JP6749872B2 - Method for measuring hydrogen embrittlement resistance characteristic value - Google Patents
Method for measuring hydrogen embrittlement resistance characteristic value Download PDFInfo
- Publication number
- JP6749872B2 JP6749872B2 JP2017161949A JP2017161949A JP6749872B2 JP 6749872 B2 JP6749872 B2 JP 6749872B2 JP 2017161949 A JP2017161949 A JP 2017161949A JP 2017161949 A JP2017161949 A JP 2017161949A JP 6749872 B2 JP6749872 B2 JP 6749872B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- sample
- resistance characteristic
- characteristic value
- embrittlement resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Description
本発明は、鋼材における耐水素脆化を評価するための特性値を求める鋼材の耐水素脆化特性値の測定方法に関する。 The present invention relates to a method for measuring a hydrogen embrittlement resistance characteristic value of a steel material for obtaining a characteristic value for evaluating hydrogen embrittlement resistance of a steel material.
高張力鋼などの高強度鋼材は、水素を含むと延性が失われ、強度が著しく低下する。この現象は、水素脆化と呼ばれている(非特許文献1参照)。このような鋼材の水素脆化に関し、この状態を評価する水素脆化特性評価方法がある。例えば、鋼材に一定の引張応力を付与(定荷重試験)しながら鋼材中に水素チャージし、鋼材の破断時間を測定することで評価する方法が広く用いられている(非特許文献2参照)。 High-strength steel materials such as high-strength steel lose their ductility when hydrogen is contained, resulting in a marked decrease in strength. This phenomenon is called hydrogen embrittlement (see Non-Patent Document 1). Regarding hydrogen embrittlement of such a steel material, there is a hydrogen embrittlement characteristic evaluation method for evaluating this state. For example, a method is widely used in which a steel material is hydrogen-charged while a constant tensile stress is applied to the steel material (constant load test), and the fracture time of the steel material is measured for evaluation (see Non-Patent Document 2).
水素脆化による破断は、鋼材への侵入水素量が限界水素量を超えた場合に発生するという考え方がある(非特許文献3参照)。この考え方に基づけば、水素の侵入速度と限界水素量が、鋼材の破断時間を決定づける耐水素脆化特性値であると言える。なお、水素侵入速度は時間の関数となるため、鋼材ごとの水素の侵入しやすさを比較するためには、時間の係数(これを水素侵入速度係数と呼ぶことにする)を比較すれば良く、水素侵入速度係数が大きいほど鋼材に水素が侵入しやすくなる。 There is an idea that fracture due to hydrogen embrittlement occurs when the amount of hydrogen invading the steel material exceeds the limit amount of hydrogen (see Non-Patent Document 3). Based on this idea, it can be said that the rate of hydrogen penetration and the limit amount of hydrogen are the hydrogen embrittlement resistance characteristic values that determine the fracture time of steel materials. Since the hydrogen penetration rate is a function of time, in order to compare the easiness of hydrogen penetration for each steel material, it is sufficient to compare the time coefficient (which will be referred to as the hydrogen penetration rate coefficient). The higher the hydrogen penetration rate coefficient, the easier hydrogen will penetrate into the steel material.
従来、水素侵入速度は、電気化学的水素透過法を用いることで求められている(非特許文献4参照)。また、限界水素量は、事前に所定の条件で水素チャージした鋼材に対して定荷重試験を行い、水素チャージ条件を変化させて破断が発生しなくなったときの水素量を昇温脱離法(TDS)により測定することで求められている(非特許文献5参照)。 Conventionally, the hydrogen penetration rate has been obtained by using an electrochemical hydrogen permeation method (see Non-Patent Document 4). For the critical hydrogen content, a constant load test is performed on steel materials that have been hydrogen-charged under predetermined conditions in advance, and the hydrogen content when the fracture does not occur by changing the hydrogen-charge conditions is determined by the temperature programmed desorption method ( It is obtained by measurement by TDS (see Non-Patent Document 5).
しかしながら、上述した方法では、高強度鋼材の耐水素脆化特性値である限界水素量と水素侵入速度係数を求めるためには、破断時間の測定とは別にそれぞれの試験を行う必要があり、多数のデータを取得するためには多大な労力が必要となる。また、従来の方法ではそれぞれ異なる試料を用いて破断時間、限界水素量、水素侵入速度係数を求める必要があったが、各値は試料ごとに大きくばらつく場合があり、同一の試料における破断時間、限界水素量、水素侵入速度係数の相互関係を知ることはできなかった。このように、従来では、耐水素脆化特性値の測定が容易ではなく、また、異なる耐水素脆化特性値の間の相関関係を知ることができないという問題があった。 However, in the above-mentioned method, in order to obtain the critical hydrogen content and the hydrogen intrusion rate coefficient, which are the hydrogen embrittlement resistance characteristic values of high-strength steel, it is necessary to perform each test separately from the measurement of the rupture time. A great deal of effort is required to obtain the data of. Further, in the conventional method, it was necessary to obtain the breaking time, the limit hydrogen amount, and the hydrogen intrusion rate coefficient using different samples, but each value may vary greatly from sample to sample, and the breaking time in the same sample, It was not possible to know the interrelationship between the critical hydrogen content and the hydrogen entry rate coefficient. As described above, conventionally, there has been a problem that it is not easy to measure the hydrogen embrittlement resistance characteristic value, and the correlation between different hydrogen embrittlement resistance characteristic values cannot be known.
本発明は、以上のような問題点を解消するためになされたものであり、耐水素脆化特性値がより容易に測定でき、また、異なる耐水素脆化特性値の間の相関関係を知ることができるようにすることを目的とする。 The present invention has been made in order to solve the above problems, the hydrogen embrittlement resistance characteristic value can be more easily measured, also know the correlation between different hydrogen embrittlement resistance characteristic value The purpose is to be able to.
本発明に係る耐水素脆化特性値の測定方法は、鋼材からなる試料に水素をチャージしている状態で試料について定荷重試験を行い試料が破断するまでの破断時間を求める第1工程と、定荷重試験により試料が破断した直後に試料の破断した部分の水素量を測定して限界水素量を求める第2工程と、破断時間と限界水素量とから試料に対する水素侵入速度係数を求める第3工程とを備える。 A method for measuring a hydrogen embrittlement resistance characteristic value according to the present invention comprises a first step of performing a constant load test on a sample made of a steel material in a state where hydrogen is charged, and obtaining a break time until the sample breaks, Immediately after the sample is broken by the constant load test, the second step of measuring the hydrogen amount in the broken portion of the sample to obtain the limiting hydrogen amount, and the third step of obtaining the hydrogen intrusion rate coefficient for the sample from the breaking time and the limiting hydrogen amount And a process.
上記耐水素脆化特性値の測定方法において、第1工程において、定荷重試験として引張試験を行えばよい。 In the method for measuring the hydrogen embrittlement resistance characteristic value, a tensile test may be performed as a constant load test in the first step.
上記耐水素脆化特性値の測定方法において、第1工程では、陰極チャージ法で試料に水素をチャージすればよい。 In the above method for measuring the hydrogen embrittlement resistance characteristic value, in the first step, the sample may be charged with hydrogen by the cathode charging method.
上記耐水素脆化特性値の測定方法において、第3工程では、(限界水素量)/{2×(破断時間)1/2}により水素侵入速度係数を求める。 In the method for measuring the hydrogen embrittlement resistance characteristic value, in the third step, the hydrogen penetration rate coefficient is determined by (limit hydrogen amount)/{2×(breaking time) 1/2 }.
以上説明したことにより、本発明によれば、耐水素脆化特性値がより容易に測定でき、また、異なる耐水素脆化特性値の間の相関関係を知ることができるという優れた効果が得られる。 As described above, according to the present invention, an excellent effect that the hydrogen embrittlement resistance characteristic value can be more easily measured and the correlation between different hydrogen embrittlement resistance characteristic values can be known can be obtained. To be
以下、本発明の実施の形態における耐水素脆化特性値の測定方法について図1を参照して説明する。 Hereinafter, a method for measuring the hydrogen embrittlement resistance characteristic value according to the embodiment of the present invention will be described with reference to FIG.
まず、第1工程S101で、鋼材からなる試料に水素をチャージしている状態で試料について定荷重試験を行い、試料が破断するまでの破断時間を求める。例えば、試料に陰極チャージ法で水素をチャージし、次に、試料に水素をチャージしている状態で引張試験を行う。例えば、引張試験の定荷重には、鋼材の引張強度の0.7倍の応力を採用する。 First, in a first step S101, a constant load test is performed on a sample made of a steel material while hydrogen is being charged, and a fracture time until the sample fractures is obtained. For example, a sample is charged with hydrogen by a cathode charging method, and then a tensile test is performed with the sample being charged with hydrogen. For example, for the constant load of the tensile test, a stress 0.7 times the tensile strength of the steel material is used.
例えば、図2に示す装置を用いて上述した第1工程(測定)を実施すればよい。この装置は、アクリル樹脂などから構成された容器201と、同様にアクリル樹脂から構成された蓋202と、容器201に収容された電解質溶液203とを備える。電解質溶液203は、例えば1mol/Lの炭酸水素ナトリウム水溶液である。また、この装置は、電解質溶液203中に配置された参照電極204,対極205を備える。参照電極204は、例えば、Ag/AgCl(銀塩化銀)電極であり、対極205は、Pt電極である。
For example, the above-described first step (measurement) may be performed using the device shown in FIG. This apparatus includes a
試料206は、直径7mm、長さ500mmの断面視円形の棒状の平滑材(SBPDN 1275/1420)である。試料206は、容器201の底部から蓋202を貫通して電解質溶液203に接触する状態とする。また、試料206が電解質溶液203に接触している領域の長さは、150mmである。なお、容器201の底部の試料206が貫通する部分は、電解質溶液203が漏れないようにシールされている。
The
この状態で、ポテンショスタット(不図示)を用い、試料206を作用極とし、参照電極204および対極205を用いた3極構成で、試料206に、参照電極204に対して負の電位(−1Vvs.SSE)を印加する。なお、この条件は、電解質溶液203に触れている試料206の表面が、腐食しない電気化学条件である。このように陰極チャージすることで、試料206の表面に水素を発生させる。これにより、試料206に水素が吸蔵(吸収)する状態となる。このように、陰極チャージ法により、試料となる鋼材の表面に水素を発生させて水素が鋼材に吸蔵される状態で、試料の引張試験を行い、試料が破断する破断時間を求める。
In this state, a potentiostat (not shown) is used, the
次に、第2工程S102で、定荷重試験により試料が破断した直後に試料の破断した部分の水素量を測定して限界水素量を求める。例えば、試料が破断した直後、破断部近傍を切り出し、切り出した試料片の内部の水素量を測定する。試料の破断部近傍を切り出す際は、図3に示すように、可能な限り破断部に近い領域のみを切り出すことが望ましい。例えば、破断面を含むように最大厚さが1mmとなるように試料片を切り出せばよい。 Next, in the second step S102, the hydrogen content in the fractured part of the sample is measured immediately after the sample is fractured by the constant load test to obtain the critical hydrogen content. For example, immediately after the sample is broken, the vicinity of the broken part is cut out and the amount of hydrogen in the cut out sample piece is measured. When cutting out the vicinity of the fractured part of the sample, it is desirable to cut out only the region as close as possible to the fractured part as shown in FIG. For example, the sample piece may be cut out so that the maximum thickness is 1 mm so as to include the fracture surface.
また、試料片の内部の水素量測定は、昇温脱離分析法により行えばよい。昇温脱離分析法は、よく知られているように、固体の試料に存在する成分の中で、気体成分や、高い温度でガスとして脱離する成分を分析する方法である。昇温脱離分析法では、昇温脱離分析装置を用い、例えば、真空中で試料を加熱し、この加熱により試料より脱離する物質をイオン化して質量分析計で検出する。この場合の測定条件は、例えば昇温速度10℃/minで500℃までの測定とする。水素チャージにより鋼材内の水素量は時間とともに増加し、鋼材内の水素量が限界水素量に達した時点で破断が発生するという考え方に基づけば、この方法により破断直後に測定された破断部分の水素量は、限界水素量とみなすことができる。 The amount of hydrogen in the sample piece may be measured by the thermal desorption analysis method. As is well known, the temperature programmed desorption analysis method is a method of analyzing a gas component and a component desorbed as a gas at a high temperature among components existing in a solid sample. In the temperature programmed desorption analysis method, a temperature programmed desorption analyzer is used, for example, a sample is heated in vacuum, and the substance desorbed from the sample is ionized by this heating and detected by a mass spectrometer. The measurement conditions in this case are, for example, measurement at a temperature rising rate of 10° C./min up to 500° C. Based on the idea that the amount of hydrogen in steel increases with time due to hydrogen charging, and a fracture occurs when the amount of hydrogen in the steel reaches the limit amount of hydrogen, the fracture part measured immediately after fracture by this method The amount of hydrogen can be regarded as the limit amount of hydrogen.
次に、第3工程S103で、上述したように求めた破断時間と限界水素量とから、試料に対する水素侵入速度係数を求める。第3工程S103では、(限界水素量)/{2×(破断時間)1/2}により水素侵入速度係数を求める。 Next, in the third step S103, the hydrogen penetration rate coefficient for the sample is obtained from the fracture time and the limit hydrogen amount obtained as described above. In the third step S103, the hydrogen penetration rate coefficient is calculated by (limit hydrogen amount)/{2×(breaking time) 1/2 }.
ここで、水素は、拡散により鋼材内に侵入すると考えられるため、拡散係数が時間によらず一定かつ鋼材内の水素量が飽和水素量の1/2以下であるとき、鋼材内の水素量は、図4に示すように、時間の1/2乗に比例すると近似できる。従って、鋼材中の水素量は、時間tの関数として(限界水素量)/(破断時間)1/2×t1/2と表される。水素侵入速度は、水素量の時間微分で求められるので、(限界水素量)/{(破断時間)1/2×2t1/2}で表され、水素侵入速度係数は(限界水素量)/{2×(破断時間)1/2}となる。 Here, hydrogen is considered to enter the steel by diffusion, so when the diffusion coefficient is constant regardless of time and the hydrogen content in the steel is 1/2 or less of the saturated hydrogen content, the hydrogen content in the steel is , As shown in FIG. 4, it can be approximated as being proportional to the 1/2 power of time. Therefore, the amount of hydrogen in the steel material is expressed as (limit hydrogen amount)/(breaking time) 1/2 ×t 1/2 as a function of time t. Since the hydrogen penetration rate is obtained by the time derivative of the hydrogen content, it is represented by (limit hydrogen content)/{(breaking time) 1/2 ×2t 1/2 }, and the hydrogen penetration rate coefficient is (limit hydrogen content)/ It becomes {2×(breaking time) 1/2 }.
実際に第1工程S101、第2工程S102により破断時間と限界水素量を測定すると、破断時間は1.52時間、限界水素量は1.85ppmという結果が得られた。なお、引張試験により試料が破断した後、40分後に試料の破断した部分の水素量を測定した。これらの数値を用いると、水素侵入速度係数は0.75と算出される。 When the breaking time and the limiting hydrogen amount were actually measured in the first step S101 and the second step S102, the breaking time was 1.52 hours and the limiting hydrogen amount was 1.85 ppm. After the sample was broken by the tensile test, 40 minutes later, the amount of hydrogen in the broken part of the sample was measured. Using these values, the hydrogen entry rate coefficient is calculated to be 0.75.
以上に説明したように、本発明では、水素をチャージしている状態の試料について定荷重試験を実施しての破断時間を求め、試料の破断した部分の水素量を測定して限界水素量を求め、破断時間と限界水素量とから試料に対する水素侵入速度係数を求めるようにした。この結果、本発明によれば、耐水素脆化特性値がより容易に測定でき、また、異なる耐水素脆化特性値の間の相関関係を知ることができるようになる。 As described above, in the present invention, the breaking time after carrying out the constant load test on the sample charged with hydrogen is determined, and the hydrogen amount in the broken portion of the sample is measured to determine the limit hydrogen amount. Then, the hydrogen penetration rate coefficient for the sample was calculated from the breaking time and the limit hydrogen amount. As a result, according to the present invention, the hydrogen embrittlement resistance characteristic value can be more easily measured, and the correlation between different hydrogen embrittlement resistance characteristic values can be known.
従来、破断時間、限界水素量、水素侵入速度係数を求めるためには、各々異なる3種類の試験を行う必要があった。しかし、本発明によれば、破断時間測定と限界水素量測定という2種類の試験で破断時間、限界水素量、水素侵入速度係数を求めることができ、より簡易な測定が可能となる。これは、破断時間と限界水素量を同一の試料を用いて測定していることと、限界水素量の測定を従来のように事前に水素チャージした試料を用いる方法ではなく、破断まで水素チャージを連続的に行う方法を用いることにより、破断時間と限界水素量の関係から水素侵入速度係数を算出することが可能となったためである。また、破断時間、限界水素量、水素侵入速度係数は、試料ごとに大きくばらつくため、異なる試料を用いてそれぞれ測定する従来の方法では、各値の相互関係を知ることはできなかったが、本発明では同一の試料を用いて測定するため各値の相互関係を明確化することができるようになった。 Conventionally, in order to obtain the breaking time, the limit hydrogen amount, and the hydrogen intrusion rate coefficient, it was necessary to perform three different tests. However, according to the present invention, the rupture time, the limit hydrogen amount, and the hydrogen intrusion rate coefficient can be obtained by two types of tests, that is, the rupture time measurement and the limit hydrogen amount measurement, and a simpler measurement is possible. This is because the fracture time and the limit hydrogen amount are measured using the same sample, and the measurement of the limit hydrogen amount is not a method of using a sample that was previously charged with hydrogen as in the conventional method, but hydrogen charging is performed until the fracture. This is because it is possible to calculate the hydrogen penetration rate coefficient from the relationship between the breaking time and the limit hydrogen amount by using the method that is continuously performed. In addition, since the breaking time, the limit hydrogen amount, and the hydrogen intrusion rate coefficient vary greatly from sample to sample, it was not possible to know the interrelationship of each value by the conventional method of measuring each sample using different samples. In the invention, since the same sample is used for measurement, it has become possible to clarify the mutual relation of each value.
上述したように、本発明によれば、これまで測定に多大な労力を要していた高強度鋼材の耐水素脆化特性値である限界水素量および水素侵入速度係数が、一連の試験によって簡易に測定することができる。このように、高強度鋼材の限界水素量および水素侵入速度係数が簡易に測定できれば、例えば、新鋼材の製品開発の際、ある水素脆化対策の適用が限界水素量の上昇と水素侵入速度係数の低下のどちらにどれだけ効果的かが明確となり、製品開発の指針を得やすくなる。また、ある使用環境における限界水素量および水素侵入速度係数が明確となれば、将来的に水素脆化破断を発生させないためにどのような対策が取り得るのかを検討することができる。 As described above, according to the present invention, the critical hydrogen amount and hydrogen intrusion rate coefficient, which are the hydrogen embrittlement resistance characteristic values of high strength steel materials, which have required a great deal of labor until now, can be easily determined by a series of tests. Can be measured. In this way, if the critical hydrogen content and hydrogen entry rate coefficient of high-strength steel can be easily measured, for example, when developing new steel products, application of certain hydrogen embrittlement countermeasures will increase the critical hydrogen content and hydrogen entry rate coefficient. It is easy to get a guideline for product development by clarifying how effective and how effective it is. Further, if the critical hydrogen amount and hydrogen penetration rate coefficient in a certain usage environment are clarified, it is possible to study what measures can be taken to prevent hydrogen embrittlement fracture in the future.
更に、本発明では、従来とは異なり、同一の試料における破断時間、限界水素量を求め、これらより水素侵入速度係数を求めるので、これまで不明確であった各々の相互関係が明確となり、製品開発や対策立案においてより詳細な検討が可能となる。例えば、限界水素量と水素侵入速度係数が相関関係にあれば、どちらか一方のみを重点的に対策すればよく、逆相関関係にあれば両者のバランスが最適となるように対策する必要があるといったように、相互関係により対策の仕方を変えることができる。 Further, in the present invention, unlike the conventional method, the breaking time and the limit hydrogen amount in the same sample are obtained, and the hydrogen intrusion rate coefficient is obtained from these, so that the mutually unclear mutual relations have been clarified. More detailed examination is possible in development and countermeasure planning. For example, if there is a correlation between the limit hydrogen amount and the hydrogen penetration rate coefficient, only one of them needs to be focused, and if there is an inverse correlation, it is necessary to take measures to optimize the balance between the two. For example, the way of measures can be changed by mutual relation.
なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 The present invention is not limited to the embodiments described above, and many modifications and combinations can be implemented by a person having ordinary knowledge in the field within the technical idea of the present invention. That is clear.
201…容器、202…蓋、203…電解質溶液、204…参照電極、205…対極、206…試料。 201... Container, 202... Lid, 203... Electrolyte solution, 204... Reference electrode, 205... Counter electrode, 206... Sample.
Claims (4)
前記定荷重試験により前記試料が破断した直後に前記試料の破断した部分の水素量を測定して限界水素量を求める第2工程と、
前記破断時間と前記限界水素量とから前記試料に対する水素侵入速度係数を求める第3工程と
を備えることを特徴とする耐水素脆化特性値の測定方法。 A first step in which a constant load test is performed on the sample made of a steel material while hydrogen is charged on the sample to obtain a fracture time until the sample fractures;
A second step of measuring the amount of hydrogen in the broken portion of the sample immediately after the sample is broken by the constant load test to obtain a limit hydrogen amount;
A third step of obtaining a hydrogen intrusion rate coefficient for the sample from the breaking time and the limit hydrogen amount, the method for measuring a hydrogen embrittlement resistance characteristic value.
前記第1工程において、前記定荷重試験として引張試験を行うことを特徴とする耐水素脆化特性値の測定方法。 The method for measuring a hydrogen embrittlement resistance characteristic value according to claim 1,
In the first step, a tensile test is performed as the constant load test, and a method for measuring a hydrogen embrittlement resistance characteristic value.
前記第1工程において、陰極チャージ法で前記試料に水素をチャージすることを特徴とする耐水素脆化特性値の測定方法。 The method for measuring the hydrogen embrittlement resistance characteristic value according to claim 1,
In the first step, a method for measuring a hydrogen embrittlement resistance characteristic value is characterized in that the sample is charged with hydrogen by a cathode charging method.
前記第3工程では、(限界水素量)/{2×(破断時間)1/2}により前記水素侵入速度係数を求めることを特徴とする耐水素脆化特性値の測定方法。 The method for measuring a hydrogen embrittlement resistance characteristic value according to any one of claims 1 to 3,
In the third step, the hydrogen embrittlement resistance characteristic value measuring method is characterized in that the hydrogen penetration rate coefficient is obtained by (limit hydrogen amount)/{2×(breaking time) 1/2 }.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017161949A JP6749872B2 (en) | 2017-08-25 | 2017-08-25 | Method for measuring hydrogen embrittlement resistance characteristic value |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017161949A JP6749872B2 (en) | 2017-08-25 | 2017-08-25 | Method for measuring hydrogen embrittlement resistance characteristic value |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019039794A JP2019039794A (en) | 2019-03-14 |
JP6749872B2 true JP6749872B2 (en) | 2020-09-02 |
Family
ID=65726433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017161949A Active JP6749872B2 (en) | 2017-08-25 | 2017-08-25 | Method for measuring hydrogen embrittlement resistance characteristic value |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6749872B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3892842B2 (en) * | 2003-10-28 | 2007-03-14 | 新日本製鐵株式会社 | Apparatus and method for evaluating hydrogen embrittlement of thin steel sheet |
JP5196926B2 (en) * | 2007-09-13 | 2013-05-15 | 新日鐵住金株式会社 | Apparatus for evaluating hydrogen embrittlement for thin steel sheet and method for evaluating hydrogen embrittlement of thin steel sheet |
JP5347925B2 (en) * | 2009-12-03 | 2013-11-20 | 新日鐵住金株式会社 | Steel for high strength bolts |
JP6354476B2 (en) * | 2014-09-09 | 2018-07-11 | 新日鐵住金株式会社 | Characterization method for hydrogen embrittlement of steel |
-
2017
- 2017-08-25 JP JP2017161949A patent/JP6749872B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019039794A (en) | 2019-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Diederichs et al. | Measurement of spalling parameters from laboratory testing | |
JP5467026B2 (en) | Method for evaluating delayed fracture characteristics of PC steel | |
JP2011220331A5 (en) | ||
JP6693130B2 (en) | Method for evaluating hydrogen embrittlement resistance | |
Li et al. | Corrosion induced degradation of fatigue strength of steel in service for 128 years | |
Sun et al. | A comparative study on potentiodynamic and potentiostatic critical pitting temperature of austenitic stainless steels | |
CN112307608A (en) | Nonlinear fatigue damage life evaluation treatment method for austenitic stainless steel pipeline | |
CN112284921B (en) | Method for determining uniaxial stress-strain relation of material based on high-temperature hydraulic bulge test sample | |
JP6749872B2 (en) | Method for measuring hydrogen embrittlement resistance characteristic value | |
Caprili et al. | Evaluation of mechanical characteristics of steel bars by non-destructive Vickers micro-hardness tests | |
JP2018204949A (en) | Evaluation method for hydrogen embrittlement resistance characteristic of steel material | |
JP6740176B2 (en) | Hydrogen permeation test device | |
Kang et al. | Corrosion fatigue crack propagation of high-strength steel HSB800 in a seawater environment | |
Ponomarev et al. | The applicability of acoustic emission method to modeling the endurance of metallic construction elements | |
JP6940774B2 (en) | Hydrogen intrusion behavior estimation method, hydrogen intrusion behavior estimation device and hydrogen intrusion behavior estimation program | |
JP2016200403A (en) | Evaluation method | |
JP5986126B2 (en) | Hydrogen embrittlement evaluation method | |
Grell et al. | In Situ Electrochemical Analysis during Deformation of a Zr-Based Bulk Metallic Glass: A Sensitive Tool Revealing Early Shear Banding. | |
US11913895B2 (en) | Method for detecting occurrence of cracks and the like, device for detecting occurrence of cracks and the like, and program for detecting occurrence of cracks and the like | |
D'Ilio et al. | Determination of depleted uranium in human hair by quadrupole inductively coupled plasma mass spectrometry: method development and validation | |
JP7534629B2 (en) | Method for deriving hydrogen diffusion coefficient of steel and method for evaluating hydrogen embrittlement resistance of steel | |
JP6309826B2 (en) | Fracture stress estimation method and fracture stress estimation device for oxide film fracture | |
RU2534045C1 (en) | Method of predicting resource capacity of steel of reactor vessels vver-1000 | |
Xiong et al. | The restoration of the passivity of stainless steel weldments in pickling solutions observed using electrochemical and surface analytical methods | |
Leal et al. | Magnetic and Electrochemical Techniques as Tools to Detect Deleterious Phases in Duplex Stainless Steels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190820 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200731 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200811 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200812 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6749872 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |