JP2017187441A - Method for evaluating delayed fracture of metal material - Google Patents

Method for evaluating delayed fracture of metal material Download PDF

Info

Publication number
JP2017187441A
JP2017187441A JP2016077971A JP2016077971A JP2017187441A JP 2017187441 A JP2017187441 A JP 2017187441A JP 2016077971 A JP2016077971 A JP 2016077971A JP 2016077971 A JP2016077971 A JP 2016077971A JP 2017187441 A JP2017187441 A JP 2017187441A
Authority
JP
Japan
Prior art keywords
hydrogen
amount
test piece
delayed fracture
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016077971A
Other languages
Japanese (ja)
Other versions
JP6512154B2 (en
Inventor
拓史 岡野
Takushi Okano
拓史 岡野
▲高▼木 周作
周作 ▲高▼木
Shusaku Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016077971A priority Critical patent/JP6512154B2/en
Publication of JP2017187441A publication Critical patent/JP2017187441A/en
Application granted granted Critical
Publication of JP6512154B2 publication Critical patent/JP6512154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple test method capable of defining a limit amount of diffusible hydrogen even in different molding methods.SOLUTION: A method for evaluating a delayed fracture of metal material includes: a test piece hydrogen introduction step of introducing hydrogen into metal material as a test piece so as to cause a delayed fracture; a test piece hydrogen amount measurement step of measuring the amount of hydrogen in the test piece; a hydrogen capture site identification step of identifying a plurality of hydrogen capture sites existing in the test piece; a delayed fracture structure identification step of identifying structures affecting a delayed fracture based on a correspondence between each hydrogen capture site and a delayed fracture in the test piece; a limit diffusible hydrogen amount acquisition step of acquiring, as the amount of limit diffusible hydrogen, the amount of diffusible hydrogen in the test piece in which breakage did not occurred until a predetermined limit time in a test period, when a constant load was applied to the test piece while making hydrogen exist in the test piece or adding hydrogen to the test piece; and a delayed-fracture-structure limit diffusible hydrogen amount acquisition step of acquiring, out of the amount of limit diffusible hydrogen, only the amount of hydrogen captured by the structures affecting the delayed fracture.SELECTED DRAWING: Figure 1

Description

本発明は、金属材料の遅れ破壊評価法に関し、特に、異なる成形様式でも限界拡散性水素量を定義できる簡便な金属材料の遅れ破壊評価法に関するものである。   The present invention relates to a method for evaluating delayed fracture of a metal material, and more particularly to a method for evaluating delayed fracture of a metal material that can define the amount of critical diffusible hydrogen even in different forming modes.

自動車における軽量化と衝突安全性の向上の両立を目的として、自動車部品の高強度化が進められている。しかし、鋼板が高強度化されると、材料中に水素が侵入した場合に伸びなどの機械的性質が劣化する「水素脆化」と呼ばれる現象が発生する。これは高強度鋼部品が静的な負荷応力を受けた状態で、ある時間を経過したとき、外見上はほとんど塑性変形を伴うことなく、突然脆性的に破壊する現象として古くから知られており、遅れ破壊とも呼ばれる。   In order to achieve both weight reduction and crash safety improvement in automobiles, the strength of automobile parts is being increased. However, when the strength of the steel plate is increased, a phenomenon called “hydrogen embrittlement” occurs in which mechanical properties such as elongation deteriorate when hydrogen enters the material. This has long been known as a phenomenon in which high-strength steel parts are subjected to static load stress and, after a certain period of time, are suddenly brittlely broken with virtually no plastic deformation. Also called delayed destruction.

遅れ破壊感受性は材料の強度が高いほど高まり、引張強度1000 MPa以上の超高強度鋼では、水素侵入量が少ない大気腐食環境中でも脆化が生じる可能性がある。そのため、超高強度鋼を実使用するためには、鋼の遅れ破壊評価を正確に把握・理解する必要がある。   Delayed fracture susceptibility increases as the strength of the material increases. In ultra-high strength steel with a tensile strength of 1000 MPa or higher, embrittlement may occur even in an atmospheric corrosion environment with a small amount of hydrogen penetration. Therefore, in order to actually use ultra high strength steel, it is necessary to accurately grasp and understand delayed fracture evaluation of steel.

鋼のようなBCC金属は水素の固溶度が小さく、鋼中に侵入したほとんどの水素が転位、原子空孔、析出物、結晶粒界などに捕捉されている。 しかし、材料中の水素全てが脆化に影響するのではなく、水素脆化の原因は室温で鋼材中を拡散できる「拡散性水素」であると一般的に解釈されている。例えば、析出物などに強く捕捉された水素は、室温では拡散しない「非拡散性水素」であるため、脆化に影響しないとされている。   BCC metals, such as steel, have low hydrogen solubility, and most of the hydrogen that has penetrated into the steel is trapped in dislocations, atomic vacancies, precipitates, and grain boundaries. However, not all hydrogen in the material affects the embrittlement, and it is generally interpreted that the cause of hydrogen embrittlement is “diffusible hydrogen” that can diffuse in steel at room temperature. For example, hydrogen that is strongly trapped by precipitates or the like is “non-diffusible hydrogen” that does not diffuse at room temperature, and is therefore considered not to affect embrittlement.

そこで、前記拡散性水素の量に基づいて、鋼材の遅れ破壊を評価する方法が提案されている。鋼材が遅れ破壊を起こさない上限の拡散性水素量:[Hc](限界拡散性水素量)と、環境から鋼材中に侵入する侵入水素量:[He]の両者を測定し、[Hc]が[He]よりも大きな鋼材であれば、遅れ破壊が起きないと判定する。すなわち、限界拡散性水素量が高い材料ほど遅れ破壊特性が優れていることを意味する。ここで、「限界拡散性水素量」とは、材料中に水素が存在する状態または水素を添加しながら一定荷重を試験片に負荷し、前記試験片のうち、予め定めた限界時間まで破断が発生しなかった試験片の拡散性水素量である。   Thus, a method for evaluating delayed fracture of steel based on the amount of diffusible hydrogen has been proposed. The upper limit of the diffusible hydrogen amount that does not cause delayed fracture of steel: [Hc] (limit diffusible hydrogen amount) and the amount of invading hydrogen that penetrates into the steel from the environment: [He] are measured. If the steel material is larger than [He], it is determined that delayed fracture does not occur. That is, it means that a material with a higher limit diffusible hydrogen content has better delayed fracture characteristics. Here, the “limit diffusible hydrogen amount” means a state where hydrogen is present in the material or a constant load is applied to the test piece while adding hydrogen, and the test piece is not broken until a predetermined limit time. This is the amount of diffusible hydrogen in the test piece that was not generated.

限界拡散性水素量は、材料の組織や組成によって異なり、さらに同じ材料でも変形により導入されるひずみによって大きく異なる。自動車用鋼板の分野では、成形の程度により導入されるひずみ量が異なるため、ひずみ量が決まれば限界拡散性水素量が決定できるなど、ひずみ量と限界拡散性水素量との対応が求められている。   The amount of critical diffusible hydrogen varies depending on the structure and composition of the material, and also varies greatly depending on the strain introduced by deformation even for the same material. In the field of automotive steel sheets, the amount of strain introduced varies depending on the degree of forming, and therefore, when the strain amount is determined, the amount of critical diffusible hydrogen can be determined. Yes.

限界拡散性水素量の測定方法としては、特許文献1に記載されているU曲げボルト締め試験や、特許文献2に記載されている一定荷重引張りによる方法などがある。   As a method for measuring the limit diffusible hydrogen amount, there are a U-bending bolt tightening test described in Patent Document 1, a method using constant load tension described in Patent Document 2, and the like.

特開2005−134152号公報JP-A-2005-134152 特開2009−069008号公報JP 2009-069008 A 特開2011−033600号公報JP 2011-033600 A

S. Takagi, Y. Toji, M. Yoshino, K.Hasegawa, N.Wada, K.Takai, and Y.Hagihara, Steely Hydrogen Conference Proceedings, 2014, 13-20.S. Takagi, Y. Toji, M. Yoshino, K. Hasegawa, N. Wada, K. Takai, and Y. Hagihara, Steely Hydrogen Conference Proceedings, 2014, 13-20. 高井健一、材料と環境、2011年、Vol.60、p.230〜235.Kenichi Takai, Materials and Environment, 2011, Vol. 60, p. 230-235. 萩原行人ら、鉄と鋼、2011年、Vol.97、No.3、p.143〜151.Yukito Sugawara et al., Iron and Steel, 2011, Vol. 97, no. 3, p. 143-151.

しかし、限界拡散性水素量は、同一の組織・ひずみ量・荷重であっても試験方法によって測定される値が異なるため、一義的に決定できないという問題があった。そのため、現状では各部材に適した試験方法で限界拡散性水素量を求め、部材毎に限界拡散性水素量を定義する必要がある。例えば、自動車用鋼板では曲げ、絞り、などそれぞれの試験方法で限界拡散性水素量を求める必要がある。   However, the limit diffusible hydrogen amount has a problem that it cannot be uniquely determined because the value measured by the test method is different even with the same structure, strain amount, and load. Therefore, at present, it is necessary to obtain the critical diffusible hydrogen amount by a test method suitable for each member, and to define the critical diffusible hydrogen amount for each member. For example, in the case of an automotive steel sheet, it is necessary to obtain the critical diffusible hydrogen amount by each test method such as bending and drawing.

さらに、試験方法の中には特別な形成技術を要するカップ絞り試験法や、特許文献3に示す、部材が実環境上で受ける応力を応力解析により推定し、ひずみ量を定量化し、それに相当するひずみを試験片に加えた曲げ試験を行なう方法もあるため、一つの試験に多大な労力と時間が必要である。そのため、異なる成形様式でも限界拡散性水素量を定義できる簡便な試験方法が求められている。   Furthermore, among the test methods, a cup drawing test method that requires a special forming technique and a stress that the member receives in the actual environment shown in Patent Document 3 are estimated by stress analysis, and the amount of strain is quantified, which corresponds to that. Since there is also a method of performing a bending test in which strain is applied to a test piece, a large amount of labor and time are required for one test. Therefore, there is a need for a simple test method that can define the amount of critical diffusible hydrogen even in different molding modes.

本発明は、上記実状に鑑みてなされたものであり、鋼材を始めとする各種金属材料において、異なる成形様式でも限界拡散性水素量を定義できる簡便な試験方法を提供することを目的とする。   This invention is made | formed in view of the said actual condition, and it aims at providing the simple test method which can define the amount of limit diffusible hydrogen even in different shaping | molding styles in various metal materials including steel materials.

本発明者は、検討の結果、異なる成形様式でも、金属材料の水素脆化に影響する組織に捕捉された水素量は、応力とひずみが同一であれば一義的に決定できることを見出した。   As a result of the study, the present inventor has found that the amount of hydrogen trapped in the structure that affects the hydrogen embrittlement of the metal material can be uniquely determined if the stress and strain are the same even in different forming modes.

本発明は、上記知見に基づいてなされたものであり、その要旨構成は次のとおりである。
1.遅れ破壊を発生させるために試験片としての金属材料に水素を導入する試験片水素導入工程、
前記試験片中の水素量を測定する試験片水素量測定工程、
前記試験片に複数存在する水素捕捉サイトを同定する水素捕捉サイト同定工程、
前記試験片中の各水素捕捉サイトと遅れ破壊の対応関係に基づいて遅れ破壊に影響する組織を同定する遅れ破壊組織同定工程、
前記試験片中に水素が存在する状態または前記試験片に水素を添加しながら、該試験片に一定荷重を負荷し、試験期間中に予め定めた限界時間まで破断が発生しなかった試験片の拡散性水素量を限界拡散性水素量として測定する限界拡散性水素量導出工程、および
前記限界拡散性水素量のうち、遅れ破壊に影響する組織に捕捉された水素量のみを導出する遅れ破壊組織の限界水素量導出工程、
を含む、金属材料の遅れ破壊評価法。
This invention is made | formed based on the said knowledge, The summary structure is as follows.
1. A test piece hydrogen introduction process for introducing hydrogen into a metal material as a test piece in order to generate delayed fracture,
A test piece hydrogen amount measuring step for measuring the hydrogen amount in the test piece,
A hydrogen capture site identification step for identifying a plurality of hydrogen capture sites present in the test piece,
Delayed fracture structure identification step for identifying a structure that affects delayed fracture based on the corresponding relationship between each hydrogen capture site in the specimen and delayed fracture,
A test piece in which hydrogen is present in the test piece or a load is applied to the test piece while a constant load is applied to the test piece and no fracture occurs until a predetermined limit time during the test period. A critical diffusible hydrogen amount deriving step for measuring the diffusible hydrogen amount as a critical diffusible hydrogen amount, and a delayed fracture structure for deriving only the hydrogen amount trapped in the tissue that affects delayed fracture among the critical diffusible hydrogen amount The critical hydrogen amount derivation process of
Method for evaluating delayed fracture of metallic materials, including

2.前記水素量に関する情報から、遅れ破壊に関与する組織に由来した水素の情報を分離して、特に転位に捕捉された水素量により遅れ破壊特性を評価する、前記1に記載の金属材料の遅れ破壊評価法。 2. 2. The delayed fracture of the metal material according to 1 above, wherein information on hydrogen derived from a structure involved in delayed fracture is separated from information on the amount of hydrogen, and the delayed fracture characteristics are evaluated particularly by the amount of hydrogen trapped in dislocations. Evaluation method.

3.前記試験片の厚さが0.1mm以上5.0mm以下である、前記1または2に記載の金属材料の遅れ破壊評価法。 3. 3. The method for evaluating delayed fracture of a metal material according to 1 or 2 above, wherein the thickness of the test piece is from 0.1 mm to 5.0 mm.

4.前記限界拡散性水素量導出工程において、拡散性水素量の測定を昇温脱離分析法によって行う、前記1〜3のいずれか一項に記載の金属材料の遅れ破壊評価法。 4). 4. The method for evaluating delayed fracture of a metal material according to any one of 1 to 3, wherein in the step of deriving the limit diffusible hydrogen amount, the amount of diffusible hydrogen is measured by a temperature programmed desorption analysis method.

5.前記昇温脱離分析法において、昇温範囲:−50℃以上300℃以下の水素量を分析する、前記4に記載の金属材料の遅れ破壊評価法。 5. 5. The method for evaluating delayed fracture of a metal material as described in 4 above, wherein, in the temperature programmed desorption analysis method, the temperature range: -50 ° C. or more and 300 ° C. or less of hydrogen is analyzed.

本発明によれば、異なる成形様式で応力とひずみが同一であれば限界拡散性水素量を一義的に決定できるため、種々の試験方法を用いる必要がなく、試験が簡便になる。特に、自動車鋼板のような多様な変形様式が存在する部材においては、試験簡便化の効果は大きく、耐水素脆化鋼材の開発が促進されるなど産業上の貢献が極めて顕著である。   According to the present invention, if the stress and strain are the same in different molding modes, the critical diffusible hydrogen amount can be uniquely determined, so that it is not necessary to use various test methods, and the test becomes simple. In particular, in members having various deformation modes such as automobile steel plates, the effect of simplification of the test is great, and the industrial contribution is extremely remarkable such as the development of hydrogen-resistant embrittled steel materials being promoted.

本発明の一実施形態における鋼材の遅れ破壊評価法のフロー図である。It is a flowchart of the delayed fracture evaluation method of steel materials in one embodiment of the present invention. 様々な試験片を昇温脱離分析法によって分析した際に得られる水素脱離曲線を示す模式図である。It is a schematic diagram which shows the hydrogen desorption curve obtained when various test pieces are analyzed by a temperature-programmed desorption analysis method. 遅れ破壊試験の結果と水素量の関係を示すグラフの一例である。It is an example of the graph which shows the result of a delayed fracture test, and the relationship of hydrogen amount. 水素捕捉サイト同定工程において水素捕捉サイトを同定する手順の一例を示す模式図である。It is a schematic diagram which shows an example of the procedure which identifies a hydrogen capture site in a hydrogen capture site identification process. 遅れ破壊組織同定工程における、未破断材と破断材の各水素脱離ピークに対応する水素量を示す図である。It is a figure which shows the amount of hydrogen corresponding to each hydrogen desorption peak of an unbroken material and a fracture material in a delayed fracture structure identification process. 実施例における限界転位水素量と、比較例における限界拡散性水素量の、ひずみとの関係を示すグラフである。It is a graph which shows the relationship between the limit dislocation hydrogen amount in an Example, and the distortion | strain of the limit diffusible hydrogen amount in a comparative example.

以下、本発明を実施する方法について具体的に説明する。
本発明の一実施形態における金属材料の遅れ破壊評価法は、図1に示すように、以下の6つの工程を含む。
・ステップS1:試験片水素導入工程
・ステップS2:試験片水素量測定工程
・ステップS3:水素捕捉サイト同定工程
・ステップS4:遅れ破壊組織同定工程
・ステップS5:限界拡散性水素量導出工程
・ステップS6:遅れ破壊組織の限界水素量導出工程
Hereinafter, a method for carrying out the present invention will be specifically described.
As shown in FIG. 1, the method for evaluating delayed fracture of a metal material according to an embodiment of the present invention includes the following six steps.
Step S1: Specimen hydrogen introduction process Step S2: Specimen hydrogen amount measurement process Step S3: Hydrogen capture site identification process Step S4: Delayed fracture structure identification process Step S5: Limit diffusible hydrogen amount derivation process S6: Step of deriving critical hydrogen content of delayed fracture structure

[試験片]
本発明の遅れ破壊評価法においては、特に限定されることなく、任意の金属材料を試験片として用いることができる。なお、以下の説明では、鋼材を試験片として用いた場合を例として記載しているが、前記金属材料としては、鋼材に限られることなく、Ti、Al、Mgあるいはそれらの金属間化合物など、任意の金属を用いることができる。
[Test pieces]
In the delayed fracture evaluation method of the present invention, any metal material can be used as a test piece without any particular limitation. In the following description, a case where a steel material is used as a test piece is described as an example, but the metal material is not limited to the steel material, and Ti, Al, Mg or an intermetallic compound thereof, Any metal can be used.

前記試験片は、耐遅れ破壊性を評価するための見本・基準となるデータを得るためのものであるため、多様な条件で成形加工して作成することが好ましい。さらに前記試験片としては、水素捕捉サイトとして機能し得る構造、例えば、転位、結晶粒界、原子空孔、析出物、炭化物、異相界面などを、少なくとも1種導入した鋼材を用いることが好ましい。例えば、転位を導入した試験片を作成するには、圧延の圧下率を増減させる方法などがある。   Since the test piece is for obtaining sample / reference data for evaluating delayed fracture resistance, it is preferable that the test piece be formed and processed under various conditions. Further, as the test piece, it is preferable to use a steel material into which at least one kind of structure capable of functioning as a hydrogen trapping site, for example, dislocations, crystal grain boundaries, atomic vacancies, precipitates, carbides, heterophase interfaces, etc. is introduced. For example, in order to create a test piece into which dislocation is introduced, there is a method of increasing or decreasing the rolling reduction rate.

前記試験片の形状および寸法は、特に限定されず、使用する分析法や分析装置に応じて適宜調整すれば良い。なお、試験片の厚さが5.0mmを超えると、水素捕捉サイト同定工程(ステップS3)において水素捕捉サイトの同定が困難になる場合があるため、試験片の厚さは5.0mm以下とすることが好ましい。また、試験片厚さが0.1mm未満であると、遅れ破壊組織同定工程(ステップS4)および限界拡散性水素量導出工程(ステップS5)において、一定荷重負荷試験を行うことが困難になる場合があるため、試験片の厚さは0.1mm以上とすることが好ましい。よって、試験片厚さは0.1mm以上5.0mm以下が好ましい。さらに、試験片が十分に薄い場合、試験片からの水素の放出は、捕捉サイトから脱離した水素が速やかに試験片外へ脱離する「脱離律速過程」となり、水素脱離ピーク温度に対する拡散の影響を除外することができる。このような観点からは、試験片の厚さを0.3mm以下とすることがより好ましい。   The shape and dimensions of the test piece are not particularly limited, and may be adjusted as appropriate according to the analysis method and analyzer used. If the thickness of the test piece exceeds 5.0 mm, it may be difficult to identify the hydrogen capture site in the hydrogen capture site identification step (step S3). Therefore, the thickness of the test piece is 5.0 mm or less. It is preferable to do. When the specimen thickness is less than 0.1 mm, it is difficult to perform a constant load test in the delayed fracture structure identification step (step S4) and the limit diffusible hydrogen amount derivation step (step S5). Therefore, the thickness of the test piece is preferably 0.1 mm or more. Therefore, the specimen thickness is preferably 0.1 mm or more and 5.0 mm or less. Furthermore, when the test piece is sufficiently thin, the hydrogen release from the test piece becomes a “desorption rate-determining process” in which the hydrogen desorbed from the capture site is quickly desorbed out of the test piece, and it corresponds to the hydrogen desorption peak temperature. The effects of diffusion can be excluded. From such a viewpoint, it is more preferable that the thickness of the test piece is 0.3 mm or less.

[ステップS1:試験片水素導入工程]
試験片水素導入工程においては、試験片の水素補足サイトに水素を十分に補足させるために試験片としての鋼材に水素を導入する。この際、前記試験片としては、上述したように様々な成形加工が施された複数の試験片を用いることが好ましい。導入された水素は、試験片中に存在する水素捕捉サイトに捕捉される。
[Step S1: Specimen Hydrogen Introduction Process]
In the test piece hydrogen introduction step, hydrogen is introduced into the steel material as the test piece in order to sufficiently capture hydrogen at the hydrogen supplementation site of the test piece. At this time, as the test piece, it is preferable to use a plurality of test pieces that have been subjected to various molding processes as described above. The introduced hydrogen is captured at a hydrogen capture site present in the test piece.

水素の導入には、鋼材に水素を導入できる方法であれば、任意の方法を用いることができる。好適に用いることが出来る水素導入方法としては、試験片を塩酸等の酸溶液に浸漬する酸浸漬法、電解液中で試験片を陰極、白金等を陽極とし、陰極と陽極の間に電流を流すことにより溶液を電気分解し、その際に発生した水素を鋼材中に導入する陰極チャージ法、中性塩化物水溶液の散布と温度、湿度を制御した環境で乾湿を繰り返すことによって鋼材に腐食を発生させ、腐食反応に起因して発生する水素を鋼材中に導入する複合サイクル法、試験片を実際の大気環境下に設置し、自然環境下で生じる腐食反応に起因して発生する水素を鋼材中に導入する大気暴露法等が挙げられる。ただし、複合サイクル法と大気暴露法は、水素の導入に要する時間が長期間にわたるとともに、腐食反応によって鋼材中に侵入する水素量が0.1〜0.9質量ppm程度と微量であるため、形成される水素捕捉サイトに十分に水素が満たされない場合がある。したがって、試験時間の短縮および鋼材中の水素量制御の観点からは、試験片に対する水素の導入方法として酸浸漬法または陰極チャージ法を用いることが好ましい。   Any method can be used for introducing hydrogen as long as hydrogen can be introduced into the steel material. As a hydrogen introduction method that can be suitably used, an acid immersion method in which a test piece is immersed in an acid solution such as hydrochloric acid, a test piece is a cathode in an electrolytic solution, platinum or the like is used as an anode, and a current is applied between the cathode and the anode. The solution is electrolyzed by flowing, and the generated hydrogen is introduced into the steel by cathodic charging, and the neutral chloride aqueous solution is sprayed and the steel is corroded by repeated drying and wetting in a controlled temperature and humidity environment. Combined cycle method in which hydrogen generated due to corrosion reaction is introduced into steel material, test pieces are installed in the actual atmospheric environment, and hydrogen generated due to corrosion reaction occurring in the natural environment is steel material The atmospheric exposure method to be introduced inside. However, the combined cycle method and the atmospheric exposure method require a long period of time to introduce hydrogen, and the amount of hydrogen that penetrates into the steel material due to the corrosion reaction is as small as about 0.1 to 0.9 mass ppm. In some cases, hydrogen trapping sites that are formed are not sufficiently filled with hydrogen. Therefore, from the viewpoint of shortening the test time and controlling the amount of hydrogen in the steel, it is preferable to use an acid immersion method or a cathodic charging method as a method for introducing hydrogen into the test piece.

試験片中の水素は拡散によって試験片外へ脱離する可能性があるため、水素導入後は迅速に液体窒素中などの極低温中に試験片を保管し、鋼材からの水素脱離を抑制することが好ましい。   Since hydrogen in the test piece may be desorbed out of the test piece due to diffusion, the test piece is quickly stored at a very low temperature such as in liquid nitrogen after hydrogen is introduced to suppress hydrogen desorption from the steel. It is preferable to do.

[ステップS2:試験片水素量測定工程]
試験片水素量測定工程では、上記試験片水素導入工程において水素が導入された試験片中の水素量を測定する。水素量の測定には、鋼材中の水素を測定できる方法であれば、任意の方法を用いることができる。好適に使用できる水素量測定方法としては、例えば、試験片の温度を上昇させて鋼材中の水素を脱離させる昇温脱離分析法(TDA)や、試験片を透過してくる水素量から鋼材中の水素濃度を求める電気化学的水素透過法などが挙げられる。中でも、試験片の事前準備が容易であり、非特許文献2に示されているように、水素脱離ピークと水素捕捉サイトを関連づけることができる昇温脱離分析法を用いることが好ましい。
[Step S2: Specimen Hydrogen Content Measurement Process]
In the test piece hydrogen amount measurement step, the amount of hydrogen in the test piece into which hydrogen has been introduced in the test piece hydrogen introduction step is measured. Any method can be used for measuring the hydrogen amount as long as it can measure hydrogen in the steel material. Examples of a method for measuring the amount of hydrogen that can be suitably used include temperature-programmed desorption analysis (TDA) in which the temperature of the test piece is raised to desorb hydrogen in the steel material, and the amount of hydrogen that permeates the test piece. For example, an electrochemical hydrogen permeation method for determining the hydrogen concentration in steel. Among them, it is preferable to use a temperature-programmed desorption analysis method in which preparation of a test piece is easy and as shown in Non-Patent Document 2, a hydrogen desorption peak and a hydrogen capture site can be associated with each other.

試験片中に導入した水素が逃散することを防止するために、試験片水素量測定工程は、試験片水素導入工程終了後、速やかに実施することが好ましい。上述したように液体窒素中に試験片を浸漬した場合は、液体窒素から取り出した後、速やかに試験片水素量測定工程を実施することが好ましい。   In order to prevent the hydrogen introduced into the test piece from escaping, the test piece hydrogen amount measuring step is preferably performed promptly after the test piece hydrogen introducing step is completed. As described above, when the test piece is immersed in liquid nitrogen, it is preferable to immediately perform the test piece hydrogen amount measurement step after taking out from the liquid nitrogen.

試験片中の水素量の測定に昇温脱離分析法を用いる場合、試験片から放出される水素を定量する方法としては、例えば、ガスクロマトグラフィを用いることができる。定量にガスクロマトグラフィを用いた昇温脱離分析法の装置としては、例えば、昇温式水素分析装置〈ガスクロマトグラフタイプ〉(JTF−20A)が挙げられる。   When using a temperature programmed desorption analysis method for measuring the amount of hydrogen in a test piece, for example, gas chromatography can be used as a method for quantifying the hydrogen released from the test piece. As an apparatus for temperature programmed desorption analysis using gas chromatography for quantification, for example, temperature-programmed hydrogen analyzer <gas chromatograph type> (JTF-20A) can be mentioned.

昇温脱離分析法を用いる場合の測定条件としては、昇温速度を25℃/h以上400℃/h以下とすることが好ましい。これは、昇温速度が25℃/h未満であると、拡散性水素の測定に非常に時間がかかって効率が悪化し、昇温速度が400℃/hを超えると、水素脱離ピークを分離できない場合があるからである。なお、測定効率の観点からは、昇温速度を50℃/h以上200℃/h以下とすることがより好ましい。また、拡散性水素の定量は、室温〜300℃までの温度範囲で試験片から放出される水素の全量(積分値)を対象とするとすることが好ましい。なお、拡散性水素の一部は室温以下から脱離するものもあるため、−50℃〜300℃までの温度範囲で放出される水素の全量(積分値)とすることがより好ましい。   As measurement conditions in the case of using the temperature programmed desorption analysis method, it is preferable that the rate of temperature increase be 25 ° C./h or more and 400 ° C./h or less. This is because if the heating rate is less than 25 ° C./h, it takes a very long time to measure diffusible hydrogen, and the efficiency deteriorates. If the heating rate exceeds 400 ° C./h, a hydrogen desorption peak is obtained. This is because separation may not be possible. From the viewpoint of measurement efficiency, it is more preferable that the rate of temperature rise be 50 ° C./h or more and 200 ° C./h or less. Moreover, it is preferable that the quantification of diffusible hydrogen targets the total amount (integrated value) of hydrogen released from the test piece in the temperature range from room temperature to 300 ° C. Since some of the diffusible hydrogen is desorbed from room temperature or lower, it is more preferable to set the total amount (integrated value) of hydrogen released in the temperature range from −50 ° C. to 300 ° C.

[ステップS3:水素捕捉サイト同定工程]
水素捕捉サイト同定工程では、試験片に複数存在する水素捕捉サイトを同定する。本工程における水素捕捉サイトの同定方法を、図2の例を参照しながら説明する。
[Step S3: Hydrogen Capture Site Identification Step]
In the hydrogen capture site identification step, a plurality of hydrogen capture sites existing in the test piece are identified. A method for identifying a hydrogen capture site in this step will be described with reference to the example of FIG.

図2は、様々な試験片を昇温脱離分析法によって分析した際に得られる水素脱離曲線を示す模式図である。図2中、左側に示した3つのピークは、圧下率が異なる圧延によってひずみを付与した3つの試験片における水素脱離ピークを示しており、圧下率の増大とともにピークが大きくなっている。圧延によって増大する主な欠陥は転位であるため、この水素脱離ピークは転位に捕捉された水素に起因すると同定される。また、図2中、右側に示した3つのピークは、結晶粒径が異なる3つの試験片における水素脱離ピークを示しており、結晶粒径が細かくなるほどピークが大きくなっている。結晶粒微細化によって増大する捕捉サイトは粒界であると推察されるため、この水素脱離ピークは粒界に捕捉された水素に起因すると同定される。   FIG. 2 is a schematic diagram showing hydrogen desorption curves obtained when various test pieces are analyzed by the temperature programmed desorption analysis method. In FIG. 2, the three peaks shown on the left side show hydrogen desorption peaks in three test pieces that are strained by rolling with different rolling reduction ratios, and the peaks increase as the rolling reduction ratio increases. Since the main defects increased by rolling are dislocations, this hydrogen desorption peak is identified to be due to hydrogen trapped in the dislocations. Further, the three peaks shown on the right side in FIG. 2 indicate hydrogen desorption peaks in three test pieces having different crystal grain sizes, and the peaks become larger as the crystal grain size becomes finer. Since the trapping sites that increase due to grain refinement are presumed to be grain boundaries, this hydrogen desorption peak is identified to be due to hydrogen trapped at the grain boundaries.

このように、昇温脱離分析法によって得られる、水素捕捉サイトに対応した水素脱離ピーク温度と温度幅のデータは、遅れ破壊を評価するための見本・基準となるデータとなる。その後の解析を容易にするためには水素脱離ピークを正規分布(ガウス関数)でフィッティングすることが好ましい。   As described above, the data of the hydrogen desorption peak temperature and temperature range corresponding to the hydrogen trapping site obtained by the temperature programmed desorption analysis method serve as sample / reference data for evaluating delayed fracture. In order to facilitate the subsequent analysis, it is preferable to fit the hydrogen desorption peak with a normal distribution (Gaussian function).

また、昇温脱離分析法によって得られる水素脱離速度と温度のグラフでは、図2のように異なる温度域に複数の水素脱離ピークが観察される場合がある。水素脱離ピークの脱離温度は各欠陥と水素との結合エネルギーに依存するため、水素脱離ピークが複数存在する場合は、複数の水素捕捉サイトが存在することになる。   In the graph of hydrogen desorption rate and temperature obtained by temperature programmed desorption analysis, a plurality of hydrogen desorption peaks may be observed in different temperature ranges as shown in FIG. Since the desorption temperature of the hydrogen desorption peak depends on the bond energy between each defect and hydrogen, when there are a plurality of hydrogen desorption peaks, there are a plurality of hydrogen capture sites.

[[水素脱離曲線のフィッティング]]
前述のように、水素脱離曲線に現れる水素脱離ピークの温度は、水素捕捉サイトによって異なるため、水素脱離ピークから水素捕捉サイトの同定が可能である。しかし、水素脱離ピークは一定の温度の幅を有するため、各々の水素脱離ピークの温度帯が近い場合、水素脱離曲線がそれぞれの水素脱離ピークの重ね合わせとして測定される場合がある。その場合は、非特許文献3に示すように既に得られた水素脱離ピークと水素捕捉サイトが対応付けられた正規分布の重ね合わせとして水素脱離曲線をフィッティングすることが好ましい。水素脱離曲線がそれぞれの水素脱離ピークの重ね合わせとして測定された場合においても、正規分布としてフィッティングすることによって各水素脱離ピークの水素量を数値的に算出可能である。
[[Hydrogen desorption curve fitting]]
As described above, since the temperature of the hydrogen desorption peak appearing in the hydrogen desorption curve varies depending on the hydrogen capture site, the hydrogen capture site can be identified from the hydrogen desorption peak. However, since the hydrogen desorption peak has a certain temperature range, when the temperature zone of each hydrogen desorption peak is close, the hydrogen desorption curve may be measured as a superposition of each hydrogen desorption peak. . In that case, as shown in Non-Patent Document 3, it is preferable to fit a hydrogen desorption curve as a superposition of a normal distribution in which a hydrogen desorption peak already obtained and a hydrogen capture site are associated with each other. Even when the hydrogen desorption curve is measured as a superposition of the respective hydrogen desorption peaks, the amount of hydrogen at each hydrogen desorption peak can be calculated numerically by fitting as a normal distribution.

水素脱離曲線をいくつかの正規分布の水素脱離ピークとしてフィッティングする際には、例えば、Microsoft(登録商標)社のExcel(登録商標)等の表計算ソフトウェア上で、任意の温度とピーク温度およびピーク幅を決定し、実際の水素脱離曲線と一致するようにフィッティングすることができる。また、自動でフィッティングを行うことができるソフトウェアを用いてもよい。なお、正規分布としてフィッティングする場合は、必ずしも完全に一致させる必要はなく、評価結果に悪影響を及ぼさない程度の差異は許容される。   When fitting a hydrogen desorption curve as several normally distributed hydrogen desorption peaks, for example, on a spreadsheet software such as Microsoft (registered trademark) Excel (registered trademark), arbitrary temperature and peak temperature And the peak width can be determined and fitted to match the actual hydrogen desorption curve. Also, software that can automatically perform fitting may be used. In the case of fitting as a normal distribution, it is not always necessary to match completely, and a difference that does not adversely affect the evaluation result is allowed.

上記方法を用いれば、転位、結晶粒界、原子空孔、析出物、炭化物、異相界面などの鋼材中の各種の水素捕捉サイトを同定することが可能であり、各水素捕捉サイトに起因する水素脱離ピークの水素量を独立して測定・算出可能である。   By using the above method, it is possible to identify various hydrogen trapping sites in steel materials such as dislocations, grain boundaries, atomic vacancies, precipitates, carbides, heterogeneous interfaces, and the like. The amount of hydrogen at the desorption peak can be measured and calculated independently.

昇温脱離分析法における水素脱離ピーク温度と温度幅は、測定する時の昇温速度および試験片の板厚、表面被覆、めっき等の表面状態に依存する。そのため既知の水素脱離ピーク温度と温度幅のデータを用いて水素捕捉サイトの同定を行う場合は、昇温速度および試験片の板厚、表面被覆、めっき等の表面状態が同一の鋼材を使用することが好ましい。   The hydrogen desorption peak temperature and temperature range in the temperature programmed desorption analysis method depend on the temperature rise rate at the time of measurement and the surface condition such as the thickness of the test piece, the surface coating, and plating. Therefore, when identifying hydrogen capture sites using data of known hydrogen desorption peak temperatures and temperature ranges, use steel materials with the same temperature conditions, such as the heating rate, specimen thickness, surface coating, and plating. It is preferable to do.

[ステップS4:遅れ破壊組織同定工程]
遅れ破壊組織同定工程では、試験片中の各水素捕捉サイトと遅れ破壊の対応関係に基づいて遅れ破壊に影響する組織(以下、「遅れ破壊組織」ともいう)を同定する。例えば、遅れ破壊試験(材料中に水素が存在する状態または水素を添加しながら、一定荷重を試験片に負荷し、前記試験片のうち、予め定めた限界時間までの破断の有無を確認する試験)において、破断した試験片と未破断の試験片の水素量を測定する。両試験片の水素量を前述のような方法を用いて水素捕捉サイトの組織毎に分離し、比較をすることで遅れ破壊組織を推測することができる。
[Step S4: Delayed Fracture Structure Identification Step]
In the delayed fracture structure identification step, a structure that influences delayed fracture (hereinafter also referred to as “delayed fracture structure”) is identified based on the correspondence between each hydrogen trapping site in the specimen and delayed fracture. For example, a delayed fracture test (a test in which hydrogen is present in the material or a constant load is applied to the test piece while hydrogen is added, and the test piece is checked for breakage up to a predetermined limit time) ), The hydrogen content of the broken and unbroken test pieces is measured. The delayed fracture structure can be estimated by separating the hydrogen amounts of the two test pieces for each structure of the hydrogen capture site using the method as described above and comparing them.

図3を参照しながら試験片中の遅れ破壊組織を同定する方法を説明する。図3は、遅れ破壊試験において破断した試験片と未破断の試験片の水素量を測定し、水素捕捉サイトの組織毎に分離し、各捕捉サイトに捕捉された水素量を比較したグラフである。なお、この試験片の主な捕捉サイトは転位とマルテンサイト組織界面の二つであり、両試験片のひずみ量と荷重の負荷応力は同じであり、導入された水素量のみが異なる。未破断材と破断材の水素量を比較すると、未破断材はマルテンサイト組織界面にのみ水素が捕捉されていることがわかる。一方で、破断材は転位にも水素が捕捉されている。すなわち、転位に水素が捕捉されることで材料が脆化しやすくなると考えられ、本試験片の遅れ破壊に影響する組織は転位であると推定できる。   A method for identifying a delayed fracture structure in a test piece will be described with reference to FIG. FIG. 3 is a graph comparing the amounts of hydrogen trapped at each trapping site after measuring the hydrogen amount of the test piece that was broken in the delayed fracture test and the unbroken test piece, separated for each structure of the hydrogen trapping site. . Note that there are two main trapping sites of this test piece: dislocation and martensite structure interface, the strain amount and load stress of both test pieces are the same, and only the amount of introduced hydrogen is different. Comparing the amount of hydrogen between the unbroken material and the broken material, it can be seen that hydrogen is trapped only at the martensite structure interface. On the other hand, hydrogen is trapped by dislocations in the fracture material. That is, it is considered that the material is easily embrittled by trapping hydrogen in the dislocation, and it can be estimated that the structure that affects the delayed fracture of this test piece is the dislocation.

上記の例では、転位が脆化に影響する捕捉サイトであるが、他の試験片の場合は他の組織が脆化に影響する組織である場合もある。また、脆化に影響する組織が複数の場合もあるが、前述の方法を用いて、水素捕捉サイトの水素量と、遅れ破壊発生の有無を対応付けることで、その他の脆化に影響する組織を推定することが可能である。このように、これまでは水素量の大小のみで遅れ破壊の有無が評価されていたが、本発明の方法を用いることで脆化に影響する組織のみの水素量に基づいて遅れ破壊を評価できる。   In the above example, dislocations are capture sites that affect embrittlement, but in the case of other test pieces, other structures may be structures that affect embrittlement. In addition, there may be a plurality of structures that affect embrittlement. By using the above-described method, the hydrogen amount at the hydrogen capture site is correlated with the presence or absence of delayed fracture, so that other structures that affect embrittlement can be obtained. It is possible to estimate. Thus, until now, the presence or absence of delayed fracture was evaluated only by the amount of hydrogen, but by using the method of the present invention, delayed fracture can be evaluated based on the amount of hydrogen only in the structure that affects embrittlement. .

なお、同じ種類の材料からなる複数の試料片について評価を行う場合、同種の材料では遅れ破壊組織も同じであるため、一度遅れ破壊組織を同定した後は、ステップS1〜S4を省略し、ステップS5以降のみを実施することも可能である。   In addition, when evaluating about several sample pieces which consist of the same kind of material, since the delayed fracture structure is the same in the same kind of material, after identifying the delayed fracture structure, steps S1 to S4 are omitted, It is also possible to implement only S5 and subsequent steps.

[ステップS5:限界拡散性水素量導出工程]
限界拡散性水素量導出工程では、試験片中に水素が存在する状態または前記試験片に水素を添加しながら、該試験片に一定荷重を負荷し、試験期間中に予め定めた限界時間まで破断が発生しなかった試験片の拡散性水素量を限界拡散性水素量として測定する。本工程によって、ある負荷応力での鋼の破断に至る限界拡散性水素量を求めることができる。
[Step S5: Step of Deriving Critical Diffusible Hydrogen]
In the process of deriving the limit diffusible hydrogen amount, the test piece is in a state where hydrogen is present, or while adding hydrogen to the test piece, a constant load is applied to the test piece, and the test piece breaks to a predetermined limit time during the test period. The amount of diffusible hydrogen in the test piece in which no slag occurred was measured as the limit diffusible hydrogen amount. By this step, the amount of critical diffusible hydrogen that leads to the fracture of steel at a certain load stress can be determined.

限界拡散性水素量の測定は、例えば、特許文献1および特許文献2に記載されているような、U曲げボルト締め試験や、単軸引張などの一定荷重引張りによる方法で行うことができる。鋼材中の水素量の測定は、試験片の温度を上昇させて鋼材中の水素を脱離させる昇温脱離分析法や、試験片を透過してくる水素から鋼材中の水素濃度を測定する電気化学的水素透過法などがあるが、試験片の事前準備が容易であり、水素脱離ピークと水素捕捉サイトの対応が可能である昇温脱離分析法が好ましい。昇温脱離分析法の好適な態様は、試験片水素量測定工程の説明で述べたものと同様である。   The amount of limit diffusible hydrogen can be measured by a method using a U-bend bolting test or a constant load tension such as a uniaxial tension as described in Patent Document 1 and Patent Document 2, for example. Measurement of the amount of hydrogen in the steel can be achieved by temperature desorption analysis that desorbs hydrogen in the steel by raising the temperature of the test piece, or by measuring the hydrogen concentration in the steel from the hydrogen that passes through the test piece. Although there are electrochemical hydrogen permeation methods and the like, a temperature-programmed desorption analysis method that allows easy preparation of a test piece and enables correspondence between a hydrogen desorption peak and a hydrogen capture site is preferable. A preferred embodiment of the temperature-programmed desorption analysis method is the same as that described in the description of the test piece hydrogen amount measurement step.

[ステップS6:遅れ破壊組織の限界水素量導出工程]
遅れ破壊組織の限界水素量導出工程では、限界拡散性水素量導出工程(ステップS5)において得られた限界拡散性水素量から、遅れ破壊組織同定工程(ステップS4)によって同定された遅れ破壊組織に捕捉された水素量のみを抽出する。本工程によって、遅れ破壊に影響する組織の限界水素量が求められる。すなわち、ある応力下で材料の遅れ破壊組織にどの程度水素が侵入した場合に遅れ破壊が引き起こされるかが求められる。なお、試験片中の脆化に影響する組織が複数ある場合は、その水素量の総量を限界水素量とすることが好ましい。
[Step S6: Step of Deriving Critical Hydrogen Content of Delayed Fracture Structure]
In the process of deriving the critical hydrogen content of the delayed fracture structure, the delayed fracture structure identified in the delayed fracture structure identification process (step S4) is obtained from the critical diffusible hydrogen quantity obtained in the critical diffusible hydrogen quantity derivation process (step S5). Only the amount of trapped hydrogen is extracted. By this step, the critical hydrogen content of the structure that affects delayed fracture is determined. That is, it is required how much hydrogen penetrates into a delayed fracture structure of a material under a certain stress to cause delayed fracture. In addition, when there exist two or more structures | tissues which influence the embrittlement in a test piece, it is preferable to make the total amount of the hydrogen amount into a limit hydrogen amount.

遅れ破壊組織に捕捉された水素量のみを抽出する方法は、特に限定されず、任意の方法とすることができる。例えば、限界拡散性水素量導出工程(ステップS5)において、拡散性水素量の測定を昇温脱離分析法によって行った場合は、昇温脱離分析法によって得られる水素脱離曲線(水素脱離速度−温度)を用いて行うことができる。具体的には、限界拡散性水素量導出工程(ステップS5)において得られた水素脱離曲線に対して、前述の「水素脱離曲線のフィッティング」を適用し、捕捉サイト毎の水素脱離ピークに分離する。その後、遅れ破壊組織同定工程(ステップS4)で決定された遅れ破壊組織に捕捉された組織の水素量を算出する。この値が本試験片における限界水素量であり、この値を用いて他のひずみ量や他の鋼種と比較することが本発明の特徴である。   The method for extracting only the amount of hydrogen trapped in the delayed fracture structure is not particularly limited, and can be any method. For example, when the amount of diffusible hydrogen is measured by the temperature programmed desorption analysis method in the limiting diffusible hydrogen amount deriving step (step S5), the hydrogen desorption curve (hydrogen desorption) obtained by the temperature programmed desorption analysis method is used. Separation rate-temperature). Specifically, the above-mentioned “hydrogen desorption curve fitting” is applied to the hydrogen desorption curve obtained in the limiting diffusible hydrogen amount derivation step (step S5), and the hydrogen desorption peak at each capture site is obtained. To separate. Thereafter, the amount of hydrogen in the tissue captured by the delayed fracture tissue determined in the delayed fracture tissue identification step (step S4) is calculated. This value is the limit amount of hydrogen in the test piece, and it is a feature of the present invention that this value is used to compare with other strain amounts and other steel types.

さらに本発明者は種々の検討を行った結果、異なる成形様式でも、鋼材の水素脆化に影響する組織にだけ捕捉された水素量は、応力とひずみが同一であれば、遅れ破壊を引き起こす限界水素量が同値であることを見出した。すなわち、応力とひずみが同一であれば異なる成形様式でも同一の限界水素量を定義できるため、課題である種々の方法で限界拡散性水素量を求め、材料毎に定義する必要がなく、試験が簡便になることが特徴である。   Furthermore, as a result of various investigations, the present inventor has found that the amount of hydrogen trapped only in the structure that affects the hydrogen embrittlement of the steel material is the limit that causes delayed fracture if the stress and strain are the same even in different forming modes. The amount of hydrogen was found to be equivalent. In other words, if the stress and strain are the same, the same critical hydrogen amount can be defined even in different molding modes. Therefore, it is not necessary to determine the critical diffusible hydrogen amount by various methods, which is a problem, and to define it for each material. It is easy to use.

応力とひずみが同一であれば、異なる成形様式でも同一の限界水素量を決定できるため、限界拡散性水素量導出工程(ステップS5)では、ひずみ量の算出や試験片の加工が簡便である単軸引張による限界水素量の測定を行うことが好ましい。しかし、本発明は単軸引張試験法での限界水素量算出に限ったものではなく、U曲げやボルト締め試験など、材料中に水素が存在する状態または水素を添加しながら、一定荷重を試験片に負荷し、予め定めた限界時間まで破断が発生しなかった試験片の水素量から限界水素量を算出できる方法であれば、如何なる方法も利用することができる。   If the stress and strain are the same, the same critical hydrogen amount can be determined even in different molding modes. Therefore, in the critical diffusible hydrogen amount derivation step (step S5), the calculation of the strain amount and the processing of the specimen are simple. It is preferable to measure the critical hydrogen amount by axial tension. However, the present invention is not limited to the calculation of the critical hydrogen amount in the uniaxial tensile test method, but a constant load is tested while hydrogen is present in the material, such as U-bending or bolting test, or hydrogen is added. Any method can be used as long as the limit hydrogen amount can be calculated from the hydrogen amount of the test piece that was loaded on the piece and did not break until a predetermined limit time.

次に、実施例に基づいて、さらに具体的に説明する。本実施例では、試験片として、TS:1180MPa級フェライト−マルテンサイト鋼(DP鋼)を、参考試験片としてフェライト鋼(IF鋼)を、それぞれ用いた。前記試験片および参考試験片の厚さは0.3mmとした。これらの試験片にひずみを真ひずみで0〜0.5付与した。   Next, based on an Example, it demonstrates further more concretely. In this example, TS: 1180 MPa class ferrite-martensitic steel (DP steel) was used as a test piece, and ferritic steel (IF steel) was used as a reference test piece. The thickness of the said test piece and the reference test piece was 0.3 mm. A strain of 0 to 0.5 was applied as a true strain to these test pieces.

試験片水素導入工程(ステップS1)における水素導入は、陰極チャージ法により行った。前記陰極チャージは、3質量%NaCl+3質量% NHSCN溶液中、電流密度:30A/mで24時間電解することにより行い、これにより、上記試験片に水素を導入した。試験片中の水素は拡散によって試験片外へ脱離する可能性があるため、水素導入後は迅速に液体窒素の極低温中に試験片を保管した。 Hydrogen introduction in the test piece hydrogen introduction step (step S1) was performed by a cathode charge method. The cathode charge was performed by electrolysis at a current density of 30 A / m 2 in a 3% by mass NaCl + 3% by mass NH 4 SCN solution for 24 hours, whereby hydrogen was introduced into the test piece. Since hydrogen in the test piece may be desorbed out of the test piece due to diffusion, the test piece was quickly stored in the cryogenic temperature of liquid nitrogen after hydrogen introduction.

試験片水素量測定工程(ステップS2)では、昇温脱離分析法を用いた。昇温脱離分析には、低温型昇温式水素分析装置を用いた。昇温脱離分析は200℃/hの昇温速度で−50℃から300℃までの温度範囲で行った。その際は、試験片中に導入した水素が逃散することを防止するために、液体窒素中に凍結したサンプルを速やかに低温型昇温式水素分析装置で測定した。   In the test piece hydrogen amount measurement step (step S2), a temperature programmed desorption analysis method was used. For the temperature programmed desorption analysis, a low temperature temperature programmed hydrogen analyzer was used. Thermal desorption analysis was performed in a temperature range from −50 ° C. to 300 ° C. at a temperature rising rate of 200 ° C./h. At that time, in order to prevent the hydrogen introduced into the test piece from escaping, a sample frozen in liquid nitrogen was immediately measured with a low temperature type temperature rising type hydrogen analyzer.

限界拡散性水素量導出工程(ステップS5)における限界拡散性水素量の導出は、単軸引張試験法とカップ絞り試験法の二種の試験法で行った。単軸引張試験片のひずみは圧延で付与し、カップ絞り試験は絞りによりひずみを付与した。カップ絞りのひずみ量は有限要素法により算出した。単軸引張試験法とカップ絞り試験法の破壊起点応力が900MPaとなるように設定し、単軸引張試験では荷重を2.6kNとした。   The derivation of the limit diffusible hydrogen amount in the limit diffusible hydrogen amount derivation step (step S5) was performed by two test methods, a uniaxial tensile test method and a cup drawing test method. The strain of the uniaxial tensile test piece was applied by rolling, and in the cup drawing test, the strain was applied by drawing. The strain amount of the cup drawing was calculated by the finite element method. The fracture starting stress of the uniaxial tensile test method and the cup drawing test method was set to 900 MPa, and the load was 2.6 kN in the uniaxial tensile test.

限界拡散性水素量導出工程(ステップS5)における水素導入条件は、陰極水素チャージ法の場合は3質量%NaCl+3g/L NHSCN溶液中で1〜10A/mとし、塩酸浸漬ではpH1〜4の溶液中で水素を導入した。まず本荷重で遅れ破壊が発生する程度に水素を導入し、この条件から徐々に水素導入条件を減少させ、100時間以上でも破壊が発生しない条件で導入された試験片の水素量を昇温脱離分析法によって測定し、破壊限界の水素量を有する試験片からの水素脱離曲線を得た。 In the critical diffusible hydrogen amount derivation step (step S5), the hydrogen introduction condition is 1 to 10 A / m 2 in a 3 mass% NaCl + 3 g / L NH 4 SCN solution in the case of the cathodic hydrogen charging method, and pH 1 to 4 in the case of hydrochloric acid immersion. Hydrogen was introduced in the solution. First, hydrogen is introduced to such an extent that delayed fracture occurs at this load, and the hydrogen introduction condition is gradually reduced from this condition, and the amount of hydrogen in the test piece introduced under the condition that no fracture occurs even after 100 hours or more is temperature-escalated. A hydrogen desorption curve was obtained from a test piece having a hydrogen content at the fracture limit as measured by a separation analysis method.

前記昇温脱離分析には、低温型昇温式水素分析装置を用いた。昇温脱離分析は200℃/hの昇温速度で−50℃から300℃までの温度範囲で行った。   For the temperature programmed desorption analysis, a low temperature type temperature programmed hydrogen analyzer was used. Thermal desorption analysis was performed in a temperature range from −50 ° C. to 300 ° C. at a temperature rising rate of 200 ° C./h.

次に、破壊限界の水素量を有する試験片からの水素脱離曲線を、Microsoft(登録商標)社のExcel(登録商標)等の表計算ソフトウェア上で、いくつかの正規分布でフィッティングし、その中で遅れ破壊に影響する組織からの水素量のみを抽出した。最後に、得られた遅れ破壊に影響する組織からの水素量とひずみ量の関係を、単軸引張試験法とカップ絞り試験法の二種で比較した。なお、本発明はこれに限るものでなく、その他の鋼材および水素添加方法においても評価可能な遅れ破壊評価法である。   Next, a hydrogen desorption curve from a test piece having a hydrogen content at the fracture limit is fitted with some normal distribution on a spreadsheet software such as Microsoft (registered trademark) Excel (registered trademark). Only the amount of hydrogen from the tissue that affected delayed fracture was extracted. Finally, the relationship between the amount of hydrogen and strain from the microstructure that affects delayed fracture obtained was compared between the uniaxial tensile test method and the cup drawing test method. In addition, this invention is not restricted to this, It is a delayed fracture evaluation method which can be evaluated also in other steel materials and hydrogenation methods.

図4に、水素捕捉サイト同定工程(ステップS3)において水素捕捉サイトを同定した手順を示す。図4(a)は、フェライト鋼(IF)における水素脱離曲線である。フェライト鋼では、圧延によりPeak Aが急激に上昇することから、Peak Aは「転位」の水素脱離ピークであると同定した。また、水素量は少ないものの、第2のピーク(Peak B)が存在し、Peak Bの大きさは圧延により増大した。このPeak Bは低温で焼き戻す(200℃)ことで消滅することから、熱的に不安定な欠陥とされる「空孔クラスター」あると同定した。このように熱処理等によって水素捕捉サイトを増減させることによって、水素捕捉サイトを同定することも可能である。   FIG. 4 shows a procedure for identifying a hydrogen capture site in the hydrogen capture site identification step (step S3). FIG. 4A is a hydrogen desorption curve in ferritic steel (IF). In ferritic steel, Peak A suddenly rises due to rolling, so Peak A was identified as a “dislocation” hydrogen desorption peak. Further, although the amount of hydrogen was small, a second peak (Peak B) was present, and the size of Peak B was increased by rolling. Since Peak B disappears by tempering at a low temperature (200 ° C.), it was identified as a “vacancy cluster” that is regarded as a thermally unstable defect. Thus, it is also possible to identify the hydrogen trapping site by increasing or decreasing the hydrogen trapping site by heat treatment or the like.

次いで、図4(b)に示すように、同定された水素脱離ピークのそれぞれをガウス関数でフィッティングすることにより、水素脱離曲線を二つの水素脱離ピークに分離した。   Next, as shown in FIG. 4B, the hydrogen desorption curve was separated into two hydrogen desorption peaks by fitting each of the identified hydrogen desorption peaks with a Gaussian function.

次に、IF鋼の測定によって得られたこれらの情報を基にDP鋼における水素脱離曲線を解析する。図4(c)はDP鋼における水素脱離曲線であり、IF鋼の測定によって得られた二つの水素脱離ピークでフィッティングすると図4(d)のようになる。この時、IF鋼とDP鋼では組織が異なるため、IF鋼の水素脱離ピークだけではDP鋼のピークを再現できないが、図4(e)に示すように、その差分がDP鋼特有の水素捕捉サイトに起因する水素脱離ピークとなる。このIF鋼には存在しない捕捉サイトは、フェライト−マルテンサイト鋼の二相組織で顕著であることから、「マルテンサイト組織とフェライト組織の界面」であると同定される(以下、マルテンサイト組織界面と記す)。このようにひずみを付与した1180MPa級フェライト−マルテンサイト鋼には、少なくとも転位、マルテンサイト組織界面、空孔クラスターが水素捕捉サイトとして存在した。   Next, the hydrogen desorption curve in DP steel is analyzed based on these information obtained by measuring IF steel. FIG. 4C is a hydrogen desorption curve in DP steel. When fitting with two hydrogen desorption peaks obtained by measurement of IF steel, FIG. 4D is obtained. At this time, the structure of IF steel is different from that of DP steel. Therefore, the peak of DP steel cannot be reproduced using only the hydrogen desorption peak of IF steel. However, as shown in FIG. It becomes a hydrogen desorption peak due to the capture site. This trapping site that does not exist in IF steel is prominent in the two-phase structure of ferrite-martensitic steel, and is thus identified as the “interface between the martensite structure and the ferrite structure” (hereinafter referred to as the martensite structure interface). ). In the 1180 MPa class ferritic-martensitic steel thus imparted with strain, at least dislocations, martensite structure interfaces, and vacancy clusters existed as hydrogen trapping sites.

次に、遅れ破壊組織同定工程(ステップS4)について説明する。上記のDP鋼に対して、3質量%NaCl+3g/L NHSCN溶液中において電流密度0.5〜5A/mで水素を発生させ、1125kNを付与する定荷重試験を行った。その結果、電流密度0.5A/mでは破断しなかったが、5A/mでは破断した。図5に、前述と同様の条件で昇温脱離分析を行ってこれら試験片の水素量を測定し、各水素脱離ピークに対応する水素量を算出した結果を示す。未破断材と破断材の水素量を比較すると、未破断材はマルテンサイト組織界面にのみ水素が捕捉されていることがわかる。一方で、破断材は転位に多くの水素が捕捉されている。すなわち、転位に水素が捕捉されることで材料が脆化しやすくなると考えられ、試験片の遅れ破壊に影響する組織は転位であると推定できる。この結果に基づき、転位に捕捉された水素量を抽出した。以下、この値を「限界転位水素量」と呼ぶ。 Next, the delayed fracture structure identification step (step S4) will be described. The DP steel was subjected to a constant load test in which hydrogen was generated at a current density of 0.5 to 5 A / m 2 in a 3% by mass NaCl + 3 g / L NH 4 SCN solution to give 1125 kN. As a result, it did not break at a current density of 0.5 A / m 2 , but it broke at 5 A / m 2 . FIG. 5 shows the results of performing temperature programmed desorption analysis under the same conditions as described above, measuring the hydrogen content of these test pieces, and calculating the hydrogen content corresponding to each hydrogen desorption peak. Comparing the amount of hydrogen between the unbroken material and the broken material, it can be seen that hydrogen is trapped only at the martensite structure interface. On the other hand, a lot of hydrogen is captured by dislocations in the fractured material. That is, it is considered that the material is easily embrittled by capturing hydrogen in the dislocation, and it can be estimated that the structure that affects the delayed fracture of the specimen is the dislocation. Based on this result, the amount of hydrogen trapped in the dislocation was extracted. Hereinafter, this value is referred to as “limit dislocation hydrogen amount”.

比較のために、上記実施例と同様の試験片について、従来の方法で限界拡散性水素量を測定した(比較例)。図6に、上記実施例における限界転位水素量と、比較例における限界拡散性水素量の、ひずみとの関係を示す。   For comparison, the amount of limit diffusible hydrogen was measured by a conventional method for the same test piece as in the above Example (Comparative Example). FIG. 6 shows the relationship between the amount of critical dislocation hydrogen in the above example and the strain of the critical diffusible hydrogen amount in the comparative example.

図6から分かるように、比較例においては、カップ絞り法と単軸引張では付与したひずみは同値であっても、限界拡散性水素量は異なる。一方、上述のようにして本発明の方法で求めた「限界転位水素量」は、ひずみによらず約0.5質量ppmであった。すなわち、この実施例において試験片として用いた鋼材は、転位に捕捉された水素量が0.5質量ppm以下の場合は破断しないことになる。さらに、実施例においては、カップ絞り法における限界転位水素量と単軸引張試験法における限界転位水素量は一致するため、どちらか一方の荷重負荷方法でも同一に評価可能である。なお、一般的にはカップ絞り法は特別な装置が必要なため、単軸引張試験法で評価することが簡便であり、好ましい。   As can be seen from FIG. 6, in the comparative example, the amount of critical diffusible hydrogen is different even when the applied strain is the same between the cup drawing method and the uniaxial tension. On the other hand, the “limit dislocation hydrogen content” obtained by the method of the present invention as described above was about 0.5 ppm by mass regardless of the strain. That is, the steel material used as the test piece in this example does not break when the amount of hydrogen trapped by the dislocation is 0.5 mass ppm or less. Furthermore, in the examples, since the critical dislocation hydrogen amount in the cup drawing method and the critical dislocation hydrogen amount in the uniaxial tensile test method are the same, the same evaluation can be made by either one of the load application methods. In general, since the cup drawing method requires a special device, it is easy and preferable to evaluate by a uniaxial tensile test method.

以上のように、本発明の方法では、応力とひずみが同一であれば、異なる成形様式でも同一の限界水素量を定義できる。そのため、それぞれの試験方法で限界拡散性水素量を求める必要がなく、試験が簡便化可能である。さらに、実環境で入りうる水素とひずみ量の関係が分かれば、遅れ破壊発生の有無が予測可能となり、材料設計の指針となる効果も考えられる。   As described above, in the method of the present invention, if the stress and strain are the same, the same critical hydrogen amount can be defined even in different molding modes. Therefore, it is not necessary to obtain the limit diffusible hydrogen amount in each test method, and the test can be simplified. Furthermore, if the relationship between the amount of hydrogen that can enter in the actual environment and the amount of strain is known, the presence or absence of delayed fracture can be predicted, and an effect that serves as a guideline for material design can be considered.

Claims (5)

遅れ破壊を発生させるために試験片としての金属材料に水素を導入する試験片水素導入工程、
前記試験片中の水素量を測定する試験片水素量測定工程、
前記試験片に複数存在する水素捕捉サイトを同定する水素捕捉サイト同定工程、
前記試験片中の各水素捕捉サイトと遅れ破壊の対応関係に基づいて遅れ破壊に影響する組織を同定する遅れ破壊組織同定工程、
前記試験片中に水素が存在する状態または前記試験片に水素を添加しながら、該試験片に一定荷重を負荷し、試験期間中に予め定めた限界時間まで破断が発生しなかった試験片の拡散性水素量を限界拡散性水素量として測定する限界拡散性水素量導出工程、および
前記限界拡散性水素量のうち、遅れ破壊に影響する組織に捕捉された水素量のみを導出する遅れ破壊組織の限界水素量導出工程、
を含む、金属材料の遅れ破壊評価法。
A test piece hydrogen introduction process for introducing hydrogen into a metal material as a test piece in order to generate delayed fracture,
A test piece hydrogen amount measuring step for measuring the hydrogen amount in the test piece,
A hydrogen capture site identification step for identifying a plurality of hydrogen capture sites present in the test piece,
Delayed fracture structure identification step for identifying a structure that affects delayed fracture based on the corresponding relationship between each hydrogen capture site in the specimen and delayed fracture,
A test piece in which hydrogen is present in the test piece or a load is applied to the test piece while a constant load is applied to the test piece and no fracture occurs until a predetermined limit time during the test period. A critical diffusible hydrogen amount deriving step for measuring the diffusible hydrogen amount as a critical diffusible hydrogen amount, and a delayed fracture structure for deriving only the hydrogen amount trapped in the tissue that affects delayed fracture among the critical diffusible hydrogen amount The critical hydrogen amount derivation process of
Method for evaluating delayed fracture of metallic materials, including
前記水素量に関する情報から、遅れ破壊に関与する組織に由来した水素の情報を分離して、特に転位に捕捉された水素量により遅れ破壊特性を評価する、請求項1に記載の金属材料の遅れ破壊評価法。   2. The delay of the metal material according to claim 1, wherein information on hydrogen derived from a structure involved in delayed fracture is separated from information on the amount of hydrogen, and the delayed fracture characteristics are evaluated in particular by the amount of hydrogen trapped in dislocations. Destructive evaluation method. 前記試験片の厚さが0.1mm以上5.0mm以下である、請求項1または2に記載の金属材料の遅れ破壊評価法。   The method for evaluating delayed fracture of a metal material according to claim 1 or 2, wherein the thickness of the test piece is from 0.1 mm to 5.0 mm. 前記限界拡散性水素量導出工程において、拡散性水素量の測定を昇温脱離分析法によって行う、請求項1〜3のいずれか一項に記載の金属材料の遅れ破壊評価法。   The method for evaluating delayed fracture of a metal material according to any one of claims 1 to 3, wherein in the step of deriving the critical diffusible hydrogen amount, the amount of diffusible hydrogen is measured by a temperature programmed desorption analysis method. 前記昇温脱離分析法において、昇温範囲:−50℃以上300℃以下の水素量を分析する、請求項4に記載の金属材料の遅れ破壊評価法。
5. The delayed fracture evaluation method for a metal material according to claim 4, wherein in the temperature-programmed desorption analysis, the amount of hydrogen in a temperature-raising range: −50 ° C. to 300 ° C. is analyzed.
JP2016077971A 2016-04-08 2016-04-08 Evaluation method for delayed fracture of metallic materials Active JP6512154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016077971A JP6512154B2 (en) 2016-04-08 2016-04-08 Evaluation method for delayed fracture of metallic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016077971A JP6512154B2 (en) 2016-04-08 2016-04-08 Evaluation method for delayed fracture of metallic materials

Publications (2)

Publication Number Publication Date
JP2017187441A true JP2017187441A (en) 2017-10-12
JP6512154B2 JP6512154B2 (en) 2019-05-15

Family

ID=60046322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016077971A Active JP6512154B2 (en) 2016-04-08 2016-04-08 Evaluation method for delayed fracture of metallic materials

Country Status (1)

Country Link
JP (1) JP6512154B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211328A (en) * 2018-06-05 2019-12-12 日本電信電話株式会社 Crack occurrence detection method, crack occurrence detection device, and crack occurrence detection program
JP2021001761A (en) * 2019-06-20 2021-01-07 日本精工株式会社 Fatigue progress degree evaluation method
CN112539995A (en) * 2019-09-23 2021-03-23 天津大学 Method for evaluating hydrogen embrittlement sensitivity of material in cathodic protection process
JP2021081388A (en) * 2019-11-22 2021-05-27 Nissha株式会社 Analyzer and method for analysis
US20210231556A1 (en) * 2018-05-07 2021-07-29 Nippon Telegraph And Telephone Corporation Method for Estimating Steel Rupture Starting Point, Device for Estimating Steel Rupture Starting Point, and Program for Estimating Steel Rupture Starting Point
WO2023181539A1 (en) * 2022-03-24 2023-09-28 Jfeスチール株式会社 Method, device, and program for predicting delayed fracture in press-formed article, and method for manufacturing press-formed article
JP7384262B2 (en) 2022-03-24 2023-11-21 Jfeスチール株式会社 Delayed fracture prediction method, device and program for press-formed products, and method for manufacturing press-formed products
WO2024080193A1 (en) * 2022-10-13 2024-04-18 Jfeスチール株式会社 Method for evaluating delayed fracture properties of metal material, method for selecting metal material, and method for manufacturing member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192781A (en) * 2006-01-23 2007-08-02 Nikko Kensa Service Kk Evaluation method and device for evaluating material deterioration behavior by tracer hydrogen
JP2008261028A (en) * 2007-04-13 2008-10-30 Nippon Steel Corp High-carbon steel wire rod having excellent wire drawability
JP2009069008A (en) * 2007-09-13 2009-04-02 Nippon Steel Corp Test piece for steel sheet hydrogen embrittlement evaluation, and steel sheet hydrogen embrittlement evaluation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192781A (en) * 2006-01-23 2007-08-02 Nikko Kensa Service Kk Evaluation method and device for evaluating material deterioration behavior by tracer hydrogen
JP2008261028A (en) * 2007-04-13 2008-10-30 Nippon Steel Corp High-carbon steel wire rod having excellent wire drawability
JP2009069008A (en) * 2007-09-13 2009-04-02 Nippon Steel Corp Test piece for steel sheet hydrogen embrittlement evaluation, and steel sheet hydrogen embrittlement evaluation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
萩原行人: "V添加高強度鋼のCSRTによる遅れ破壊特性評価と水素トラップ挙動", 鉄と鋼, vol. Vol.97、No.3, JPN6018035556, 2011, JP, pages p.143〜151 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210231556A1 (en) * 2018-05-07 2021-07-29 Nippon Telegraph And Telephone Corporation Method for Estimating Steel Rupture Starting Point, Device for Estimating Steel Rupture Starting Point, and Program for Estimating Steel Rupture Starting Point
US11946856B2 (en) * 2018-05-07 2024-04-02 Nippon Telegraph And Telephone Corporation Method for estimating steel rupture starting point, device for estimating steel rupture starting point, and program for estimating steel rupture starting point
US11913895B2 (en) 2018-06-05 2024-02-27 Nippon Telegraph And Telephone Corporation Method for detecting occurrence of cracks and the like, device for detecting occurrence of cracks and the like, and program for detecting occurrence of cracks and the like
JP2019211328A (en) * 2018-06-05 2019-12-12 日本電信電話株式会社 Crack occurrence detection method, crack occurrence detection device, and crack occurrence detection program
JP7029061B2 (en) 2018-06-05 2022-03-03 日本電信電話株式会社 Rhagades occurrence detection method, crack occurrence detection device and crack occurrence detection program
JP2021001761A (en) * 2019-06-20 2021-01-07 日本精工株式会社 Fatigue progress degree evaluation method
JP7238620B2 (en) 2019-06-20 2023-03-14 日本精工株式会社 Fatigue progress evaluation method
CN112539995A (en) * 2019-09-23 2021-03-23 天津大学 Method for evaluating hydrogen embrittlement sensitivity of material in cathodic protection process
JP2021081388A (en) * 2019-11-22 2021-05-27 Nissha株式会社 Analyzer and method for analysis
JP7353936B2 (en) 2019-11-22 2023-10-02 Nissha株式会社 Analyzer and method
JP7384262B2 (en) 2022-03-24 2023-11-21 Jfeスチール株式会社 Delayed fracture prediction method, device and program for press-formed products, and method for manufacturing press-formed products
WO2023181539A1 (en) * 2022-03-24 2023-09-28 Jfeスチール株式会社 Method, device, and program for predicting delayed fracture in press-formed article, and method for manufacturing press-formed article
WO2024080193A1 (en) * 2022-10-13 2024-04-18 Jfeスチール株式会社 Method for evaluating delayed fracture properties of metal material, method for selecting metal material, and method for manufacturing member

Also Published As

Publication number Publication date
JP6512154B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP6512154B2 (en) Evaluation method for delayed fracture of metallic materials
Brass et al. Hydrogen uptake in 316L stainless steel: Consequences on the tensile properties
Saller et al. Microstructural evolution of Cr–Mn–N austenitic steels during cold work hardening
Venezuela et al. Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions
Bai et al. Intergranular corrosion behavior associated with delta-ferrite transformation of Ti-modified Super304H austenitic stainless steel
Oudriss et al. Consequence of the diffusive hydrogen contents on tensile properties of martensitic steel during the desorption at room temperature
JP5467026B2 (en) Method for evaluating delayed fracture characteristics of PC steel
JP4901662B2 (en) Test piece for evaluating hydrogen embrittlement of thin steel sheet and method for evaluating hydrogen embrittlement of thin steel sheet
Koyama et al. Hydrogen-induced delayed fracture of a Fe–22Mn–0.6 C steel pre-strained at different strain rates
JP2007198895A (en) Evaluation method of delayed breaking resistance of high-strength steel sheet
JP6354476B2 (en) Characterization method for hydrogen embrittlement of steel
JP6693130B2 (en) Method for evaluating hydrogen embrittlement resistance
JP2013124998A (en) Hydrogen embrittlement resistance characteristic evaluation method for thin steel sheet
Costin et al. Investigation of hydrogen assisted cracking in acicular ferrite using site-specific micro-fracture tests
Shibayama et al. An evaluation method for hydrogen embrittlement of high strength steel sheets using U-bend specimens
Yoshino et al. Influence of sheared edge on hydrogen embrittlement resistance in an ultra-high strength steel sheet
Lu et al. Hydrogen diffusion and trapping in nickel-based alloy 625: An electrochemical permeation study
Brauser et al. Hydrogen absorption of different welded duplex steels
Chaves et al. Stage I crack directions under in-phase axial–torsion fatigue loading for AISI 304L stainless steel
Toribio et al. Effect of cold drawing on susceptibility to hydrogen embrittlement of prestressing steel
Ozdirik et al. Comparison of electrochemical and thermal evaluation of hydrogen uptake in steel alloys having different microstructures
Truschner et al. Hydrogen embrittlement characteristics in cold-drawn high-strength stainless steel wires
JP2010223945A (en) Method for hydrogen charging to material, and method for evaluating hydrogen embrittlement characteristics thereof
JP6973193B2 (en) Hydrogen embrittlement resistance evaluation method
Priceputu et al. Delta ferrite influence in AISI 321 stainless steel welded tubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R150 Certificate of patent or registration of utility model

Ref document number: 6512154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250