracking, the resistance to hydrogen-induced cracking of the calcium-added steel to be measured is estimated.

本発明において、非金属介在物のCaOとAl23との比((質量%CaO)/(質量%Al23))が1.0以上である非金属介在物を計数対象としているが、これは、以下の理由に基づく。 In the present invention, nonmetallic inclusions whose nonmetallic inclusions CaO to Al 2 O 3 ratio ((mass% CaO) / (mass% Al 2 O 3 )) is 1.0 or more are counted. However, this is based on the following reason.

CaO−Al23の2元状態図において、比((質量%CaO)/(質量%Al23))が1.0の近傍に、融点を約1455℃とする12CaO・7Al23(CaO=48.5質量%、Al23=51.5質量%、比((質量%CaO)/(質量%Al23))=0.94)の低融点化合物が存在する。この化合物が溶鋼中に形成された場合には、溶鋼中では液体状態であることから、溶鋼からの浮上分離が促進されてカルシウム添加鋼の清浄性は向上する。清浄性が向上することから、耐水素誘起割れ特性が向上する。 In the binary phase diagram of CaO—Al 2 O 3 , 12CaO · 7Al 2 O in which the ratio ((mass% CaO) / (mass% Al 2 O 3 )) is near 1.0 and the melting point is about 1455 ° C. 3 (CaO = 48.5% by mass, Al 2 O 3 = 51.5% by mass, ratio ((mass% CaO) / (mass% Al 2 O 3 )) = 0.94) . When this compound is formed in the molten steel, since it is in a liquid state in the molten steel, floating separation from the molten steel is promoted and the cleanliness of the calcium-added steel is improved. Since the cleanliness is improved, the resistance to hydrogen-induced cracking is improved.

一方、生成される非金属介在物の比((質量%CaO)/(質量%Al23))が2.0(2元状態図でCaO=66.7質量%、Al23=33.3質量%)以上になると、生成される非金属介在物の融点は急激に上昇し、溶鋼中に固体で存在することから溶鋼からの浮上分離は滞り、清浄性が低下して耐水素誘起割れ特性は劣化する。 On the other hand, the ratio of non-metallic inclusions produced ((mass% CaO) / (mass% Al 2 O 3 )) is 2.0 (CaO = 66.7 mass% in the binary phase diagram, Al 2 O 3 = (33.3 mass%) or more, the melting point of the nonmetallic inclusions to be generated rises rapidly, and since it exists as a solid in the molten steel, the floating separation from the molten steel is delayed, and the cleanliness decreases and the hydrogen resistance is reduced. Induced cracking properties deteriorate.

即ち、生成される非金属介在物のCaOとAl23との比((質量%CaO)/(質量%Al23))が1.0を境として、非金属介在物の溶鋼での浮上・分離の挙動が大きく異なり、比((質量%CaO)/(質量%Al23))が1.0以上の浮上性の悪い非金属介在物を把握することで、カルシウム添加鋼の耐水素誘起割れ特性を推定することができることによる。 That is, the ratio of the non-metallic inclusion CaO to Al 2 O 3 ((mass% CaO) / (mass% Al 2 O 3 )) is 1.0 as a boundary. Calculating the calcium-added steel by recognizing non-metallic inclusions with poor floatability with a ratio ((mass% CaO) / (mass% Al 2 O 3 )) of 1.0 or more. This is because the resistance to hydrogen-induced cracking of steel can be estimated.

但し、実際に得られるEDSによる組成分析結果は装置性能や分析条件などにも依存することから、同一条件での比較において耐水素誘起割れ特性と最も相関の高い比((質量%CaO)/(質量%Al23))を閾値として設定することが好ましい。尚、10.0を超える比((質量%CaO)/(質量%Al23))を閾値とすることは必要でない。 However, since the composition analysis result by EDS actually obtained also depends on the apparatus performance, analysis conditions, etc., the ratio ((mass% CaO) / () having the highest correlation with the resistance to hydrogen-induced cracking in comparison under the same conditions. It is preferable to set the mass% Al 2 O 3 )) as a threshold value. It is not necessary to set the ratio ((mass% CaO) / (mass% Al 2 O 3 )) exceeding 10.0 as the threshold value.

予め幾つかの種類の試料を対象として、比((質量%CaO)/(質量%Al23))が1.0ないし10.0の範囲で選択した任意の値以上である非金属介在物の単位面積あたりの粒子数と、耐水素誘起割れ特性との関係式を求めておくことで、それ以降は、非金属介在物の生成状況の評価を行うことによって、迅速に耐水素誘起割れ特性を予測することが可能となる。上記の測定条件であれば、24時間で約10個前後の試験片を測定することが可能であり、極めて迅速に耐耐水素誘起割れ特性を推定可能となる。 For several types of samples in advance, the ratio ((mass% CaO) / (mass% Al 2 O 3 )) is more than an arbitrary value selected in the range of 1.0 to 10.0. By obtaining a relational expression between the number of particles per unit area of the object and the resistance to hydrogen-induced cracking, and thereafter, by evaluating the formation of non-metallic inclusions, hydrogen-induced cracking It is possible to predict characteristics. Under the above measurement conditions, about 10 test pieces can be measured in 24 hours, and the resistance to hydrogen-induced cracking can be estimated very quickly.

尚、本発明の目的は耐水素誘起割れ特性を迅速に把握することであり、この目的のためには、本発明における検査対象試料としては、連続鋳造機で製造された鋳片から採取した試料を対象とすることが好ましい。但し、鋳片を圧延して得た圧延鋼材やこの圧延鋼材を造管した鋼管から採取した試料を対象とすることも可能である。また、溶鋼から採取された試料であっても検査対象試料とすることができる。   The purpose of the present invention is to quickly grasp the resistance to hydrogen-induced cracking. For this purpose, the sample to be inspected in the present invention is a sample taken from a slab manufactured by a continuous casting machine. It is preferable to target. However, it is also possible to target a sample obtained from a rolled steel material obtained by rolling a slab or a steel pipe obtained by forming this rolled steel material. Moreover, even a sample collected from molten steel can be used as a sample to be inspected.

本発明者らの調査結果では、連続鋳造機のタンディッシュ内溶鋼から採取した試料と、その溶鋼を連続鋳造した鋳片から採取した試料とで、非金属介在物の生成状況に大きな違いは見られなかった。尚、鋳片から採取した試料では、耐水素誘起割れ特性に及ぼす採取位置による影響が認められた。これは、連続鋳造鋳片では非金属介在物の分布が均一でないことによる。本発明を適用する場合には、連続鋳造鋳片の最も非金属介在物の多い位置を検査対象とすることが好ましい。また、カルシウム添加量の適正量の把握など、1チャージ毎の評価を行う場合には、溶鋼から採取した試料を検査対象とすることが好ましい。溶鋼から採取した試料の方が代表性の高い場合もある。   The results of the investigation by the present inventors show that there is no significant difference in the production of non-metallic inclusions between the sample collected from the molten steel in the tundish of a continuous casting machine and the sample collected from the cast piece obtained by continuously casting the molten steel. I couldn't. In addition, in the sample extract | collected from the slab, the influence by the extraction | positioning position on the hydrogen-induced cracking resistance characteristic was recognized. This is because the distribution of non-metallic inclusions is not uniform in the continuous cast slab. In the case of applying the present invention, it is preferable that the position where the most non-metallic inclusions are present in the continuous cast slab is the inspection object. Moreover, when evaluating for every charge, such as grasping | ascertaining the appropriate amount of calcium addition amount, it is preferable to make into a test object the sample extract | collected from molten steel. Samples taken from molten steel may be more representative.

本発明において、今回の調査結果では、非金属介在物の大きさを考慮せず、非金属介在物における比((質量%CaO)/(質量%Al23))の閾値以上の個数を判定基準としているが、この判定方法に、更に、非金属介在物の大きさによって影響度を高くするなどの重みを加えて評価することも可能である。 In the present invention, in this investigation result, the number of non-metallic inclusions is not considered, and the number of non-metallic inclusions in the ratio ((mass% CaO) / (mass% Al 2 O 3 )) is not less than the threshold value. Although it is used as a determination criterion, it is also possible to evaluate by adding a weight such as increasing the degree of influence depending on the size of the non-metallic inclusions to this determination method.

以上説明したように、本発明によれば、鋼中の非金属介在物の組成分析結果に基づく比((質量%CaO)/(質量%Al23))が閾値以上の非金属介在物粒子数と、耐水素誘起割れ特性との相関関係から、耐水素誘起割れ特性を推定するので、従来に比較して迅速にカルシウム添加鋼の耐水素誘起割れ特性を評価することが可能となる。 As described above, according to the present invention, the non-metallic inclusions whose ratio ((mass% CaO) / (mass% Al 2 O 3 )) based on the composition analysis result of the non-metallic inclusions in the steel is greater than or equal to the threshold value. Since the hydrogen-induced crack resistance is estimated from the correlation between the number of particles and the hydrogen-induced crack resistance, the hydrogen-induced crack resistance of the calcium-added steel can be evaluated more quickly than in the past.

以下、実施例によって本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

調査対象として実機で製造したカルシウム添加鋼の連続鋳造鋳片から切り出した試料を用いた。鋳片の各位置から試験用の試料を切り出した後に2分割し、一方はNACEに規定される水素誘起割れ試験用とし、他方は本発明による非金属介在物調査用試料とした。水素誘起割れ試験は、NACEに規定される方法に準拠して行った。水素誘起割れ試験(以下、「HIC試験」とも記す)の具体的な方法は、pH(水素イオン指数)が約3の硫化水素を飽和させた、5%NaClと0.5%CH3COOHとの水溶液(通常のNACE溶液)中に試験片を96時間浸漬した後、超音波探傷により試験片全面の割れの有無を調査し、割れ面積率(CAR)を求めた。 A sample cut from a continuous cast slab of calcium-added steel manufactured with an actual machine was used as the object of investigation. A test sample was cut out from each position of the slab and then divided into two parts, one for the hydrogen-induced cracking test specified by NACE and the other for the non-metallic inclusion investigation sample according to the present invention. The hydrogen-induced cracking test was performed according to the method specified in NACE. A specific method of the hydrogen-induced cracking test (hereinafter also referred to as “HIC test”) is that 5% NaCl and 0.5% CH 3 COOH in which hydrogen sulfide having a pH (hydrogen ion index) of about 3 is saturated. After immersing the test piece in an aqueous solution (normal NACE solution) for 96 hours, the surface of the test piece was examined for cracks by ultrasonic flaw detection, and the crack area ratio (CAR) was determined.

一方、本発明による非金属介在物の調査では、試料表面を鏡面研磨した後に、EDSが備えられた、粒子解析機能を有する走査型電子顕微鏡を用いて調査した。各試料とも、横10mm×縦10mmの領域中に存在する1μm以上の非金属介在物を調査の対象とし、各非金属介在物の大きさ・元素組成を調査した。その後、EDS組成分析結果に基づき、(1)式〜(4)式によって各非金属介在物中の比((質量%CaO)/(質量%Al23))を算出した。 On the other hand, in the investigation of the non-metallic inclusions according to the present invention, the sample surface was mirror-polished and then investigated using a scanning electron microscope equipped with an EDS and having a particle analysis function. In each sample, non-metallic inclusions having a size of 1 μm or more existing in a region of 10 mm in width × 10 mm in length were investigated, and the size and elemental composition of each non-metallic inclusion were investigated. Thereafter, based on the EDS composition analysis results, the ratio ((mass% CaO) / (mass% Al 2 O 3 )) in each non-metallic inclusion was calculated by formulas (1) to (4).

図1に、HIC試験においてCARが異なる3種類の試料(試料A、B、C)における比((質量%CaO)/(質量%Al23))の分布例を示す。図1では横軸に比((質量%CaO)/(質量%Al23))を、縦軸に累積個数を示している。図1に示すように、HIC試験でCARの大きい試料ほど、非金属介在物の組成はCaOが富化される傾向であることが認められる。 FIG. 1 shows a distribution example of the ratio ((mass% CaO) / (mass% Al 2 O 3 )) of three types of samples (samples A, B, and C) having different CAR in the HIC test. In FIG. 1, the horizontal axis represents the ratio ((mass% CaO) / (mass% Al 2 O 3 )), and the vertical axis represents the cumulative number. As shown in FIG. 1, it can be seen that the higher the CAR in the HIC test, the more the composition of nonmetallic inclusions tends to be enriched in CaO.

これは、溶鋼の精錬段階において、溶鋼中に存在するAl23量に対して、カルシウムの添加量が多すぎたために、適切な非金属介在物組成が得られず、耐水素誘起割れ特性が劣化したものと考えられる。実際に、HIC試験を行った試験片の破面(割れ面)にはCaO濃度の高い非金属介在物が観察されたことから、上記推定が妥当であることが確認されている。 This is because, in the refining stage of the molten steel, the amount of calcium added was too much with respect to the amount of Al 2 O 3 present in the molten steel. Is thought to have deteriorated. Actually, non-metallic inclusions with a high CaO concentration were observed on the fracture surface (cracked surface) of the test piece subjected to the HIC test, and thus it was confirmed that the above estimation was appropriate.

EDSの調査結果に基づき、比((質量%CaO)/(質量%Al23))が10.0以上となる非金属介在物の個数を計数し、この個数と、HIC試験によって測定されたCARとの関係を調査した。図2に調査結果を示す。図2の横軸は、比((質量%CaO)/(質量%Al23))が10.0以上となる非金属介在物の単位面積あたりの個数である。図2に示すように、両者の間には良好な相関が見られ、鋼中の非金属介在物の生成状況から水素誘起割れ試験の結果を推定できることがわかった。 Based on the EDS survey results, the number of non-metallic inclusions with a ratio ((mass% CaO) / (mass% Al 2 O 3 )) of 10.0 or more is counted, and this number is measured by the HIC test. The relationship with CAR was investigated. The survey results are shown in FIG. The horizontal axis in FIG. 2 represents the number of nonmetallic inclusions per unit area with a ratio ((mass% CaO) / (mass% Al 2 O 3 )) of 10.0 or more. As shown in FIG. 2, a good correlation was observed between the two, and it was found that the result of the hydrogen-induced cracking test can be estimated from the state of formation of nonmetallic inclusions in the steel.

また、図2の相関から、比((質量%CaO)/(質量%Al23))が10.0以上となる非金属介在物の単位面積あたりの個数と、HIC試験でのCARとの回帰式を求めておき、新たに製造したカルシウム添加鋼の鋳片について、鋳片中の非金属介在物を上記の走査型電子顕微鏡で測定し、この測定結果に上記回帰式を適用してCARを推定した。また、新たに製造したカルシウム添加鋼について、HIC試験を行った。 Further, from the correlation of FIG. 2, the number per unit area of non-metallic inclusions having a ratio ((mass% CaO) / (mass% Al 2 O 3 )) of 10.0 or more, and the CAR in the HIC test For the newly produced calcium-added steel slab, measure the nonmetallic inclusions in the slab with the above scanning electron microscope, and apply the regression equation to the measurement results. CAR was estimated. Moreover, the HIC test was done about the newly manufactured calcium addition steel.

回帰式によるCARの推定結果と、実際の水素誘起割れ試験でのCARの測定結果とを表1に示す。   Table 1 shows the estimation result of CAR by the regression equation and the measurement result of CAR in the actual hydrogen-induced cracking test.

Figure 2015059880
Figure 2015059880

表1からも明らかなように、本発明を適用して、鋼中の非金属介在物の調査結果から推定したCARと、実際の水素誘起割れ試験でのCARとは良く一致しており、本発明を適用することで、カルシウム添加鋼の耐水素誘起割れ特性を精度良く推定できることが確認された。   As is apparent from Table 1, the CAR estimated from the investigation results of the nonmetallic inclusions in the steel and the CAR in the actual hydrogen-induced cracking test are in good agreement with the present invention. By applying the invention, it was confirmed that the hydrogen-induced cracking resistance characteristics of the calcium-added steel can be estimated with high accuracy.

Claims (2)

鋼中の非金属介在物の組成及び分布状態からカルシウム添加鋼の耐水素誘起割れ特性を推定する方法であって、
カルシウムの添加された溶鋼から採取された試料の鏡面研磨面、または、カルシウム添加鋼の鋳片、圧延鋼材若しくは圧延鋼材を造管した鋼管の鏡面研磨面の20mm2以上を測定対象領域として走査型電子顕微鏡で観察し、所定の大きさ以上の非金属介在物を検出し、検出された各非金属介在物をEDS(エネルギー分散型X線分析装置)によって組成分析する工程と、
EDSによる組成分析結果に基づき、下記の(1)式、(2)式、(3)式によって個々の非金属介在物のCaO分率(質量%)を算出する工程と、
EDSによる組成分析結果に基づき、下記の(4)式によって個々の非金属介在物のAl23分率(質量%)を算出する工程と、
(1)式〜(3)式によって算出されるCaO分率と(4)式によって算出されるAl23分率とから、個々の非金属介在物のCaOとAl23との比((質量%CaO)/(質量%Al23))を求める工程と、
比((質量%CaO)/(質量%Al23))が1.0ないし10.0の範囲で選択した任意の値以上である非金属介在物の粒子数を計数する工程と、
予め求めた、比((質量%CaO)/(質量%Al23))が1.0ないし10.0の範囲で選択した任意の値以上である非金属介在物の単位面積あたりの粒子数と、耐水素誘起割れ特性との関係式を用いて、耐水素誘起割れ特性を推定する工程と、
を有することを特徴とする、カルシウム添加鋼の耐水素誘起割れ特性の推定方法。
MnSとしてのS分率(質量%)=[Mn]×[S原子量]/[Mn原子量]…(1)
CaSとしてのCa分率(質量%)=([S]-[MnSとしてのS分率])×[Ca原子量]/[S原子量]…(2)
CaO分率(質量%)=([Ca]-[CaSとしてのCa分率])×[CaO原子量]/[Ca原子量]…(3)
Al2O3分率(質量%)=[Al]×[Al2O3原子量]/[2×Al原子量]…(4)
但し、(1)式における[Mn]は、EDSによる非金属介在物中のマンガン分析値(質量%)、(2)式における[S]は、EDSによる非金属介在物中の硫黄分析値(質量%)、(3)式における[Ca]は、EDSによる非金属介在物中のカルシウム分析値(質量%)、(4)式における[Al]は、EDSによる非金属介在物中のアルミニウム分析値(質量%)である。
A method for estimating hydrogen-induced cracking resistance of calcium-added steel from the composition and distribution of non-metallic inclusions in steel,
Mirror-polished surface of a sample taken from the added molten steel calcium, or scanning slab of calcium added steel, a 20 mm 2 or more mirror-polished surface of the steel pipe obtained by pipe-making rolling steel or rolled steel as measured region A step of observing with an electron microscope, detecting non-metallic inclusions of a predetermined size or more, and analyzing the composition of each detected non-metallic inclusion with an EDS (energy dispersive X-ray analyzer);
Based on the composition analysis result by EDS, calculating the CaO fraction (mass%) of each non-metallic inclusion by the following formulas (1), (2), and (3):
A step of calculating the Al 2 O 3 fraction (% by mass) of each non-metallic inclusion based on the composition analysis result by EDS according to the following formula (4):
From the CaO fraction calculated by the formulas (1) to (3) and the Al 2 O 3 fraction calculated by the formula (4), the ratio of CaO and Al 2 O 3 of individual nonmetallic inclusions. Obtaining ((mass% CaO) / (mass% Al 2 O 3 ));
Counting the number of non-metallic inclusion particles whose ratio ((mass% CaO) / (mass% Al 2 O 3 )) is not less than an arbitrary value selected in the range of 1.0 to 10.0;
Particles per unit area of nonmetallic inclusions whose ratio ((mass% CaO) / (mass% Al 2 O 3 )) obtained in advance is not less than an arbitrary value selected in the range of 1.0 to 10.0 A process for estimating hydrogen-induced cracking resistance using a relational expression between the number and hydrogen-induced cracking resistance,
A method for estimating hydrogen-induced cracking resistance characteristics of a calcium-added steel.
S fraction (% by mass) as MnS = [Mn] × [S atomic weight] / [Mn atomic weight] (1)
Ca fraction (% by mass) as CaS = ([S]-[S fraction as MnS]) × [Ca atomic weight] / [S atomic weight] (2)
CaO fraction (mass%) = ([Ca]-[Ca fraction as CaS]) × [CaO atomic weight] / [Ca atomic weight] ... (3)
Al 2 O 3 fraction (mass%) = [Al] × [Al 2 O 3 atomic weight] / [2 × Al atomic weight] ... (4)
However, [Mn] in the formula (1) is the manganese analysis value (mass%) in the nonmetallic inclusions by EDS, and [S] in the formula (2) is the sulfur analysis value in the nonmetallic inclusions by EDS ( Mass%), [Ca] in the formula (3) is the analytical value of calcium in nonmetallic inclusions by EDS (mass%), and [Al] in the formula (4) is the analysis of aluminum in nonmetallic inclusions by EDS. Value (mass%).
粒径が1μm以上の非金属介在物をEDSによる組成分析の対象とすることを特徴とする、請求項1に記載のカルシウム添加鋼の耐水素誘起割れ特性の推定方法。   2. The method for estimating hydrogen-induced cracking resistance characteristics of a calcium-added steel according to claim 1, wherein nonmetallic inclusions having a particle size of 1 [mu] m or more are subjected to composition analysis by EDS.
JP2013194858A 2013-09-20 2013-09-20 Method for estimating hydrogen-resistant cracking characteristics of calcium-added steel Active JP6032166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013194858A JP6032166B2 (en) 2013-09-20 2013-09-20 Method for estimating hydrogen-resistant cracking characteristics of calcium-added steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013194858A JP6032166B2 (en) 2013-09-20 2013-09-20 Method for estimating hydrogen-resistant cracking characteristics of calcium-added steel

Publications (2)

Publication Number Publication Date
JP2015059880A true JP2015059880A (en) 2015-03-30
JP6032166B2 JP6032166B2 (en) 2016-11-24

Family

ID=52817525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013194858A Active JP6032166B2 (en) 2013-09-20 2013-09-20 Method for estimating hydrogen-resistant cracking characteristics of calcium-added steel

Country Status (1)

Country Link
JP (1) JP6032166B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076708A (en) * 2018-11-09 2020-05-21 日本製鉄株式会社 Inclusion evaluation method
CN112098393A (en) * 2020-09-14 2020-12-18 中国工程物理研究院机械制造工艺研究所 Method for measuring multiple elements of HR-1 direct-reading spectrum of hydrogen-resistant steel pipe
CN114636802A (en) * 2022-02-16 2022-06-17 大冶特殊钢有限公司 Method for detecting purity of molten steel in smelting process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033310A (en) * 1983-07-30 1985-02-20 Nippon Steel Corp Manufacture of steel plate efficient in hydrogen induced crack resistance and sulfide stress corrosion crack resistance
JPH08232042A (en) * 1994-12-27 1996-09-10 Sumitomo Metal Ind Ltd Corrosion resisting steel for resistance welded tube
JP2007031749A (en) * 2005-07-25 2007-02-08 Sumitomo Metal Ind Ltd Steel for welded structure with excellent toughness in weld heat-affected zone, and its manufacturing method
EP1978124A1 (en) * 2007-04-05 2008-10-08 Kabushiki Kaisha Kobe Seiko Sho Forging steel, forging and crankshaft
JP2009120899A (en) * 2007-11-14 2009-06-04 Sumitomo Metal Ind Ltd Steel for steel pipe excellent in sour resistance and production method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033310A (en) * 1983-07-30 1985-02-20 Nippon Steel Corp Manufacture of steel plate efficient in hydrogen induced crack resistance and sulfide stress corrosion crack resistance
JPH08232042A (en) * 1994-12-27 1996-09-10 Sumitomo Metal Ind Ltd Corrosion resisting steel for resistance welded tube
JP2007031749A (en) * 2005-07-25 2007-02-08 Sumitomo Metal Ind Ltd Steel for welded structure with excellent toughness in weld heat-affected zone, and its manufacturing method
EP1978124A1 (en) * 2007-04-05 2008-10-08 Kabushiki Kaisha Kobe Seiko Sho Forging steel, forging and crankshaft
JP2009120899A (en) * 2007-11-14 2009-06-04 Sumitomo Metal Ind Ltd Steel for steel pipe excellent in sour resistance and production method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076708A (en) * 2018-11-09 2020-05-21 日本製鉄株式会社 Inclusion evaluation method
JP7206825B2 (en) 2018-11-09 2023-01-18 日本製鉄株式会社 Inclusion evaluation method
CN112098393A (en) * 2020-09-14 2020-12-18 中国工程物理研究院机械制造工艺研究所 Method for measuring multiple elements of HR-1 direct-reading spectrum of hydrogen-resistant steel pipe
CN114636802A (en) * 2022-02-16 2022-06-17 大冶特殊钢有限公司 Method for detecting purity of molten steel in smelting process
CN114636802B (en) * 2022-02-16 2023-11-28 大冶特殊钢有限公司 Method for detecting purity of molten steel in smelting process

Also Published As

Publication number Publication date
JP6032166B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP5320791B2 (en) Center segregation evaluation method
JP5974962B2 (en) Method for producing aluminum-killed steel with Ca added with excellent HIC resistance and Ca addition treatment method for molten steel
Bartosiaki et al. Assessment of inclusion analysis via manual and automated SEM and total oxygen content of steel
JP5853661B2 (en) Steel sheet for high-strength sour line pipe, its material and manufacturing method of steel sheet for high-strength sour line pipe
CN105445306A (en) Method for evaluating element segregation degree in steel
JP6032166B2 (en) Method for estimating hydrogen-resistant cracking characteristics of calcium-added steel
JP2014077642A (en) Estimation method of hic sensitivity of steel material and manufacturing method of high strength thick steel plate for line pipe superior in anti hic performance using the same
JP2009281738A (en) Prediction method of largest inclusion diameter in steel product, and estimation method of rolling fatigue life of steel product
JP6094540B2 (en) Method for evaluating steel materials with excellent hydrogen-induced cracking resistance
JP5900140B2 (en) Steel cleanliness evaluation method and manufacturing method
JP6044247B2 (en) Method for evaluating the resistance to hydrogen cracking of steel materials and steel sheets for high strength sour line pipes with good resistance to hydrogen cracking
Auclair et al. Appropriate Techniques for Internal Cleanliness Assessment Reference: Auclair, G., and Daguier, P.," Appropriate Techniques for Internal Cleanliness Assessment," Bearing Steel Technology, ASTM STP 1419, JM Beswick, Eds., American Society for Testing Materials International, West Conshohocken, PA
Franceschini et al. An assessment of cleanliness techniques for low alloyed steel grades
JP6365813B2 (en) Fatigue strength estimation method
US9890947B2 (en) Prediction method for corrosion rate of steam generator tube using eddy current testing
Fydrych et al. Determination of diffusible hydrogen content in the deposited metal of rutile electrodes by glycerin method
JP5978967B2 (en) Component adjustment method for molten steel
JP2013250113A (en) Determination method for hic resistance performance of steel material
JP6673147B2 (en) Method of identifying inclusions in steel
JP7201124B2 (en) Cleanliness evaluation method for cast slab used as raw material for high fatigue strength steel and method for manufacturing high fatigue strength steel
WO2022130703A1 (en) Steel center segregation evaluation method
RU2554659C1 (en) Method of estimation of corrosion resistance of carbon and low alloyed pipe steels and pipes produced out of them
Elboujdaini et al. Hydrogen-induced cracking and effect of non-metallic inclusions in linepipe steels
JP2023045506A (en) Evaluation method of hydrogen-induced cracking resistance of steel material
CN102507621A (en) Method for judging source of foreign impurities in steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161010

R150 Certificate of patent or registration of utility model

Ref document number: 6032166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250