JP6354476B2 - Characterization method for hydrogen embrittlement of steel - Google Patents

Characterization method for hydrogen embrittlement of steel Download PDF

Info

Publication number
JP6354476B2
JP6354476B2 JP2014183571A JP2014183571A JP6354476B2 JP 6354476 B2 JP6354476 B2 JP 6354476B2 JP 2014183571 A JP2014183571 A JP 2014183571A JP 2014183571 A JP2014183571 A JP 2014183571A JP 6354476 B2 JP6354476 B2 JP 6354476B2
Authority
JP
Japan
Prior art keywords
hydrogen
amount
steel
load
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014183571A
Other languages
Japanese (ja)
Other versions
JP2016057163A (en
Inventor
玄紀 虻川
玄紀 虻川
薫 川▲崎▼
薫 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014183571A priority Critical patent/JP6354476B2/en
Publication of JP2016057163A publication Critical patent/JP2016057163A/en
Application granted granted Critical
Publication of JP6354476B2 publication Critical patent/JP6354476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、少ない試験回数で高精度な評価が可能な水素脆化特性評価方法に関する。   The present invention relates to a hydrogen embrittlement characteristic evaluation method capable of highly accurate evaluation with a small number of tests.

近年、鋼材の高強度化が進められている。例えば、自動車用鋼板の分野では、環境問題への対応のため炭酸ガス排出低減や燃費低減を目的に自動車の軽量化が進められ、一方、衝突安全性向上に対する要求は高くなっている。自動車の軽量化や衝突安全性向上のためには鋼材の高強度化が有効な手段であり、近年ではバンパーやドアインパクトビームなどの補強材、シートレールなどの用途に引張強度を1180MPa以上に高めた超高強度鋼板が適用されつつある。しかし、一般に鋼材を高強度化すると、切欠き感受性が高まり環境の悪影響を受けやすくなる。特に腐食環境下では表面に腐食ピットが形成されると、これが応力集中源となり、更に腐食反応の進行に伴って発生する水素により水素脆化による割れ、いわゆる遅れ破壊が発生する。遅れ破壊は、薄鋼板よりも前から高強度化が進められているボルトやPC鋼棒などの条鋼部材や、多量の水素が侵入するサワー環境などで使用される油井管やラインパイプなどでは古くから注目されている。そのため、従来から、条鋼、鋼管及び厚鋼板を供試材とする、様々の水素脆化特性評価方法が提案されている。薄鋼板においても、高強度化に伴い水素脆化特性への関心は高まっており、特に鋼材固有の水素脆化特性である、特定の応力を負荷したときにその応力で破断に至る最小の拡散性水素量、すなわち限界拡散性水素量を測定することで薄鋼板の水素脆化特性を評価する需要が高まっている。   In recent years, the strength of steel materials has been increased. For example, in the field of automobile steel sheets, automobiles are being reduced in weight for the purpose of reducing carbon dioxide emissions and fuel consumption in order to cope with environmental problems, while demands for improving collision safety are increasing. In order to reduce the weight of automobiles and improve collision safety, increasing the strength of steel is an effective means. In recent years, the tensile strength has been increased to 1180 MPa or more for applications such as bumpers, door impact beams, and seat rails. Ultra high strength steel plates are being applied. However, in general, when the strength of steel is increased, notch sensitivity is increased and it is easy to be adversely affected by the environment. In particular, when corrosion pits are formed on the surface in a corrosive environment, this becomes a stress concentration source, and further, cracks due to hydrogen embrittlement, so-called delayed fracture, occur due to hydrogen generated as the corrosion reaction proceeds. Delayed fracture is old in steel pipes such as bolts and PC steel bars, which have been strengthened before thin steel sheets, and in oil well pipes and line pipes used in sour environments where a large amount of hydrogen enters. Has been attracting attention. For this reason, various hydrogen embrittlement property evaluation methods using steel bars, steel pipes and thick steel plates as test materials have been proposed. Even in thin steel sheets, interest in hydrogen embrittlement characteristics has increased with increasing strength, and the minimum diffusion that leads to fracture when a specific stress is applied, which is a hydrogen embrittlement characteristic unique to steel materials. Demand for evaluating the hydrogen embrittlement characteristics of thin steel sheets by measuring the amount of reactive hydrogen, that is, the amount of critical diffusible hydrogen is increasing.

鋼材における水素脆性の評価方法について、例えば、薄鋼板をU字状に曲げて、水素を電解によって侵入させながら、破断するまでの時間を測定する水素脆化の評価方法が提案されている(例えば、特許文献1、2)。この方法は、実部品を模擬して曲げ加工による応力を負荷したものであるが、変形が単純でないため、破断発生における限界応力や限界水素量に関する定量的な考察が困難であった。   As a method for evaluating hydrogen embrittlement in steel materials, for example, a method for evaluating hydrogen embrittlement is proposed in which a thin steel plate is bent into a U-shape and hydrogen is allowed to enter by electrolysis to measure the time until breakage (for example, Patent Documents 1 and 2). This method simulates an actual part and applies a stress due to bending. However, since the deformation is not simple, it is difficult to quantitatively consider the critical stress and the critical hydrogen amount at the occurrence of fracture.

これに対して、鋼材に単純な引張応力を負荷して水素脆化を評価する方法が提案されている。1つは定荷重の条件で水素量を増加させていくことで試験片を破断させる方法である(例えば、特許文献3、4)。または、一定水素の条件で荷重を増加させていくことで試験片を破断させる方法である(例えば、非特許文献1)。   On the other hand, a method for evaluating hydrogen embrittlement by applying a simple tensile stress to a steel material has been proposed. One is a method of breaking a test piece by increasing the amount of hydrogen under a constant load condition (for example, Patent Documents 3 and 4). Alternatively, the test piece is broken by increasing the load under a constant hydrogen condition (for example, Non-Patent Document 1).

これらの方法は、いくつかの鋼種について水素脆化特性の相対比較をするだけであれば、以下のように簡易に評価することができる。例えば、水素量を段階的に増加させていく方法では、破断するまでに鋼中の水素を増加させるために変化させたパラメータ(電流値、促進剤の濃度など)が大きいほど水素脆化特性に優れた材料であると判断できる。また荷重を増加させていく方法では、破断した応力、破断までに有した試験時間が大きいほど水素脆化特性に優れた材料と判断できる。   These methods can be easily evaluated as follows if only a relative comparison of hydrogen embrittlement characteristics is made for several steel types. For example, in the method of gradually increasing the amount of hydrogen, the hydrogen embrittlement characteristics increase as the parameters (current value, concentration of accelerator, etc.) changed to increase the amount of hydrogen in the steel before breaking. It can be judged that it is an excellent material. Further, in the method of increasing the load, it can be determined that the material is superior in hydrogen embrittlement characteristics as the stress at break and the test time until break are increased.

しかし、これらの方法では、特定の環境で、その部材で水素脆化による破壊の危険性があるかについての定量的な評価をすることが困難であった。つまり、雰囲気から鋼材へ特定量の水素侵入が予測される環境において、特定の荷重が負荷される部材に対象鋼材を用いた場合に、対象鋼材が水素脆化による破壊に耐えられるか、耐えられるとすれば、水素量または応力としてどれくらいの余裕度があるかについての情報を得ることはできない。
また、上記の方法において試験後のサンプルを分析し鋼中の水素量を得たとしても、実用性能との不一致が見られることがあり、評価精度の向上が望まれている。
However, in these methods, it has been difficult to quantitatively evaluate whether or not the member has a risk of destruction due to hydrogen embrittlement in a specific environment. That is, in an environment where a specific amount of hydrogen intrusion into the steel material is predicted from the atmosphere, when the target steel material is used as a member to which a specific load is applied, the target steel material can withstand or withstand breakdown due to hydrogen embrittlement. If so, it is not possible to obtain information on how much room is available for hydrogen amount or stress.
Moreover, even if the sample after a test is analyzed in said method and the amount of hydrogen in steel is obtained, inconsistency with a practical performance may be seen, and the improvement of evaluation accuracy is desired.

これらに対し、一定水素、一定荷重の条件で試験片を破断させる方法が提案されている(例えば、特許文献5、6)。これは鋼材に事前に水素チャージを行った後に鋼材中に水素を封入するためにめっき処理を施し、定荷重試験を行う方法であり、非常に精度が良い。ただし、この方法は試験片にめっきを施す工程が作業効率を低下させるほかに、限界拡散性水素量を決定するために多くの試験回数が必要であるという課題がある。   On the other hand, a method of breaking a test piece under conditions of constant hydrogen and constant load has been proposed (for example, Patent Documents 5 and 6). This is a method of performing a constant load test by performing a plating process in order to enclose hydrogen in a steel material after hydrogen is charged in the steel material in advance, and the accuracy is very good. However, this method has a problem that many steps are required to determine the limit diffusible hydrogen amount, in addition to reducing the working efficiency of the process of plating the test piece.

このように、水素脆化特性を高精度かつ少ない試験回数で評価可能な方法はこれまで提案されていない。   Thus, no method has been proposed that can evaluate the hydrogen embrittlement characteristics with high accuracy and with a small number of tests.

特開平7−146225号公報JP-A-7-146225 特開2005−134152号公報JP-A-2005-134152 特開2009−69004号公報JP 2009-69004 A 特開2013−124998号公報JP2013-124998A 特開2007−262557号公報JP 2007-262557 A 特開2009−69007号公報JP 2009-69007 A

漆原亘, 湯瀬文雄, 中山武典 , 並村裕一, 茨木信彦、神戸製鋼技報、Vol.52、No3Nobuhiko Urushibara, Fumio Yuse, Takenori Nakayama, Yuichi Namimura, Nobuhiko Ibaraki, Kobe Steel Engineering Reports, Vol.52, No3

本発明は、鋼材の水素脆化特性評価方法において、測定データの精度を向上させるために定荷重、定水素量の条件で試験を行い、かつ少ない試験回数で水素脆化特性を評価することを課題とする。   The present invention relates to a method for evaluating hydrogen embrittlement characteristics of steel materials, in order to improve the accuracy of measurement data, tests are performed under conditions of constant load and constant hydrogen content, and hydrogen embrittlement characteristics are evaluated with a small number of tests. Let it be an issue.

本発明者らは上記の問題を解決するため、一定荷重、一定水素量の条件で、かつ少ない試験回数で評価が可能な鋼材の水素脆化特性評価方法について検討した。   In order to solve the above problems, the present inventors studied a method for evaluating hydrogen embrittlement characteristics of a steel material that can be evaluated under conditions of a constant load and a constant hydrogen amount and with a small number of tests.

まず本発明者らは従来法(特許文献3)に従い水素脆化特性の評価を検討した(検討1)。この方法は荷重の負荷と同時に鋼材に水素チャージを開始し、水素チャージを継続した状態で鋼材の破断応力を測定するものであるが、この方法による水素脆化特性の評価結果はばらつきが大きく、また暴露試験などによる実環境での水素脆化割れの発生とも相関が低かった。   First, the present inventors examined the evaluation of hydrogen embrittlement characteristics according to the conventional method (Patent Document 3) (Study 1). This method is to start hydrogen charging to the steel simultaneously with the loading of the load, and measure the fracture stress of the steel in a state where the hydrogen charging is continued, but the evaluation result of the hydrogen embrittlement characteristics by this method has a large variation, Also, the correlation with the occurrence of hydrogen embrittlement cracking in the actual environment by exposure tests was low.

続いて特許文献5の方法に従い水素脆化特性の評価を行った(検討2)。この方法は鋼材に事前に水素チャージを行った後に鋼材中に水素を封入するためにめっき処理を施し、定荷重試験を行うものである。この方法による評価結果はばらつきが小さく、精度の高いものであったが、一つの鋼種で応力と限界拡散性水素量の関係を明確にするためには多くの試験数が必要であり、さらに各々の試験において材料にめっき処理を施す必要があることから試験効率も低く非常に長時間の試験時間を要した。   Subsequently, hydrogen embrittlement characteristics were evaluated according to the method of Patent Document 5 (Study 2). In this method, a steel material is charged with hydrogen in advance, and then a plating treatment is performed to enclose hydrogen in the steel material, and a constant load test is performed. Although the evaluation results by this method were small and highly accurate, a large number of tests were required to clarify the relationship between stress and the amount of critical diffusible hydrogen in one steel type. In this test, since it was necessary to perform plating on the material, the test efficiency was low and a very long test time was required.

図1は特許文献5の方法を用いて、ある負荷応力での材料の限界拡散性水素量を測定した例で、ある応力を加えたとき、試験片が破断するまでの時間とそのときの鋼中の拡散性水素量を示している。→(図1中の右向きの矢印)は600秒以上応力を負荷しても破断が起きなかったことを示す。この結果から、この材料の、この応力での限界拡散性水素量は0.3ppmであることが分かるが、9個の試験片を準備した上で9回の試験が必要になる。   FIG. 1 shows an example of measuring the critical diffusible hydrogen content of a material under a certain load stress using the method of Patent Document 5. When a certain stress is applied, the time until the specimen breaks and the steel at that time The amount of diffusible hydrogen is shown. → (Right arrow in FIG. 1) indicates that no fracture occurred even when stress was applied for 600 seconds or more. From this result, it can be seen that the critical diffusible hydrogen content of this material at this stress is 0.3 ppm, but nine tests are required after preparing nine test pieces.

本発明者らはこの検討2において、荷重の負荷開始から破断に至るまでにある程度の時間を有することに着目した。荷重の負荷中、試験片中の水素量や負荷重は変化していないことから、この荷重負荷から破断までの時間は鋼中の水素が応力集中箇所に拡散するまでの時間と応力集中箇所に集まった水素が鋼板を破断に至らせるまでの時間の和であると考えられる。後者の時間が何に起因するものかは明らかではないが、水素脆化割れのメカニズムとして、水素を原因として材料中に何らかの損傷(たとえば空孔性の欠陥)が増加し、ある損傷量に至ると材料が破断する現象であると仮定すると、この時間は水素が材料中の損傷を増加させている時間と捉えることができる。このことから本発明者らは、検討1での荷重の負荷と同時に鋼材に水素チャージを開始し水素チャージを継続した状態で鋼材の破断応力を測定する方法や、非特許文献1のような一定水素の条件で荷重を増加させていくことで試験片を破断させる方法において評価結果にばらつきを生じる理由は、試験中に水素量や応力が増加する試験方法では、本来破断するはずの水素量や応力に達してからも破断するまでの間に水素量や応力が増加を続けるため、破断応力やそのときの水素量を高めに評価している可能性があると結論づけた。この知見をもとにして、本発明者らは高精度で、また評価作業の簡易化と短時間化のため少ない試験数で水素脆化特性を評価可能な方法について検討を進めた。   In this examination 2, the present inventors paid attention to the fact that there is a certain amount of time from the start of load application to breakage. Since the amount of hydrogen and the load weight in the test piece did not change during the load application, the time from this load application to the rupture depends on the time until the hydrogen in the steel diffuses to the stress concentration point and the stress concentration point. This is considered to be the sum of the time until the collected hydrogen brings the steel sheet to breakage. It is not clear what causes the latter time, but as a mechanism of hydrogen embrittlement cracking, some damage (for example, void defects) increases in the material due to hydrogen, leading to a certain amount of damage Assuming that this is a phenomenon in which the material breaks, this time can be regarded as a time during which hydrogen increases damage in the material. From this, the present inventors have started the method of measuring the rupture stress of the steel material in a state where the hydrogen charge is started on the steel material and the hydrogen charge is continued simultaneously with the loading of the load in Study 1, or the constant as in Non-Patent Document 1. The reason why the evaluation results vary in the method of breaking the test piece by increasing the load under the hydrogen condition is that the amount of hydrogen that should originally break in the test method in which the amount of hydrogen and stress increase during the test. It was concluded that there was a possibility that the fracture stress and the amount of hydrogen at that time may be evaluated higher because the amount of hydrogen and stress continue to increase from when the stress is reached to when it breaks. Based on this knowledge, the present inventors have studied a method that can evaluate the hydrogen embrittlement characteristics with high accuracy and with a small number of tests in order to simplify and shorten the evaluation work.

まず、本発明者らは鋼材に一定の電流値で水素チャージを続けるとある時間後に鋼中に侵入する水素量と鋼中から放出される水素量が等しくなり、鋼中の水素量が一定に保たれる現象に着目した。図2この現象の例を示す。図2は引張強度420MPa、板厚1.5mmの材料について、塩化ナトリウムの濃度を3mass%とした水溶液(電解液)に、水素侵入促進剤としてチオシアン酸アンモニウムを1g/l加えた20℃の溶液中で水素チャージを行ったときのチャージ時間と鋼材中の拡散性水素量の関係を示す。水素チャージの電流密度は0.05mA/cm2、電圧は1.2Vである。鋼材中の拡散性水素量はチャージ時間の増加に伴って増加するが、ある時間以上チャージを行うと時間によらずほぼ一定になることがわかる。図2の例では水素量が一定になるまでの時間は26分でありそのときの鋼材中の拡散性水素量は0.41ppmである。本発明者らはこの現象を応用し、無負荷の状態で鋼中の水素量が一定になるまで水素チャージを行った後に水素チャージを続けながら荷重を負荷することで、水素量を一定に保ったまま試験を行うことが可能であると考えた。ただし、このとき、単に一定の荷重を負荷するだけの試験方法を採用してしまうと、検討2と同様に多くの試験数が必要になってしまう。荷重の負荷方法を低ひずみ速度の引張法にすると定荷重の条件で試験ができなくなってしまう。   First, when the present inventors continue to charge the steel with hydrogen at a constant current value, the amount of hydrogen entering the steel after a certain time is equal to the amount of hydrogen released from the steel, and the amount of hydrogen in the steel is kept constant. We focused on the phenomenon that is maintained. FIG. 2 shows an example of this phenomenon. FIG. 2 shows a 20 ° C. solution in which 1 g / l of ammonium thiocyanate as a hydrogen penetration accelerator is added to an aqueous solution (electrolyte) having a sodium chloride concentration of 3 mass% for a material having a tensile strength of 420 MPa and a plate thickness of 1.5 mm. The relationship between the charge time when hydrogen is charged and the amount of diffusible hydrogen in the steel is shown. The current density of hydrogen charge is 0.05 mA / cm2, and the voltage is 1.2V. It can be seen that the amount of diffusible hydrogen in the steel material increases as the charging time increases, but it becomes almost constant regardless of the time when charged for a certain time or longer. In the example of FIG. 2, the time until the hydrogen amount becomes constant is 26 minutes, and the amount of diffusible hydrogen in the steel at that time is 0.41 ppm. The present inventors apply this phenomenon and keep the hydrogen amount constant by applying the load while continuing the hydrogen charge after performing the hydrogen charge until the hydrogen amount in the steel becomes constant in an unloaded state. We thought that it was possible to carry out the test as it was. However, if a test method in which a constant load is simply applied is adopted at this time, a large number of tests are required as in Study 2. If the load method is a tensile method with a low strain rate, the test cannot be performed under constant load conditions.

そこで、材料に一定の荷重を負荷し、一定時間を過ぎても破断に至らないことを確認した後に、荷重をわずかに増加させた上でさらに一定時間内での破断確認を、材料が破断に至るまで繰り返すことで、一本の試験片で破断応力と破断した時の水素量の関係を精密に測定できることを明らかにした。つまり、破断に至るまでに試験片に与えた低い荷重での負荷は、材料の水素脆化特性に関する限界水素量や限界応力には、ほとんど影響を及ぼさないことを明らかにした。   Therefore, after applying a certain load to the material and confirming that it does not break even after a certain period of time, after confirming that the load is slightly increased and confirming the fracture within a certain period of time, the material will break. It was clarified that the relationship between the rupture stress and the amount of hydrogen at the time of rupture can be accurately measured by repeating the process up to the point. In other words, it was clarified that the low load applied to the test piece before the fracture had little effect on the critical hydrogen amount and critical stress related to the hydrogen embrittlement characteristics of the material.

さらに、上記の方法では水素チャージ量を一定とした状態で段階的に応力を増加させていくことで試験片が破断に至る応力を見出していたが、同様の原理により、負荷応力を一定とした状態で段階的に電解液濃度を増加させるか、または段階的に電流密度を増加させていくことで、鋼材中の水素量を段階的に増加させ試験片破断時の試験片中の拡散性水素量を測定する方法でも水素脆性を精度良く評価することができることを確認した。   Furthermore, in the above method, the stress that causes the test piece to break was found by gradually increasing the stress with the hydrogen charge amount kept constant, but the load stress was made constant according to the same principle. By gradually increasing the electrolyte concentration in the state or increasing the current density step by step, the amount of hydrogen in the steel material is increased step by step, and the diffusible hydrogen in the test piece at the time of specimen breakage It was confirmed that hydrogen embrittlement can be accurately evaluated even by the method of measuring the amount.

また、非特許文献1などの試験法においては、荷重を連続的に変化させる必要があるため駆動力を有した引張試験機が必須であるが、当試験法においては、荷重を段階的に変化させればよいため、重りとてこを使った試験機を用いることができ、引張試験機を用いるよりも比較的安価に試験を行える。あるいは、荷重を一定とし、電解液濃度または電流密度を段階的に増加させていけばよいため、この場合も、重りとてこを使った試験機を用いることができ、引張試験機を用いるよりも比較的安価に試験を行える。   In addition, in the test methods such as Non-Patent Document 1, it is necessary to continuously change the load, so a tensile tester having a driving force is essential, but in this test method, the load is changed stepwise. Therefore, a tester using a weight and a lever can be used, and the test can be performed at a relatively low cost compared to a tensile tester. Alternatively, it is only necessary to keep the load constant and increase the electrolyte concentration or current density step by step. In this case, too, a tester using a weight and a lever can be used, rather than using a tensile tester. Tests can be performed relatively inexpensively.

本発明の要旨は以下のとおりである。
(1)
電解液を保持する電解槽と、鋼材に負荷する変形応力を発生する定荷重発生手段と、鋼材に水素チャージを行うための電流を発生する電流発生手段からなる実験装置を用いて、定荷重発生手段に設置した鋼材に変形応力を負荷しない状態で、電解液中で電流発生手段により少なくとも鋼材中の水素量が一定になるまで電気化学的に水素チャージを行った後、水素チャージを続けながら定荷重発生手段により鋼材に引張強度未満の変形応力を負荷して一定時間保持し、破断しなかった場合は、以後、さらに変形応力を引張強度の0.01〜0.5倍の範囲で増加させて一定時間保持する工程を、破断するまで順次行うことを特徴とする水素脆化特性評価方法。
(2)
前記変形応力を増加させて一定時間保持する工程において、前記引張強度の増加範囲は、0.1〜0.5倍であることを特徴とする、(1)に記載の水素脆化特性評価方法。
(3)
電解液を保持する電解槽と、鋼材に負荷する変形応力を発生する定荷重発生手段と、鋼材に水素チャージを行うための電流を発生する電流発生手段からなる実験装置を用いて、定荷重発生手段に設置した鋼材に変形応力を負荷しない状態で、電解液中で電流発生手段により少なくとも鋼材中の水素量が一定になるまで電気化学的に水素チャージを行った後、水素チャージを続けながら定荷重発生手段により鋼材に引張強度未満の変形応力を負荷して一定時間保持し、破断しなかった場合は、以後、さらに鋼材中の水素量を上昇させて定荷重発生手段により鋼材に引張強度未満の変形応力を負荷して一定時間保持する工程を、破断するまで順次行うことを特徴とする水素脆化特性評価方法。
(4)
電解液中の水素侵入促進剤の濃度を増加させることで、鋼材中の水素量を上昇させることを特徴とする(3)に記載の水素脆化特性評価方法。
(5)
電解液中で鋼材に与える電流密度を増加させることで、鋼材中の水素量を上昇させることを特徴とする(3)に記載の水素脆化特性評価方法。
(6)
応力を付加した材料の破断有無の判定を行う時間を10分以上とすることを特徴とする(1)から(5)のいずれか1項に記載の水素脆化特性評価方法。
(7)
定荷重発生手段として、てこと重りを用いることを特徴とする(1)から(6)のいずれか1項に記載の水素脆化特性評価方法。
(8)
破断後の鋼材中の水素量を測定することを特徴とする(1)から(7)のいずれか1項に記載の水素脆化特性評価方法。
The gist of the present invention is as follows.
(1)
Constant load generation using an experimental apparatus comprising an electrolytic cell for holding an electrolytic solution, a constant load generating means for generating a deformation stress applied to the steel material, and a current generating means for generating a current for charging the steel material with hydrogen In a state where no deformation stress is applied to the steel material installed in the means, the battery is electrochemically charged with hydrogen until the amount of hydrogen in the steel material becomes constant at least by the current generating means in the electrolyte solution, and then is maintained while the hydrogen charge is continued. When a deformation stress less than the tensile strength is applied to the steel material by the load generating means and held for a certain period of time, and when it does not break, the deformation stress is further increased in the range of 0.01 to 0.5 times the tensile strength. The method of evaluating hydrogen embrittlement characteristics is characterized in that the step of holding for a certain period of time is sequentially performed until fracture.
(2)
The method of evaluating hydrogen embrittlement characteristics according to (1), wherein in the step of increasing the deformation stress and maintaining for a certain time, the range of increase in the tensile strength is 0.1 to 0.5 times .
(3)
Constant load generation using an experimental apparatus comprising an electrolytic cell for holding an electrolytic solution, a constant load generating means for generating a deformation stress applied to the steel material, and a current generating means for generating a current for charging the steel material with hydrogen In a state where no deformation stress is applied to the steel material installed in the means, the battery is electrochemically charged with hydrogen until the amount of hydrogen in the steel material becomes constant at least by the current generating means in the electrolyte solution, and then is maintained while the hydrogen charge is continued. If the steel is not deformed by applying a deformation stress below the tensile strength to the steel by the load generating means and is not broken for a while, then the amount of hydrogen in the steel is further increased and the steel is below the tensile strength by the constant load generating means. A method for evaluating hydrogen embrittlement characteristics, wherein the step of applying a deformation stress of and holding for a certain period of time is sequentially performed until fracture occurs.
(4)
The method for evaluating hydrogen embrittlement characteristics according to (3) , wherein the amount of hydrogen in the steel material is increased by increasing the concentration of the hydrogen penetration accelerator in the electrolytic solution.
(5)
The method for evaluating hydrogen embrittlement characteristics according to (3) , wherein the amount of hydrogen in the steel material is increased by increasing the current density applied to the steel material in the electrolytic solution.
(6)
6. The method for evaluating hydrogen embrittlement characteristics according to any one of (1) to (5) , wherein the time for determining whether or not a material to which stress is applied is broken is 10 minutes or longer.
(7)
The hydrogen embrittlement characteristic evaluation method according to any one of (1) to (6) , wherein a lever weight is used as the constant load generating means.
(8)
The hydrogen embrittlement characteristic evaluation method according to any one of (1) to (7) , wherein the amount of hydrogen in the steel material after fracture is measured.

本発明によれば、鋼材の水素脆化特性の高精度の評価が可能となる。また、本発明を、本発明と同様に高精度な評価が可能な方法(例えば特許文献5、6)と比較すると、限界拡散性水素量を決定するために必要な試験数が5〜10回程度から1回に大幅に減少する。このように精度よくかつ簡易に鋼材の水素脆性を評価できることは今後の高張力鋼の開発を著しく加速させ、産業上の貢献は極めて顕著である。   According to the present invention, it is possible to evaluate the hydrogen embrittlement characteristics of a steel material with high accuracy. Further, when the present invention is compared with a method (for example, Patent Documents 5 and 6) capable of highly accurate evaluation as in the present invention, the number of tests necessary for determining the limit diffusible hydrogen amount is 5 to 10 times. Decreases significantly from one degree to another. The ability to accurately and easily evaluate the hydrogen embrittlement of steel materials in this way significantly accelerates the development of future high-strength steel, and contributes significantly to the industry.

公知技術(特許文献5)での限界拡散性水素量の求め方を示すグラフである。It is a graph which shows how to obtain | require the limit diffusible hydrogen amount in a well-known technique (patent document 5). 水素チャージ時間と水素量の関係を示すグラフである。It is a graph which shows the relationship between hydrogen charge time and hydrogen amount. 試験片形状を示す図である。It is a figure which shows a test piece shape.

本発明において使用される電解液は特に制限はなく、試験片(鋼材)を陰極として電流を流したときに試験片表面で水素が発生するもの、例えば塩化ナトリウム、塩化銅、塩化水素、水酸化ナトリウムなどの電解質の水溶液を適用できる。濃度も特に限定されるものではないが、一般的な濃度は塩化ナトリウムを用いる場合であれば0.5〜10mass%程度であり、本発明で評価する鋼材の水素脆化の評価においては、1〜5mass%程度とすれば良い。これらの条件設定は当業者においては困難なものではなく、一般的に知られている水素チャージに関する公知技術を適用すれば良い程度のものである。   There is no particular limitation on the electrolyte used in the present invention, and hydrogen is generated on the surface of the test piece when a current is passed using the test piece (steel material) as a cathode, for example, sodium chloride, copper chloride, hydrogen chloride, hydroxylation. An aqueous solution of an electrolyte such as sodium can be applied. Although the concentration is not particularly limited, the general concentration is about 0.5 to 10 mass% when sodium chloride is used. In the evaluation of hydrogen embrittlement of the steel material evaluated in the present invention, 1 to 5 mass is used. It should be about%. Setting these conditions is not difficult for those skilled in the art, and can be performed only by applying a publicly known technique related to hydrogen charging.

電解液のpHが3未満であると試験片表面での腐食が進行することがある。この場合、水素脆化の評価の精度に影響を及ぼす可能性がある。一方、電解液のpHは、7を超えると水素チャージ速度が遅くなり、評価の精度が低下することがある。そのため、水素チャージを行う際の電解液のpHは3〜7とすることが好ましい。   When the pH of the electrolytic solution is less than 3, corrosion on the surface of the test piece may proceed. In this case, the accuracy of hydrogen embrittlement evaluation may be affected. On the other hand, when the pH of the electrolytic solution exceeds 7, the hydrogen charge rate becomes slow, and the accuracy of evaluation may be lowered. Therefore, it is preferable that the pH of the electrolytic solution when performing hydrogen charging is 3 to 7.

さらに、水素侵入促進剤として知られている、周期表14〜16族の元素を含む化合物や,CN−(cyanide ion)、CNS(rhodanide ion)、I(iodide ion)のようなアニオン、CS、CO、CON(urea)、CSN(thiourea)など、特に、NaS、Ca,As,NaAsO,チオシアン酸アンモニウムを添加することは、水素チャージの時間的な短縮や水素侵入量の調整による試験効率の向上に効果的である。 Further, compounds containing elements of groups 14 to 16 of the periodic table, known as hydrogen penetration accelerators, anions such as CN- (cyanide ion), CNS (rhodanide ion), I (iodide ion), CS 2 , CO, CON 2 H 4 (urea), CSN 2 H 4 (thiourea), etc. In particular, adding Na 2 S, Ca 3 P 2 , As 2 O 3 , NaAsO 2 , ammonium thiocyanate is hydrogen. It is effective for improving the test efficiency by shortening the charge time and adjusting the hydrogen penetration amount.

また、試験片(鋼材)の形状についても特に制限がないが、ばらつきを低減させる目的で平行部に切り欠きaを有した試験片を用いることができる。図3に薄鋼板の試験を行うときの代表的な試験片の形状を示す。   Moreover, there is no restriction | limiting in particular also about the shape of a test piece (steel material), but the test piece which has the notch a in the parallel part can be used in order to reduce dispersion | variation. FIG. 3 shows a typical shape of a test piece when a thin steel plate is tested.

上記の試験片を定荷重発生手段と連結する。このとき、連結方法は特に制限がないが支持ピンを介する方法や定荷重発生手段の有するチャックを用いる方法が挙げられる。支持ピンを介する方法を用いるときは、支持ピンは試験荷重を十分に支えることができる材質ものを選ぶ必要があり、例えば、部分安定化ジルコニア又はサイアロンが挙げられる。試験片から定荷重発生装置に電流が流れないよう、試験片と定荷重発生装置は絶縁することが好ましい。   Said test piece is connected with a constant load generating means. At this time, the connection method is not particularly limited, and examples thereof include a method using a support pin and a method using a chuck possessed by a constant load generating means. When the method using the support pin is used, it is necessary to select a support pin made of a material that can sufficiently support the test load, and examples thereof include partially stabilized zirconia or sialon. The test piece and the constant load generator are preferably insulated so that no current flows from the test piece to the constant load generator.

続いて試験片を電解槽中の電解液の中に保持する。このとき、試験片と定荷重発生手段の連結部は電解液中に浸漬していてもかまわないし、電解液外に出ていてもかまわない。   Subsequently, the test piece is held in the electrolytic solution in the electrolytic cell. At this time, the connecting portion between the test piece and the constant load generating means may be immersed in the electrolytic solution or may be outside the electrolytic solution.

試験片を陰極とし、試験片のまわりに陽極の電極(例えば白金線や白金−ロジウム合金線)を設置し、電流発生手段により定電流を発生させて水素チャージを行う。陽極は試験片に均一に水素チャージを行うため、スパイラル状にしたものが好ましい。スパイラル状以外には、網状、複数の棒状、電解槽の高さ方向に複数配置された円状としても良い。   A test piece is used as a cathode, an anode electrode (for example, a platinum wire or a platinum-rhodium alloy wire) is installed around the test piece, and a constant current is generated by a current generating means to perform hydrogen charging. In order to uniformly charge the test piece with hydrogen, the anode preferably has a spiral shape. Other than the spiral shape, a net shape, a plurality of rod shapes, or a circular shape arranged in the height direction of the electrolytic cell may be used.

水素チャージはまず試験片に荷重を負荷しない状態で行い、試験片中の水素がおおよそ一定になるまでチャージを続ける必要がある。このとき、水素チャージの電流密度は、0.01mA/cm2未満であるとチャージされる水素量が非常に小さくなり、鋼材が水素脆化をほとんど起こさなくなるため、0.01mA/cm以上であることが望ましい。鋼材中の水素が一定になるまでの時間は水素の拡散係数と試験片厚さから予測が可能であり、本発明者らが上記の計算を行った結果、板厚が1.5mm以内の範囲ではおおよそ30分以内のチャージにより、水素の量が一定になることが明らかになった。そこで、板厚が1.5mm以下の材料では30分以上チャージをすれば十分である。板厚が1.5mmより大きく2.5mm以下の場合は1時間以上、板厚が2.5mmより大きく5mm以下の場合は2時間以上のチャージ、5mmより大きく10mm以下の場合は4時間以上のチャージを行うものとする。 First, hydrogen charging is performed without applying a load to the test piece, and it is necessary to continue charging until the hydrogen in the test piece becomes approximately constant. In this case, the current density of the hydrogen-charged, the amount of hydrogen charged to be less than 0.01 mA / cm 2 is very small, since the steel does not cause little hydrogen embrittlement, 0.01 mA / cm 2 or more It is desirable to be. The time until the hydrogen in the steel material becomes constant can be predicted from the hydrogen diffusion coefficient and the specimen thickness, and as a result of the above calculations by the inventors, the plate thickness is within 1.5 mm. Then, it became clear that the amount of hydrogen became constant by charging within about 30 minutes. Therefore, it is sufficient to charge for 30 minutes or more with a material having a plate thickness of 1.5 mm or less. If the plate thickness is greater than 1.5 mm and less than or equal to 2.5 mm, charge for 1 hour or more, if the plate thickness is greater than 2.5 mm and less than or equal to 5 mm, charge for 2 hours or more. It shall be charged.

なお、本明細書および請求項で「鋼材中の水素量が一定」という記述を用いているが、確かに理論的には板厚とチャージ条件によって鋼中水素量は一定値になるが、実用的な実験ではほぼ水素が一定になってからも、鋼材や雰囲気との接触によるpHの変化など溶液の経時変化などにより水素量は緩やかに変動する。このため、本発明の規定における「水素量が一定」や「定水素量」という表現は、あくまでも計測される限界拡散性水素量の精度に対して「一定」とみなすことができるという意味で用いている表現である。   Although the description “the amount of hydrogen in the steel is constant” is used in this specification and claims, the theoretically the amount of hydrogen in steel becomes a constant value depending on the plate thickness and charging conditions. In a typical experiment, even when hydrogen becomes substantially constant, the amount of hydrogen gradually varies due to changes in the solution over time, such as a change in pH due to contact with steel or the atmosphere. For this reason, the expressions “constant hydrogen amount” and “constant hydrogen amount” in the definition of the present invention are used in the sense that they can be regarded as “constant” with respect to the accuracy of the limit diffusible hydrogen amount to be measured. It is an expression.

水素が一定に保たれるまでチャージを行った後に、荷重を負荷する。最初に負荷する荷重は材料が破断しない範囲である必要がある。引張強度の0.9倍を超える荷重を負荷すると水素脆化による破断が発生する確率が非常に高くなるため、最大の荷重を引張強度の0.9倍以下とすることが望ましい。水素脆化による破断が起きる荷重におおよその目安がついている場合は、その荷重より小さい荷重を負荷する。水素脆化による破断が起きる荷重に全く目安がつかない場合は、より低い荷重から試験を開始することが望ましい。最初の荷重の負荷により試験片の破断が起きた場合は、初期荷重をさらに小さくした再試験を行う必要がある。   After charging until hydrogen is kept constant, load is applied. The load applied first needs to be in a range where the material does not break. If a load exceeding 0.9 times the tensile strength is applied, the probability that a fracture due to hydrogen embrittlement will occur becomes very high, so it is desirable that the maximum load be 0.9 times or less the tensile strength. When there is an approximate guideline for the load at which fracture due to hydrogen embrittlement occurs, a load smaller than that load is applied. If there is no indication of the load at which fracture due to hydrogen embrittlement occurs, it is desirable to start the test from a lower load. When the test piece breaks due to the initial load, it is necessary to perform a retest with a smaller initial load.

ここから荷重を段階的に増加させていく、請求項1に記載の方法を説明する。   The method according to claim 1, wherein the load is gradually increased from here.

最初の荷重の負荷後、一定時間保持する間に破断が生じなかった場合、さらに荷重を増加させ、この増加させた荷重に維持して、一定時間保持する。そして、段階的な荷重増加と一定時間保持を破断に至るまで段階的に繰り返して行い、破断応力を測定する。そして、破断した際の応力と、破断した試験片を分析することで得られる拡散性水素量により水素脆化特性を評価する。   If no breakage occurs during the holding for a certain period of time after the initial load is applied, the load is further increased, and the increased load is maintained for a certain period of time. Then, stepwise load increase and holding for a certain period of time are repeatedly performed step by step until breaking, and the breaking stress is measured. Then, hydrogen embrittlement characteristics are evaluated based on the stress at the time of fracture and the amount of diffusible hydrogen obtained by analyzing the fractured specimen.

ここで、各荷重下での保持時間の下限は0でなければ特に限定するものではないが、あまり短いと連続的な応力増加試験と同様に試験結果の精度を低下させる可能性があるため、実用的には1分以上とすることが望ましい。発明者らが検討2において定荷重、定水素量の条件で様々な材料に試験を行った結果、荷重を負荷してから破断に至るまでにかかった時間は、10分以内であった。この時間は、鋼材に破断に至る水素量と荷重が負荷されたとき鋼中の水素が応力集中箇所に拡散するまでの時間と応力集中箇所に集まった水素が鋼板を破断に至らせるまでの時間の和の最大値であると考えられる。このことより、荷重を増加させるまでの時間は10分以上とする。水素量が一定の場合、特定の荷重でこの期間内に脆性破断が起きないのであれば、それ以上どれだけ長時間保持しても脆性破断は起きないため、保持時間に上限はないが、試験の効率を考慮すると24時間以下が望ましい。   Here, the lower limit of the holding time under each load is not particularly limited unless it is 0, but if it is too short, there is a possibility of reducing the accuracy of the test result as in the continuous stress increase test, Practically, it is desirable to set it for 1 minute or more. The inventors conducted tests on various materials under the conditions of constant load and constant hydrogen amount in Study 2, and as a result, the time taken from when the load was applied until the fracture occurred was within 10 minutes. This time is the time until hydrogen in the steel diffuses to the stress concentration point and the hydrogen collected at the stress concentration point causes the steel plate to break when the amount of hydrogen and the load to the steel material are loaded. It is considered to be the maximum value of the sum of. Therefore, the time until the load is increased is 10 minutes or more. If the amount of hydrogen is constant, there is no upper limit on the holding time because brittle fracture does not occur no matter how long it is held if no brittle fracture occurs within this period at a specific load. 24 hours or less is desirable in consideration of the efficiency.

一定時間の保持で破断しなかった時に増加させる荷重は、小さいほど試験精度が高くなるが試験効率は低下するため、引張強度の0.01〜0.5倍の範囲とすることが望ましい。荷重の増加を引張強度の0.01倍以下とすることは試験の効率を大幅に低下させる。荷重を引張強度の0.3倍以上増加させたときに試験片が破断に至った場合は、精度を向上させるため、増加させる荷重を引張強度の0.1倍以下として再試験をすることが望ましい。   The smaller the load that is increased when it does not break after holding for a certain time, the higher the test accuracy, but the test efficiency decreases. Therefore, it is desirable that the load be in the range of 0.01 to 0.5 times the tensile strength. Setting the load to 0.01 times or less of the tensile strength significantly reduces the test efficiency. If the specimen breaks when the load is increased by 0.3 times or more of the tensile strength, the test may be retested with the increased load being 0.1 times or less of the tensile strength in order to improve accuracy. desirable.

続いて鋼材への水素侵入量を段階的に増加させていく、請求項2に記載の方法を説明する。なお請求項2に記載の方法においても、先ず荷重を負荷しない状態で試験片中の水素がおおよそ一定になるまでチャージを行う。このとき、水素チャージの電流密度は、0.01mA/cm2未満であるとチャージされる水素量が非常に小さくなり、鋼材が水素脆化をほとんど起こさなくなるため、0.01mA/cm以上であることが望ましい。上述したように鋼材中の水素が一定になるまでの時間は水素の拡散係数と試験片厚さから予測が可能である。そして、水素が一定に保たれるまでチャージを行った後に、荷重を負荷する。負荷する荷重は引張強度の0.9倍以下とすることが望ましい。また以下では、請求項2に記載の方法の一例として、請求項3に相当する水素侵入促進剤の濃度を増加させることで水素侵入量を増加させる手順と、請求項4に相当する電流密度を増加させることで水素侵入量を増加させる手順で説明するが、これはあくまでも水素侵入量を増加させる方法の一つとして記述するものである。当然ではあるが、水素侵入量は、水素侵入促進剤の濃度や電流密度の他にも、水素侵入促進剤の種類や、電解質の種類や濃度、温度、pH、さらにはチャージ電圧や電流などで調整することも可能である。本発明の効果を得るために、これらの手段が特別なものである必要はなく、一般的に知られているものが適用できる。本発明においては、特に水素侵入量を事前に狙っている値に精度良く調整する必要はなく、試験後のサンプルの分析により実績値が得られれば十分であり、その実績値こそが水素脆化特性評価において重要な値である。このため、上記の様々な因子が水素侵入量に対して複雑に影響するようなものであったとしても、これらを調整して水素侵入量を変化させ、本発明を実施できる。もちろん、水素侵入量に対する上記の様々な因子の影響は、既に十分に知られたものであり、一般的な知見を用いて精度良く制御することは当業者にとってさほど困難なことではない。 Then, the method of Claim 2 which increases the hydrogen penetration | invasion amount to steel materials in steps is demonstrated. In the method according to claim 2, charging is first performed until the hydrogen in the test piece becomes substantially constant without applying a load. In this case, the current density of the hydrogen-charged, the amount of hydrogen charged to be less than 0.01 mA / cm 2 is very small, since the steel does not cause little hydrogen embrittlement, 0.01 mA / cm 2 or more It is desirable to be. As described above, the time until hydrogen in the steel material becomes constant can be predicted from the hydrogen diffusion coefficient and the specimen thickness. And after charging until hydrogen is kept constant, a load is applied. The load to be applied is desirably 0.9 times or less of the tensile strength. In the following, as an example of the method according to claim 2, a procedure for increasing the amount of hydrogen penetration by increasing the concentration of the hydrogen penetration accelerator corresponding to claim 3 and a current density corresponding to claim 4 are as follows. The procedure for increasing the amount of hydrogen penetration by increasing the number will be described, but this is only described as one method for increasing the amount of hydrogen penetration. Naturally, the hydrogen penetration amount depends on the hydrogen penetration accelerator concentration, current density, hydrogen penetration accelerator type, electrolyte type and concentration, temperature, pH, charge voltage, current, etc. It is also possible to adjust. In order to obtain the effects of the present invention, these means do not need to be special, and generally known ones can be applied. In the present invention, it is not particularly necessary to accurately adjust the hydrogen penetration amount to the target value in advance, and it is sufficient if the actual value is obtained by analyzing the sample after the test, and the actual value is the hydrogen embrittlement. This is an important value in characterization. For this reason, even if the above-mentioned various factors affect the hydrogen penetration amount in a complicated manner, the present invention can be implemented by adjusting these to change the hydrogen penetration amount. Of course, the influence of the various factors described above on the amount of hydrogen intrusion is already well known, and it is not so difficult for those skilled in the art to accurately control using general knowledge.

また、本明細書では例えば溶液温度やチャージ電圧などについて特に適用すべき範囲が記述されていない制御因子もある。これは、これらの適用範囲はそれ以外の制御因子により適切な範囲が変動するため、特定範囲で限定することの技術的意義が小さいことによるものである。この事情は、適用範囲を記述している制御因子についても同様であり、好ましいものとして記述された範囲は、あくまでもそれ以外の条件が特定の範囲にある状況で好ましく適用できるものである。本発明の本質は、これらの各因子を特定の範囲で制御することではなく、これらの多くの因子により鋼材への水素侵入量を適切に制御することであり、侵入量は実績で管理し、また侵入量の制御自体も公知技術により実用的に利用されているものを実施すればよいものである。   In this specification, for example, there are some control factors that do not describe ranges to be specifically applied, such as solution temperature and charge voltage. This is because the appropriate range of these application ranges varies depending on other control factors, and thus the technical significance of limiting to a specific range is small. This situation is the same for the control factor describing the application range, and the range described as preferable can be preferably applied in a situation where other conditions are in a specific range. The essence of the present invention is not to control each of these factors within a specific range, but to appropriately control the amount of hydrogen intrusion into the steel material by these many factors, and the amount of intrusion is managed by actual results, Also, the control of the intrusion amount itself may be carried out by a method that is practically used by a known technique.

さらに当然ではあるが、水素侵入量を変化させるために複数の因子を同時に変化させることは可能である。しかし、変化させる因子は1つにすることが実験手法として単純であり好ましいことは言うまでもない。特に以下に説明する水素侵入促進剤の濃度を変化させる方法と電流密度を変化させる方法は、その制御範囲も広く精緻な制御も容易であるため、本発明で適用するに好ましいものである。   Furthermore, as a matter of course, it is possible to change a plurality of factors simultaneously in order to change the amount of hydrogen intrusion. However, it is needless to say that it is simple and preferable as an experimental method to change one factor. In particular, the method for changing the concentration of the hydrogen penetration accelerator and the method for changing the current density described below are preferable for application in the present invention because the control range is wide and precise control is easy.

以下では請求項3に相当する水素侵入促進剤の濃度を増加させることで水素侵入量を増加させる手順を説明する。ここでは水素侵入促進剤としてチオシアン酸アンモニウムを用いているが、これに限定されないことは上述の通りである。以下の説明は、濃度3mass%の塩化ナトリウムを電解質とした20℃の水溶液において、電流密度0.05mAで水素チャージを行う場合のものである。   Hereinafter, a procedure for increasing the hydrogen penetration amount by increasing the concentration of the hydrogen penetration accelerator corresponding to claim 3 will be described. Here, ammonium thiocyanate is used as a hydrogen penetration accelerator, but it is not limited to this, as described above. In the following explanation, hydrogen charging is performed at a current density of 0.05 mA in an aqueous solution at 20 ° C. using sodium chloride having a concentration of 3 mass% as an electrolyte.

最初の荷重の負荷後、10分間以上保持し破断が生じなかった場合、チオシアン酸アンモニウム濃度を増加させる。なお、請求項2(請求項3)に記載の方法の場合は、荷重は一定に維持して良い。上述のように10分より短い時間でチオシアン酸アンモニウム濃度を増加させることは試験結果の精度を低下させる可能性があるため、最初の荷重の負荷後、チオシアン酸アンモニウム濃度を増加させるまでの時間は10分間以上必要である。最初の荷重の負荷後、チオシアン酸アンモニウム濃度を増加させるまでの時間に上限はないが、試験の効率を向上させるため、24時間以下が望ましい。チオシアン酸アンモニウム濃度を増加させるとき、一度に増加させるチオシアン酸アンモニウム濃度は0.1g/l以上10g/l以下とする。チオシアン酸アンモニウム濃度の増加を0.1g/l以上とすることは試験の効率を大幅に低下させることから0.1g/l以上とする。一度に大きくチオシアン酸アンモニウム濃度を増加させることは試験の精度を低下させる可能性があるため、10g/l以下を最大の増加量とする。   After the initial load is applied, if the sample is held for 10 minutes or longer and no breakage occurs, the ammonium thiocyanate concentration is increased. In the case of the method according to claim 2 (claim 3), the load may be kept constant. As mentioned above, increasing the ammonium thiocyanate concentration in a time shorter than 10 minutes may reduce the accuracy of the test results, so the time to increase the ammonium thiocyanate concentration after the initial load is applied. 10 minutes or more are required. There is no upper limit to the time until the ammonium thiocyanate concentration is increased after the initial load is applied, but in order to improve the efficiency of the test, 24 hours or less is desirable. When increasing the ammonium thiocyanate concentration, the concentration of ammonium thiocyanate to be increased at a time is 0.1 g / l or more and 10 g / l or less. An increase in the ammonium thiocyanate concentration of 0.1 g / l or more greatly reduces the efficiency of the test, so it is 0.1 g / l or more. A large increase in ammonium thiocyanate concentration at a time may reduce the accuracy of the test, so the maximum increase is 10 g / l or less.

そして、チオシアン酸アンモニウム濃度を0.1g/l以上10g/l以下増加させた状態で、まず鋼材中の水素量が一定に保たれるまでチャージを行い、さらに荷重を負荷した状態を10分間以上保持する。このとき負荷する荷重は最初に負荷した荷重と同じで良い。この場合も、水素量が一定に保たれるまでチャージを行ってから荷重を負荷した状態を保持する時間が10分より短いと試験結果の精度を低下させる可能性がある。また、このように水素量が一定に保たれるまでチャージを行ってから荷重を負荷した状態を保持する時間の上限はないが、試験の効率を向上させるため、24時間以下が望ましい。このように水素量が一定に保たれるまでチャージを行ってから荷重を負荷した状態を保持して10分間以上の時間を経過しても破断しなかった場合は、さらにチオシアン酸アンモニウム濃度を0.1g/l以上10g/l以下増加させて鋼材中の水素量が一定水素が一定に保たれるまでチャージを行い、水素量一定で荷重を負荷した状態を10分間以上保持する工程を行う。このように、チオシアン酸アンモニウム濃度を0.1g/l以上10g/l以下増加して荷重を負荷した状態を保持する工程を、破断に至るまで行い、破断に至ったら、鋼材中の拡散性水素量を測定する。   Then, in a state where the ammonium thiocyanate concentration is increased by 0.1 g / l or more and 10 g / l or less, first, charging is performed until the amount of hydrogen in the steel material is kept constant, and further, the load is applied for 10 minutes or more. Hold. The load applied at this time may be the same as the load applied initially. In this case as well, if the time for maintaining the loaded state after charging is kept until the amount of hydrogen is kept constant is shorter than 10 minutes, the accuracy of the test results may be reduced. In addition, there is no upper limit of the time for maintaining the state in which a load is applied after charging until the amount of hydrogen is kept constant, but it is preferably 24 hours or less in order to improve the efficiency of the test. In this way, when the hydrogen amount is kept constant and the state where the load is applied is maintained and the rupture does not occur even after 10 minutes or more, the ammonium thiocyanate concentration is further reduced to 0. The process is carried out by increasing the amount of hydrogen by 1 g / l or more and 10 g / l or less until the hydrogen amount in the steel material is kept constant, and maintaining the state where the load is kept constant with the amount of hydrogen kept for 10 minutes or more. In this way, the step of increasing the ammonium thiocyanate concentration by 0.1 g / l or more and 10 g / l or less to maintain the load is applied until the breakage occurs. Measure the amount.

続いて電流密度を段階的に増加させていく、請求項4に記載の方法を説明する。以下の説明は、濃度3mass%の塩化ナトリウムを電解質とした20℃の水溶液にチオシアン酸アンモニウムを3g/l添加した電解液で水素チャージを行う場合のものである。   Subsequently, the method according to claim 4, in which the current density is gradually increased. In the following description, hydrogen charging is performed with an electrolytic solution in which 3 g / l of ammonium thiocyanate is added to a 20 ° C. aqueous solution containing 3 mass% sodium chloride as an electrolyte.

最初の荷重の負荷後、10分間以上保持し破断が生じなかった場合、電流密度を増加させる。なお、請求項4に記載の方法の場合も、荷重は一定に維持して良い。上述のように10分より短い時間で電流密度を増加させることは試験結果の精度を低下させる可能性があるため、最初の荷重の負荷後、電流密度を増加させるまでの時間は10分以上必要である。最初の荷重の負荷後、電流密度を増加させるまでの時間に上限はないが、試験の効率を向上させるため、24時間以下が望ましい。電流密度を増加させるとき、一度に増加させる電流密度は0.01mA/cm2以上0.5mA/cm2以下とする。電流密度の増加を0.01mA/cm2以下とすることは試験の効率を大幅に低下させることから0.01mA/cm2とする。一度に大きくチオシアン酸アンモニウム濃度を増加させることは試験の精度を低下させる可能性があるため、0.5mA/cm2以下を最大の増加量とする。 After the initial load is applied, if the current is held for 10 minutes or more and no breakage occurs, the current density is increased. In the case of the method described in claim 4, the load may be kept constant. As mentioned above, increasing the current density in a time shorter than 10 minutes may reduce the accuracy of the test results. Therefore, it takes 10 minutes or more to increase the current density after the initial load is applied. It is. There is no upper limit to the time until the current density is increased after the initial load is applied, but 24 hours or less is desirable in order to improve the efficiency of the test. When increasing the current density, the current density is increased at a time to 0.01 mA / cm 2 or more 0.5 mA / cm 2 or less. An increase in current density of 0.01 mA / cm 2 or less greatly reduces the efficiency of the test, so it is set to 0.01 mA / cm 2 . Increasing the ammonium thiocyanate concentration at a time may reduce the accuracy of the test, so the maximum increase is 0.5 mA / cm 2 or less.

そして、電流密度を0.01mA/cm2以上0.5mA/cm2以下増加させた状態で、まず鋼材中の水素量が一定水素が一定に保たれるまでチャージを行い、さらに荷重を負荷した状態を10分間以上保持する。なお、このとき負荷する荷重は最初に負荷した荷重と同じで良い。この場合も、水素量が一定に保たれるまでチャージを行ってから荷重を負荷した状態を保持する時間が10分より短いと試験結果の精度を低下させる可能性がある。また、このように水素量が一定に保たれるまでチャージを行ってから荷重を負荷した状態を保持する時間の上限はないが、試験の効率を向上させるため、24時間以下が望ましい。このように水素量が一定に保たれるまでチャージを行ってから荷重を負荷した状態を保持して10分間以上経過しても破断しなかった場合は、さらに電流密度を0.01mA/cm2以上0.5mA/cm2以下増加させて鋼材中の水素量が一定水素が一定に保たれるまでチャージを行い、水素量一定で荷重を負荷した状態を10分間以上保持する工程を行う。このように、電流密度を0.01mA/cm2以上0.5mA/cm2以下増加して荷重を負荷した状態を保持する工程を、破断に至るまで行い、破断に至ったら、鋼材中の拡散性水素量を測定する。 Then, in a state with increased current density 0.01 mA / cm 2 or more 0.5 mA / cm 2 or less, it performs a charge initially until the amount of hydrogen in the steel is constant hydrogen is maintained constant, the state in which further a load Hold for at least 10 minutes. The load applied at this time may be the same as the load applied first. In this case as well, if the time for maintaining the loaded state after charging is kept until the amount of hydrogen is kept constant is shorter than 10 minutes, the accuracy of the test results may be reduced. In addition, there is no upper limit of the time for maintaining the state in which a load is applied after charging until the amount of hydrogen is kept constant, but it is preferably 24 hours or less in order to improve the efficiency of the test. In this way, if the battery is not broken even after 10 minutes or more after charging until the hydrogen amount is kept constant, the current density is further 0.01 mA / cm 2 or more. Charge is performed until the amount of hydrogen in the steel material is kept constant by increasing 0.5 mA / cm 2 or less, and a process of holding a load with a constant amount of hydrogen for 10 minutes or more is performed. Thus, a step of holding a state where a load by increasing the current density 0.01 mA / cm 2 or more 0.5 mA / cm 2 or less, up to the break, when reached break, diffusible hydrogen in steel Measure the amount.

本発明記載のいずれも方法においても、破断後の鋼材中の拡散性水素量を昇温脱離分析法により測定することができる。このとき、鋼材中の水素が空気中に放出することを防ぐため、試験片の破断から測定するまでの時間は1時間以内であることが望ましい。さらに望ましくは30分以内である。破断後すぐに測定することが難しい場合は、液体窒素中に浸漬することで鋼材中の水素の放出を防いだまま、試験片を保存することができる。そして、測定された水素量と応力に基づいて限界拡散性水素量の関係を求めることができる。   In any of the methods described in the present invention, the amount of diffusible hydrogen in the steel after fracture can be measured by a temperature programmed desorption analysis method. At this time, in order to prevent hydrogen in the steel material from being released into the air, the time from the breakage of the test piece to the measurement is preferably within one hour. More desirably, it is within 30 minutes. When it is difficult to measure immediately after fracture, the specimen can be stored while being prevented from releasing hydrogen in the steel by dipping in liquid nitrogen. Based on the measured hydrogen amount and stress, the relationship between the critical diffusible hydrogen amount can be obtained.

本発明の試験法は材料の限界拡散性水素量を正確に測定するための方法であり、請求項1、2どちらの方法においても、破断した試験片の拡散性水素量を測定し、この値で水素脆化特性を評価することができる。請求項1の方法では、(拡散性)水素量を一定とした場合の限界応力が求められ、請求項2の方法では応力を一定とした場合の限界(拡散性)水素量が求められる。どちらの場合にも、特定応力下での限界拡散性水素量が決定される。   The test method of the present invention is a method for accurately measuring the limit diffusible hydrogen content of a material. In either method of claims 1 and 2, the diffusible hydrogen content of a fractured test piece is measured and this value is measured. The hydrogen embrittlement characteristics can be evaluated. In the method of claim 1, the critical stress is obtained when the (diffusible) hydrogen amount is constant, and in the method of claim 2, the critical (diffusible) hydrogen amount is obtained when the stress is constant. In either case, the amount of critical diffusible hydrogen under a specific stress is determined.

特定の応力におけるいくつかの材料の限界拡散性水素量を比較し、より限界拡散性水素量が大きい材料が水素脆化特性に優れた鋼種であると判断することができる。また、その材料に環境中で侵入する水素量(環境中侵入水素量)を暴露試験やその他の実環境を模擬した加速試験により測定し、環境中侵入水素量より限界拡散性水素量がよりどれだけ大きいかを安全性の指標として用いることもできる。また、特定の環境中侵入水素量のもとで、特定の部材に付加される応力を検討することで、対象材料への負荷応力の余裕度を評価することも可能である。このような評価を行うためにも、本発明により、限界拡散性水素量を正確に測定することは重要である。   By comparing the critical diffusible hydrogen amounts of several materials at a specific stress, it can be determined that a material having a larger critical diffusible hydrogen amount is a steel type having excellent hydrogen embrittlement characteristics. In addition, the amount of hydrogen penetrating into the environment in the environment (the amount of hydrogen penetrating into the environment) is measured by an exposure test and other accelerated tests that simulate the actual environment. It can also be used as a safety indicator. Further, by examining the stress applied to a specific member under a specific amount of invading hydrogen in the environment, it is possible to evaluate the margin of load stress on the target material. In order to perform such evaluation, it is important to accurately measure the critical diffusible hydrogen content according to the present invention.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、前述のように本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. As described above, the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

まず、予備試験として水素のチャージ条件と鋼材中の水素量が一定になるまでの時間、またはそのときの鋼材中の拡散性水素量の関係を調査した。試験片の形状は図3においてD=10mm、d=5mmのものを用いた。この試験片を部分安定化ジルコニアからなる支持ピンを介して定荷重発生手段に連結された冶具に取り付けた。電解槽には、3%の塩化ナトリウム水溶液を満たし、さらに水素侵入促進剤として0g〜3g/lのチオシアン酸アンモニウムを加えた。電解液の温度は20℃とした。このとき、pHはチオシアン酸アンモニウムの量に応じて、約5.5〜7.0の値をとる。白金線からなる電線と電極をポテンシオスタットに接続し、0.05mA/cm2の定電流を印加した。2〜310分間水素チャージを行った後、試験片を回収して昇温脱離分析法で水素量の測定を行った。鋼材を100℃/hの昇温速度で加熱し、室温から300℃までに鋼材から放出される水素量を拡散性水素量と定義した。水素量の測定位置は図の試験片の切り欠きaから両幅10mmまでの位置とした。   First, as a preliminary test, the relationship between the hydrogen charging conditions and the time until the amount of hydrogen in the steel material became constant, or the amount of diffusible hydrogen in the steel material at that time was investigated. The shape of the test piece was D = 10 mm and d = 5 mm in FIG. This test piece was attached to a jig connected to a constant load generating means via a support pin made of partially stabilized zirconia. The electrolytic cell was filled with 3% sodium chloride aqueous solution, and 0 to 3 g / l ammonium thiocyanate was added as a hydrogen penetration accelerator. The temperature of the electrolytic solution was 20 ° C. At this time, the pH takes a value of about 5.5 to 7.0 depending on the amount of ammonium thiocyanate. A wire made of platinum wire and an electrode were connected to a potentiostat, and a constant current of 0.05 mA / cm 2 was applied. After carrying out hydrogen charge for 2-310 minutes, the test piece was collect | recovered and the amount of hydrogen was measured by the thermal desorption analysis method. The steel material was heated at a heating rate of 100 ° C./h, and the amount of hydrogen released from the steel material from room temperature to 300 ° C. was defined as the amount of diffusible hydrogen. The measurement position of the hydrogen amount was a position from the notch a of the test piece to 10 mm in both widths.

この試験では水素チャージにより、鋼材中の水素が一定になるまでの時間とそのときの鋼材中の拡散性水素量を調べることが目的である。鋼材中の水素量が一定になるまでの時間は板厚と鋼材中の水素の拡散係数によって決まると考えられる。そこで、板厚を0.5mm〜8mmの範囲で変化させて鋼材中の水素量が一定になるまでの時間への影響を調査した。また、水素の拡散係数に関しても、同様の検討が必要であるが鋼材中の水素の拡散係数を全ての鋼種について実測することは困難である。そこで、本試験では、引張強度1500MPa以上の材料を水素の拡散係数が小さい材料として、引張強度500MPa以下の材料を水素の拡散係数が大きい材料とし、それぞれの材料で鋼材中の水素が一定になるまでの時間を調査した。引張強度が高い材料ほど水素の拡散係数が小さいと判断できる理由は、引張強度の高い材料ほど鋼材中に多くの合金元素を固溶状態や析出物として含んでおり、その応力場が水素の拡散を妨げるためである。また、チオシアン酸アンモニウムの量を0〜3g/lの範囲で変化させた。   The purpose of this test is to investigate the time until the hydrogen in the steel material becomes constant due to hydrogen charging and the amount of diffusible hydrogen in the steel material at that time. The time until the amount of hydrogen in the steel material becomes constant is considered to be determined by the plate thickness and the diffusion coefficient of hydrogen in the steel material. Therefore, the influence on the time until the amount of hydrogen in the steel material becomes constant by changing the plate thickness in the range of 0.5 mm to 8 mm was investigated. In addition, the same examination is necessary for the diffusion coefficient of hydrogen, but it is difficult to actually measure the diffusion coefficient of hydrogen in steel for all steel types. Therefore, in this test, a material with a tensile strength of 1500 MPa or more is a material with a small hydrogen diffusion coefficient, a material with a tensile strength of 500 MPa or less is a material with a large hydrogen diffusion coefficient, and the hydrogen in the steel is constant for each material. The time until was investigated. The reason why it can be judged that the higher the tensile strength material is, the smaller the hydrogen diffusion coefficient is. The higher the tensile strength material, the more steel alloys contain many alloy elements as solid solutions and precipitates, and the stress field is the diffusion of hydrogen. It is to prevent. The amount of ammonium thiocyanate was varied in the range of 0 to 3 g / l.

結果を表1に示す。表中の鋼中拡散性水素量とは、水素量が一定になったときの拡散性水素量を示す。試験No.a−1〜a−5の結果からチオシアン酸アンモニウム量を変化させることで鋼材中の拡散性水素量を変化させることができる。また、このとき、水素量が一定になるまでの時間は大きく変化しない。試験b〜pから、水素量が一定になるまでの時間は板厚が大きいほど長くなり、同じ板厚で比べると材料強度が大きい(水素の拡散係数が小さい)ほど長く、材料強度が小さい(水素の拡散係数が大きい)ほど短くなる。この予備試験の結果、水素量が一定になるまでの時間がもっとも短い条件でも水素量が一定になるまでの時間は10分間かかることから、水素量一定の条件で水素脆化の評価試験を行うためには、荷重を負荷する前に最低でも10分の水素チャージを行う必要があることがわかる。   The results are shown in Table 1. The amount of diffusible hydrogen in steel in the table indicates the amount of diffusible hydrogen when the amount of hydrogen becomes constant. Test No. From the results of a-1 to a-5, the amount of diffusible hydrogen in the steel can be changed by changing the amount of ammonium thiocyanate. At this time, the time until the hydrogen amount becomes constant does not change greatly. From tests b to p, the time until the hydrogen amount becomes constant becomes longer as the plate thickness is larger, and compared with the same plate thickness, the longer the material strength (the smaller the hydrogen diffusion coefficient), the shorter the material strength ( The larger the hydrogen diffusion coefficient), the shorter. As a result of this preliminary test, it takes 10 minutes for the hydrogen amount to become constant even under the shortest time until the hydrogen amount becomes constant. Therefore, the hydrogen embrittlement evaluation test is performed under the constant hydrogen amount condition. For this purpose, it is understood that it is necessary to charge the hydrogen for at least 10 minutes before applying the load.

続いて、上記の予備試験と同様の試験片を用い、同様の装置を使用して、一定時間水素チャージを行ったあとに荷重を負荷する実験を行った。電解槽には、3%の塩化ナトリウム水溶液を満たし、さらに0g〜3g/lのチオシアン酸アンモニウムを加えた。定電流の大きさは0.05mA/cm2とした。荷重負荷前のチャージ時間は0〜600分とした。一定時間のチャージを行った後、最初に引張強度の0.1〜0.95倍の応力を負荷し、2分〜60分の時間保持した後、破断に至らなかった場合は、試験片中の水素量は一定に維持したまま、さらに引張強度の0.005倍〜0.6倍の荷重を増加して負荷するか、荷重負荷は一定に維持したまま、さらにチオシアン酸アンモニウム濃度を0.1g/l以上10g/l以下増加させるか、電流密度を0.01mA/cm2以上1mA/cm2以下増加させて、鋼材中の水素量が一定水素が一定に保たれるまでチャージを行い、さらに荷重を負荷した状態を保持した。荷重はてことおもりからなる定荷重発生装置を使用して負荷した。破断後は試験片を30分以内に回収し、昇温脱離分析法で水素量の測定を行った。拡散性水素量の定義や測定位置は上記の予備試験と同様である。 Subsequently, using a test piece similar to the above-described preliminary test and using a similar device, an experiment was performed in which a load was applied after hydrogen charging for a certain period of time. The electrolytic cell was filled with 3% aqueous sodium chloride solution, and 0 g to 3 g / l ammonium thiocyanate was further added. The magnitude of the constant current was 0.05 mA / cm 2 . The charge time before loading was 0 to 600 minutes. After charging for a certain period of time, first, stress of 0.1 to 0.95 times the tensile strength was applied, and after holding for 2 to 60 minutes, if it did not break, While maintaining the amount of hydrogen at a constant level, the load is further increased by 0.005 to 0.6 times the tensile strength, or the load is kept constant and the ammonium thiocyanate concentration is set at 0. or increase 1 g / l or more 10 g / l or less, by increasing the current density 0.01 mA / cm 2 or more 1 mA / cm 2 or less, the amount of hydrogen in the steel is subjected to charge up to a certain hydrogen is kept constant, further The state where the load was applied was maintained. The load was applied using a constant load generator consisting of a lever and a weight. After the fracture, the test piece was collected within 30 minutes, and the hydrogen amount was measured by temperature programmed desorption analysis. The definition and measurement position of the diffusible hydrogen amount are the same as those in the preliminary test.

また、比較として、特許文献6の方法で同鋼種の破断応力と限界拡散性水素量を調査した。上記したように、特許文献6は鋼板の破断応力と限界拡散性水素量の関係を非常に精度よく調査可能な方法であるが、一方、本試験と比較し、試験効率が大きく劣る方法である。本試験において、本発明の効果が得られることの定義は、特許文献6で得られた結果と破断応力、限界拡散性水素量の値が同等(誤差5%以内)であり、なおかつ、より簡易に結果が得られることとする。ここで、本発明により試験が簡易になるとは具体的には、めっき塗布の作業工程が不要であること、試験に要する全体の時間が減ること、破断応力と限界拡散性水素量の関係を得るために必要な試験片の本数が減ることなどが挙げられるが、特に定量化がしやすい試験片の本数について特許文献6の方法と比較する。   For comparison, the breaking stress and the limit diffusible hydrogen content of the same steel type were investigated by the method of Patent Document 6. As described above, Patent Document 6 is a method capable of investigating the relationship between the breaking stress of a steel sheet and the amount of critical diffusible hydrogen with very high accuracy. . In this test, the definition that the effect of the present invention can be obtained is that the results obtained in Patent Document 6 are equivalent to the values of fracture stress and critical diffusible hydrogen amount (within 5% error), and simpler. A result will be obtained. Here, the fact that the test is simplified by the present invention specifically means that the plating coating work step is unnecessary, the total time required for the test is reduced, and the relationship between the breaking stress and the amount of critical diffusible hydrogen is obtained. For example, the number of test pieces required for the purpose is reduced, but the number of test pieces that are easy to quantify is compared with the method of Patent Document 6.

表2に結果を示す。ここで、「定荷重」の欄は一定の荷重で試験ができているかどうかを○×で示している。ただし、ここで一定荷重とは試験の開始から終了までの間、終始荷重がかわらないという意味ではなく、各荷重で水素脆化による割れが発生するかどうか判断するまでの間において荷重が変化しないという意味である。「定水素量」の欄は一定の水素量で試験ができているかどうかを○×で示している。同様に、ここで一定水素量とは試験の開始から終了までの間、終始水素量がかわらないという意味ではなく、各水素量で水素脆化による割れが発生するかどうか判断するまでの間において水素量が変化しないという意味である。特許文献6との比較の欄は破断応力や破断時の鋼中拡散性水素量が本発明と特許文献6の方法による結果と同等(誤差が5%以内)であるか、過剰であるかを示す。節約できた試験片の本数は「(特許文献6の方法で結果を得るために使用した試験片の本数)−(本発明で結果を得るために使用した試験片の本数)」を示す。表2において試験a-1〜5とi-4,6,9,10,13とa-6,7,10,11,13,14,17,18は本発明の範囲の条件であり、定荷重、定水素の条件で評価ができている。その結果、特許文献6の方法と同等の結果が得られており、非常に精密な評価ができている上、試験片の本数は3〜7本もの節約になっている。表には明記していないが、当然試験に必要な工程も減り、試験全体の時間も大きく減っている。試験i-1〜3は荷重負荷前のチャージ時間が、板厚が1.5mmの鋼材に必要な30分以上に満たないため、評価中に水素量が増加しており、一定水素量での評価となっていない。結果として、本来、水素量が一定になるまでチャージされていればi-4と同じ、引張強度の0.7倍の応力で破断していたはずのところを、引張強度の0.8倍の応力まで破断せずに、破断応力を過剰評価してしまっている。試験i-5は最初に負荷する荷重を引張強度の0.95倍としており、荷重負荷と同時(あるいは実際には荷重が完全に試験片に伝わるきる前)に破断しており、これにより破断荷重を過剰評価してしまっている。試験i-7,8は最初に荷重を負荷してから次の荷重を負荷するまでの時間が2分、8分であり、これは各荷重で試験片が破断しないことを確認するために十分な時間10分よりも短い。その結果、本来であれば試験i-4と同じ、引張強度の0.7倍の応力で破断が起きていたはずであるが、破断の確認を十分に行わないまま次の荷重を負荷していまい、結果として破断応力を引張強度の0.8倍と過剰評価してしまっている。試験i-11は最初に負荷する荷重を引張強度の0.3倍、2回目以降に負荷する荷重を引張強度の0.6倍としている。結果、2回目に荷重を負荷したとき、荷重の負荷と同時(あるいは実際には荷重が完全に試験片に伝わるきる前)に破断しており、破断荷重を過剰評価している。試験i-12は2回目以降に負荷する荷重を引張強度の0.005倍の応力としているため、精度の良い結果を得ているが、試験に非常に長時間を要している。同様に試験a-8,9,15,16は最初の荷重付加から溶液の濃度を変化させるか、または、電流値密度を変化させるまでに十分な時間をおいていないため、その荷重と水素量で試験片が破断するかどうか十分に確認できていないまま水素量が増加しており、一定水素量で試験を行っているとはいえないため、破断時の水素量を過剰評価してしまっている。ちなみに、a-6〜19の試験は板厚0.5mmの試験片で実施しており、水素量が安定するまでの時間として30分、これに水素脆化が停止することを見極めるための時間として10分、合わせて40分の保持を行うことが試験精度確保のために必要な時間となる。試験a-12,19はそれぞれ一度に増加させるチオシアン酸アンモニウムの濃度と電流密度が大きすぎるため、破断時の水素量を過剰評価してしまっている。   Table 2 shows the results. Here, the column of “constant load” indicates whether or not the test can be performed with a constant load by ○ ×. However, the constant load here does not mean that the load does not change from start to finish, and the load does not change until it is determined whether hydrogen embrittlement cracks occur at each load. It means that. In the column of “constant hydrogen amount”, whether or not the test can be performed with a certain amount of hydrogen is indicated by ○ ×. Similarly, the constant amount of hydrogen here does not mean that the amount of hydrogen does not change from start to end of the test, but until it is determined whether cracks due to hydrogen embrittlement occur at each amount of hydrogen. This means that the amount of hydrogen does not change. The column of comparison with Patent Document 6 shows whether the rupture stress and the amount of diffusible hydrogen in steel at the time of fracture are equivalent to the results of the present invention and the method of Patent Document 6 (within 5% error) or excessive. Show. The number of the test pieces that could be saved indicates “(number of test pieces used for obtaining the result by the method of Patent Document 6) − (number of test pieces used for obtaining the result of the present invention)”. In Table 2, tests a-1 to 5 and i-4,6,9,10,13 and a-6,7,10,11,13,14,17,18 are conditions within the scope of the present invention and Evaluation is possible under conditions of load and constant hydrogen. As a result, a result equivalent to the method of Patent Document 6 is obtained, a very precise evaluation can be performed, and the number of test pieces is saved by 3 to 7. Although not clearly shown in the table, of course, the number of steps required for the test has been reduced, and the overall test time has been greatly reduced. In tests i-1 to 3, since the charge time before loading was less than 30 minutes required for steel with a plate thickness of 1.5 mm, the amount of hydrogen increased during the evaluation. Not rated. As a result, if it was charged until the amount of hydrogen was constant, it would have broken at 0.7 times the tensile strength, the same as i-4, but to 0.8 times the tensile strength. The fracture stress has been overestimated without breaking. In test i-5, the initial load is 0.95 times the tensile strength, and it breaks at the same time as the load (or before the load is completely transmitted to the test piece). The load has been overestimated. Tests i-7 and 8 take 2 to 8 minutes from the first load to the next load, which is sufficient to confirm that the test specimen does not break at each load. It takes less than 10 minutes. As a result, the fracture should have occurred at 0.7 times the tensile strength, which is the same as in Test i-4, but the next load was applied without sufficiently confirming the fracture. As a result, the breaking stress has been overestimated as 0.8 times the tensile strength. In test i-11, the initial load is 0.3 times the tensile strength, and the second and subsequent loads are 0.6 times the tensile strength. As a result, when the load was applied for the second time, the fracture occurred simultaneously with the loading of the load (or before the load was completely transmitted to the test piece), and the fracture load was overestimated. In test i-12, since the load applied from the second time is 0.005 times the tensile strength, an accurate result is obtained, but the test takes a very long time. Similarly, since tests a-8, 9, 15, and 16 do not allow sufficient time to change the concentration of the solution from the first load addition or change the current density, the load and the amount of hydrogen In this case, the amount of hydrogen has increased without fully confirming whether or not the specimen breaks, and it cannot be said that the test is being conducted with a constant amount of hydrogen. Yes. By the way, the tests a-6 to 19 are carried out with a 0.5 mm thick test piece, 30 minutes as the time until the hydrogen amount stabilizes, and as a time to determine when hydrogen embrittlement stops. Holding for 10 minutes and a total of 40 minutes is the time required to ensure test accuracy. In Tests a-12 and 19, since the concentration of ammonium thiocyanate and the current density that are increased at a time are too large, the amount of hydrogen at break has been overestimated.

Figure 0006354476
Figure 0006354476

Figure 0006354476
Figure 0006354476

Claims (8)

電解液を保持する電解槽と、鋼材に負荷する変形応力を発生する定荷重発生手段と、鋼材に水素チャージを行うための電流を発生する電流発生手段からなる実験装置を用いて、定荷重発生手段に設置した鋼材に変形応力を負荷しない状態で、電解液中で電流発生手段により少なくとも鋼材中の水素量が一定になるまで電気化学的に水素チャージを行った後、水素チャージを続けながら定荷重発生手段により鋼材に引張強度未満の変形応力を負荷して一定時間保持し、破断しなかった場合は、以後、さらに変形応力を引張強度の0.01〜0.5倍の範囲で増加させて一定時間保持する工程を、破断するまで順次行うことを特徴とする水素脆化特性評価方法。 Constant load generation using an experimental apparatus comprising an electrolytic cell for holding an electrolytic solution, a constant load generating means for generating a deformation stress applied to the steel material, and a current generating means for generating a current for charging the steel material with hydrogen In a state where no deformation stress is applied to the steel material installed in the means, the battery is electrochemically charged with hydrogen until the amount of hydrogen in the steel material becomes constant at least by the current generating means in the electrolyte solution, and then is maintained while the hydrogen charge is continued. When a deformation stress less than the tensile strength is applied to the steel material by the load generating means and held for a certain period of time, and when it does not break, the deformation stress is further increased in the range of 0.01 to 0.5 times the tensile strength. The method of evaluating hydrogen embrittlement characteristics is characterized in that the step of holding for a certain period of time is sequentially performed until fracture. 前記変形応力を増加させて一定時間保持する工程において、前記引張強度の増加範囲は、0.1〜0.5倍であることを特徴とする、請求項1に記載の水素脆化特性評価方法。  2. The method for evaluating hydrogen embrittlement characteristics according to claim 1, wherein, in the step of increasing the deformation stress and holding the stress for a predetermined time, the range of increase in the tensile strength is 0.1 to 0.5 times. . 電解液を保持する電解槽と、鋼材に負荷する変形応力を発生する定荷重発生手段と、鋼材に水素チャージを行うための電流を発生する電流発生手段からなる実験装置を用いて、定荷重発生手段に設置した鋼材に変形応力を負荷しない状態で、電解液中で電流発生手段により少なくとも鋼材中の水素量が一定になるまで電気化学的に水素チャージを行った後、水素チャージを続けながら定荷重発生手段により鋼材に引張強度未満の変形応力を負荷して一定時間保持し、破断しなかった場合は、以後、さらに鋼材中の水素量を上昇させて定荷重発生手段により鋼材に引張強度未満の変形応力を負荷して一定時間保持する工程を、破断するまで順次行うことを特徴とする水素脆化特性評価方法。 Constant load generation using an experimental apparatus comprising an electrolytic cell for holding an electrolytic solution, a constant load generating means for generating a deformation stress applied to the steel material, and a current generating means for generating a current for charging the steel material with hydrogen In a state where no deformation stress is applied to the steel material installed in the means, the battery is electrochemically charged with hydrogen until the amount of hydrogen in the steel material becomes constant at least by the current generating means in the electrolyte solution, and then is maintained while the hydrogen charge is continued. If the steel is not deformed by applying a deformation stress below the tensile strength to the steel by the load generating means and is not broken for a while, then the amount of hydrogen in the steel is further increased and the steel is below the tensile strength by the constant load generating means. A method for evaluating hydrogen embrittlement characteristics, wherein the step of applying a deformation stress of and holding for a certain period of time is sequentially performed until fracture occurs. 電解液中の水素侵入促進剤の濃度を増加させることで、鋼材中の水素量を上昇させることを特徴とする請求項3に記載の水素脆化特性評価方法。 The method for evaluating hydrogen embrittlement characteristics according to claim 3 , wherein the amount of hydrogen in the steel material is increased by increasing the concentration of the hydrogen penetration accelerator in the electrolytic solution. 電解液中で鋼材に与える電流密度を増加させることで、鋼材中の水素量を上昇させることを特徴とする請求項3に記載の水素脆化特性評価方法。 The method for evaluating hydrogen embrittlement characteristics according to claim 3 , wherein the amount of hydrogen in the steel material is increased by increasing the current density applied to the steel material in the electrolytic solution. 応力を付加した材料の破断有無の判定を行う時間を10分以上とすることを特徴とする請求項1から5のいずれか1項に記載の水素脆化特性評価方法。 The method for evaluating hydrogen embrittlement characteristics according to any one of claims 1 to 5 , wherein the time for determining whether or not the material to which stress is applied is determined to be broken is 10 minutes or more. 定荷重発生手段として、てこと重りを用いることを特徴とする請求項1から6のいずれか1項に記載の水素脆化特性評価方法。 The method for evaluating hydrogen embrittlement characteristics according to any one of claims 1 to 6 , wherein a lever weight is used as the constant load generating means. 破断後の鋼材中の水素量を測定することを特徴とする請求項1から7のいずれか1項に記載の水素脆化特性評価方法。 The method for evaluating hydrogen embrittlement characteristics according to any one of claims 1 to 7 , wherein an amount of hydrogen in the steel material after fracture is measured.
JP2014183571A 2014-09-09 2014-09-09 Characterization method for hydrogen embrittlement of steel Active JP6354476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014183571A JP6354476B2 (en) 2014-09-09 2014-09-09 Characterization method for hydrogen embrittlement of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014183571A JP6354476B2 (en) 2014-09-09 2014-09-09 Characterization method for hydrogen embrittlement of steel

Publications (2)

Publication Number Publication Date
JP2016057163A JP2016057163A (en) 2016-04-21
JP6354476B2 true JP6354476B2 (en) 2018-07-11

Family

ID=55758124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014183571A Active JP6354476B2 (en) 2014-09-09 2014-09-09 Characterization method for hydrogen embrittlement of steel

Country Status (1)

Country Link
JP (1) JP6354476B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6973193B2 (en) * 2017-03-22 2021-11-24 日本製鉄株式会社 Hydrogen embrittlement resistance evaluation method
JP6749872B2 (en) * 2017-08-25 2020-09-02 日本電信電話株式会社 Method for measuring hydrogen embrittlement resistance characteristic value
JP2019184585A (en) * 2018-04-04 2019-10-24 日本製鉄株式会社 Hydrogen filling method and hydrogen embrittlement characteristic evaluation method
JP6940774B2 (en) * 2018-05-07 2021-09-29 日本電信電話株式会社 Hydrogen intrusion behavior estimation method, hydrogen intrusion behavior estimation device and hydrogen intrusion behavior estimation program
JP7029061B2 (en) * 2018-06-05 2022-03-03 日本電信電話株式会社 Rhagades occurrence detection method, crack occurrence detection device and crack occurrence detection program
JP2021056132A (en) * 2019-09-30 2021-04-08 日本製鉄株式会社 Method for filling hydrogen and method for evaluating embrittlement characteristic of hydrogen
CN112881117A (en) * 2021-01-13 2021-06-01 洛阳双瑞特种装备有限公司 Stress corrosion test method for high-strength steel material
CN117629741A (en) * 2023-10-19 2024-03-01 合肥通用机械研究院有限公司 Characterization method for hydrogen embrittlement sensitivity parameter of hydrogen energy storage and transportation equipment material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539806B2 (en) * 2001-06-29 2010-09-08 独立行政法人物質・材料研究機構 Evaluation method for high hardness steel parts
JP4370991B2 (en) * 2004-07-15 2009-11-25 Jfeスチール株式会社 Method for evaluating delayed fracture resistance of steel for automotive structural members and steel for automotive structural members excellent in delayed fracture resistance
JP5196926B2 (en) * 2007-09-13 2013-05-15 新日鐵住金株式会社 Apparatus for evaluating hydrogen embrittlement for thin steel sheet and method for evaluating hydrogen embrittlement of thin steel sheet
JP5081175B2 (en) * 2008-07-28 2012-11-21 株式会社神戸製鋼所 Method for evaluating hydrogen cracking resistance of steel
JP2013124998A (en) * 2011-12-16 2013-06-24 Jfe Steel Corp Hydrogen embrittlement resistance characteristic evaluation method for thin steel sheet

Also Published As

Publication number Publication date
JP2016057163A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP6354476B2 (en) Characterization method for hydrogen embrittlement of steel
JP4901662B2 (en) Test piece for evaluating hydrogen embrittlement of thin steel sheet and method for evaluating hydrogen embrittlement of thin steel sheet
Parkins Development of strain-rate testing and its implications
JP5467026B2 (en) Method for evaluating delayed fracture characteristics of PC steel
JP2013124998A (en) Hydrogen embrittlement resistance characteristic evaluation method for thin steel sheet
JP6512154B2 (en) Evaluation method for delayed fracture of metallic materials
JP2009069004A (en) Device and method for evaluating hydrogen embrittlement of thin steel sheet
RU2530486C1 (en) Method of inspecting stress corrosion cracking resistance of pipe steel
Ozdirik et al. Study of the hydrogen uptake in deformed steel using the microcapillary cell technique
Couvant et al. Initiation of PWSCC of weld Alloy 182
Simoni et al. An integrated experimental and modeling approach to determine hydrogen diffusion and trapping in a high-strength steel
Laliberte-Riverin et al. Internal hydrogen embrittlement of pre-cracked, cadmium-plated AISI 4340 high strength steel with sustained load tests and incremental step-loading tests
JP4823991B2 (en) Evaluation method for hydrogen embrittlement of thin steel sheet
JP2014041073A (en) Steel material evaluation method
JP2010223945A (en) Method for hydrogen charging to material, and method for evaluating hydrogen embrittlement characteristics thereof
JP5774503B2 (en) Method for evaluating delayed fracture characteristics of PC steel
JP2013124999A (en) Hydrogen embrittlement resistance characteristic evaluation method for thin steel sheet
JP6973193B2 (en) Hydrogen embrittlement resistance evaluation method
Hsu et al. Fatigue crack initiation at notch root under compressive cyclic loading
JP6724761B2 (en) Hydrogen embrittlement evaluation apparatus, hydrogen embrittlement evaluation method, and test piece used therein
Nykyforchyn et al. Degradation of steels used in gas main pipelines during their 40-year operation.
Zhang Evaluation of susceptibility to hydrogen embrittlement—A rising step load testing method
Chandra et al. Fatigue and static crack growth rate study of X-65 line pipe steel in gas transmission pipeline applications
Rückle et al. Corrosion fatigue of CrNi13-4 martensitic stainless steel for Francis runners in dependency of water quality
Das et al. An experimental and numerical study on strain controlled fatigue response of TRIP steel under influence of hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R151 Written notification of patent or utility model registration

Ref document number: 6354476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350