JP2021056132A - Method for filling hydrogen and method for evaluating embrittlement characteristic of hydrogen - Google Patents

Method for filling hydrogen and method for evaluating embrittlement characteristic of hydrogen Download PDF

Info

Publication number
JP2021056132A
JP2021056132A JP2019180442A JP2019180442A JP2021056132A JP 2021056132 A JP2021056132 A JP 2021056132A JP 2019180442 A JP2019180442 A JP 2019180442A JP 2019180442 A JP2019180442 A JP 2019180442A JP 2021056132 A JP2021056132 A JP 2021056132A
Authority
JP
Japan
Prior art keywords
hydrogen
sample
acidic solution
temperature
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019180442A
Other languages
Japanese (ja)
Inventor
徹志 千田
Tetsushi Senda
徹志 千田
裕嗣 崎山
Hirotsugu Sakiyama
裕嗣 崎山
宏太 富松
Kota Tomimatsu
宏太 富松
小林 憲司
Kenji Kobayashi
憲司 小林
大村 朋彦
Tomohiko Omura
朋彦 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019180442A priority Critical patent/JP2021056132A/en
Publication of JP2021056132A publication Critical patent/JP2021056132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To provide a method for efficiently filling a sample with hydrogen and a method for evaluating the embrittlement characteristic of the hydrogen in a sample filled with the hydrogen by the above method.SOLUTION: The present invention relates to a method for filling hydrogen into a material made of metal including at least one of a bcc-phase and a bct-phase in a metal phase in a total concentration of at least 95 volume%. The method includes the steps of: (a) immersing the sample in an acid solution; and (b) adjusting the temperature Tc (°C) of the acid solution to satisfy the relation of Tc<20×ln(t)+55, t denoting the thickness (mm) of the sample.SELECTED DRAWING: None

Description

本発明は、水素充填方法および水素脆化特性評価方法に関する。 The present invention relates to a hydrogen filling method and a hydrogen embrittlement characteristic evaluation method.

高強度鋼の開発において、水素により強度および靭性が劣化する水素脆化が大きな問題となっている。しかし、水素脆化に関係する材料組織的な変化は定かでなく、水素脆化のメカニズム解明が求められている。そして、そのためには、効率的に水素を鋼中に充填する方法の確立が必要となる。 In the development of high-strength steel, hydrogen embrittlement, in which strength and toughness are deteriorated by hydrogen, has become a major problem. However, the structural changes in materials related to hydrogen embrittlement are uncertain, and elucidation of the mechanism of hydrogen embrittlement is required. For that purpose, it is necessary to establish a method for efficiently filling the steel with hydrogen.

鋼中に水素を充填する方法として、酸性溶液に浸漬して水素チャージを行う方法が一般的に用いられている(例えば、特許文献1〜3を参照。)。 As a method of filling steel with hydrogen, a method of immersing in an acidic solution to charge hydrogen is generally used (see, for example, Patent Documents 1 to 3).

特開2010−223945号公報Japanese Unexamined Patent Publication No. 2010-223945 特開2012−47540号公報Japanese Unexamined Patent Publication No. 2012-47540 特開2016−121947号公報Japanese Unexamined Patent Publication No. 2016-121947

上記の方法においては、酸性溶液中に試料を浸漬し、金属を酸化させることによって、水素を発生させて試料に充填する。しかしながら、上記の文献においては、水素チャージを行う際の試験条件について十分に検討がなされておらず、より効率的に水素を試料中に充填するためには、改善の余地が残されている。 In the above method, the sample is immersed in an acidic solution and the metal is oxidized to generate hydrogen and fill the sample. However, in the above-mentioned literature, the test conditions for hydrogen charging have not been sufficiently examined, and there is still room for improvement in order to fill the sample with hydrogen more efficiently.

本発明は、上記の問題を解決し、試料に効率的に水素を充填することができる方法、およびそれにより水素が充填された試料の水素脆化特性を評価する方法を提供することを目的とする。 An object of the present invention is to provide a method for solving the above problems and efficiently filling a sample with hydrogen, and a method for evaluating the hydrogen embrittlement property of the sample filled with hydrogen. To do.

本発明は、上記の問題を解決するためになされたものであり、下記の水素充填方法および水素脆化特性評価方法を要旨とする。 The present invention has been made to solve the above problems, and the gist of the present invention is the following hydrogen filling method and hydrogen embrittlement characteristic evaluation method.

(1)金属相中にbcc相およびbct相から選択される1種以上を、合計の体積%で、95%以上含む金属からなる試料への水素充填方法であって、
(a)前記試料を酸性溶液に浸漬する工程と、
(b)前記酸性溶液の温度Tc(℃)を、前記試料の厚さt(mm)との関係で、下記(i)式を満足するように調整する工程と、
を備える、
水素充填方法。
Tc<20×ln(t)+55 ・・・(i)
(1) A method for filling a sample made of a metal containing at least 95% by volume of one or more selected from the bcc phase and the bct phase in the metal phase with hydrogen.
(A) A step of immersing the sample in an acidic solution and
(B) A step of adjusting the temperature Tc (° C.) of the acidic solution so as to satisfy the following formula (i) in relation to the thickness t (mm) of the sample.
To prepare
Hydrogen filling method.
Tc <20 × ln (t) +55 ・ ・ ・ (i)

(2)前記(b)の工程において、前記酸性溶液の温度を、さらに下記(ii)式を満足するように調整する、
上記(1)に記載の水素充填方法。
Tc<10×ln(t)+30 ・・・(ii)
(2) In the step (b), the temperature of the acidic solution is further adjusted so as to satisfy the following equation (ii).
The hydrogen filling method according to (1) above.
Tc <10 × ln (t) +30 ・ ・ ・ (ii)

(3)前記(b)の工程において、前記酸性溶液の温度を、さらに下記(iii)式を満足するように調整する、
上記(1)または(2)に記載の水素充填方法。
Tc<1.5×ln(t)+15 ・・・(iii)
(3) In the step (b), the temperature of the acidic solution is further adjusted so as to satisfy the following equation (iii).
The hydrogen filling method according to (1) or (2) above.
Tc <1.5 × ln (t) +15 ・ ・ ・ (iii)

(4)前記(b)の工程において、前記酸性溶液の温度を、前記酸性溶液中の溶質のイオンの質量モル濃度m(mol/kg)との関係で、さらに下記(iv)式を満足するように調整する、
上記(1)から(3)までのいずれかに記載の水素充填方法。
−1.86×m<Tc ・・・(iv)
(4) In the step (b), the temperature of the acidic solution is further satisfied with the following equation (iv) in relation to the mass molar concentration of solute ions in the acidic solution m (mol / kg). Adjust to
The hydrogen filling method according to any one of (1) to (3) above.
-1.86 × m <Tc ・ ・ ・ (iv)

(5)試料の水素脆化特性を評価する方法であって、
上記(1)から(4)までのいずれかに記載される(a)〜(b)の工程と、
(c)前記試料に含まれる水素濃度を測定する工程と、を備える、
水素脆化特性評価方法。
(5) A method for evaluating the hydrogen embrittlement characteristics of a sample.
The steps (a) to (b) described in any of the above (1) to (4) and
(C) The step of measuring the hydrogen concentration contained in the sample is provided.
Hydrogen embrittlement characterization method.

(6)試料の水素脆化特性を評価する方法であって、
上記(1)から(4)までのいずれかに記載される(a)〜(b)の工程、または上記(5)に記載される(a)〜(c)の工程と、
(d)前記試料に対して応力を負荷する工程と、を備える、
水素脆化特性評価方法。
(6) A method for evaluating the hydrogen embrittlement characteristics of a sample.
The steps (a) to (b) described in any of the above (1) to (4), or the steps (a) to (c) described in the above (5),
(D) The step of applying stress to the sample is provided.
Hydrogen embrittlement characterization method.

本発明によれば、試料に水素を効率的に充填することが可能となる。 According to the present invention, the sample can be efficiently filled with hydrogen.

本発明の一実施形態に係る水素充填方法および水素脆化特性評価方法について、詳細に説明する。 The hydrogen filling method and the hydrogen embrittlement property evaluation method according to the embodiment of the present invention will be described in detail.

本発明の一実施形態に係る水素充填方法は、(a)浸漬工程、(b)調整工程を備える。各工程について詳しく説明する。 The hydrogen filling method according to the embodiment of the present invention includes (a) a dipping step and (b) an adjusting step. Each process will be described in detail.

(a)浸漬工程
浸漬工程においては、試料を酸性溶液に浸漬する。本発明において、試料は、金属相中にbcc相およびbct相から選択される1種以上を、合計の体積%で、95%以上含む金属からなるものである。すなわち、金属相中に含まれるfcc相の体積率は5%以下となる。なお、bcc相にはフェライト、低炭素マルテンサイト等が含まれ、bct相には高炭素マルテンサイトが含まれる。また、fcc相としては、オーステナイトが挙げられる。また、試料の形状については特に制限はない。例えば、板状であってもよいし、円柱状であってもよい。
(A) Immersion step In the immersion step, the sample is immersed in an acidic solution. In the present invention, the sample is made of a metal containing at least 95% by volume of one or more selected from the bcc phase and the bct phase in the metal phase. That is, the volume fraction of the fcc phase contained in the metal phase is 5% or less. The bcc phase contains ferrite, low carbon martensite and the like, and the bct phase contains high carbon martensite. Further, as the fcc phase, austenite can be mentioned. The shape of the sample is not particularly limited. For example, it may be plate-shaped or columnar.

試料の大きさについても特に制限はないが、水素濃度測定の精度を安定させる観点から、0.5g以上であるのが好ましく、1g以上であるのがより好ましい。なお、試料表面に汚れまたは酸化皮膜等が付着していると、水素の充填が阻害されるおそれがある。そのため、試料表面は洗浄し、汚れおよび酸化皮膜等は除去しておくことが望ましい。 The size of the sample is also not particularly limited, but from the viewpoint of stabilizing the accuracy of hydrogen concentration measurement, it is preferably 0.5 g or more, and more preferably 1 g or more. If dirt or an oxide film is attached to the sample surface, hydrogen filling may be hindered. Therefore, it is desirable to clean the sample surface to remove dirt and oxide film.

酸性溶液の成分については酸性である必要がある。酸性溶液の種類については特に制限はない。HCl、HSO、HNO等の酸を水で薄めてpHを調整したもの、CHCOOH等の弱酸、CHCOOHとCHCOONaとを混合した緩衝性を有するもの等の酸性溶液が利用できる。pHは水素量を十分充填するためにpH5以下が望ましい。また、著しい酸化による鋼の溶解を防ぐためにpH0以上が望ましい。 The components of the acidic solution need to be acidic. There are no particular restrictions on the type of acidic solution. HCl, that an acid such as H 2 SO 4, HNO 3 to adjust the pH diluted with water, an acidic solution such as those with CH 3 weak such as COOH, cushioning of a mixture of CH 3 COOH and CH 3 COONa Is available. The pH is preferably pH 5 or less in order to sufficiently fill the amount of hydrogen. Further, pH 0 or higher is desirable to prevent melting of steel due to significant oxidation.

水素をより多量に充填したい場合は、触媒毒であるチオシアン酸アンモニウム(NHSCN)、チオ尿素等を酸性溶液に加えてもよい。試料の浸漬時間は、試料の材質または形状、酸性溶液の種類、評価試験内容などによって、適宜選定すればよい。 When it is desired to fill a larger amount of hydrogen, catalytic poisons such as ammonium thiocyanate (NH 4 SCN) and thiourea may be added to the acidic solution. The immersion time of the sample may be appropriately selected depending on the material or shape of the sample, the type of acidic solution, the content of the evaluation test, and the like.

(b)調整工程
調整工程においては、酸性溶液の温度を調整する。上述のように、本発明において、試料はbcc相および/またはbct相を主体とする金属からなるものを対象としている。bcc相および/またはbct相に充填される水素の多くは転位等の欠陥にトラップされており、低温ほどトラップ水素量は増加する。
(B) Adjustment step In the adjustment step, the temperature of the acidic solution is adjusted. As described above, in the present invention, the sample is intended to be composed of a metal mainly composed of a bcc phase and / or a bct phase. Most of the hydrogen filled in the bcc phase and / or the bct phase is trapped by defects such as dislocations, and the amount of trapped hydrogen increases as the temperature decreases.

一方、後述の水素充填工程終了後、水素脆化特性評価のため水素量測定等を行うまでの間に、試料表面からの水素の放散が起こる。しかし、試料の温度を低くすることにより、試料からの水素の放散を低減することができる。そして、酸性溶液の温度を低くするほど、試料の温度は低くなる。 On the other hand, hydrogen is released from the sample surface after the hydrogen filling step described later is completed and before the hydrogen amount is measured for the evaluation of hydrogen embrittlement characteristics. However, by lowering the temperature of the sample, it is possible to reduce the emission of hydrogen from the sample. The lower the temperature of the acidic solution, the lower the temperature of the sample.

ここで、試料の厚さが薄いほど、水素の放散による試料中の平均水素濃度の低下は大きい。したがって、試料の厚さが薄いほど、効率的な水素充填のために、水素充填量の増加および水素放散の低減が求められる。以上より、本発明者らが検討を行った結果、試料の厚さに応じて酸性溶液の温度を低く調整することにより、水素を効率的に充填できることが分かった。 Here, the thinner the sample, the greater the decrease in the average hydrogen concentration in the sample due to the emission of hydrogen. Therefore, the thinner the sample, the more it is required to increase the hydrogen filling amount and reduce the hydrogen emission for efficient hydrogen filling. From the above, as a result of studies by the present inventors, it was found that hydrogen can be efficiently filled by adjusting the temperature of the acidic solution to be low according to the thickness of the sample.

具体的には、酸性溶液の温度をTc(℃)、試料の厚さをt(mm)とした場合において、酸性溶液の温度を、下記(i)式を満足するように調整する。
Tc<20×ln(t)+55 ・・・(i)
Specifically, when the temperature of the acidic solution is Tc (° C.) and the thickness of the sample is t (mm), the temperature of the acidic solution is adjusted so as to satisfy the following equation (i).
Tc <20 × ln (t) +55 ・ ・ ・ (i)

酸性溶液の温度は、さらに下記(ii)式を満足するように調整することが好ましく、下記(iii)式を満足するように調整することがより好ましい。
Tc<10×ln(t)+30 ・・・(ii)
Tc<1.5×ln(t)+15 ・・・(iii)
The temperature of the acidic solution is preferably adjusted so as to satisfy the following formula (ii), and more preferably adjusted so as to satisfy the following formula (iii).
Tc <10 × ln (t) +30 ・ ・ ・ (ii)
Tc <1.5 × ln (t) +15 ・ ・ ・ (iii)

酸性溶液の温度は、0℃以下の温度であってもよい。ただし、酸性溶液の温度を凝固点以上とするためには、酸性溶液の温度Tc(℃)を、酸性溶液中の溶質のイオンの質量モル濃度m(mol/kg)との関係で、下記(iv)式を満足するように調整することが好ましい。
−1.86×m<Tc ・・・(iv)
The temperature of the acidic solution may be 0 ° C. or lower. However, in order to keep the temperature of the acidic solution above the freezing point, the temperature Tc (° C.) of the acidic solution is related to the molar concentration of solute ions in the acidic solution, m (mol / kg), as described below (iv). ) It is preferable to adjust so as to satisfy the equation.
-1.86 × m <Tc ・ ・ ・ (iv)

本発明においては、強酸と強塩基とから生成する塩については電離度を1とし、弱酸と弱塩基、弱酸と強塩基、または強酸と弱塩基から生成する塩については電離度から、イオンの質量モル濃度を計算するものとする。 In the present invention, the ionization degree is set to 1 for a salt formed from a strong acid and a strong base, and the ion mass is determined from the ionization degree for a salt formed from a weak acid and a weak base, a weak acid and a strong base, or a strong acid and a weak base. The molar concentration shall be calculated.

酸性溶液の冷却は、投げ込み式クーラーまたは冷媒循環装置などを用い、設定した温度に維持する。また、設定温度に対して室温が上下に変化する場所で実施する場合は、ヒーターおよびクーラーを同時に稼働できるように装置を組み立てる等により、温度が維持できるように注意する。 The acidic solution is cooled at a set temperature by using a throw-in cooler or a refrigerant circulation device. In addition, when the room temperature changes up and down with respect to the set temperature, care should be taken so that the temperature can be maintained by assembling the device so that the heater and cooler can be operated at the same time.

ここで、本発明において、試料の内部の任意の点から試料表面までの長さが最短となる距離をLとし、Lの最大値をLmaxとした時に、2Lmaxを試料の厚さtと定義する。すなわち、試料が板状の場合には板厚が厚さとなる。また、試料が円柱状の場合には、丸棒状(直径<高さ)であれば直径が、円盤状(直径>高さ)であれば高さが、それぞれの厚さとなる。なお、試料が厚すぎると水素の拡散により試料中の水素濃度を均一にする(試料中の総水素量を最大にする)までに長い時間を要する。そのため、試料の厚さtは、10mm以下であるのが好ましく、5mm以下であるのがより好ましい。 Here, in the present invention, when the distance from an arbitrary point inside the sample to the surface of the sample is the shortest, and the maximum value of L is L max , 2L max is defined as the thickness t of the sample. Define. That is, when the sample is plate-shaped, the plate thickness is thick. When the sample is columnar, the thickness is the diameter if it is round bar-shaped (diameter <height), and the height if it is disk-shaped (diameter> height). If the sample is too thick, it takes a long time to make the hydrogen concentration in the sample uniform (maximize the total amount of hydrogen in the sample) by diffusing hydrogen. Therefore, the thickness t of the sample is preferably 10 mm or less, and more preferably 5 mm or less.

bcc相およびbct相の合計体積率は、試料が鋼の場合は、以下の方法により求めるものとする。まず、試料を1200番エミリー紙で研磨し、次いで、室温のフッ酸および過塩素酸の混酸溶液に浸漬して化学研磨することにより、厚さの4分の1を除去する。次に、研磨を施した試料表面に、矢澤武男ら(鉄と鋼、Vol.83(1997)No.1、pp.60−65)に準拠した方法でX線回折測定(Cu対陰極、管電圧30kV、管電流100mA)を実施し、fcc相に関しては(111)、(200)および(220)、bcc相またはbct相に関しては(110)、(200)および(211)のピーク強度を求め、矢澤武男らに準拠した方法でfcc相の体積率を算出する。そして、得られた値を100%から差し引くことによって、bcc相およびbct相の合計体積率を求める。 When the sample is steel, the total volume fraction of the bcc phase and the bct phase shall be obtained by the following method. First, the sample is polished with No. 1200 Emily paper, and then a quarter of the thickness is removed by immersing the sample in a mixed acid solution of hydrofluoric acid and perchloric acid at room temperature and performing chemical polishing. Next, X-ray diffraction measurement (Cu vs. cathode, tube) was performed on the polished sample surface by a method based on Takeo Yazawa et al. (Iron and Steel, Vol.83 (1997) No. 1, pp.60-65). A voltage of 30 kV and a tube current of 100 mA) were carried out, and the peak intensities of (111), (200) and (220) for the fcc phase and (110), (200) and (211) for the bcc phase or the bct phase were obtained. , Takeo Yazawa et al. Calculate the volume ratio of the fcc phase. Then, by subtracting the obtained value from 100%, the total volume fraction of the bcc phase and the bct phase is obtained.

また、試料が鋼以外の金属の場合は、上記と同様の方法により研磨およびX線回折測定を行い、100%からfcc相およびhcp相の体積率を差し引くことにより、bcc相およびbct相の合計体積率を求める。 When the sample is a metal other than steel, polishing and X-ray diffraction measurement are performed by the same method as described above, and the volume fractions of the fcc phase and the hcp phase are subtracted from 100% to obtain the total of the bcc phase and the bct phase. Obtain the volume fraction.

(c)水素濃度測定工程
本発明の一実施形態に係る水素脆化特性評価方法においては、上述の(a)〜(b)の工程に加えて、試料に含まれる水素濃度を測定する工程を備える。水素濃度の測定は、上述の方法によって試料に水素を充填した後に行ってもよいし、水素充填の前後の両方で行ってもよい。水素脆化特性を評価するための重要なパラメータの1つである試料中の水素濃度を測定することにより、試料の水素脆化特性を評価することが可能となる。
(C) Hydrogen Concentration Measurement Step In the hydrogen embrittlement characteristic evaluation method according to the embodiment of the present invention, in addition to the steps (a) to (b) described above, a step of measuring the hydrogen concentration contained in the sample is performed. Be prepared. The measurement of the hydrogen concentration may be carried out after the sample is filled with hydrogen by the method described above, or may be carried out both before and after the hydrogen filling. By measuring the hydrogen concentration in the sample, which is one of the important parameters for evaluating the hydrogen embrittlement property, it is possible to evaluate the hydrogen embrittlement property of the sample.

試料中の水素濃度の測定方法については特に制限はなく、例えば、ガスクロマトグラフ式昇温脱離水素分析装置(TDA)を用いて、試料を100℃/hの昇温速度で400℃まで加熱した後、放出された水素量を測定することにより求めることができる。 There is no particular limitation on the method for measuring the hydrogen concentration in the sample. For example, the sample was heated to 400 ° C. at a heating rate of 100 ° C./h using a gas chromatograph type temperature-temperature desorption hydrogen analyzer (TDA). Later, it can be determined by measuring the amount of hydrogen released.

(d)応力負荷工程
本発明の他の実施形態に係る水素脆化特性評価方法においては、上述の(a)〜(b)の工程に加えて、試料に対して応力を負荷する工程を備える。試料に対する応力の負荷は、上述の方法によって試料に水素を充填した後に行ってもよいし、水素充填しながら行ってもよい。試料に負荷する応力の種類については特に制限されず、引張応力、圧縮応力、曲げ応力、ねじり応力のいずれであってもよい。そして、例えば、破断が生じた際の応力を測定することによって、試料の水素脆化特性を直接的に評価することが可能である。
(D) Stress loading step The hydrogen embrittlement characteristic evaluation method according to another embodiment of the present invention includes a step of loading a sample with stress in addition to the steps (a) to (b) described above. .. The stress load on the sample may be performed after the sample is filled with hydrogen by the above method, or may be performed while filling with hydrogen. The type of stress applied to the sample is not particularly limited, and may be any of tensile stress, compressive stress, bending stress, and torsional stress. Then, for example, by measuring the stress at the time of fracture, it is possible to directly evaluate the hydrogen embrittlement property of the sample.

さらに、本発明の他の実施形態に係る水素脆化特性試験方法においては、上述の(a)〜(b)の工程に加えて、試料に含まれる水素濃度を測定する工程と、試料に対して応力を負荷する工程との両方を備える。この場合において、各工程の順番については特に制限されず、例えば、水素充填しながら応力負荷を行い、破断が生じた後に試料に含まれる水素濃度を測定することができる。 Further, in the hydrogen embrittlement property test method according to another embodiment of the present invention, in addition to the above-mentioned steps (a) to (b), a step of measuring the hydrogen concentration contained in the sample and a step of measuring the hydrogen concentration in the sample are used. It is provided with both a process of applying stress. In this case, the order of each step is not particularly limited, and for example, stress loading can be performed while filling with hydrogen, and the concentration of hydrogen contained in the sample can be measured after fracture occurs.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

低合金鋼であり、bcc相の体積率が95%以上であるJIS SCM435鋼を試料として用いて、水素の充填を行った。試料の寸法および形状は、長さ20mm、幅10mm、厚さ0.2〜1.5mmの薄板状とした。そして、浸漬する酸性溶液には、pH2のHCl酸性溶液を使用し、表1に示す温度に調整した。酸性溶液の温度は、投げ込み式クーラーとヒーターとを用いて所定の温度を維持した。そして、酸性溶液に上記の試料を6時間浸漬した。 Hydrogen was filled using JIS SCM435 steel, which is a low alloy steel and has a volume fraction of bcc phase of 95% or more, as a sample. The dimensions and shape of the sample were a thin plate having a length of 20 mm, a width of 10 mm, and a thickness of 0.2 to 1.5 mm. Then, an HCl acidic solution having a pH of 2 was used as the acidic solution to be immersed, and the temperature was adjusted to the temperature shown in Table 1. The temperature of the acidic solution was maintained at a predetermined temperature by using a throw-in cooler and a heater. Then, the above sample was immersed in an acidic solution for 6 hours.

Figure 2021056132
Figure 2021056132

その後、各試料中に充填された水素濃度の測定を行った。具体的には、TDAを用いて、試料を100℃/hの昇温速度で400℃まで加熱した後、放出された水素量を測定することにより、試料中に充填された水素濃度を求めた。その結果を表1に併せて示す。 Then, the concentration of hydrogen filled in each sample was measured. Specifically, the concentration of hydrogen filled in the sample was determined by heating the sample to 400 ° C. at a heating rate of 100 ° C./h using TDA and then measuring the amount of hydrogen released. .. The results are also shown in Table 1.

(i)式を満足する本発明例の試験No.1、2、4〜7、9および10では、水素濃度が0.20ppm以上となり良好な結果となった。特に、酸性溶液の温度が(ii)式を満足する試験No.1、2、5〜7および10では、水素濃度が0.22ppm以上となり、より良好な結果となった。また、酸性溶液の温度が(iii)式を満足する試験No.1、2、6、7および10では、水素濃度が0.25ppm以上となり、さらに良好な結果となった。 Test No. of the example of the present invention satisfying the formula (i). In 1, 2, 4 to 7, 9 and 10, the hydrogen concentration was 0.20 ppm or more, which was a good result. In particular, Test No. in which the temperature of the acidic solution satisfies Eq. (Ii). At 1, 2, 5 to 7 and 10, the hydrogen concentration was 0.22 ppm or more, which was a better result. Further, the test No. in which the temperature of the acidic solution satisfies the equation (iii). At 1, 2, 6, 7 and 10, the hydrogen concentration was 0.25 ppm or more, which was a better result.

本発明によれば、試料に水素を効率的に充填することが可能となる。また、本発明に係る水素充填方法を採用することにより、水素脆化特性の評価を効率的に行うことが可能となり、水素脆化のメカニズム解明に寄与することができる。

According to the present invention, the sample can be efficiently filled with hydrogen. Further, by adopting the hydrogen filling method according to the present invention, it is possible to efficiently evaluate the hydrogen embrittlement characteristics, which can contribute to the elucidation of the mechanism of hydrogen embrittlement.

Claims (6)

金属相中にbcc相およびbct相から選択される1種以上を、合計の体積%で、95%以上含む金属からなる試料への水素充填方法であって、
(a)前記試料を酸性溶液に浸漬する工程と、
(b)前記酸性溶液の温度Tc(℃)を、前記試料の厚さt(mm)との関係で、下記(i)式を満足するように調整する工程と、
を備える、
水素充填方法。
Tc<20×ln(t)+55 ・・・(i)
A method for filling a sample made of a metal containing at least 95% by volume of one or more selected from the bcc phase and the bct phase in the metal phase with hydrogen.
(A) A step of immersing the sample in an acidic solution and
(B) A step of adjusting the temperature Tc (° C.) of the acidic solution so as to satisfy the following formula (i) in relation to the thickness t (mm) of the sample.
To prepare
Hydrogen filling method.
Tc <20 × ln (t) +55 ・ ・ ・ (i)
前記(b)の工程において、前記酸性溶液の温度を、さらに下記(ii)式を満足するように調整する、
請求項1に記載の水素充填方法。
Tc<10×ln(t)+30 ・・・(ii)
In the step (b), the temperature of the acidic solution is further adjusted so as to satisfy the following equation (ii).
The hydrogen filling method according to claim 1.
Tc <10 × ln (t) +30 ・ ・ ・ (ii)
前記(b)の工程において、前記酸性溶液の温度を、さらに下記(iii)式を満足するように調整する、
請求項1または請求項2に記載の水素充填方法。
Tc<1.5×ln(t)+15 ・・・(iii)
In the step (b), the temperature of the acidic solution is further adjusted so as to satisfy the following formula (iii).
The hydrogen filling method according to claim 1 or 2.
Tc <1.5 × ln (t) +15 ・ ・ ・ (iii)
前記(b)の工程において、前記酸性溶液の温度を、前記酸性溶液中の溶質のイオンの質量モル濃度m(mol/kg)との関係で、さらに下記(iv)式を満足するように調整する、
請求項1から請求項3までのいずれかに記載の水素充填方法。
−1.86×m<Tc ・・・(iv)
In the step (b), the temperature of the acidic solution is further adjusted so as to satisfy the following equation (iv) in relation to the mass molar concentration of solute ions in the acidic solution m (mol / kg). To do
The hydrogen filling method according to any one of claims 1 to 3.
-1.86 × m <Tc ・ ・ ・ (iv)
試料の水素脆化特性を評価する方法であって、
請求項1から請求項4までのいずれかに記載される(a)〜(b)の工程と、
(c)前記試料に含まれる水素濃度を測定する工程と、を備える、
水素脆化特性評価方法。
A method for evaluating the hydrogen embrittlement properties of a sample.
The steps (a) to (b) according to any one of claims 1 to 4, and the steps (a) to (b).
(C) The step of measuring the hydrogen concentration contained in the sample is provided.
Hydrogen embrittlement characterization method.
試料の水素脆化特性を評価する方法であって、
請求項1から請求項4までのいずれかに記載される(a)〜(b)の工程、または請求項5に記載される(a)〜(c)の工程と、
(d)前記試料に対して応力を負荷する工程と、を備える、
水素脆化特性評価方法。

A method for evaluating the hydrogen embrittlement properties of a sample.
The steps (a) to (b) according to any one of claims 1 to 4, or the steps (a) to (c) according to claim 5.
(D) The step of applying stress to the sample is provided.
Hydrogen embrittlement characterization method.

JP2019180442A 2019-09-30 2019-09-30 Method for filling hydrogen and method for evaluating embrittlement characteristic of hydrogen Pending JP2021056132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019180442A JP2021056132A (en) 2019-09-30 2019-09-30 Method for filling hydrogen and method for evaluating embrittlement characteristic of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019180442A JP2021056132A (en) 2019-09-30 2019-09-30 Method for filling hydrogen and method for evaluating embrittlement characteristic of hydrogen

Publications (1)

Publication Number Publication Date
JP2021056132A true JP2021056132A (en) 2021-04-08

Family

ID=75270509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180442A Pending JP2021056132A (en) 2019-09-30 2019-09-30 Method for filling hydrogen and method for evaluating embrittlement characteristic of hydrogen

Country Status (1)

Country Link
JP (1) JP2021056132A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003142A (en) * 1999-06-22 2001-01-09 Nippon Steel Corp Martensitic stainless steel for disk brake
JP2016057163A (en) * 2014-09-09 2016-04-21 新日鐵住金株式会社 Evaluation method of hydrogen embrittlement characteristic of steel material
JP2017219532A (en) * 2016-06-03 2017-12-14 日本電信電話株式会社 Method for calculating area of test piece in hydrogen embrittlement property evaluation test and method for calculating test cell size

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003142A (en) * 1999-06-22 2001-01-09 Nippon Steel Corp Martensitic stainless steel for disk brake
JP2016057163A (en) * 2014-09-09 2016-04-21 新日鐵住金株式会社 Evaluation method of hydrogen embrittlement characteristic of steel material
JP2017219532A (en) * 2016-06-03 2017-12-14 日本電信電話株式会社 Method for calculating area of test piece in hydrogen embrittlement property evaluation test and method for calculating test cell size

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
長瀬 拓,他4名: "残留オーステナイトを含む高強度鋼の水素脆化と相変態に起因するき裂発生点の局所解析", 鉄と鋼, vol. 102, no. 9, JPN7023001188, 2016, JP, pages 60 - 69, ISSN: 0005021572 *

Similar Documents

Publication Publication Date Title
Gardin et al. Comparative study of the surface oxide films on lean duplex and corresponding single phase stainless steels by XPS and ToF-SIMS
EP2963136B1 (en) Austenitic stainless-steel sheet and process for producing high-elastic-limit nonmagnetic steel material therefrom
JP2009069008A (en) Test piece for steel sheet hydrogen embrittlement evaluation, and steel sheet hydrogen embrittlement evaluation method
EP3524707A1 (en) Steel material
JP6354476B2 (en) Characterization method for hydrogen embrittlement of steel
JP4370991B2 (en) Method for evaluating delayed fracture resistance of steel for automotive structural members and steel for automotive structural members excellent in delayed fracture resistance
Venegas et al. On the influence of crystallographic texture on pitting corrosion in pipeline steels
Seabrook et al. Hydrogen embrittlement of SAE 1020 steel
JP2021056132A (en) Method for filling hydrogen and method for evaluating embrittlement characteristic of hydrogen
JP2019184585A (en) Hydrogen filling method and hydrogen embrittlement characteristic evaluation method
Mudali et al. Localised corrosion behaviour of Fe-N model alloys
Wu et al. On the robustness of the Kelvin probe based potentiometric hydrogen electrode method and its application in characterizing effective hydrogen activity in metal: 5 wt.% Ni cold-rolled ferritic steel as an example
Gostin et al. Stress corrosion cracking of a Zr-based bulk metallic glass
JP7020255B2 (en) Hydrogen filling method and hydrogen embrittlement characteristic evaluation method
JP2009069007A (en) Steel sheet hydrogen embrittlement evaluation method
JPS6039150A (en) Steel for pipe for oil well with superior resistance to stress corrosion cracking
JPH06256927A (en) Nitrided stainless steel products
RU2571667C2 (en) Cold-rolled steel plate with excellent resistance to ageing, and its manufacturing method
JP2016121947A (en) Test solution for hydrogen embrittlement of steel material, hydrogen charge method, and hydrogen embrittlement test method
Park et al. A study on corrosion behavior of DP-type and TRIP-type cold rolled steel sheet
JP2018159701A (en) Evaluation method of hydrogen embrittlement resistance
Elsener et al. Electrochemical and XPS surface analytical study on the reactivity of Ni‐free stainless steel in artificial saliva
JP7172103B2 (en) Hydrogen filling method and hydrogen embrittlement property evaluation method
JP2020134339A (en) Method for filling hydrogen and method for evaluating hydrogen embrittlement characterization
JP2020030186A (en) Hydrogen filling method and hydrogen embrittlement characteristics evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231027

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231109

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20231222