JP7238620B2 - Fatigue progress evaluation method - Google Patents

Fatigue progress evaluation method Download PDF

Info

Publication number
JP7238620B2
JP7238620B2 JP2019114566A JP2019114566A JP7238620B2 JP 7238620 B2 JP7238620 B2 JP 7238620B2 JP 2019114566 A JP2019114566 A JP 2019114566A JP 2019114566 A JP2019114566 A JP 2019114566A JP 7238620 B2 JP7238620 B2 JP 7238620B2
Authority
JP
Japan
Prior art keywords
rolling
fatigue
amount
rolling device
progress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019114566A
Other languages
Japanese (ja)
Other versions
JP2021001761A (en
Inventor
敦 今井
紘樹 山田
英幸 宇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2019114566A priority Critical patent/JP7238620B2/en
Publication of JP2021001761A publication Critical patent/JP2021001761A/en
Application granted granted Critical
Publication of JP7238620B2 publication Critical patent/JP7238620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は疲労進行度評価方法に関する。 The present invention relates to a fatigue progress evaluation method.

転動装置の転動部材を形成する鋼中に水素が侵入すると、転がり接触によって鋼の内部に作用する剪断応力と水素との相互作用により、鋼の金属組織に変化が生じる場合がある。この金属組織の変化は、鋼の基地組織であるマルテンサイトが微細なフェライト粒に変化する現象である。エッチングを行って組織変化部を観察すると白く見えることから、水素の侵入により変化した金属組織は「白色組織」と呼ばれる。鋼に白色組織が発生すると、組織変化部と正常部(組織非変化部)の界面から疲労亀裂が生じて剥離するため、転動部材の転動疲労寿命が著しく低下するおそれがある。以下、上記のような白色組織への組織変化を伴った剥離を、「白色組織剥離」と記すこともある。また、白色組織に起因する破損(白色組織剥離を含む)を「白色組織破損」と記すこともある。
転動装置の運転時に転動部材に侵入した水素のうち常温拡散性水素の量を定量することにより、転動装置の白色組織剥離による疲労の進行度(以下「疲労進行度」と記す)を評価したり、白色組織剥離による寿命を予測したりすることができる(例えば特許文献1を参照)。
When hydrogen penetrates into the steel that forms the rolling member of the rolling device, the metallographic structure of the steel may change due to the interaction between the hydrogen and the shear stress acting inside the steel due to rolling contact. This change in metal structure is a phenomenon in which martensite, which is the base structure of steel, changes into fine ferrite grains. When etching is performed and the changed structure is observed, it looks white, so the metal structure changed by the penetration of hydrogen is called "white structure". If a white structure occurs in steel, fatigue cracks will occur from the interface between the structure-changed portion and the normal portion (structure-unchanged portion), and the steel will peel off. Hereinafter, detachment accompanied by tissue change to white tissue as described above may be referred to as “white tissue detachment”. Also, damage caused by white tissue (including white tissue detachment) is sometimes referred to as "white tissue damage".
By quantifying the amount of room-temperature diffusible hydrogen among the hydrogen that penetrated into the rolling members during operation of the rolling device, the progress of fatigue due to white tissue flaking of the rolling device (hereinafter referred to as "fatigue progress") was measured. It is possible to evaluate and predict the life due to white tissue exfoliation (see Patent Document 1, for example).

しかしながら、実機(例えば自動車用オルタネータ)に使用された転動装置の場合は、転動部材に含有されている常温拡散性水素の量を定量しようとしても、測定する前に常温拡散性水素が転動部材から放出される場合があるため、常温拡散性水素量の正確な定量は困難であった。したがって、実機で使用された転動装置の白色組織剥離による疲労進行度を評価したり、白色組織剥離による寿命を予測したりすることは、困難であった。 However, in the case of a rolling device used in an actual machine (for example, an alternator for automobiles), even if an attempt is made to quantify the amount of room temperature diffusible hydrogen contained in the rolling member, the room temperature diffusible hydrogen is transferred before measurement. Accurate quantification of room-temperature diffusible hydrogen was difficult because it may be released from moving parts. Therefore, it was difficult to evaluate the degree of progress of fatigue due to flaking of the white tissue of the rolling device used in the actual machine and to predict the life due to the flaking of the white tissue.

特許第6072504号公報Japanese Patent No. 6072504

本発明は、転動装置の白色組織剥離による疲労進行度を評価する方法を提供することを課題とする。 An object of the present invention is to provide a method for evaluating the degree of progress of fatigue due to white tissue flaking of a rolling device.

本発明の一態様に係る疲労進行度評価方法は、相互に転がり接触する2つの転動部材を備え、2つの転動部材の少なくとも一方が鋼製転動部材である転動装置の疲労進行度を評価する方法であって、疲労進行度は、鋼製転動部材に生じた白色組織剥離による転動装置の疲労の進行度合いであり、鋼製転動部材のうち転がり接触により転動疲労した部位である転動疲労部位は、白色組織及び黒色組織を有するが、転動疲労部位が有する白色組織に含有される常温非拡散性水素の量に基づいて、転動装置の疲労進行度を評価することを要旨とする。 A fatigue progress evaluation method according to an aspect of the present invention is provided with two rolling contact members that are in rolling contact with each other, and at least one of the two rolling contact members is a steel rolling contact member. In this method, the degree of fatigue progress is the degree of progress of fatigue of the rolling device due to white texture exfoliation occurring in the steel rolling contact member, and the rolling contact fatigue of the steel rolling member is caused by rolling contact. A rolling contact fatigue site, which is a part, has a white structure and a black structure. Based on the amount of room temperature non-diffusible hydrogen contained in the white structure of the rolling contact fatigue site, the degree of fatigue progress of the rolling device is evaluated. The gist is to

本発明によれば、転動装置の白色組織剥離による疲労進行度を評価することができる。 According to the present invention, it is possible to evaluate the degree of progress of fatigue caused by white tissue flaking of a rolling device.

本発明の一実施形態に係る疲労進行度評価方法を説明するグラフの一例である。It is an example of the graph explaining the fatigue progress evaluation method which concerns on one Embodiment of this invention. ガウス分布を用いた統計的処理によって水素放出曲線を分離した小ピークを示すチャートである。FIG. 10 is a chart showing small peaks separated from hydrogen desorption curves by statistical treatment using Gaussian distribution; FIG. 運転終了後の軌道輪の溝底直下部の断面の顕微鏡写真である。It is a microphotograph of the cross section of the groove bottom of the bearing ring after the end of the operation. 図3を説明する模式的説明図である。FIG. 4 is a schematic explanatory diagram for explaining FIG. 3;

まず、本明細書において用いられる文言の定義について、まとめて説明する。
「白色組織剥離」とは、前述したように、白色組織への組織変化を伴って転動装置の鋼製転動部材に生じる剥離を意味する。
「白色組織破損」とは、前述したように、白色組織に起因して転動装置の鋼製転動部材に生じる破損を意味し、白色組織剥離を包含する。
First, definitions of terms used in this specification will be collectively described.
As described above, "white texture flaking" means flaking that occurs in steel rolling members of a rolling device accompanied by structural change to white texture.
As described above, "white tissue failure" means damage caused to a steel rolling member of a rolling device due to white tissue, and includes white tissue spallation.

「水素環境」とは、転動装置が運転時に置かれる各種環境(例えば、鋼製転動部材に作用する応力の大きさ(面圧)、鋼製転動部材に作用する応力の繰り返し数(転動装置の運転時間)、転動装置の雰囲気、温度)のうち水素に関する環境を意味する。例えば、転動装置が運転時に置かれる雰囲気や転動装置に使用される潤滑油等の潤滑剤が、「水素環境」に包含される。潤滑油等の潤滑剤は、転動装置の運転時に分解して水素を発生させるため、「水素環境」に包含される。 "Hydrogen environment" refers to various environments in which the rolling device is placed during operation (e.g., magnitude of stress acting on steel rolling members (surface pressure), number of repetitions of stress acting on steel rolling members ( operating time of the rolling device), the atmosphere of the rolling device, and the temperature), which means the environment related to hydrogen. For example, the "hydrogen environment" includes the atmosphere in which the rolling device is operated and lubricants such as lubricating oil used in the rolling device. Lubricants such as lubricating oil are included in the “hydrogen environment” because they decompose to generate hydrogen during operation of the rolling device.

「疲労進行度」とは、鋼製転動部材に生じた白色組織剥離による転動装置の疲労の進行度合いを意味し、本発明においては、転動装置の計算寿命L10に対する転動装置の運転時間Tの比T/L10と定義する。
「常温拡散性水素」とは、鋼中に比較的弱くトラップされており、鋼製転動部材中を比較的自由に移動し得る水素を意味する。この常温拡散性水素は、常温において時間と共に鋼製転動部材から外部に放出され得る。
The “fatigue progress” means the progress of fatigue of the rolling device due to flaking of the white tissue generated in the steel rolling member. Define the ratio of time T as T/L10.
By "cold diffusible hydrogen" is meant hydrogen that is relatively weakly trapped in steel and relatively free to move in steel rolling members. This room temperature diffusible hydrogen can be released outside from the steel rolling member with time at room temperature.

「常温非拡散性水素」とは、鋼中に比較的強くトラップされており、鋼製転動部材中を自由に移動することができない水素を意味する。この常温非拡散性水素は、常温においては鋼製転動部材から外部に放出されない。
「常温」とは、JIS Z8703に規定された温度であり、具体的には5℃以上35℃以下の範囲内の温度である。
By "cold non-diffusible hydrogen" is meant hydrogen that is relatively strongly trapped in steel and cannot move freely in steel rolling members. This room temperature non-diffusible hydrogen is not released outside from the steel rolling member at room temperature.
“Normal temperature” is a temperature specified in JIS Z8703, specifically a temperature within the range of 5° C. or higher and 35° C. or lower.

「転動装置」とは、相互に転がり接触する2つの転動部材を備える装置を意味し、例えば、転がり軸受、ボールねじ、直動案内装置(リニアガイド装置)、直動ベアリング等が包含される。
「転動部材」とは、転動装置を構成する部品であり、相互に転がり接触する部材を意味する。具体的には、転動装置が転がり軸受である場合は内輪、外輪、転動体、同じくボールねじである場合はねじ軸、ナット、転動体、同じく直動案内装置である場合は案内レール、スライダ、転動体、同じく直動ベアリングである場合は軸、外筒、転動体をそれぞれ意味する。
"Rolling device" means a device comprising two rolling members that are in rolling contact with each other, and includes, for example, a rolling bearing, a ball screw, a linear motion guide device (linear guide device), a linear motion bearing, and the like. be.
A "rolling member" is a part that constitutes a rolling device, and means members that are in rolling contact with each other. Specifically, if the rolling device is a rolling bearing, the inner ring, outer ring, and rolling elements are used. If the rolling device is a ball screw, the screw shaft, nut, and rolling elements. , rolling elements, and in the case of linear motion bearings, the shaft, the outer cylinder, and the rolling elements, respectively.

次に、本発明の一実施形態について説明する。本発明者らが鋭意検討した結果、鋼と水素と転動疲労に関して新たな知見が見出されたので、以下に詳細に説明する。
未運転の白色組織剥離が生じていない転動装置と運転後の白色組織剥離が生じた転動装置とを比較すると、後者の方が、含有される常温非拡散性水素の量が多い。この理由は、弱くトラップされている常温拡散性水素が、転動疲労により生成したトラップサイトに強くトラップされることにより、常温非拡散性水素に変わるためと考えられる。
Next, one embodiment of the present invention will be described. As a result of intensive studies by the present inventors, new findings were found regarding steel, hydrogen, and rolling contact fatigue, which will be described in detail below.
Comparing an unoperated rolling device in which white tissue flaking does not occur and a rolling device in which white tissue exfoliation occurs after operation, the latter contains a larger amount of non-diffusible hydrogen at room temperature. The reason for this is thought to be that the weakly trapped room temperature diffusible hydrogen is strongly trapped in the trap sites generated by rolling contact fatigue, thereby changing to room temperature non-diffusible hydrogen.

このことから、転動装置の運転による常温非拡散性水素の増加量は、転動疲労による組織変化の度合いを示していることが分かった。したがって、転動装置の種類、運転時の温度、運転時の転動装置の水素環境等の運転条件毎に、転動装置の運転による常温非拡散性水素の増加量と、転動装置の疲労進行度や寿命との相関関係をデータベースとして保有しておき、このデータベースに格納されたデータと、運転後の転動装置についての常温非拡散性水素の増加量の実測データとを比較することによって、運転後の転動装置の疲労進行度の評価や寿命の予測を行うことができる。 From this, it was found that the amount of increase in room-temperature non-diffusible hydrogen due to the operation of the rolling device indicates the degree of structural change due to rolling contact fatigue. Therefore, for each operating condition such as the type of rolling device, the temperature during operation, and the hydrogen environment of the rolling device during operation, the amount of increase in room-temperature non-diffusible hydrogen due to the operation of the rolling device and the fatigue of the rolling device By storing the correlation between progress and service life as a database and comparing the data stored in this database with the actual measurement data of the amount of non-diffusible hydrogen at normal temperature in the rolling device after operation It is also possible to evaluate the progress of fatigue and predict the life of the rolling device after operation.

さらに、本発明者らの検討の結果、以下の新たな知見が見出されたので列挙する。水素が関与せずに生じた一般的な疲労組織である黒色組織と水素が関与して生じた疲労組織である白色組織との両方が、常温非拡散性水素をトラップしている。加えて、転動時の荷重(転がり接触により鋼製転動部材の転動疲労部位に作用する応力の大きさ)が大きいほど組織変化量が大きくなるため、黒色組織の生成量が多くなり、逆に転動時の荷重が小さいほど黒色組織の生成量が少なくなる。よって、転動時の荷重が大きいほど、黒色組織にトラップされる常温非拡散性水素の量は多くなり、黒色組織にトラップされる常温非拡散性水素の量は、転動時の荷重の大きさと相関性がある。一方、白色組織にトラップされる常温非拡散性水素の量は、転動時の荷重の大きさと相関性がない。 Furthermore, as a result of the study by the present inventors, the following new knowledge was found, which is listed below. Both the black tissue, which is a general fatigue texture generated without the participation of hydrogen, and the white texture, which is the fatigue texture generated with the participation of hydrogen, trap non-diffusible hydrogen at room temperature. In addition, the larger the load during rolling (the magnitude of the stress acting on the rolling contact fatigue portion of the steel rolling member due to rolling contact), the larger the amount of structural change, so the amount of black structure generated increased. Conversely, the smaller the load during rolling, the smaller the amount of black texture generated. Therefore, the larger the load during rolling, the larger the amount of room-temperature non-diffusible hydrogen trapped in the black tissue. There is a correlation with On the other hand, the amount of room-temperature non-diffusible hydrogen trapped in the white structure has no correlation with the magnitude of the load during rolling.

黒色組織内には白色組織は生成せず、両者は完全に独立した水素のトラップサイトである。黒色組織は常温非拡散性水素を強くトラップしているが、黒色組織にトラップされた常温非拡散性水素は白色組織剥離による寿命には無害な常温非拡散性水素であるのに対して、白色組織にトラップされた常温非拡散性水素は、白色組織剥離の起点となる亀裂が発生する場所に存在する常温非拡散性水素であるので、白色組織剥離による寿命に有害な常温非拡散性水素である。 No white tissue is formed in the black tissue, and both are completely independent hydrogen trap sites. The black tissue strongly traps non-diffusible hydrogen at room temperature. The room temperature non-diffusible hydrogen trapped in the tissue is the room temperature non-diffusible hydrogen that exists in the cracks that are the starting point of the white tissue exfoliation. be.

転動装置が有する常温非拡散性水素の量を測定すると、白色組織にトラップされた常温非拡散性水素の量と黒色組織にトラップされた常温非拡散性水素の量との合計量(以下、「常温非拡散性水素の総量」と記すこともある)が得られてしまうので、この測定結果のみから転動装置の白色組織剥離による疲労進行度の評価や寿命の予測を行うことはできない。転動装置の白色組織剥離による疲労進行度の評価や寿命の予測を行うためには、白色組織にトラップされた常温非拡散性水素と黒色組織にトラップされた常温非拡散性水素とを分離して、白色組織にトラップされた常温非拡散性水素の量を求める必要がある。 When the amount of room temperature non-diffusible hydrogen possessed by the rolling device is measured, the total amount of the amount of room temperature non-diffusible hydrogen trapped in the white tissue and the amount of room temperature non-diffusible hydrogen trapped in the black tissue (hereinafter referred to as It is sometimes written as "the total amount of non-diffusible hydrogen at room temperature"), so it is not possible to evaluate the progress of fatigue due to flaking of the white tissue of the rolling device or predict the life from this measurement alone. In order to evaluate the progress of fatigue due to flaking of the white tissue of the rolling device and to predict the life, the room temperature non-diffusible hydrogen trapped in the white tissue and the room temperature non-diffusible hydrogen trapped in the black tissue are separated. It is necessary to obtain the amount of room-temperature non-diffusible hydrogen trapped in the white tissue.

しかしながら、白色組織にトラップされた常温非拡散性水素の量や、黒色組織にトラップされた常温非拡散性水素の量を直接的に測定することは困難である。そこで、本発明者らは、黒色組織の量を測定して、その測定値から、黒色組織にトラップされた常温非拡散性水素の量を評価する方法を見出した。黒色組織の量は、例えば、X線分析、後方散乱電子回折、組織の画像解析によって測定することができる。X線分析の場合であれば、X線分析による黒色組織の検出ピークの半価幅によって、黒色組織の量を算出することができる。転動装置の運転前後における半価幅の変化量が大きい場合は、黒色組織が増加したことを意味し、転動装置の運転前後における半価幅の変化量が小さい場合は、白色組織が増加したことを意味する(白色組織は局所的な疲労であるため)。 However, it is difficult to directly measure the amount of room temperature non-diffusible hydrogen trapped in the white tissue and the amount of room temperature non-diffusible hydrogen trapped in the black tissue. Therefore, the present inventors have found a method of measuring the amount of black tissue and evaluating the amount of normal temperature non-diffusible hydrogen trapped in the black tissue from the measured value. The amount of black tissue can be measured, for example, by X-ray analysis, backscattered electron diffraction, image analysis of tissue. In the case of X-ray analysis, the amount of black tissue can be calculated from the half width of the detected peak of black tissue by X-ray analysis. When the amount of change in the half-value width before and after the operation of the rolling device is large, it means that the black texture has increased, and when the amount of change in the half-value width before and after the operation of the rolling device is small, the white texture increases. (because white tissue is localized fatigue).

ただし、常温非拡散性水素の量から黒色組織の量を直接的に差し引く計算を行うことはできないので、常温非拡散性水素の総量と黒色組織の量と転動装置の疲労進行度とを重回帰分析を用いて定式化して、重回帰式を導出する。導出された重回帰式を用いれば、常温非拡散性水素の量と黒色組織の量から転動装置の疲労進行度を算出することができる。 However, since it is not possible to directly subtract the amount of black tissue from the amount of non-diffusible hydrogen at room temperature, the total amount of non-diffusible hydrogen at room temperature, the amount of black tissue, and the progress of fatigue of the rolling device are weighted. Formulate using regression analysis to derive a multiple regression equation. Using the derived multiple regression equation, it is possible to calculate the progress of fatigue of the rolling device from the amount of room-temperature non-diffusible hydrogen and the amount of black tissue.

このようにして、本発明者らは、相互に転がり接触する2つの転動部材を備え、2つの転動部材の少なくとも一方が鋼製転動部材である転動装置の疲労進行度を評価する方法を見出した。すなわち、本実施形態の疲労進行度評価方法は、鋼製転動部材のうち転がり接触により転動疲労した部位である転動疲労部位が有する白色組織及び黒色組織のうち、白色組織に含有される常温非拡散性水素の量に基づいて、転動装置の疲労進行度を評価する評価工程を有する。なお、この疲労進行度とは、鋼製転動部材に生じた白色組織剥離による転動装置の疲労の進行度合いである。 In this way, we evaluate the fatigue progression of a rolling device comprising two rolling members in rolling contact with each other, at least one of the two rolling members being a steel rolling member. found a way. That is, in the fatigue progress evaluation method of the present embodiment, out of the white structure and black structure of the rolling contact fatigue portion, which is the portion of the steel rolling contact member that has undergone rolling contact fatigue due to rolling contact, the white structure contains It has an evaluation step of evaluating the progress of fatigue of the rolling device based on the amount of normal temperature non-diffusible hydrogen. The degree of progress of fatigue is the degree of progress of fatigue of the rolling device due to flaking of the white tissue generated in the steel rolling members.

ただし、前述したように、転動疲労部位が有する白色組織に含有される常温非拡散性水素の量を直接的に求めることは困難であるため、転動疲労部位に含有される常温非拡散性水素の総量及び転動疲労部位が有する黒色組織の量から転動疲労部位が有する白色組織に含有される常温非拡散性水素の量を推定し、推定した常温非拡散性水素の量から転動装置の疲労進行度を評価する方法を見出した。その方法を、以下に詳細に説明する。 However, as described above, it is difficult to directly determine the amount of room temperature non-diffusible hydrogen contained in the white structure of the rolling contact fatigue site. Estimate the amount of room temperature non-diffusible hydrogen contained in the white tissue of the rolling contact fatigue site from the total amount of hydrogen and the amount of black tissue of the rolling contact fatigue site, and use the estimated room temperature non-diffusible hydrogen amount to A method was found to evaluate the degree of fatigue progression of the device. The method is described in detail below.

まず、疲労進行度を評価すべき転動装置と同種(形式、形状、寸法、材質(鋼製転動部材を形成する鋼の種類)等が全て同一)の転動装置をデータベース作成用転動装置として用意する。そして、未運転のデータベース作成用転動装置の鋼製転動部材(例えば、鋼製転動部材のうち運転によって転動疲労部位となる部分)に含有される常温非拡散性水素の総量と黒色組織の量とを測定する。なお、未運転のデータベース作成用転動装置の鋼製転動部材に含有される常温非拡散性水素の総量と黒色組織の量とを測定する代わりに、運転後のデータベース作成用転動装置の鋼製転動部材の非転動疲労部位に含有される常温非拡散性水素の総量と黒色組織の量とを測定してもよい。 First, a rolling device of the same type (the type, shape, dimensions, material (type of steel forming the steel rolling member), etc. is all the same) as the rolling device whose fatigue progression is to be evaluated is Prepare as a device. Then, the total amount of non-diffusible hydrogen at room temperature and the black Measure the amount of tissue. Instead of measuring the total amount of normal temperature non-diffusible hydrogen and the amount of black structure contained in the steel rolling members of the database creation rolling device that has not been operated, the database creation rolling device after operation The total amount of normal temperature non-diffusible hydrogen and the amount of black structure contained in the non-rolling contact fatigue portion of the steel rolling member may be measured.

次に、転がり接触により鋼製転動部材の転動疲労部位に作用する応力の大きさ、運転時間、運転時の温度、及び、運転時のデータベース作成用転動装置の水素環境のうち少なくとも一つが異なる複数の運転条件それぞれにおいてデータベース作成用転動装置を運転し、運転後のデータベース作成用転動装置の鋼製転動部材の転動疲労部位に含有される常温非拡散性水素の総量と黒色組織の量とを測定する。 Next, at least one of the magnitude of stress acting on the rolling contact fatigue portion of the steel rolling member due to rolling contact, the operating time, the temperature during operation, and the hydrogen environment of the rolling device for database creation during operation The database creation rolling device is operated under each of a plurality of different operating conditions, and the total amount of normal temperature non-diffusible hydrogen contained in the rolling contact fatigue portion of the steel rolling contact member of the database creation rolling device after operation Measure the amount of black tissue.

これにより、未運転のデータベース作成用転動装置についての測定結果と、運転後のデータベース作成用転動装置についての測定結果が得られるので、これらの測定結果から、運転前後における転動疲労部位に含有される常温非拡散性水素の総量の変化量ΔNDH及び転動疲労部位が有する黒色組織の量の変化量ΔDECを算出する。 As a result, the measurement results for the database-creating rolling device that has not yet been operated and the measurement results for the database-creating rolling device that has been in operation can be obtained. The amount of change ΔNDH in the total amount of non-diffusible hydrogen contained at room temperature and the amount of change ΔDEC in the amount of black tissue in the rolling contact fatigue portion are calculated.

ここで、運転時の温度及び運転時のデータベース作成用転動装置の水素環境が同一で且つ転動疲労部位に作用する応力の大きさ及び運転時間の少なくとも一方が異なる運転条件で運転された複数のデータベース作成用転動装置を、重回帰分析用転動装置群とする。複数の重回帰分析用転動装置群についての常温非拡散性水素の総量の変化量ΔNDH及び黒色組織の量の変化量ΔDECが得られるが、その中の1つの重回帰分析用転動装置群に含まれるデータベース作成用転動装置についての常温非拡散性水素の総量の変化量ΔNDH及び黒色組織の量の変化量ΔDECを抽出する。 Here, the temperature during operation and the hydrogen environment of the rolling device for creating the database during operation are the same, and the plurality of rollers are operated under different operating conditions in terms of at least one of the magnitude of the stress acting on the rolling contact fatigue portion and the operating time. Let the rolling devices for creating the database of 1 be the rolling device group for multiple regression analysis. The amount of change ΔNDH in the total amount of room-temperature non-diffusible hydrogen and the amount of change ΔDEC in the amount of black tissue are obtained for a plurality of rolling device groups for multiple regression analysis. Extract the amount of change ΔNDH in the total amount of normal temperature non-diffusible hydrogen and the amount of change ΔDEC in the amount of black texture for the database creation rolling device included in .

そして、抽出した常温非拡散性水素の総量の変化量ΔNDH及び黒色組織の量の変化量ΔDECと、そのデータベース作成用転動装置のL10寿命に対する運転時間Tの比で定義される疲労進行度T/L10とを、重回帰分析を用いて定式化して、A、B、Cを定数とする下記の重回帰式を導出する。このとき、定数Bは負数となる。これは、常温非拡散性水素の総量の変化量ΔNDHから黒色組織にトラップされた常温非拡散性水素の量に相当するΔDECを差し引くことで、白色組織にトラップされた水素の量を求めていることを意味している。
T/L10=A×ΔNDH+B×ΔDEC+C
Then, the amount of change ΔNDH in the total amount of the extracted normal temperature non-diffusible hydrogen and the amount of change ΔDEC in the amount of black tissue, and the fatigue progress T defined by the ratio of the operating time T to the L10 life of the rolling device for database creation /L10 are formulated using multiple regression analysis to derive the following multiple regression equation with A, B, and C as constants. At this time, the constant B becomes a negative number. By subtracting ΔDEC, which corresponds to the amount of room-temperature non-diffusible hydrogen trapped in the black tissue, from the amount of change in the total amount of room-temperature non-diffusible hydrogen ΔNDH, the amount of hydrogen trapped in the white tissue is obtained. means that
T/L10=A×ΔNDH+B×ΔDEC+C

複数の重回帰分析用転動装置群それぞれについて重回帰式を導出して、それら重回帰式を運転条件毎に(すなわち重回帰分析用転動装置群毎に)分類して格納したデータベースを予め作成しておく。このデータベースには、可能な限り多くの重回帰式が格納されていることが好ましいので、一種の転動装置について多くの運転条件で運転して多くの重回帰式を得ることは勿論のこと、できるだけ多種の転動装置について重回帰式を得て、データベースを作成することが好ましい。すなわち、形式、形状、寸法、材質(鋼製転動部材を形成する鋼の種類)のうち少なくとも一つが異なる多種の転動装置について多くの運転条件で運転を行って、多くの重回帰式を得て、その重回帰式をこれらの条件毎に分類して格納したデータベースを作成することが好ましい。 A multiple regression equation is derived for each of a plurality of rolling device groups for multiple regression analysis, and a database in which the multiple regression equations are classified for each operating condition (that is, for each rolling device group for multiple regression analysis) and stored is prepared in advance. create it. This database preferably stores as many multiple regression equations as possible. It is preferable to obtain multiple regression equations for as many types of rolling devices as possible and create a database. That is, various types of rolling devices with different at least one of the types, shapes, dimensions, and materials (types of steel forming the steel rolling members) are operated under many operating conditions, and many multiple regression equations are calculated. It is preferable to create a database in which the multiple regression equations are classified according to these conditions and stored.

このようにして作成したデータベースを用いて、疲労進行度を評価すべき転動装置の疲労進行度T/L10を算出する。その方法を以下に説明する。
疲労進行度を評価すべき転動装置についても、データベース作成用転動装置と同様に、未運転の転動装置の鋼製転動部材に含有される常温非拡散性水素の総量と黒色組織の量とを測定する。さらに、疲労進行度を評価すべき転動装置を所定の運転条件で運転し、運転後の疲労進行度を評価すべき転動装置の鋼製転動部材の転動疲労部位に含有される常温非拡散性水素の総量と黒色組織の量とを測定する。なお、未運転の疲労進行度を評価すべき転動装置の鋼製転動部材に含有される常温非拡散性水素の総量と黒色組織の量とを測定する代わりに、運転後の疲労進行度を評価すべき転動装置の鋼製転動部材の非転動疲労部位に含有される常温非拡散性水素の総量と黒色組織の量とを測定してもよい。
Using the database created in this manner, the fatigue progression T/L10 of the rolling device whose fatigue progression is to be evaluated is calculated. The method is described below.
As for the rolling devices whose fatigue progression should be evaluated, the total amount of room temperature non-diffusible hydrogen contained in the steel rolling members of the rolling devices that have not been operated and the black structure measure the quantity and Furthermore, the rolling device whose fatigue progress is to be evaluated is operated under predetermined operating conditions, and the normal temperature contained in the rolling contact fatigue portion of the steel rolling contact member of the rolling device whose fatigue progress is to be evaluated after operation The total amount of non-diffusible hydrogen and the amount of black tissue are measured. In addition, instead of measuring the total amount of normal temperature non-diffusible hydrogen and the amount of black structure contained in the steel rolling member of the rolling device whose fatigue progress before operation is to be evaluated, the fatigue progress after operation may be measured for the total amount of room-temperature non-diffusible hydrogen and the amount of black structure contained in the non-rolling contact fatigue portion of the steel rolling member of the rolling device to be evaluated.

これにより、未運転の疲労進行度を評価すべき転動装置についての測定結果と、運転後の疲労進行度を評価すべき転動装置についての測定結果が得られるので、これらの測定結果から、運転前後における転動疲労部位に含有される常温非拡散性水素の総量の変化量ΔNDH及び転動疲労部位が有する黒色組織の量の変化量ΔDECを算出する。 As a result, it is possible to obtain the measurement results of the rolling device whose fatigue progress should be evaluated before operation and the measurement results of the rolling device whose fatigue progress should be evaluated after operation. The amount of change ΔNDH in the total amount of normal-temperature non-diffusible hydrogen contained in the rolling contact fatigue site and the amount of change ΔDEC in the amount of black tissue in the rolling contact fatigue site before and after operation are calculated.

ここで、予め作成しておいたデータベースを検索して、運転時の温度及び運転時の水素環境が、疲労進行度を評価すべき転動装置の運転条件と全て同一である場合の重回帰式を、データベースから取得する。データベースを検索した結果、「運転条件が全て同一である場合の重回帰式」が存在しなかった場合には、データベースから任意の複数の重回帰式を抽出して、それら抽出した複数の重回帰式から線形補間等の手法によって、上記「運転条件が全て同一である場合の重回帰式」を推定する。すなわち、抽出した複数の重回帰式の各定数から、線形補間等の手法によって、上記「運転条件が全て同一である場合の重回帰式」の各定数を推定する。 Here, a database prepared in advance is searched, and the multiple regression equation when the temperature during operation and the hydrogen environment during operation are all the same as the operating conditions of the rolling device whose fatigue progress is to be evaluated. is retrieved from the database. As a result of searching the database, if there is no "multiple regression equation when all the operating conditions are the same", extract any multiple regression equations from the database and use the extracted multiple regression equations. The "multiple regression equation when all operating conditions are the same" is estimated from the equation by a method such as linear interpolation. That is, each constant of the "multiple regression equation when all the operating conditions are the same" is estimated from each constant of the extracted multiple regression equations by a technique such as linear interpolation.

データベースから抽出する複数の重回帰式は、例えば、運転時の温度及び運転時の水素環境が、疲労進行度を評価すべき転動装置の運転条件と一部が同一で他部が異なる場合の重回帰式や、疲労進行度を評価すべき転動装置の運転条件に全て近い場合の重回帰式とすることができる。
そして、疲労進行度を評価すべき転動装置についての常温非拡散性水素の総量の変化量ΔNDH及び黒色組織の量の変化量ΔDECを、データベースから取得又は推定した重回帰式に代入すると、疲労進行度を評価すべき転動装置の疲労進行度T/L10が算出される。
A plurality of multiple regression equations extracted from the database, for example, when the temperature during operation and the hydrogen environment during operation are partly the same as the operating conditions of the rolling device for which the degree of progress of fatigue is to be evaluated, but are different in the other part. A multiple regression equation or a multiple regression equation in the case where the operating conditions of the rolling device whose degree of progress of fatigue should be evaluated are all close to each other can be used.
Then, by substituting the amount of change ΔNDH in the total amount of room-temperature non-diffusible hydrogen and the amount of change ΔDEC in the amount of black tissue for the rolling device whose fatigue progression is to be evaluated into the multiple regression equation obtained or estimated from the database, fatigue A fatigue progress T/L10 of the rolling device whose progress is to be evaluated is calculated.

以上のように、転動装置の運転前後に、鋼製転動部材の転動疲労部位に含有される常温非拡散性水素の総量と黒色組織の量とを測定し、転動装置の運転における常温非拡散性水素の総量の変化量ΔNDHと黒色組織の量の変化量ΔDECとを取得する。そして、これらの変化量を重回帰式に代入することにより、転動装置の疲労進行度を評価することができる。また、通常は評価が難しい実機に使用された転動装置についても、疲労進行度を評価することができる。さらに、鋼製転動部材に白色組織剥離等の白色組織破損が発生していない段階であっても、疲労進行度を評価することができる。 As described above, before and after the operation of the rolling device, the total amount of room temperature non-diffusible hydrogen and the amount of black structure contained in the rolling contact fatigue portion of the steel rolling contact member were measured. The amount of change ΔNDH in the total amount of normal temperature non-diffusible hydrogen and the amount of change ΔDEC in the amount of black tissue are obtained. By substituting these variations into the multiple regression equation, the degree of progress of fatigue of the rolling device can be evaluated. In addition, it is possible to evaluate the progress of fatigue even for rolling devices used in actual equipment, which is usually difficult to evaluate. Furthermore, even at a stage where white structure damage such as white structure exfoliation has not occurred in the steel rolling contact member, the progress of fatigue can be evaluated.

このような本実施形態の疲労進行度評価方法では、黒色組織の量は、前述したように、X線分析による黒色組織の検出ピークの半価幅により算出してもよい。
また、本実施形態の疲労進行度評価方法では、データベース作成用転動装置及び疲労進行度を評価すべき転動装置の少なくとも一方において、常温非拡散性水素の総量の変化量ΔNDHは、以下のようにして算出してもよい。まず、未運転時の鋼製転動部材及び運転後の転動疲労部位のそれぞれについて、昇温しながら加熱することにより水素を放出させ、放出させた水素を検出器で検出することにより、複数の小ピークが重複してなる水素放出曲線を取得する。そして、統計的処理によって、該水素放出曲線を複数の小ピークに分離する。
In the fatigue progress evaluation method of the present embodiment, the amount of black tissue may be calculated from the half width of the detection peak of black tissue by X-ray analysis, as described above.
Further, in the fatigue progress evaluation method of the present embodiment, in at least one of the rolling device for database creation and the rolling device whose fatigue progress is to be evaluated, the amount of change ΔNDH in the total amount of normal temperature non-diffusible hydrogen is as follows. It can be calculated as follows. First, each of the steel rolling contact members when not in operation and the rolling fatigue site after operation is heated while increasing the temperature to release hydrogen, and by detecting the released hydrogen with a detector, a plurality of Obtain a hydrogen desorption curve consisting of overlapping small peaks of . Statistical processing then separates the hydrogen release curve into a plurality of small peaks.

次に、未運転時の鋼製転動部材と運転後の転動疲労部位とで、対応する小ピークをそれぞれ対比し、検出された水素の量が最も増加した小ピークを、常温非拡散性水素の総量を検出した小ピークとして、この小ピークから常温非拡散性水素の総量の変化量ΔNDHを算出する。
統計的処理によって水素放出曲線を複数の小ピークに分離し、白色組織剥離による寿命に有害な常温非拡散性水素のみを抽出することにより、疲労進行度の評価や寿命の予測を高精度で行うことができる。統計的処理の種類は特に限定されるものではないが、例えばガウス分布を用いた統計的処理が挙げられる。
Next, the corresponding small peaks of the steel rolling contact member before operation and the rolling contact fatigue portion after operation were compared, and the small peak where the amount of detected hydrogen increased the most was regarded as the room temperature non-diffusible A change amount ΔNDH of the total amount of room-temperature non-diffusible hydrogen is calculated from the small peak obtained by detecting the total amount of hydrogen.
By separating the hydrogen release curve into multiple small peaks by statistical processing and extracting only room temperature non-diffusible hydrogen that is harmful to the life due to white tissue exfoliation, it is possible to evaluate the progress of fatigue and predict the life with high accuracy. be able to. Although the type of statistical processing is not particularly limited, for example, statistical processing using Gaussian distribution can be mentioned.

昇温しながら加熱することにより水素を放出させ水素放出曲線を取得する前に、100℃以下の温度に保持することによって鋼製転動部材から常温拡散性水素を放出させてもよい。そうすれば、常温拡散性水素が鋼製転動部材から確実に放出された状態となるので、常温非拡散性水素の量をより正確に測定することができる。
鋼製転動部材を保持する温度は100℃以下であれば特に限定されるものではないが、常温非拡散性水素の放出を抑制して常温非拡散性水素の量をより正確に測定するためには、80℃以下であることがより好ましい。また、鋼製転動部材を保持する温度は常温よりも高温であれば特に限定されるものではないが、常温拡散性水素を確実に放出させて常温非拡散性水素の量をより正確に測定するためには、35℃以上であることがより好ましい。
Before obtaining a hydrogen release curve by heating while increasing the temperature to release hydrogen, the steel rolling member may be kept at a temperature of 100° C. or less to release room temperature diffusible hydrogen from the steel rolling member. By doing so, the room temperature diffusible hydrogen is reliably released from the steel rolling member, so that the amount of the room temperature non-diffusible hydrogen can be measured more accurately.
The temperature at which the steel rolling member is held is not particularly limited as long as it is 100° C. or less, but in order to suppress the release of room temperature non-diffusible hydrogen and more accurately measure the amount of room temperature non-diffusible hydrogen. is more preferably 80° C. or lower. In addition, the temperature at which the steel rolling member is held is not particularly limited as long as it is higher than room temperature, but the room temperature diffusible hydrogen is reliably released to more accurately measure the amount of room temperature non-diffusible hydrogen. In order to do so, it is more preferably 35° C. or higher.

なお、以上説明した実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、そのような変更又は改良を加えた形態も本発明に含まれ得る。さらに、本発明は、転動装置の疲労進行度を評価する方法であるが、転動装置に限らず、相互に転がり接触する2つの転動部材に対して適用可能である。 The embodiment described above is an example of the present invention, and the present invention is not limited to this embodiment. In addition, various modifications or improvements can be added to the present embodiment, and forms to which such modifications or improvements are added can also be included in the present invention. Furthermore, the present invention is a method for evaluating the progress of fatigue of a rolling device, but is applicable not only to rolling devices but also to two rolling members that are in rolling contact with each other.

以下に実施例を示して、本発明をより具体的に説明する。まず、以下の手順(1)~(12)に沿ってデータベースを作成する。
〔I〕データベースの作成
(1)疲労進行度を評価すべき転がり軸受と同種(形式、形状、寸法、材質(軌道輪を形成する鋼の種類)等が全て同一)のデータベース作成用転がり軸受を用意する。そして、未運転のデータベース作成用転がり軸受の軌道輪の軌道溝の溝底直下部を切り出し、後述の方法(〔II〕常温非拡散性水素の測定方法を参照)により常温非拡散水素の量を測定する。
EXAMPLES The present invention will be described more specifically below by way of examples. First, create a database according to the following procedures (1) to (12).
[I] Creating a database (1) A rolling bearing for creating a database of the same type (same type, shape, dimensions, material (type of steel forming the bearing ring), etc.) as the rolling bearing whose fatigue progress should be evaluated. prepare. Then, the portion immediately below the groove bottom of the raceway groove of the bearing ring of the rolling bearing for database creation which has not yet been operated is cut out, and the amount of normal temperature non-diffusible hydrogen is measured by the method described later (see [II] Normal temperature non-diffusible hydrogen measurement method). Measure.

(2)ガウス分布を用いた統計的処理(後述の〔III〕統計的処理による小ピークの分離方法を参照)によって、(1)で得られた水素放出曲線を複数の小ピークに分離した後、分離した複数の小ピークの中から、常温非拡散性水素の総量を検出した小ピークである評価ピークを抽出する。この評価ピークは、黒色組織にトラップされた常温非拡散性水素及び白色組織にトラップされた常温非拡散性水素の両方が検出されたピークである。 (2) After separating the hydrogen release curve obtained in (1) into a plurality of small peaks by statistical processing using a Gaussian distribution (see [III] Separation method for small peaks by statistical processing described later) , an evaluation peak, which is a small peak obtained by detecting the total amount of room-temperature non-diffusible hydrogen, is extracted from among the separated small peaks. This evaluation peak is a peak in which both normal-temperature non-diffusible hydrogen trapped in the black tissue and normal-temperature non-diffusible hydrogen trapped in the white tissue are detected.

(3)未運転のデータベース作成用転がり軸受の軌道輪の軌道溝の溝底直下部についてX線分析を行い、X線分析による黒色組織の検出ピークの半価幅を測定する。
(4)上記未運転のデータベース作成用転がり軸受を所定の運転条件で運転し、転がり試験を行う。運転時間は、データベース作成用転がり軸受のL10寿命以下とする。
(3) X-ray analysis is performed on the portion immediately below the groove bottom of the raceway groove of the bearing ring of the database-creating rolling bearing that has not yet been operated, and the half-value width of the detection peak of the black tissue is measured by the X-ray analysis.
(4) The rolling bearing for creating a database that has not yet been operated is operated under predetermined operating conditions, and a rolling test is conducted. The operating time shall be less than the L10 life of the rolling bearing for database creation.

(5)運転が終了したデータベース作成用転がり軸受の軌道輪の軌道溝の溝底直下部を切り出し、後述の方法(〔II〕常温非拡散性水素の測定方法を参照)により常温非拡散水素の量を測定する。この溝底直下部は軌道輪の負荷圏であり、黒色組織と白色組織の混合部である。図3に、運転終了後の軌道輪の溝底直下部の断面の顕微鏡写真を示し、図4に、図3を説明する模式的説明図を示す。溝底直下部を切り出す際は、転動体の走行跡の領域のみを切断することが好ましい。 (5) Cut out the portion immediately below the groove bottom of the raceway groove of the bearing ring of the database-creating rolling bearing whose operation has been completed, and measure room-temperature non-diffusible hydrogen by the method described later (see [II] Normal-temperature non-diffusible hydrogen measurement method). Measure quantity. The area immediately below the groove bottom is the load zone of the bearing ring, and is a mixed portion of black texture and white texture. FIG. 3 shows a microphotograph of a cross section of the groove bottom of the bearing ring immediately below the bearing ring after the end of operation, and FIG. 4 shows a schematic explanatory view for explaining FIG. When cutting out the portion directly below the groove bottom, it is preferable to cut only the area where the rolling elements travel.

(6)上記(2)と同様にして、(5)で得られた水素放出曲線を複数の小ピークに分離した後、分離した複数の小ピークの中から、常温非拡散性水素の総量を検出した小ピークである評価ピークを抽出する。
(7)運転が終了したデータベース作成用転がり軸受の軌道輪の軌道溝の溝底直下部についてX線分析を行い、X線分析による黒色組織の検出ピークの半価幅を測定する。
(6) In the same manner as in (2) above, after separating the hydrogen desorption curve obtained in (5) into a plurality of small peaks, the total amount of normal temperature non-diffusible hydrogen is calculated from among the separated small peaks. An evaluation peak, which is a detected small peak, is extracted.
(7) X-ray analysis is performed on the portion directly below the groove bottom of the raceway groove of the raceway ring of the database-creating rolling bearing whose operation has been completed, and the half-value width of the detection peak of the black texture is measured by the X-ray analysis.

(8)未運転のデータベース作成用転がり軸受についての測定結果と、運転が終了したデータベース作成用転がり軸受についての測定結果とを比較する。そして、評価ピークの大きさの差から、運転前後における溝底直下部(転動疲労部位)に含有される常温非拡散性水素の総量の変化量ΔNDHを算出し、半価幅の大きさの差から、運転前後における溝底直下部が有する黒色組織の量の変化量ΔDECを算出する。 (8) Compare the measurement results of the database creation rolling bearing that has not been operated with the measurement results of the database creation rolling bearing that has been operated. Then, from the difference in the size of the evaluation peak, the amount of change ΔNDH in the total amount of normal temperature non-diffusible hydrogen contained in the groove bottom (rolling contact fatigue site) before and after operation is calculated, and the half width is calculated. From the difference, the amount of change ΔDEC in the amount of black tissue that is present immediately below the groove bottom before and after operation is calculated.

(9)運転時の温度及び運転時のデータベース作成用転がり軸受の水素環境は上記の運転条件から変更せず、荷重(転がり接触により軌道輪の転動疲労部位に作用する応力の大きさ)及び運転時間は種々変更して、複数の転がり試験を行う。そして、上記(4)~(8)の手順により、運転前後における溝底直下部に含有される常温非拡散性水素の総量の変化量ΔNDH、及び、溝底直下部が有する黒色組織の量の変化量ΔDECのデータを複数蓄積する。 (9) The temperature during operation and the hydrogen environment of the rolling bearing for database creation during operation were not changed from the above operating conditions, and the load (magnitude of stress acting on the rolling fatigue portion of the bearing ring due to rolling contact) and A number of rolling tests are performed with various running times. Then, according to the above procedures (4) to (8), the amount of change ΔNDH in the total amount of room temperature non-diffusible hydrogen contained in the groove bottom immediately below the groove bottom before and after the operation, and the amount of black texture that the groove bottom has A plurality of data on the amount of change ΔDEC are accumulated.

(10)得られた常温非拡散性水素の総量の変化量ΔNDH及び黒色組織の量の変化量ΔDECと、データベース作成用転がり軸受のL10寿命に対する運転時間Tの比で定義される疲労進行度T/L10とを、重回帰分析を用いて定式化して、A、B、Cを定数とする重回帰式T/L10=A×ΔNDH+B×ΔDEC+Cを導出する。ここで、A×ΔNDH+B×ΔDEC+Cを、水素損傷度と定義する。 (10) The degree of fatigue progress T defined by the obtained amount of change ΔNDH in the total amount of normal temperature non-diffusible hydrogen and the amount of change ΔDEC in the amount of black tissue, and the ratio of operating time T to L10 life of the rolling bearing for database creation /L10 is formulated using multiple regression analysis to derive a multiple regression equation T/L10=A×ΔNDH+B×ΔDEC+C where A, B, and C are constants. Here, A×ΔNDH+B×ΔDEC+C is defined as the degree of hydrogen damage.

(11)X軸を水素損傷度、Y軸を疲労進行度としたグラフを作成する。
(12)得られた常温非拡散性水素の総量の変化量ΔNDH及び黒色組織の量の変化量ΔDECから水素損傷度を算出し、X軸を水素損傷度、Y軸を疲労進行度とした(11)のグラフにプロットするとともに、(10)で導出した重回帰式を示す直線を(11)のグラフに描画する。図1にグラフの一例を示す。
図1に示したグラフは、データベース作成用転がり軸受として呼び番号6206の深溝玉軸受を用いた場合の例である。この深溝玉軸受の内輪及び外輪はSUJ2製であり、転動体は浸炭窒化処理を施したSUJ2製である。また、深溝玉軸受の運転条件は、動等価荷重P/基本動定格荷重Cが0.21~0.60であり、回転速度が3000min-1であり、温度が110℃であり、使用した潤滑油がISO-VG32相当の油である。
(11) Create a graph with the degree of hydrogen damage on the X-axis and the progress of fatigue on the Y-axis.
(12) The degree of hydrogen damage was calculated from the obtained amount of change ΔNDH in the total amount of room temperature non-diffusible hydrogen and the amount of change ΔDEC in the amount of black tissue, and the X axis was the degree of hydrogen damage and the Y axis was the degree of fatigue progression ( While plotting on the graph of (11), the straight line which shows the multiple regression equation derived|led-out by (10) is drawn on the graph of (11). An example of the graph is shown in FIG.
The graph shown in FIG. 1 is an example in the case of using a deep groove ball bearing with bearing number 6206 as a rolling bearing for creating a database. The inner and outer rings of this deep groove ball bearing are made of SUJ2, and the rolling elements are made of carbonitrided SUJ2. Further, the operating conditions of the deep groove ball bearing are that the dynamic equivalent load P/basic dynamic load rating C is 0.21 to 0.60, the rotational speed is 3000 min -1 , the temperature is 110 ° C, and the lubrication used The oil is equivalent to ISO-VG32.

〔II〕常温非拡散性水素の測定方法
(1)転がり軸受の軌道輪を切断し、軌道溝の溝底直下部を切り出す。転動疲労した転がり軸受の軌道輪の軌道溝の溝底直下部を切り出す際は、転動体の走行跡の領域のみを切断することが好ましい。
[II] Method for measuring non-diffusible hydrogen at room temperature (1) Cut the bearing ring of the rolling bearing, and cut out the portion immediately below the groove bottom of the raceway groove. When cutting out the portion immediately below the groove bottom of the raceway groove of the bearing ring of the rolling bearing that has undergone rolling contact fatigue, it is preferable to cut only the area where the rolling elements travel.

(2)切り出した溝底直下部を真空中又はアルゴン等の不活性ガス中で昇温しながら加熱し、鋼中にトラップされている常温非拡散性水素を放出させる。放出された水素を検出器で検出して、複数の小ピークが重複してなる水素放出曲線を取得する。昇温速度は、統計的処理によるピーク分離を行いやすくするため、50℃/h~600℃/hが好ましい。昇温は、昇温脱離分析装置を用いて行ってもよい。また、検出器としては、四重極質量分析計やガスクロマトグラフィを用いることができる。 (2) Heating the immediately lower portion of the cut groove bottom while increasing the temperature in a vacuum or an inert gas such as argon to release the room-temperature non-diffusible hydrogen trapped in the steel. The released hydrogen is detected by a detector to obtain a hydrogen release curve consisting of overlapping small peaks. The heating rate is preferably 50° C./h to 600° C./h in order to facilitate peak separation by statistical processing. The temperature may be raised using a thermal desorption spectrometer. As a detector, a quadrupole mass spectrometer or gas chromatography can be used.

〔III〕統計的処理による小ピークの分離方法
(1)鋼中には転位、粒界、空孔、空孔クラスター、析出物等の水素のトラップサイトがあり、それぞれトラップエネルギーが異なる。よって、切り出した溝底直下部を昇温しながら加熱して水素を放出させると、トラップサイトによって水素が放出される温度が異なるため、複数の小ピークが重複してなる水素放出曲線が得られる。
[III] Method of Separating Small Peaks by Statistical Processing (1) Steel contains hydrogen trap sites such as dislocations, grain boundaries, vacancies, vacancy clusters, and precipitates, each of which has a different trap energy. Therefore, when the temperature immediately below the cut groove bottom is heated while increasing the temperature to release hydrogen, the temperature at which hydrogen is released differs depending on the trap site, so a hydrogen release curve in which a plurality of small peaks overlap is obtained. .

(2)ガウス分布を用いた統計的処理で解析すれば、水素放出曲線を複数の小ピークに分離することができる。
図2に一例を示す。図2のチャートには、昇温脱離分析装置を用いた測定により得られた水素放出曲線と、ガウス分布を用いた統計的処理によって分離した5つの小ピークが描かれている。
(3)未運転の転がり軸受と運転が終了した転がり軸受とで、対応する小ピークをそれぞれ対比し、検出された水素の量が最も増加した小ピークを、常温非拡散性水素の総量を検出した小ピークである評価ピークとする。そして、この評価ピークから常温非拡散性水素の総量の変化量ΔNDHを算出して、疲労進行度の評価及び寿命の予測に用いる。
(2) The hydrogen desorption curve can be separated into a plurality of small peaks by statistical analysis using a Gaussian distribution.
An example is shown in FIG. The chart in FIG. 2 depicts a hydrogen desorption curve obtained by measurement using a thermal desorption spectrometer and five small peaks separated by statistical processing using a Gaussian distribution.
(3) Compare the corresponding small peaks of the rolling bearing that has not been operated and the rolling bearing that has been operated, and detect the small peak where the amount of detected hydrogen has increased the most, and the total amount of normal temperature non-diffusible hydrogen. The evaluation peak is a small peak obtained by From this evaluation peak, the amount of change ΔNDH in the total amount of room-temperature non-diffusible hydrogen is calculated and used for evaluating the progress of fatigue and predicting the life.

次に、作成したデータベースを用いて、疲労進行度を評価すべき転がり軸受の疲労進行度を評価する。
〔IV〕実機に使用された転がり軸受の疲労進行度の評価
(1)疲労進行度を評価すべき転がり軸受として、市場で実機に使用された転がり軸受(以下「実機軸受」と記す)を用いる。実機軸受の運転条件、すなわち運転時の温度及び運転時の実機軸受の水素環境は、〔I〕で重回帰式を導出したデータベース作成用転がり軸受の運転条件と同一であってもよいし、同一でなくてもよい。
この実機軸受の軌道輪のうち、転動疲労していない部位である肩部を切り出し、前述の方法(〔II〕常温非拡散性水素の測定方法を参照)により常温非拡散水素の量を測定する。なお、軌道輪の肩部の代わりに、軌道輪の軌道溝のうち非負荷圏の部分の溝底直下部を切り出してもよい。
Next, the prepared database is used to evaluate the progress of fatigue of the rolling bearing to be evaluated.
[IV] Evaluation of fatigue progress of rolling bearings used in actual machines (1) Rolling bearings used in actual machines in the market (hereinafter referred to as "actual bearings") are used as rolling bearings whose fatigue progress should be evaluated. . The operating conditions of the actual bearing, that is, the temperature during operation and the hydrogen environment of the actual bearing during operation, may or may not be the same as the operating conditions of the rolling bearing for creating the database from which the multiple regression equation was derived in [I]. It doesn't have to be.
Of the bearing ring of this actual bearing, cut out the shoulder portion, which is the part that is not subjected to rolling fatigue, and measure the amount of non-diffusible hydrogen at room temperature by the method described above (see [II] Measurement method for non-diffusible hydrogen at room temperature). do. It should be noted that instead of the shoulder portion of the bearing ring, the portion immediately below the groove bottom of the non-load zone portion of the raceway groove of the bearing ring may be cut out.

(2)ガウス分布を用いた統計的処理(〔III〕統計的処理による小ピークの分離方法を参照)によって、(1)で得られた水素放出曲線を複数の小ピークに分離した後、分離した複数の小ピークの中から、常温非拡散性水素の総量を検出した小ピークである評価ピークを抽出する。 (2) After separating the hydrogen desorption curve obtained in (1) into a plurality of small peaks by statistical processing using a Gaussian distribution (see [III] Separation method of small peaks by statistical processing), An evaluation peak, which is a small peak obtained by detecting the total amount of room-temperature non-diffusible hydrogen, is extracted from among the plurality of small peaks obtained.

(3)実機軸受の軌道輪の肩部(表面から深さ100μmの位置の部分)についてX線分析を行い、X線分析による黒色組織の検出ピークの半価幅を測定する。
(4)実機軸受の軌道輪の軌道溝のうち負荷圏の部分の溝底直下部を切り出し、前述の方法(〔II〕常温非拡散性水素の測定方法を参照)により常温非拡散水素の量を測定する。溝底直下部を切り出す際は、転動体の走行跡の領域のみを切断することが好ましい。
(3) X-ray analysis is performed on the shoulder portion of the bearing ring of the actual bearing (the portion at a depth of 100 μm from the surface), and the half-value width of the detection peak of the black texture is measured by the X-ray analysis.
(4) From the raceway groove of the bearing ring of the actual bearing, cut out the portion immediately below the groove bottom in the load zone, and measure the amount of non-diffusible hydrogen at room temperature by the method described above (see [II] Measuring method for non-diffusible hydrogen at room temperature). to measure. When cutting out the portion directly below the groove bottom, it is preferable to cut only the area where the rolling elements travel.

(5)上記(2)と同様にして、(4)で得られた水素放出曲線を複数の小ピークに分離した後、分離した複数の小ピークの中から、常温非拡散性水素の総量を検出した小ピークである評価ピークを抽出する。
(6)実機軸受の軌道輪の軌道溝の溝底直下部についてX線分析を行い、X線分析による黒色組織の検出ピークの半価幅を測定する。
(5) In the same manner as in (2) above, after separating the hydrogen desorption curve obtained in (4) into a plurality of small peaks, the total amount of normal temperature non-diffusible hydrogen is calculated from among the separated small peaks. An evaluation peak, which is a detected small peak, is extracted.
(6) X-ray analysis is performed on the groove bottom of the raceway groove of the bearing ring of the actual bearing, and the half width of the detection peak of the black texture is measured by the X-ray analysis.

(7)実機軸受の肩部についての測定結果と溝底直下部についての測定結果とを比較する。そして、評価ピークの大きさの差から、疲労の有無における軌道輪に含有される常温非拡散性水素の総量の変化量ΔNDHを算出し、半価幅の大きさの差から、疲労の有無における軌道輪が有する黒色組織の量の変化量ΔDECを算出する。
(8)〔I〕で導出した重回帰式に、(7)で算出した常温非拡散性水素の総量の変化量ΔNDH及び黒色組織の量の変化量ΔDECを代入して、水素損傷度及び疲労進行度T/L10を算出する。
(7) Compare the measurement result of the shoulder portion of the actual bearing with the measurement result of the groove bottom directly below. Then, from the difference in the magnitude of the evaluation peak, the amount of change ΔNDH in the total amount of room-temperature non-diffusible hydrogen contained in the bearing ring with and without fatigue is calculated. A change amount ΔDEC of the amount of black tissue of the bearing ring is calculated.
(8) Substituting the amount of change in the total amount of room-temperature non-diffusible hydrogen ΔNDH and the amount of change in the amount of black tissue ΔDEC calculated in (7) into the multiple regression equation derived in [I], the degree of hydrogen damage and fatigue A degree of progress T/L10 is calculated.

算出された疲労進行度T/L10の数値により、実機軸受の疲労進行度を、L10寿命に対する比率という形で評価することができる。例えば、算出された疲労進行度T/L10の数値が0.3であった場合は、「L10寿命の30%に相当する疲労進行度である」と評価することができる。そして、例えば、疲労進行度T/L10の数値が0.1~0.3であれば白色組織なし、0.4~0.6であれば白色組織の量は少量、0.7~1.0であれば白色組織の量は多量と評価できる。 From the numerical value of the calculated degree of progress of fatigue T/L10, the degree of progress of fatigue of the actual bearing can be evaluated in the form of a ratio to the life of L10. For example, when the numerical value of the calculated fatigue progress T/L10 is 0.3, it can be evaluated as "fatigue progress corresponding to 30% of L10 life". For example, if the numerical value of the fatigue progress T/L10 is 0.1 to 0.3, there is no white tissue, if it is 0.4 to 0.6, the amount of white tissue is small, and 0.7 to 1.0. If it is 0, it can be evaluated that the amount of white tissue is large.

また、算出された疲労進行度T/L10の数値により、実機軸受の残りの寿命を予測することができる。例えば、算出された疲労進行度T/L10の数値が0.3であった場合は、「実機軸受の残りの寿命は、L10寿命の70%である」と予測することができる。さらに、算出された疲労進行度T/L10の数値に実機軸受のL10寿命を掛け合わせれば(乗算)、実機軸受が実際に運転された時間を推算することができる。 Further, the remaining life of the actual bearing can be predicted from the calculated value of the degree of progress of fatigue T/L10. For example, when the numerical value of the calculated degree of progress of fatigue T/L10 is 0.3, it can be predicted that "the remaining life of the actual bearing is 70% of the L10 life." Furthermore, by multiplying (multiplying) the calculated value of the degree of progress of fatigue T/L10 by the L10 life of the actual bearing, it is possible to estimate the actual operating time of the actual bearing.

Claims (4)

相互に転がり接触する2つの転動部材を備え、前記2つの転動部材の少なくとも一方が鋼製転動部材である転動装置の疲労進行度を評価する方法であって、
前記疲労進行度は、前記鋼製転動部材に生じた白色組織剥離による前記転動装置の疲労の進行度合いであり、
前記鋼製転動部材のうち前記転がり接触により転動疲労した部位である転動疲労部位は、白色組織及び黒色組織を有するが、前記転動疲労部位が有する白色組織に含有される常温非拡散性水素の量に基づいて、前記転動装置の疲労進行度を評価する疲労進行度評価方法。
A method for evaluating fatigue progression in a rolling device comprising two rolling members in rolling contact with each other, at least one of said two rolling members being a steel rolling member, comprising:
The degree of progress of fatigue is the degree of progress of fatigue of the rolling device due to white tissue flaking occurring in the steel rolling contact member,
A rolling contact fatigue portion, which is a portion of the steel rolling member subjected to rolling contact fatigue due to rolling contact, has a white structure and a black structure. A fatigue progress evaluation method for evaluating the fatigue progress of the rolling device based on the amount of hydrogen.
疲労進行度を評価すべき転動装置と同種の転動装置をデータベース作成用転動装置として用意して、
未運転の前記データベース作成用転動装置の鋼製転動部材に含有される常温非拡散性水素の総量と黒色組織の量とを測定するとともに、
転がり接触により鋼製転動部材の転動疲労部位に作用する応力の大きさ、運転時間、運転時の温度、及び、運転時の前記データベース作成用転動装置の水素環境のうち少なくとも一つが異なる複数の運転条件それぞれにおいて前記データベース作成用転動装置を運転し、運転後の前記データベース作成用転動装置の鋼製転動部材の転動疲労部位に含有される常温非拡散性水素の総量と黒色組織の量とを測定し、
未運転の前記データベース作成用転動装置についての測定結果と、運転後の前記データベース作成用転動装置についての測定結果とから、運転前後における前記転動疲労部位に含有される常温非拡散性水素の総量の変化量ΔNDH及び前記転動疲労部位が有する黒色組織の量の変化量ΔDECを算出し、
運転時の温度及び運転時の前記データベース作成用転動装置の水素環境が同一で且つ前記転動疲労部位に作用する応力の大きさ及び運転時間の少なくとも一方が異なる運転条件で運転された複数の前記データベース作成用転動装置を、重回帰分析用転動装置群とし、1つの重回帰分析用転動装置群に含まれる前記データベース作成用転動装置についての前記常温非拡散性水素の総量の変化量ΔNDH及び前記黒色組織の量の変化量ΔDECを抽出し、
抽出した前記常温非拡散性水素の総量の変化量ΔNDH及び前記黒色組織の量の変化量ΔDECと、前記データベース作成用転動装置のL10寿命に対する前記運転時間Tの比で定義される疲労進行度T/L10とを、重回帰分析を用いて定式化して、A、B、Cを定数とする下記の重回帰式を導出し、
T/L10=A×ΔNDH+B×ΔDEC+C
複数の前記重回帰分析用転動装置群それぞれについて前記重回帰式を導出して、それら重回帰式を運転条件毎に分類して格納したデータベースを予め作成しておき、
前記疲労進行度を評価すべき転動装置について、未運転の転動装置の鋼製転動部材に含有される常温非拡散性水素の総量と黒色組織の量とを測定するとともに、前記疲労進行度を評価すべき転動装置を運転し、運転後の前記疲労進行度を評価すべき転動装置の鋼製転動部材の転動疲労部位に含有される常温非拡散性水素の総量と黒色組織の量とを測定し、
未運転の前記疲労進行度を評価すべき転動装置についての測定結果と、運転後の前記疲労進行度を評価すべき転動装置についての測定結果とから、運転前後における前記転動疲労部位に含有される常温非拡散性水素の総量の変化量ΔNDH及び前記転動疲労部位が有する黒色組織の量の変化量ΔDECを算出し、
運転時の温度及び運転時の水素環境が、前記疲労進行度を評価すべき転動装置の運転条件と全て同一である場合の前記重回帰式を、前記データベースから取得し、
前記疲労進行度を評価すべき転動装置についての前記常温非拡散性水素の総量の変化量ΔNDH及び前記黒色組織の量の変化量ΔDECを、前記データベースから取得した前記重回帰式に代入して、前記疲労進行度を評価すべき転動装置の疲労進行度T/L10を算出する請求項1に記載の疲労進行度評価方法。
A rolling device of the same kind as the rolling device whose fatigue progress should be evaluated is prepared as a rolling device for creating a database,
While measuring the total amount of normal temperature non-diffusible hydrogen and the amount of black structure contained in the steel rolling members of the database creation rolling device that has not been operated,
At least one of the magnitude of the stress acting on the rolling contact fatigue portion of the steel rolling member due to rolling contact, the operating time, the temperature during operation, and the hydrogen environment of the rolling device for creating the database during operation is different. The database-creating rolling device is operated under each of a plurality of operating conditions, and the total amount of room-temperature non-diffusible hydrogen contained in the rolling fatigue sites of the steel rolling contact members of the database-creating rolling device after operation; measuring the amount of black tissue and
From the measurement results of the database-creating rolling device that has not been operated and the measurement results of the database-creating rolling device that has been operated, the room-temperature non-diffusible hydrogen contained in the rolling contact fatigue portion before and after operation Calculate the amount of change ΔNDH in the total amount of and the amount of change ΔDEC in the amount of black structure possessed by the rolling contact fatigue site,
A plurality of rolling bearings operated under operating conditions in which the temperature during operation and the hydrogen environment of the database-creating rolling device during operation are the same, and at least one of the magnitude of stress acting on the rolling contact fatigue portion and the operating time are different. The database-creating rolling devices are a multiple regression analysis rolling device group, and the total amount of the room temperature non-diffusible hydrogen for the database-creating rolling devices included in one multiple regression analysis rolling device group Extracting the amount of change ΔNDH and the amount of change ΔDEC in the amount of the black tissue,
The degree of fatigue progress defined by the amount of change ΔNDH in the total amount of the extracted normal-temperature non-diffusible hydrogen and the amount of change ΔDEC in the amount of the black tissue extracted, and the ratio of the operating time T to the L10 life of the rolling device for database creation. T / L10 is formulated using multiple regression analysis to derive the following multiple regression equation with A, B, and C as constants,
T/L10=A×ΔNDH+B×ΔDEC+C
Deriving the multiple regression equations for each of the plurality of rolling device groups for multiple regression analysis, and creating in advance a database in which the multiple regression equations are classified and stored for each operating condition,
For the rolling device to be evaluated for the progress of fatigue, the total amount of normal temperature non-diffusible hydrogen and the amount of black structure contained in the steel rolling member of the rolling device that is not in operation are measured, and the progress of fatigue The rolling device whose fatigue degree should be evaluated is operated, and the total amount of normal temperature non-diffusible hydrogen contained in the rolling contact fatigue site of the steel rolling contact member of the rolling device whose fatigue progress degree after operation is to be evaluated measure the amount of tissue and
From the measurement results of the non-operated rolling device whose fatigue progress should be evaluated and the measurement results of the rolling device whose fatigue progress after operation should be evaluated, the rolling contact fatigue parts before and after operation Calculate the amount of change ΔNDH in the total amount of non-diffusible hydrogen contained at room temperature and the amount of change ΔDEC in the amount of black tissue in the rolling contact fatigue site,
Obtaining from the database the multiple regression equation when the temperature during operation and the hydrogen environment during operation are all the same as the operating conditions of the rolling device for which the progress of fatigue is to be evaluated,
Substituting the amount of change ΔNDH in the total amount of room-temperature non-diffusible hydrogen and the amount of change ΔDEC in the amount of the black tissue for the rolling device for which the degree of progress of fatigue is to be evaluated into the multiple regression equation obtained from the database 2. The fatigue progress evaluation method according to claim 1, wherein the fatigue progress T/L10 of the rolling device whose fatigue progress is to be evaluated is calculated.
前記黒色組織の量は、X線分析による黒色組織の検出ピークの半価幅により算出する請求項2に記載の疲労進行度評価方法。 3. The fatigue progress evaluation method according to claim 2, wherein the amount of said black tissue is calculated from the half-value width of a detection peak of black tissue by X-ray analysis. 前記データベース作成用転動装置及び前記疲労進行度を評価すべき転動装置の少なくとも一方において、未運転時の前記鋼製転動部材及び運転後の前記転動疲労部位のそれぞれについて、昇温しながら加熱することにより水素を放出させ、放出させた水素を検出器で検出することにより複数の小ピークが重複してなる水素放出曲線を取得し、該水素放出曲線を統計的処理によって前記複数の小ピークに分離し、
未運転時の前記鋼製転動部材と運転後の前記転動疲労部位とで、対応する小ピークをそれぞれ対比し、検出された水素の量が最も増加した前記小ピークを、前記常温非拡散性水素の総量を検出した小ピークとし、該小ピークから前記常温非拡散性水素の総量の変化量ΔNDHを算出する請求項2又は請求項3に記載の疲労進行度評価方法。
In at least one of the database-creating rolling device and the rolling device for which the degree of progress of fatigue should be evaluated, the steel rolling member before operation and the rolling contact fatigue portion after operation are heated. By heating while heating, hydrogen is released, the released hydrogen is detected with a detector to obtain a hydrogen release curve in which a plurality of small peaks overlap, and the hydrogen release curve is statistically processed to the above-mentioned plurality of separated into small peaks,
Corresponding small peaks in the steel rolling contact member before operation and the rolling contact fatigue portion after operation are compared, and the small peak at which the amount of detected hydrogen increases the most is regarded as the normal temperature non-diffusion 4. The fatigue progress evaluation method according to claim 2 or 3, wherein the detected small peak is the total amount of non-diffusible hydrogen at room temperature, and the amount of change ΔNDH in the total amount of normal-temperature non-diffusible hydrogen is calculated from the small peak.
JP2019114566A 2019-06-20 2019-06-20 Fatigue progress evaluation method Active JP7238620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019114566A JP7238620B2 (en) 2019-06-20 2019-06-20 Fatigue progress evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019114566A JP7238620B2 (en) 2019-06-20 2019-06-20 Fatigue progress evaluation method

Publications (2)

Publication Number Publication Date
JP2021001761A JP2021001761A (en) 2021-01-07
JP7238620B2 true JP7238620B2 (en) 2023-03-14

Family

ID=73993964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019114566A Active JP7238620B2 (en) 2019-06-20 2019-06-20 Fatigue progress evaluation method

Country Status (1)

Country Link
JP (1) JP7238620B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226919A (en) 2001-11-29 2003-08-15 Ntn Corp Bearing part and roll bearing
JP2003342686A (en) 2002-05-23 2003-12-03 Ntn Corp Rolling part and power transmission part
JP2017187441A (en) 2016-04-08 2017-10-12 Jfeスチール株式会社 Method for evaluating delayed fracture of metal material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003595A (en) * 2001-11-15 2004-01-08 Nippon Parkerizing Co Ltd Rolling bearing for automobile power train
JP6072504B2 (en) * 2012-10-19 2017-02-01 Ntn株式会社 Life evaluation method and life evaluation device for rolling parts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226919A (en) 2001-11-29 2003-08-15 Ntn Corp Bearing part and roll bearing
JP2003342686A (en) 2002-05-23 2003-12-03 Ntn Corp Rolling part and power transmission part
JP2017187441A (en) 2016-04-08 2017-10-12 Jfeスチール株式会社 Method for evaluating delayed fracture of metal material

Also Published As

Publication number Publication date
JP2021001761A (en) 2021-01-07

Similar Documents

Publication Publication Date Title
Šmeļova et al. Microstructural changes in white etching cracks (WECs) and their relationship with those in dark etching region (DER) and white etching bands (WEBs) due to rolling contact fatigue (RCF)
Evans An updated review: white etching cracks (WECs) and axial cracks in wind turbine gearbox bearings
US9074970B2 (en) Method for fatigue assessment of rolling bearing
Gould et al. The influence of sliding and contact severity on the generation of white etching cracks
Evans et al. Effect of hydrogen on butterfly and white etching crack (WEC) formation under rolling contact fatigue (RCF)
Li et al. Micro-pitting fatigue lives of lubricated point contacts: Experiments and model validation
Gurumoorthy et al. Failure investigation of a taper roller bearing: A case study
Scott Debris examination—a prognostic approach to failure prevention
Gould et al. Figure the impact of steel microstructure and heat treatment on the formation of white etching cracks
Pasaribu et al. The composition of reaction layers on rolling bearings lubricated with gear oils and its correlation with rolling bearing performance
JP7238620B2 (en) Fatigue progress evaluation method
DE102014104964A1 (en) Method for identifying critical operating conditions of rolling bearings
JP2015028441A (en) Role fatigue crack progress testing method and roll fatigue life estimation method
JP2009041993A (en) Predicting method of residual life of rolling bearing
Georgiadis et al. Vibration analysis based on the spectrum kurtosis for adjustment and monitoring of ball bearing radial clearance
JP6683301B1 (en) Hydrogen environment degree judgment method and white tissue damage possibility prediction method
von Gesseneck et al. A torque-based method for the study of roller bearing degradation under poor lubrication conditions in a lead–bismuth environment
US11828698B2 (en) Ambient-hydrogen-level assessment method and white-structure-damage-likelihood prediction method
Sharma et al. User‐independent EBSD parameters to study the progress of recovery and recrystallization in Cu–Zn alloy during in situ heating
Maru et al. Influence of oil contamination on vibration and wear in ball and roller bearings
Evans et al. Investigations of white etching crack (WEC) formation under rolling contact fatigue
Wu et al. Characteristics of acoustic emission signals in the rolling bearing on giant wheel
Tóth et al. Methods for the detection and analysis of bearing failures
Gabelli et al. Improved Fatigue Life Analysis of Pre-Dented Raceways Used in Bearing Material Testing
Manescu et al. Determination of Material Characteristics of Bearing Balls Through Static and Dynamical Actuation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7238620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150