JP2015090314A - Hydrogen embrittlement prevention method - Google Patents

Hydrogen embrittlement prevention method Download PDF

Info

Publication number
JP2015090314A
JP2015090314A JP2013230027A JP2013230027A JP2015090314A JP 2015090314 A JP2015090314 A JP 2015090314A JP 2013230027 A JP2013230027 A JP 2013230027A JP 2013230027 A JP2013230027 A JP 2013230027A JP 2015090314 A JP2015090314 A JP 2015090314A
Authority
JP
Japan
Prior art keywords
test piece
test
hydrogen
hydrogen embrittlement
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013230027A
Other languages
Japanese (ja)
Inventor
齋藤 博之
Hiroyuki Saito
博之 齋藤
憲宏 藤本
Norihiro Fujimoto
憲宏 藤本
孝 澤田
Takashi Sawada
孝 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013230027A priority Critical patent/JP2015090314A/en
Publication of JP2015090314A publication Critical patent/JP2015090314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable preventive measures of hydrogen embrittlement to be implemented under conditions applicable to an actual environment.SOLUTION: A hydrogen embrittlement prevention method comprises the steps of: in a state where each test solution is in contact with a part of each specimen, observing presence or absence of fracture at a portion of the specimens being in contact with the test solutions respectively while a tensile stress smaller than a yield load of the specimens is applied to each of the specimens; and using a steel material made of steel of the specimens in an environment of a pH higher than a pH in which fracture is observed.

Description

本発明は、鋼材の水素脆化を防止する水素脆化防止方法に関する。   The present invention relates to a hydrogen embrittlement prevention method for preventing hydrogen embrittlement of a steel material.

例えば、プレストレスコンクリート構造物や自動車などの部材として、高強度の炭素鋼が広く用いられている。このような高強度鋼など応力が加わった状態における鋼材では、遅れ破壊が問題となることがある。遅れ破壊とは、静的な負荷を受けているある条件下で使用している鋼材などが、ある時間の経過後、外見上ではほぼ塑性変形を伴うことなく、突然脆性的に割れや破断をもたらして破壊する現象である。   For example, high-strength carbon steel is widely used as a member for prestressed concrete structures and automobiles. In such steel materials in a stressed state such as high strength steel, delayed fracture may be a problem. Delayed fracture means that steel materials used under certain conditions that are subjected to static loads suddenly become brittlely cracked or fractured after a certain amount of time, with virtually no plastic deformation. It is a phenomenon that brings about destruction.

この遅れ破壊のメカニズムは十分に解明されていないが、水素が金属に侵入して延性が失われることによる水素脆性によるものが、原因の1つとして考えられている。応力が加わった状態における金属部材に水素が侵入すると、元来の金属の特性である靭性が低下するという水素脆化現象である。水素脆化が起きた鋼材では、設計上の所定の強度が損なわれるため、鋼材自体の破壊、さらには鋼材から構成される構造物の破壊につながる恐れがある。   Although the mechanism of this delayed fracture has not been fully elucidated, one of the causes is considered to be hydrogen embrittlement due to the penetration of hydrogen into the metal and loss of ductility. This is a hydrogen embrittlement phenomenon in which, when hydrogen enters a metal member in a state where stress is applied, the toughness, which is a characteristic of the original metal, is reduced. In steel materials in which hydrogen embrittlement has occurred, the predetermined strength in design is impaired, and there is a risk of destruction of the steel materials themselves, and further destruction of structures composed of the steel materials.

上述した問題に対し、例えば、鋼材の水素脆化を防ぐために、高力ボルトでは、材料強度を低くすることで、水素脆化感受性を落とすことが行われている(非特許文献1参照)。また、国際プレストレス委員会が規定するFIP試験により、水素量と水素脆化による割れの時間を求め、割れに至らない限界の水素量という概念をもって、これ以下に水素量を限定することで水素脆化を防止する検討もなされている(非特許文献2参照)。   In order to prevent the above-described problems, for example, in order to prevent hydrogen embrittlement of a steel material, a high strength bolt is made to lower the hydrogen embrittlement sensitivity by reducing the material strength (see Non-Patent Document 1). In addition, the FIP test prescribed by the International Prestress Committee determined the amount of hydrogen and the cracking time due to hydrogen embrittlement. By limiting the amount of hydrogen below the concept of the limit amount of hydrogen that does not lead to cracking, Studies have also been made to prevent embrittlement (see Non-Patent Document 2).

白神 哲夫、「高強度鋼の水素脆化」、第170回腐食防食技術シンポジウム予稿、1〜9頁、2010年。Tetsuo Shirakami, “Hydrogen embrittlement of high-strength steel”, Proc. 170th Corrosion Protection Technology Symposium, 1-9, 2010. 樽井 敏三、「高強度鋼の水素脆化」、コンクリート中鉄筋の割れに関するシンポジウム講演資料、77〜89頁、平成20年。Toshizo Tarai, “Hydrogen embrittlement of high-strength steel”, symposium presentation on cracking of reinforcing steel in concrete, 77-89, 2008. 齋藤 博之、藤本 憲宏、澤田 孝、「高強度鋼への水素浸入効率」、電気化学会第79回大会 講演要旨集、3G07、205頁、2012年。Hiroyuki Saito, Norihiro Fujimoto, Takashi Sawada, “Hydrogen Penetration Efficiency into High Strength Steel”, Abstracts of the 79th Annual Meeting of the Electrochemical Society, 3G07, 205, 2012.

しかしながら、材料強度を低くする対策では、より高い強度が必要な場合には適用できないという問題がある。また、FIP試験を利用する技術では、必ずしも実環境での鉄鋼の水素脆性を与えるものではないとされており、実環境に適用できる手法が望まれている。実環境では、鋼材に周囲の環境や応力が作用することで水素脆化するので、環境や負荷応力を模擬した試験の結果から、水素脆化について検討を加えることが必要である。   However, there is a problem that the measures for reducing the material strength cannot be applied when higher strength is required. Moreover, in the technique using the FIP test, it is not necessarily intended to impart the hydrogen embrittlement of steel in a real environment, and a technique applicable to the real environment is desired. In the actual environment, hydrogen embrittlement is caused by the surrounding environment and stress acting on the steel material. Therefore, it is necessary to examine hydrogen embrittlement from the results of tests simulating the environment and load stress.

本発明は、以上のような問題点を解消するためになされたものであり、実環境に適用できる状態で水素脆化の防止対策ができるようにすることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to be able to take measures to prevent hydrogen embrittlement in a state applicable to an actual environment.

本発明に係る水素脆化防止方法は、各々pHが異なる複数の試験溶液を用意する第1工程と、対象とする鋼を棒状とした複数の試験片を用意する第2工程と、各試験溶液の各々に、試験片の一部を接触させた状態で、試験片の降伏荷重より小さな引っ張り応力を試験片の各々に加え、各々の試験片について試験溶液に接触した箇所の破断の有無を観測する第3工程と、上記鋼より構成された鋼材は、破断が観測された試験片に接触させていた試験溶液のpHより高いpHの環境で使用する第4工程とを備える。   The hydrogen embrittlement prevention method according to the present invention includes a first step of preparing a plurality of test solutions each having a different pH, a second step of preparing a plurality of test pieces in a steel bar shape, and each test solution. With each of the test pieces in contact with a part of the test piece, a tensile stress smaller than the yield load of the test piece is applied to each of the test pieces, and the presence or absence of breakage of each test piece in contact with the test solution is observed. The steel material comprised from the said steel is equipped with the 4th process used in the environment of pH higher than the pH of the test solution which was contacting the test piece by which the fracture | rupture was observed.

上記水素脆化防止方法において、第3工程では、試験片を電極として用いて試験溶液中に電位を印加してより水素が発生しやすい状態としてもよい。   In the hydrogen embrittlement prevention method, in the third step, a test piece may be used as an electrode to apply a potential to the test solution so that hydrogen is more likely to be generated.

以上説明したことにより、本発明によれば、実環境に適用できる状態で水素脆化の防止対策ができるようにする。   As described above, according to the present invention, measures for preventing hydrogen embrittlement can be taken in a state applicable to an actual environment.

図1は、本発明の実施の形態における水素脆化防止方法を説明するフローチャートである。FIG. 1 is a flowchart for explaining a hydrogen embrittlement prevention method according to an embodiment of the present invention. 図2は、試験片201を試験溶液203に接触させる構成例を示す断面図である。FIG. 2 is a cross-sectional view illustrating a configuration example in which the test piece 201 is brought into contact with the test solution 203. 図3は、2種類の鋼から作製した2つの試験片A,試験片Bを、所定のpHの水溶液に接触させた状態で引っ張り応力を加える実験で、破断が発生するまでの状態を示す特性図である。FIG. 3 is a characteristic showing a state until fracture occurs in an experiment in which tensile stress is applied to two test pieces A and B made of two types of steel in contact with an aqueous solution having a predetermined pH. FIG. 図4は、2種類の鋼から作製した2つの試験片A,試験片Bを、所定のpHの水溶液に接触させた状態で引っ張り応力を加える実験で、破断が発生するまでの状態を示す特性図である。FIG. 4 is a characteristic showing a state until fracture occurs in an experiment in which tensile stress is applied to two test pieces A and B made of two kinds of steel in contact with an aqueous solution having a predetermined pH. FIG. 図5は、2種類の鋼から作製した2つの試験片A,試験片Bを、所定のpHの水溶液に接触させた状態で引っ張り応力を加える実験で、破断が発生するまでの状態を示す特性図である。FIG. 5 is a characteristic showing a state until fracture occurs in an experiment in which tensile stress is applied to two test pieces A and B made of two types of steel in contact with an aqueous solution having a predetermined pH. FIG.

以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態における水素脆化防止方法を説明するフローチャートである。まず、第1工程S101で、各々pHが異なる複数の試験溶液を用意する。例えば、pH8〜pH10の範囲で、各々pHが異なる5種類の試験溶液A,B,C,D,Eを用意すればよい。次に、第2工程で、対象とする鋼を棒状とした複数の試験片を用意する。上述したように、5種類の試験溶液A,B,C,D,Eを用意した場合、同じ鋼から構成した同じ形状とした棒状の5本の試験片A,B,C,D,Eを用意すればよい。なお、各試験溶液には、上記鋼より構成される鋼材が用いられる実環境に存在するものと考えられる含有物質を溶解させておいてもよい。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart for explaining a hydrogen embrittlement prevention method according to an embodiment of the present invention. First, in the first step S101, a plurality of test solutions each having a different pH are prepared. For example, five types of test solutions A, B, C, D, and E, each having a different pH in the range of pH 8 to pH 10, may be prepared. Next, in the second step, a plurality of test pieces having a target steel rod shape are prepared. As described above, when five types of test solutions A, B, C, D and E are prepared, five rod-shaped test pieces A, B, C, D and E having the same shape made of the same steel are used. Just prepare. In addition, in each test solution, the contained substance considered to exist in the actual environment where the steel material comprised from the said steel is used may be dissolved.

次に、工程S103で、各々の試験片の一部に、各々の試験溶液を接触させた状態で、試験片の降伏荷重より小さな引っ張り応力を試験片の各々に加え、各々の試験片について試験溶液に接触した箇所の破断の有無を観測する。試験片Aの一部には試験溶液Aを接触させ、試験片Bの一部には試験溶液Bを接触させ、試験片Cの一部には試験溶液Cを接触させ、試験片Dの一部には試験溶液Dを接触させ、試験片Eの一部には試験溶液Eを接触させればよい。試験片A,B,C,D,Eは全て同じ鋼から構成した同一形状の鋼材であるが、試験溶液A,B,C,D,Eは、各々pHが異なる。また、加える引っ張り応力は、全ての試験片A,B,C,D,Eに共通とする。   Next, in step S103, a tensile stress smaller than the yield load of the test piece is applied to each of the test pieces in a state where each test solution is in contact with a part of each test piece, and each test piece is tested. Observe the presence or absence of breakage at the point of contact with the solution. A part of the test piece A is brought into contact with the test solution A, a part of the test piece B is brought into contact with the test solution B, a part of the test piece C is brought into contact with the test solution C, The test solution D may be brought into contact with the part, and the test solution E may be brought into contact with a part of the test piece E. The test pieces A, B, C, D, and E are all steel materials having the same shape made of the same steel, but the test solutions A, B, C, D, and E have different pH values. The tensile stress to be applied is common to all the test pieces A, B, C, D, and E.

ここで、図2に示すように、試験片201の一部の周囲を密閉する状態に容器202で覆い、容器202の内部を試験溶液203で満たせばよい。これにより、試験片201の一部が、試験溶液203に接触した状態が得られる。   Here, as shown in FIG. 2, the periphery of a part of the test piece 201 may be covered with a container 202 and the container 202 may be filled with the test solution 203. Thereby, a state in which a part of the test piece 201 is in contact with the test solution 203 is obtained.

また、試験片に加える引っ張り応力は、試験片の降伏加重の80%程度とすればよい。例えば、試験片は、市販されている鉄筋であればよく、この鉄筋の製造会社より公表されている降伏荷重の80%の引っ張り応力を、各試験片に加えればよい。試験片に加える引っ張り応力が、降伏荷重より大きい条件では、水素脆化の有無にかかわらずに試験片が破断する。一方、試験片に加える引っ張り応力が小さすぎると、試験片に破断が発生するまでに非常に長い時間が必要になる。このため、上述した条件とすることがよい。   Further, the tensile stress applied to the test piece may be about 80% of the yield load of the test piece. For example, the test piece may be a commercially available reinforcing bar, and a tensile stress of 80% of the yield load published by the reinforcing bar manufacturer may be applied to each test piece. Under conditions where the tensile stress applied to the test piece is greater than the yield load, the test piece breaks regardless of the presence or absence of hydrogen embrittlement. On the other hand, if the tensile stress applied to the test piece is too small, a very long time is required until the test piece breaks. For this reason, it is good to set it as the conditions mentioned above.

上述したように各試験片に引っ張り応力を加えると、接触させている試験溶液のpHにより、破断が発生する試験片と破断が発生しない試験片とが発生する。ここで、破断が観察された試験片に接触させていた試験溶液のpHは、この試験片が水素脆化を発生しやすい環境におけるpHと考えることができる。従って、第4工程S104で、試験片を構成する鋼より構成された鋼材は、破断が観測された試験片に接触させていた試験溶液のpHよりより高いpHの環境で使用する。   As described above, when tensile stress is applied to each test piece, a test piece in which breakage occurs and a test piece in which breakage does not occur are generated depending on the pH of the test solution being brought into contact. Here, the pH of the test solution in contact with the test piece in which breakage was observed can be considered as the pH in an environment where the test piece is likely to cause hydrogen embrittlement. Therefore, in the fourth step S104, the steel material composed of the steel constituting the test piece is used in an environment having a pH higher than the pH of the test solution in contact with the test piece in which the fracture was observed.

このように、試験片を用いて実施した実験の結果得られた破断する(破断が観測された)pHより高いpHの環境で、試験片の鋼より構成された鋼材を用いれば、この鋼材の水素脆化が防止できるものと考えられる。このように、本発明によれば、実環境に適用できる状態で水素脆化の防止対策ができるようになる。   As described above, if a steel material made of steel of the test piece is used in an environment having a pH higher than the pH at which the fracture is observed (fracture was observed) obtained as a result of the experiment performed using the test piece, It is thought that hydrogen embrittlement can be prevented. Thus, according to the present invention, it is possible to take measures to prevent hydrogen embrittlement in a state applicable to a real environment.

なお、より高いpHの試験溶液に接触させていた試験片では、試験片表面における水素発生が抑制され、水素脆化が発生しにくい条件と考えられる。一方、より低いpHの試験溶液に接触させていた試験片では、試験片表面では水素が発生しやすい状態となり、水素脆化が発生しやすい条件と考えられる。   In addition, in the test piece which was made to contact the test solution of higher pH, hydrogen generation | occurrence | production on the surface of a test piece is suppressed and it is thought that it is the conditions on which hydrogen embrittlement does not occur easily. On the other hand, in a test piece that has been in contact with a lower pH test solution, hydrogen is likely to be generated on the surface of the test piece, which is considered to be a condition where hydrogen embrittlement is likely to occur.

また、上述した測定において、試験片を電極として用いて試験溶液中に電位を印加し、電位を印加しない場合より水素が発生しやすい状態とし、反応を加速した状態で破断の試験を行うようにしてもよい。実環境においても、電位が印加される状態は発生し得るものであり、実環境で生じる反応の例としては、アルカリ性溶液での水からの水素生成として、水と電子から吸着水素と水酸化物イオンが発生する系が知られている(非特許文献3参照)。この反応系で生成系の電子が過剰となるように、試験片の電位を保持して試験溶液より水素を発生させれば、劣化(脆化)を加速させることが可能である。   In the above-described measurement, a potential is applied to the test solution using the test piece as an electrode, hydrogen is more likely to be generated than when no potential is applied, and the rupture test is performed with the reaction accelerated. May be. In an actual environment, a state in which a potential is applied can occur. Examples of reactions that occur in an actual environment include hydrogen generation from water in an alkaline solution, adsorbed hydrogen and hydroxide from water and electrons. A system in which ions are generated is known (see Non-Patent Document 3). Degradation (embrittlement) can be accelerated by maintaining the potential of the test piece and generating hydrogen from the test solution so that the production system has excess electrons in this reaction system.

次に、本発明の効果について検証する。まず、2種類の鋼から作製した2つの第1試験片,第2試験片を用意する。第1試験片と第2試験片とは、異なる鋼から構成されたものとなる。これら第1試験片,第2試験片に対し、図2を用いた説明と同様にすることで、各々に対して所定のpHとした溶液を接触させ、試験片の降伏荷重より小さな引っ張り応力を各々に加える。この状態で、第1試験片,第2試験片が破断するまでの時間と、第1試験片,第2試験片における水素濃度(水素量)を測定する。なお、環境と材料(試験片)との界面の水素濃度が、上記水素濃度を越えないようにする。   Next, the effect of the present invention will be verified. First, two first test pieces and second test pieces prepared from two types of steel are prepared. The first test piece and the second test piece are made of different steels. The first test piece and the second test piece are made in the same manner as described with reference to FIG. 2, so that a solution having a predetermined pH is brought into contact with each of the first test piece and the second test piece, and a tensile stress smaller than the yield load of the test piece is applied. Add to each. In this state, the time until the first test piece and the second test piece are broken and the hydrogen concentration (hydrogen amount) in the first test piece and the second test piece are measured. It should be noted that the hydrogen concentration at the interface between the environment and the material (test piece) should not exceed the hydrogen concentration.

具体的には、溶液は、例えば1M水酸化カルシウム水溶液とし、引っ張り応力は、各々の試験片の最大引張荷重(降伏加重)の80%とする。溶液などの環境の温度についても適宜設計すればよいが、1例として室温(20〜25℃程度)を用いることができる。生成系の電子が過剰となる電位となるように条件を保持するには、例えば、自然浸漬電位からの過電圧を−1.5V、試験片に印加すればよい。電位制御は、既存の三電極法を用いればよい。   Specifically, the solution is, for example, a 1M calcium hydroxide aqueous solution, and the tensile stress is 80% of the maximum tensile load (yield load) of each test piece. Although the temperature of the environment such as a solution may be appropriately designed, room temperature (about 20 to 25 ° C.) can be used as an example. In order to maintain the conditions such that the generation system has an excessive potential, for example, an overvoltage from the natural immersion potential may be applied to the test piece at −1.5 V. For the potential control, an existing three-electrode method may be used.

また、試験片か破断するまでの間に、定期的に試験片における水素濃度の測定を行う。また、引っ張り応力の印加開始から、試験片が破断までの時間を計測する。試験片の水素濃度の測定は、昇温脱離分析などにより実施すればよい。なお、水素量の測定では、試験溶液中の試験片近傍の水素イオン濃度を測定し、この測定値を持って水素量としてもよい。鋼中の水素量と、この近傍の水素イオン濃度とは平衡状態にあり、上記水素イオン濃度が、実質的に試験片中の水素量とすることができる。   In addition, the hydrogen concentration in the test piece is periodically measured until the test piece breaks. Further, the time from the start of applying the tensile stress to the break of the test piece is measured. The hydrogen concentration of the test piece may be measured by temperature programmed desorption analysis or the like. In the measurement of the hydrogen amount, the hydrogen ion concentration in the vicinity of the test piece in the test solution may be measured, and this measured value may be used as the hydrogen amount. The amount of hydrogen in the steel and the hydrogen ion concentration in the vicinity thereof are in an equilibrium state, and the hydrogen ion concentration can substantially be the amount of hydrogen in the test piece.

上述した加速試験による測定結果について、図3に示す。図3は、2種類の鋼から作製した2つの第1試験片,第2試験片に対して、上述した試験を実施した結果を示している。図3において、(a)は、第1試験片の結果を示し、(b)は、第2試験片の結果を示している。また、試験溶液中の試験片近傍の水素イオン濃度を測定してこれを試験片中の水素量であると近似している。   FIG. 3 shows the measurement results of the acceleration test described above. FIG. 3 shows the results of performing the above-described test on two first test pieces and second test pieces produced from two types of steel. In FIG. 3, (a) shows the result of the first test piece, and (b) shows the result of the second test piece. Further, the hydrogen ion concentration in the vicinity of the test piece in the test solution is measured, and this is approximated as the amount of hydrogen in the test piece.

図3の(a)に示すように、第1試験片は、時間t1で破断し、図3の(b)に示すように、第2試験片は、時間t1より長い時間t2で破断している。また、第1試験片は、第2試験片に比較して水素量がより多い状態で破断している。従って、第1試験片と第2試験片とは、環境との界面における水素濃度(pH)により破断するまでに要する時間が異なることが分かる。   As shown in FIG. 3A, the first test piece breaks at time t1, and as shown in FIG. 3B, the second test piece breaks at time t2 longer than time t1. Yes. Moreover, the 1st test piece is fractured in a state where the amount of hydrogen is larger than that of the second test piece. Therefore, it can be seen that the time required for the first test piece and the second test piece to break depends on the hydrogen concentration (pH) at the interface with the environment.

このような第1試験片,第2試験片に対し、環境との界面における水素濃度(環境のpH)を、図4に示すように高い値(低いpH)とすると、第1試験片および第2試験片の両者とも、いずれは破断するものとなる。ただしこの場合、破断までに要する時間は、第1試験片より第2試験片の方が長い。   When the hydrogen concentration (environmental pH) at the interface with the environment is a high value (low pH) as shown in FIG. 4 with respect to the first test piece and the second test piece, the first test piece and the second test piece Both of the two specimens will break. However, in this case, the time required for the fracture is longer for the second test piece than for the first test piece.

一方、環境との界面における水素濃度(環境のpH)を、第1試験片に対して本発明を適用して求めた環境を検討すると、図5に示すように、環境は、第1試験片が破断した時点における水素量より小さい状態(高いpH)となる。このような環境では、第2試験片は破断するが、第1試験片は、破断するに至らないことが分かる。このように、図3に示す結果では、第2試験片の方が水素脆性についてはより高い耐性を備えるものと考えられるが、本発明により、用いる環境を適宜に設定すれば、第1試験片は、水素脆化による破断を防止できるようになる。   On the other hand, when the environment obtained by applying the present invention to the hydrogen concentration at the interface with the environment (the pH of the environment) by applying the present invention to the first test piece is examined, as shown in FIG. It becomes a state (high pH) smaller than the hydrogen amount at the time of breaking. It can be seen that in such an environment, the second test piece breaks, but the first test piece does not break. As described above, in the results shown in FIG. 3, the second test piece is considered to have higher resistance to hydrogen embrittlement. However, if the environment to be used is appropriately set according to the present invention, the first test piece is used. Can prevent fracture due to hydrogen embrittlement.

以上の結果より、鋼材と環境との界面(鋼材表面)における水素濃度が、鋼材が破断するよりも低い値となっていれば、言い換えると、鋼材が配置される環境のpHが、鋼材が破断するよりも高い状態となっていれば、鋼材を水素脆化により破断させることなく、実環境で使用できることが分かる。   From the above results, if the hydrogen concentration at the interface between the steel material and the environment (steel material surface) has a lower value than the steel material breaks, in other words, the pH of the environment in which the steel material is disposed has a steel material breakage. If it is in a higher state than this, it can be seen that the steel material can be used in an actual environment without being broken by hydrogen embrittlement.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。例えば、上述では、試験片に対して部分的に試験溶液を接触させるようにしたが、これに限るものではなく、試験溶液中に試験片全体を浸漬した状態で、引っ張り応力を試験片に加えるようにしてもよい。   The present invention is not limited to the embodiment described above, and many modifications and combinations can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious. For example, in the above description, the test solution is partially brought into contact with the test piece. However, the present invention is not limited to this, and tensile stress is applied to the test piece while the entire test piece is immersed in the test solution. You may do it.

201…試験片、202…容器、203…試験溶液。   201 ... test piece, 202 ... container, 203 ... test solution.

Claims (2)

各々pHが異なる複数の試験溶液を用意する第1工程と、
対象とする鋼を棒状とした複数の試験片を用意する第2工程と、
各々の前記試験片の一部に、各々の前記試験溶液を接触させた状態で、前記試験片の降伏荷重より小さな引っ張り応力を前記試験片の各々に加え、各々の前記試験片について前記試験溶液に接触した箇所の破断の有無を観測する第3工程と、
前記鋼より構成された鋼材は、破断が観測された試験片に接触させていた試験溶液のpHより高いpHの環境で使用する第4工程と
を備えることを特徴とする水素脆化防止方法。
A first step of preparing a plurality of test solutions each having a different pH;
A second step of preparing a plurality of test pieces in a rod-like shape of the target steel;
A tensile stress smaller than the yield load of the test piece is applied to each of the test pieces in a state where the test solution is in contact with a part of the test piece, and the test solution is applied to each of the test pieces. A third step of observing the presence or absence of breakage at the point of contact with
The steel material comprised from the said steel is equipped with the 4th process used in the environment of pH higher than the pH of the test solution contacted with the test piece in which the fracture | rupture was observed. The hydrogen embrittlement prevention method characterized by these.
請求項1記載の水素脆化防止方法において、
前記第3工程では、前記試験片を電極として用いて前記試験溶液中に電位を印加してより水素が発生しやすい状態とすることを特徴とする水素脆化防止方法。
In the hydrogen embrittlement prevention method according to claim 1,
In the third step, a hydrogen embrittlement prevention method characterized in that a potential is applied to the test solution by using the test piece as an electrode to make hydrogen more easily generated.
JP2013230027A 2013-11-06 2013-11-06 Hydrogen embrittlement prevention method Pending JP2015090314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013230027A JP2015090314A (en) 2013-11-06 2013-11-06 Hydrogen embrittlement prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013230027A JP2015090314A (en) 2013-11-06 2013-11-06 Hydrogen embrittlement prevention method

Publications (1)

Publication Number Publication Date
JP2015090314A true JP2015090314A (en) 2015-05-11

Family

ID=53193900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013230027A Pending JP2015090314A (en) 2013-11-06 2013-11-06 Hydrogen embrittlement prevention method

Country Status (1)

Country Link
JP (1) JP2015090314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3043465A1 (en) * 2015-11-09 2017-05-12 Ifp Energies Now SENSOR FOR MEASURING THE FRAGILIZATION OF STEELS BY HYDROGEN IN AN AGGRESSIVE ENVIRONMENT, SAID SENSOR COMPRISING A METAL CAVITY RELATED TO A PRESSURE MEASURING DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221978A (en) * 1993-01-22 1994-08-12 Sumitomo Metal Ind Ltd Delayed destruction evaluation test device for high strength steel pipe
JP2007199024A (en) * 2006-01-30 2007-08-09 Toyota Motor Corp Method for delayed fracture test on ferrous material, method for delayed fracture of bolt and fixture for delayed fracture test
JP2008151675A (en) * 2006-12-19 2008-07-03 Toyota Motor Corp Device for testing delayed fracture
JP2012088241A (en) * 2010-10-21 2012-05-10 Nippon Steel Corp Delayed fracture characteristic evaluation method for pc steel
JP2012159486A (en) * 2011-02-03 2012-08-23 Nippon Telegr & Teleph Corp <Ntt> Hydrogen embrittlement prediction method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221978A (en) * 1993-01-22 1994-08-12 Sumitomo Metal Ind Ltd Delayed destruction evaluation test device for high strength steel pipe
JP2007199024A (en) * 2006-01-30 2007-08-09 Toyota Motor Corp Method for delayed fracture test on ferrous material, method for delayed fracture of bolt and fixture for delayed fracture test
JP2008151675A (en) * 2006-12-19 2008-07-03 Toyota Motor Corp Device for testing delayed fracture
JP2012088241A (en) * 2010-10-21 2012-05-10 Nippon Steel Corp Delayed fracture characteristic evaluation method for pc steel
JP2012159486A (en) * 2011-02-03 2012-08-23 Nippon Telegr & Teleph Corp <Ntt> Hydrogen embrittlement prediction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3043465A1 (en) * 2015-11-09 2017-05-12 Ifp Energies Now SENSOR FOR MEASURING THE FRAGILIZATION OF STEELS BY HYDROGEN IN AN AGGRESSIVE ENVIRONMENT, SAID SENSOR COMPRISING A METAL CAVITY RELATED TO A PRESSURE MEASURING DEVICE
WO2017080780A1 (en) * 2015-11-09 2017-05-18 IFP Energies Nouvelles Sensor for measuring the embrittlement of steels by hydrogen in an aggressive environment, said sensor comprising a metal cavity connected to a pressure-measuring device
US11105729B2 (en) 2015-11-09 2021-08-31 IFP Energies Nouvelles Sensor for measuring the embrittlement of steels by hydrogen in an aggressive environment, said sensor comprising a metal cavity connected to a pressure-measuring device

Similar Documents

Publication Publication Date Title
JP5467026B2 (en) Method for evaluating delayed fracture characteristics of PC steel
JP6354476B2 (en) Characterization method for hydrogen embrittlement of steel
JP2013124998A (en) Hydrogen embrittlement resistance characteristic evaluation method for thin steel sheet
JP6693130B2 (en) Method for evaluating hydrogen embrittlement resistance
JP2014041073A (en) Steel material evaluation method
JP2017187441A (en) Method for evaluating delayed fracture of metal material
JP6352851B2 (en) Hydrogen embrittlement susceptibility evaluation method
Jiang et al. Corrosion fatigue performance of pre‐split steel wires for high strength bridge cables
JP2010223945A (en) Method for hydrogen charging to material, and method for evaluating hydrogen embrittlement characteristics thereof
JP2015090314A (en) Hydrogen embrittlement prevention method
JP2015031554A (en) Hydrogen penetration potential prediction method
JP4519680B2 (en) Accelerated testing method for stress corrosion cracking
JP5774503B2 (en) Method for evaluating delayed fracture characteristics of PC steel
JP6342820B2 (en) Hydrogen embrittlement characteristics evaluation method
JP2018159701A (en) Evaluation method of hydrogen embrittlement resistance
KR101821083B1 (en) Stress corrosion crack test method in alcohol environment
Arroyo et al. A Perspective of the Small Punch Test Application to the Evaluation of Hydrogen Embrittlement in Steels: Effect of Punch Rate on Fracture Properties
Esposito Type IV creep cracking of welded joints: numerical study of the grain size effect in HAZ
JP2013124999A (en) Hydrogen embrittlement resistance characteristic evaluation method for thin steel sheet
Girgenti et al. Improvement of the test equipment for a stress corrosion lab through the Axiomatic Design
JP7408007B1 (en) Inclusion evaluation method
JP2015225058A (en) Method and device for estimating fracture stress in oxide film fracture
Volak et al. Fatigue testing by means of miniature test specimens
Cicero et al. Analysis of environmentally assisted cracking processes in notched steels using the point method
Wang et al. Effect of hydrogen on very high cycle fatigue behavior of a low-strength Cr-Ni-Mo-V steel containing micro-defects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170221