JP2019184585A - Hydrogen filling method and hydrogen embrittlement characteristic evaluation method - Google Patents

Hydrogen filling method and hydrogen embrittlement characteristic evaluation method Download PDF

Info

Publication number
JP2019184585A
JP2019184585A JP2019047572A JP2019047572A JP2019184585A JP 2019184585 A JP2019184585 A JP 2019184585A JP 2019047572 A JP2019047572 A JP 2019047572A JP 2019047572 A JP2019047572 A JP 2019047572A JP 2019184585 A JP2019184585 A JP 2019184585A
Authority
JP
Japan
Prior art keywords
sample
hydrogen
counter electrode
electrolytic solution
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019047572A
Other languages
Japanese (ja)
Inventor
徹志 千田
Tetsushi Senda
徹志 千田
裕嗣 崎山
Hirotsugu Sakiyama
裕嗣 崎山
宏太 富松
Kota Tomimatsu
宏太 富松
小林 憲司
Kenji Kobayashi
憲司 小林
大村 朋彦
Tomohiko Omura
朋彦 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2019184585A publication Critical patent/JP2019184585A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To provide a method with which it is possible to efficiently fill a sample with hydrogen, and a method for evaluating the hydrogen embrittlement characteristic of the sample filled with hydrogen thereby.SOLUTION: Provided is a hydrogen filling method for a sample composed of a metal that includes, in a metallic phase, 95% or more by total volume of one or more selected from a bcc phase and a bct phase. The hydrogen filling method comprises the steps of: (a) immersing the sample and a counter electrode in an electrolytic solution; (b) adjusting the temperature Tc(°C) of the electrolytic solution so as to satisfy [Tc<20×ln(t)+55] in a relationship with a thickness t (mm) of the sample; and (c) causing a potential difference to occur between the sample and the counter electrode and electrochemically filling the sample with hydrogen.SELECTED DRAWING: None

Description

本発明は、水素充填方法および水素脆化特性評価方法に関する。   The present invention relates to a hydrogen filling method and a hydrogen embrittlement characteristic evaluation method.

高強度鋼の開発において、水素により強度および靭性が劣化する水素脆化が大きな問題となっている。しかし、水素脆化に関係する材料組織的な変化は定かでなく、水素脆化のメカニズム解明が求められている。そして、そのためには、効率的に水素を鋼中に充填する方法の確立が必要となる。   In the development of high-strength steel, hydrogen embrittlement, whose strength and toughness deteriorate due to hydrogen, has become a major problem. However, material structural changes related to hydrogen embrittlement are not clear, and elucidation of the mechanism of hydrogen embrittlement is required. For this purpose, it is necessary to establish a method for efficiently filling hydrogen into steel.

鋼中に水素を充填する方法として、電気化学的に水素チャージを行う方法が一般的に用いられている(例えば、特許文献1〜4を参照。)。   As a method of filling hydrogen in steel, a method of electrochemically charging hydrogen is generally used (see, for example, Patent Documents 1 to 4).

特開2004−309197号公報JP 2004-309197 A 特開2013−124998号公報JP2013-124998A 特開2013−124999号公報JP 2013-124999 A 特開2016−57163号公報JP, 2006-57163, A

上記の方法においては、電解液中に試料および対極を浸漬し、それらの間に電位差を生じさせることによって、電気化学的に水素を試料に充填する。しかしながら、上記の文献においては、水素チャージを行う際の試験条件について十分に検討がなされておらず、より効率的に水素を試料中に充填するためには、改善の余地が残されている。   In the above-described method, the sample and the counter electrode are immersed in an electrolytic solution, and a potential difference is generated therebetween, thereby electrochemically filling the sample with hydrogen. However, in the above-mentioned documents, the examination conditions for performing hydrogen charging have not been sufficiently studied, and there remains room for improvement in order to more efficiently fill the sample with hydrogen.

本発明は、上記の問題を解決し、試料に効率的に水素を充填することができる方法、およびそれにより水素が充填された試料の水素脆化特性を評価する方法を提供することを目的とする。   An object of the present invention is to solve the above problems and to provide a method capable of efficiently filling a sample with hydrogen, and a method for evaluating the hydrogen embrittlement characteristics of the sample filled with hydrogen thereby. To do.

本発明は、上記の問題を解決するためになされたものであり、下記の水素充填方法および水素脆化特性評価方法を要旨とする。   The present invention has been made to solve the above-described problems, and the gist of the present invention is the following hydrogen filling method and hydrogen embrittlement characteristic evaluation method.

(1)金属相中にbcc相およびbct相から選択される1種以上を、合計の体積%で、95%以上含む金属からなる試料への水素充填方法であって、
(a)前記試料および対極を電解液に浸漬する工程と、
(b)前記電解液の温度Tc(℃)を、前記試料の厚さt(mm)との関係で、下記(i)式を満足するように調整する工程と、
(c)前記試料と前記対極との間に電位差を生じさせて、前記試料に電気化学的に水素を充填する工程と、を備える、
水素充填方法。
Tc<20×ln(t)+55 ・・・(i)
(1) A hydrogen filling method for a sample made of a metal containing 95% or more of a total volume% of one or more selected from a bcc phase and a bct phase in a metal phase,
(A) immersing the sample and the counter electrode in an electrolytic solution;
(B) adjusting the temperature Tc (° C.) of the electrolyte so as to satisfy the following formula (i) in relation to the thickness t (mm) of the sample;
(C) generating a potential difference between the sample and the counter electrode, and electrochemically filling the sample with hydrogen.
Hydrogen filling method.
Tc <20 × ln (t) +55 (i)

(2)前記(b)の工程において、前記電解液の温度を、さらに下記(ii)式を満足するように調整する、
上記(1)に記載の水素充填方法。
Tc<10×ln(t)+30 ・・・(ii)
(2) In the step (b), the temperature of the electrolytic solution is further adjusted to satisfy the following formula (ii).
The hydrogen filling method according to (1) above.
Tc <10 × ln (t) +30 (ii)

(3)前記(b)の工程において、前記電解液の温度を、さらに下記(iii)式を満足するように調整する、
上記(1)または(2)に記載の水素充填方法。
Tc≦18 ・・・(iii)
(3) In the step (b), the temperature of the electrolytic solution is further adjusted so as to satisfy the following formula (iii):
The hydrogen filling method according to the above (1) or (2).
Tc ≦ 18 (iii)

(4)前記(b)の工程において、前記電解液の温度を、前記電解液中の溶質のイオンの質量モル濃度m(mol/kg)との関係で、さらに下記(iv)式を満足するように調整する、
上記(1)から(3)のいずれかに記載の水素充填方法。
−1.86×m<Tc ・・・(iv)
(4) In the step (b), the temperature of the electrolytic solution further satisfies the following formula (iv) in relation to the molar mass m (mol / kg) of solute ions in the electrolytic solution. To adjust,
The hydrogen filling method according to any one of (1) to (3) above.
−1.86 × m <Tc (iv)

(5)前記(b)の工程において、前記試料と前記対極との距離を、0mmを超えて100mm以下に調整する、
上記(1)から(4)までのいずれかに記載の水素充填方法。
(5) In the step (b), the distance between the sample and the counter electrode is adjusted to be greater than 0 mm and not greater than 100 mm.
The hydrogen filling method according to any one of (1) to (4) above.

(6)試料の水素脆化特性を評価する方法であって、
上記(1)から(5)までのいずれかに記載される(a)〜(c)の工程と、
(d)前記試料に含まれる水素濃度を測定する工程と、を備える、
水素脆化特性評価方法。
(6) A method for evaluating hydrogen embrittlement characteristics of a sample,
The steps (a) to (c) described in any one of (1) to (5) above;
(D) measuring the concentration of hydrogen contained in the sample,
Hydrogen embrittlement characteristic evaluation method.

(7)試料の水素脆化特性を評価する方法であって、
上記(1)から(5)までのいずれかに記載される(a)〜(c)の工程と、
(e)前記試料に対して応力を負荷する工程と、を備える、
水素脆化特性評価方法。
(7) A method for evaluating the hydrogen embrittlement characteristics of a sample,
The steps (a) to (c) described in any one of (1) to (5) above;
(E) applying a stress to the sample,
Hydrogen embrittlement characteristic evaluation method.

本発明によれば、試料に水素を効率的に充填することが可能となる。   According to the present invention, it is possible to efficiently fill a sample with hydrogen.

本発明の一実施形態に係る水素充填方法および水素脆化特性評価方法について、詳細に説明する。   A hydrogen filling method and a hydrogen embrittlement characteristic evaluation method according to an embodiment of the present invention will be described in detail.

本発明の一実施形態に係る水素充填方法は、(a)浸漬工程、(b)調整工程、および(c)水素充填工程を備える。各工程について詳しく説明する。   A hydrogen filling method according to an embodiment of the present invention includes (a) an immersion step, (b) an adjustment step, and (c) a hydrogen filling step. Each step will be described in detail.

(a)浸漬工程
浸漬工程においては、試料および対極を電解液に浸漬する。本発明において、試料は、金属相中にbcc相およびbct相から選択される1種以上を、合計の体積%で、95%以上含む金属からなるものである。すなわち、金属相中に含まれるfcc相の体積率は5%以下となる。なお、bcc相にはフェライト、低炭素マルテンサイト等が含まれ、bct相には高炭素マルテンサイトが含まれる。また、fcc相としては、オーステナイトが挙げられる。また、試料の形状については特に制限はない。例えば、板状であってもよいし、円柱状であってもよい。
(A) Immersion step In the immersion step, the sample and the counter electrode are immersed in the electrolytic solution. In the present invention, the sample is made of a metal containing 95% or more in a total volume% of one or more selected from the bcc phase and the bct phase in the metal phase. That is, the volume ratio of the fcc phase contained in the metal phase is 5% or less. The bcc phase includes ferrite, low carbon martensite, and the like, and the bct phase includes high carbon martensite. An example of the fcc phase is austenite. Moreover, there is no restriction | limiting in particular about the shape of a sample. For example, a plate shape may be sufficient and a column shape may be sufficient.

試料の寸法についても特に制限はないが、水素濃度測定の精度を安定させる観点から、0.5g以上であるのが好ましく、1g以上であるのがより好ましい。なお、試料表面に汚れまたは酸化皮膜等が付着していると、水素の充填が阻害されるおそれがある。そのため、試料表面は洗浄し、汚れおよび酸化皮膜等は除去しておくことが望ましい。   Although there is no restriction | limiting in particular also about the dimension of a sample, From a viewpoint of stabilizing the precision of hydrogen concentration measurement, it is preferable that it is 0.5 g or more, and it is more preferable that it is 1 g or more. If dirt or an oxide film adheres to the sample surface, filling of hydrogen may be hindered. Therefore, it is desirable to clean the sample surface and remove dirt, oxide film, and the like.

また、対極の材質についても特に制限はないが、例えば白金を用いることができる。対極の形状については特に制限はなく、例えば、線状(棒状)または板状のものを用いればよい。なお、試料全体に効率的に水素を充填するためには、試料の表面積に対する対極の表面積が下記(a)式を満足することが好ましい。
S2/S1≧0.1 ・・・(a)
但し、(a)式中の各記号の意味は以下のとおりである。
S1:試料の表面積(mm
S2:対極の表面積(mm
The material of the counter electrode is not particularly limited, but platinum can be used, for example. There is no restriction | limiting in particular about the shape of a counter electrode, For example, what is necessary is just to use a linear (bar shape) or plate-shaped thing. In order to efficiently fill the entire sample with hydrogen, the surface area of the counter electrode with respect to the surface area of the sample preferably satisfies the following formula (a).
S2 / S1 ≧ 0.1 (a)
However, the meaning of each symbol in the formula (a) is as follows.
S1: Sample surface area (mm 2 )
S2: Surface area of the counter electrode (mm 2 )

さらに、電解液の成分については特に制限はなく、酸性、中性またはアルカリ性のいずれでも構わない。簡便に準備できかつ導電しやすいものとしてNaCl水溶液が好ましい。この時、導通が取れればNaClの濃度は問わないが、例えば、0.5質量%以上とすることが好ましい。   Furthermore, there is no restriction | limiting in particular about the component of electrolyte solution, Any of acidic, neutral, or alkaline may be sufficient. A NaCl aqueous solution is preferable as a material that can be easily prepared and easily conducts electricity. At this time, the concentration of NaCl is not limited as long as conduction is obtained, but it is preferably 0.5% by mass or more, for example.

加えて、水素をより多量に充填したい場合は、HCl、HSOなどの酸を用いてもよく、また、触媒毒であるチオシアンアンモニウム(NHSCN)、チオ尿素などを水溶液に加えてもよい。一方、試料の腐食抑制の観点から、NaOHなどのアルカリ水溶液を用いてもよい。 In addition, when it is desired to charge a larger amount of hydrogen, an acid such as HCl or H 2 SO 4 may be used, and a catalyst poison such as thiocyanammonium (NH 4 SCN) or thiourea is added to the aqueous solution. Also good. On the other hand, an alkaline aqueous solution such as NaOH may be used from the viewpoint of inhibiting corrosion of the sample.

(b)調整工程
調整工程においては、電解液の温度を調整する。上述のように、本発明において、試料はbcc相および/またはbct相を主体とする金属からなるものを対象としている。bcc相および/またはbct相に充填される水素の多くは転位等の欠陥にトラップされており、低温ほどトラップ水素量は増加する。
(B) Adjustment process In an adjustment process, the temperature of electrolyte solution is adjusted. As described above, in the present invention, the sample is intended to be made of a metal mainly composed of the bcc phase and / or the bct phase. Most of the hydrogen charged in the bcc phase and / or the bct phase is trapped by defects such as dislocations, and the amount of trapped hydrogen increases as the temperature decreases.

一方、後述の水素充填工程終了後、水素脆化特性評価のため水素量測定等を行うまでの間に、試料表面からの水素の放散が起こる。しかし、試料の温度を低くすることにより、試料からの水素の放散を低減することができる。そして、電解液の温度を低くするほど、試料の温度は低くなる。   On the other hand, after the hydrogen filling step described later is completed, hydrogen is diffused from the sample surface until the hydrogen amount is measured for evaluating the hydrogen embrittlement characteristics. However, by lowering the temperature of the sample, hydrogen emission from the sample can be reduced. And the temperature of a sample becomes low, so that the temperature of electrolyte solution is made low.

ここで、試料の厚さが薄いほど、水素の放散による試料中の平均水素濃度の低下は大きい。したがって、試料の厚さが薄いほど、効率的な水素充填のために、水素充填量の増加および水素放散の低減が求められる。以上より、本発明者らが検討を行った結果、試料の厚さに応じて電解液の温度を低く調整することにより、水素を効率的に充填できることが分かった。   Here, the thinner the sample is, the greater the decrease in the average hydrogen concentration in the sample due to hydrogen diffusion. Therefore, as the sample thickness is thinner, an increase in hydrogen filling amount and a reduction in hydrogen diffusion are required for efficient hydrogen filling. From the above, as a result of investigations by the present inventors, it has been found that hydrogen can be efficiently charged by adjusting the temperature of the electrolytic solution to be low according to the thickness of the sample.

具体的には、電解液の温度をTc(℃)、試料の厚さをt(mm)とした場合において、電解液の温度を、下記(i)式を満足するように調整する。
Tc<20×ln(t)+55 ・・・(i)
Specifically, when the temperature of the electrolytic solution is Tc (° C.) and the thickness of the sample is t (mm), the temperature of the electrolytic solution is adjusted so as to satisfy the following formula (i).
Tc <20 × ln (t) +55 (i)

また、電解液の温度は、さらに下記(ii)式を満足するように調整することが好ましく、下記(iii)式を満足するように調整することがより好ましい。
Tc<10×ln(t)+30 ・・・(ii)
Tc≦18 ・・・(iii)
Moreover, it is preferable to adjust so that the temperature of electrolyte solution may further satisfy | fill following (ii) Formula, and it is more preferable to adjust so that the following (iii) Formula may be satisfied.
Tc <10 × ln (t) +30 (ii)
Tc ≦ 18 (iii)

なお、電解液の温度は、0℃以下の温度であってもよい。ただし、電解液の温度を凝固点以上とするためには、電解液の温度Tc(℃)を、電解液中の溶質のイオンの質量モル濃度m(mol/kg)との関係で、下記(iv)式を満足するように調整することが好ましい。
−1.86×m<Tc ・・・(iv)
The temperature of the electrolytic solution may be 0 ° C. or lower. However, in order to make the temperature of the electrolytic solution equal to or higher than the freezing point, the temperature Tc (° C.) of the electrolytic solution is related to the mass concentration m (mol / kg) of solute ions in the electrolytic solution as follows (iv It is preferable to adjust so as to satisfy the formula.
−1.86 × m <Tc (iv)

本発明においては、強酸と強塩基とから生成する塩については電離度を1とし、弱酸と弱塩基、弱酸と強塩基、または強酸と弱塩基から生成する塩については電離度から、イオンの質量モル濃度を計算するものとする。   In the present invention, the ionization degree is set to 1 for a salt formed from a strong acid and a strong base, and the ion mass is determined from the ionization degree for a salt generated from a weak acid and a weak base, a weak acid and a strong base, or a strong acid and a weak base. The molar concentration shall be calculated.

電解液の冷却は、投げ込み式クーラーまたは冷媒循環装置などを用い、設定した温度に維持する。また、設定温度に対して室温が上下に変化する場所で実施する場合は、ヒーターおよびクーラーを同時に稼働できるように装置を組み立てる等により、温度が維持できるように注意する。   Cooling of the electrolytic solution is maintained at a set temperature by using a throw-in cooler or a refrigerant circulation device. In addition, when it is carried out in a place where the room temperature changes up and down with respect to the set temperature, care is taken so that the temperature can be maintained by assembling the apparatus so that the heater and the cooler can be operated simultaneously.

ここで、本発明において、試料の内部の任意の点から試料表面までの長さが最短となる距離をLとし、Lの最大値をLmaxとした時に、2Lmaxを試料の厚さと定義する。すなわち、試料が板状の場合には板厚が、また、円柱状の場合には直径が、それぞれの厚さとなる。 In the present invention, the distance that the length from any point within the sample to the sample surface is the shortest and L, the maximum value of L is taken as L max, a 2L max for thickness and definition of the sample . That is, the thickness is the thickness when the sample is plate-shaped, and the diameter is the thickness when the sample is cylindrical.

さらに、bcc相およびbct相の合計体積率は、試料が鋼の場合は、以下の方法により求めるものとする。まず、試料を1200番エミリー紙で研磨し、次いで、室温のフッ酸および過塩素酸の混酸溶液に浸漬して化学研磨することにより、厚さの4分の1を除去する。次に、研磨を施した試料表面に、矢澤武男ら(鉄と鋼、Vol.83(1997)No.1、pp.60−65)に準拠した方法でX線回折測定(Cu対陰極、管電圧30kV、管電流100mA)を実施し、fcc相に関しては(111)、(200)および(220)、bcc相またはbct相に関しては(110)、(200)および(211)のピーク強度を求め、矢澤武男らに準拠した方法でfcc相の体積率を算出する。そして、得られた値を100%から差し引くことによって、bcc相およびbct相の合計体積率を求める。   Further, the total volume ratio of the bcc phase and the bct phase is determined by the following method when the sample is steel. First, the sample is polished with # 1200 Emily paper, and then immersed in a mixed acid solution of hydrofluoric acid and perchloric acid at room temperature for chemical polishing to remove a quarter of the thickness. Next, X-ray diffraction measurement (Cu counter cathode, tube) was applied to the polished sample surface by a method in accordance with Takeo Yazawa et al. (Iron and Steel, Vol. 83 (1997) No. 1, pp. 60-65). The peak intensity of (111), (200) and (220) for the fcc phase, and (110), (200) and (211) for the bcc phase or the bct phase. The volume fraction of the fcc phase is calculated by a method based on Takeo Yazawa et al. Then, the total volume ratio of the bcc phase and the bct phase is obtained by subtracting the obtained value from 100%.

また、試料が鋼以外の金属の場合は、上記と同様の方法により研磨およびX線回折測定を行い、100%からfcc相およびhcp相の体積率を差し引くことにより、bcc相およびbct相の合計体積率を求める。   When the sample is a metal other than steel, polishing and X-ray diffraction measurement are performed in the same manner as described above, and the volume ratio of the fcc phase and the hcp phase is subtracted from 100% to obtain the total of the bcc phase and the bct phase. Obtain the volume ratio.

調整工程においては、さらに、試料と対極との距離を調整してもよい。これまで、試料と対極との距離については、実験結果に大きく影響を及ぼす要素としては考えておらず、特別な検討はなされてこなかった。また、一般的には、発生する電界の均一性の観点からある程度の距離を確保すべきと考えられてきた。   In the adjustment step, the distance between the sample and the counter electrode may be further adjusted. So far, the distance between the sample and the counter electrode has not been considered as a factor that greatly affects the experimental results, and no special consideration has been made. In general, it has been considered that a certain distance should be secured from the viewpoint of the uniformity of the generated electric field.

しかしながら、本発明者らが、試料および対極の距離と水素充填量との関係について検討を行った結果、従来の考えとは異なり、接触しない範囲で距離が近いほど水素充填量が増加する傾向にあることを見出した。   However, as a result of studying the relationship between the distance between the sample and the counter electrode and the hydrogen filling amount, the present inventors have found that the hydrogen filling amount tends to increase as the distance is shorter in the non-contact range, unlike the conventional idea. I found out.

そのため、本発明においては、調整工程において、試料と対極との距離を、0mmを超えて100mm以下に調整することが好ましい。上記の距離は短ければ短い方が好ましく、50mm以下であることが好ましく、10mm以下であることがより好ましく、5mm以下であることがさらに好ましい。なお、試料と対極との接触を避ける必要があるため、その距離は1mm以上であることが好ましい。   Therefore, in this invention, it is preferable to adjust the distance of a sample and a counter electrode to 100 mm or less exceeding 0 mm in an adjustment process. The shorter the distance, the better. The distance is preferably 50 mm or less, more preferably 10 mm or less, and even more preferably 5 mm or less. In addition, since it is necessary to avoid contact with a sample and a counter electrode, it is preferable that the distance is 1 mm or more.

ここで、本発明において、試料と対極との距離とは、試料の表面上の任意の点と対極の表面上の任意の点との最短距離を指すものとする。   Here, in the present invention, the distance between the sample and the counter electrode refers to the shortest distance between an arbitrary point on the surface of the sample and an arbitrary point on the surface of the counter electrode.

(c)水素充填工程
水素充填工程においては、試料と対極との間に電位差を生じさせて、試料に電気化学的に水素を充填する。具体的には、試料および対極を、電線等を介して外部電源に接続し、試料と対極との間に電位差を生じさせて、試料を対極に対して負電位にすることによって、試料に水素が充填される。この際、例えば、外部電源にポテンショ/ガルバノスタットを用いることで、水素の充填を電流制御(定電流)で行うことができる。
(C) Hydrogen filling step In the hydrogen filling step, a potential difference is generated between the sample and the counter electrode, and the sample is electrochemically filled with hydrogen. Specifically, the sample and the counter electrode are connected to an external power source via an electric wire or the like, a potential difference is generated between the sample and the counter electrode, and the sample is set to a negative potential with respect to the counter electrode. Is filled. At this time, for example, by using a potentio / galvanostat as an external power source, hydrogen can be charged by current control (constant current).

(d)水素濃度測定工程
本発明の一実施形態に係る水素脆化特性評価方法においては、上述の(a)〜(c)の工程に加えて、試料に含まれる水素濃度を測定する工程を備える。水素濃度の測定は、上述の方法によって試料に水素を充填した後に行ってもよいし、水素充填の前後の両方で行ってもよい。水素脆化特性を評価するための重要なパラメータの1つである試料中の水素濃度を測定することにより、試料の水素脆化特性を評価することが可能となる。
(D) Hydrogen concentration measurement step In the hydrogen embrittlement characteristic evaluation method according to one embodiment of the present invention, in addition to the steps (a) to (c) described above, a step of measuring the hydrogen concentration contained in the sample is performed. Prepare. The measurement of the hydrogen concentration may be performed after the sample is filled with hydrogen by the above-described method, or may be performed both before and after the hydrogen filling. By measuring the hydrogen concentration in the sample, which is one of important parameters for evaluating the hydrogen embrittlement characteristics, the hydrogen embrittlement characteristics of the sample can be evaluated.

試料中の水素濃度の測定方法については特に制限はなく、例えば、ガスクロマトグラフ式昇温脱離水素分析装置(TDA)を用いて、試料を100℃/hの昇温速度で400℃まで加熱した後、放出された水素量を測定することにより求めることができる。   The method for measuring the hydrogen concentration in the sample is not particularly limited. For example, the sample was heated to 400 ° C. at a temperature increase rate of 100 ° C./h using a gas chromatographic temperature-programmed desorption hydrogen analyzer (TDA). Later, it can be determined by measuring the amount of hydrogen released.

(e)応力負荷工程
本発明の他の実施形態に係る水素脆化特性評価方法においては、上述の(a)〜(c)の工程に加えて、試料に対して応力を負荷する工程を備える。試料に対する応力の負荷は、上述の方法によって試料に水素を充填した後に行ってもよいし、水素充填しながら行ってもよい。試料に負荷する応力の種類については特に制限されず、引張応力、圧縮応力、曲げ応力、ねじり応力のいずれであってもよい。そして、例えば、破断が生じた際の応力を測定することによって、試料の水素脆化特性を直接的に評価することが可能である。
(E) Stress loading step In the hydrogen embrittlement characteristic evaluation method according to another embodiment of the present invention, in addition to the steps (a) to (c) described above, a step of applying stress to the sample is provided. . The stress load on the sample may be performed after the sample is filled with hydrogen by the above-described method, or may be performed while filling with hydrogen. The type of stress applied to the sample is not particularly limited, and may be any of tensile stress, compressive stress, bending stress, and torsional stress. For example, the hydrogen embrittlement characteristics of the sample can be directly evaluated by measuring the stress when the fracture occurs.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.

低合金鋼であり、bcc相の体積率が95%以上であるJIS SCM435鋼を試料として用いて、水素の充填を行った。試料の寸法および形状は、長さ20mm、幅10mm、厚さ0.2〜1.0mmの薄板状とした。対極には、長さ30mm、幅10mm、厚さ0.2mmの薄板状の白金を用いた。そして、電解液には、試験No.1〜9では3%NaCl、試験No.10〜12では5%NaCl水溶液を使用し、表1に示す温度に調整した。   JIS SCM435 steel, which is a low alloy steel and has a volume ratio of bcc phase of 95% or more, was used as a sample for hydrogen filling. The size and shape of the sample was a thin plate having a length of 20 mm, a width of 10 mm, and a thickness of 0.2 to 1.0 mm. As the counter electrode, a thin plate-like platinum having a length of 30 mm, a width of 10 mm, and a thickness of 0.2 mm was used. And, in the electrolyte, the test No. 1-9, 3% NaCl, test no. 10-12 used 5% NaCl aqueous solution and adjusted to the temperature shown in Table 1.

そして、電解液に上記の試料および対極を浸漬した後、試料と対極とが互いに平行であり、距離が30mmとなるようにそれぞれ配置した。そして、外部電源を用いて試料と対極との間に電位差を生じさせて、試料を対極に対して負電位にした。なお、外部電源としてはポテンショ/ガルバノスタットを用い、電流密度を1.0mA/cmとした。また、充填時間は24時間で一定とした。 And after immersing said sample and a counter electrode in electrolyte solution, the sample and the counter electrode were mutually arrange | positioned so that a distance might be set to 30 mm. Then, a potential difference was generated between the sample and the counter electrode using an external power source, and the sample was set to a negative potential with respect to the counter electrode. Note that a potentio / galvanostat was used as the external power source, and the current density was 1.0 mA / cm 2 . The filling time was constant at 24 hours.

Figure 2019184585
Figure 2019184585

その後、各試料中に充填された水素濃度の測定を行った。具体的には、TDAを用いて、試料を100℃/hの昇温速度で400℃まで加熱した後、放出された水素量を測定することにより、試料中に充填された水素濃度を求めた。その結果を表1に併せて示す。   Thereafter, the concentration of hydrogen charged in each sample was measured. Specifically, using TDA, the sample was heated to 400 ° C. at a rate of temperature increase of 100 ° C./h, and then the hydrogen concentration filled in the sample was determined by measuring the amount of released hydrogen. . The results are also shown in Table 1.

表1を参照して、電解液の温度が(i)式を満足しない試験No.3、7および9においては、充填された水素濃度がそれぞれ0.16ppm、0.11ppmおよび0.15ppmと低い結果となった。それに対して、(i)式を満足する本発明例の試験No.1、2、4〜6、8および10〜12では、水素濃度が0.20ppm以上となり良好な結果となった。特に電解液の温度を18℃以下にした試験No.1、5、8および10〜12では、水素濃度が0.30ppm以上となり著しく良好な結果となった。   With reference to Table 1, test No. in which the temperature of electrolyte solution does not satisfy Formula (i). In 3, 7, and 9, the charged hydrogen concentrations were low, 0.16 ppm, 0.11 ppm, and 0.15 ppm, respectively. On the other hand, test No. of the present invention example satisfying the formula (i). In 1, 2, 4-6, 8, and 10-12, the hydrogen concentration was 0.20 ppm or more, and good results were obtained. In particular, test no. In 1, 5, 8 and 10-12, the hydrogen concentration was 0.30 ppm or more, and extremely good results were obtained.

本発明によれば、試料に水素を効率的に充填することが可能となる。また、本発明に係る水素充填方法を採用することにより、水素脆化特性の評価を効率的に行うことが可能となり、水素脆化のメカニズム解明に寄与することができる。   According to the present invention, it is possible to efficiently fill a sample with hydrogen. In addition, by adopting the hydrogen filling method according to the present invention, it becomes possible to efficiently evaluate the hydrogen embrittlement characteristics and contribute to elucidation of the mechanism of hydrogen embrittlement.

Claims (7)

金属相中にbcc相およびbct相から選択される1種以上を、合計の体積%で、95%以上含む金属からなる試料への水素充填方法であって、
(a)前記試料および対極を電解液に浸漬する工程と、
(b)前記電解液の温度Tc(℃)を、前記試料の厚さt(mm)との関係で、下記(i)式を満足するように調整する工程と、
(c)前記試料と前記対極との間に電位差を生じさせて、前記試料に電気化学的に水素を充填する工程と、を備える、
水素充填方法。
Tc<20×ln(t)+55 ・・・(i)
A method for filling hydrogen into a sample comprising a metal containing 95% or more of a total volume% of one or more selected from a bcc phase and a bct phase in a metal phase,
(A) immersing the sample and the counter electrode in an electrolytic solution;
(B) adjusting the temperature Tc (° C.) of the electrolyte so as to satisfy the following formula (i) in relation to the thickness t (mm) of the sample;
(C) generating a potential difference between the sample and the counter electrode, and electrochemically filling the sample with hydrogen.
Hydrogen filling method.
Tc <20 × ln (t) +55 (i)
前記(b)の工程において、前記電解液の温度を、さらに下記(ii)式を満足するように調整する、
請求項1に記載の水素充填方法。
Tc<10×ln(t)+30 ・・・(ii)
In the step (b), the temperature of the electrolytic solution is further adjusted so as to satisfy the following formula (ii):
The hydrogen filling method according to claim 1.
Tc <10 × ln (t) +30 (ii)
前記(b)の工程において、前記電解液の温度を、さらに下記(iii)式を満足するように調整する、
請求項1または請求項2に記載の水素充填方法。
Tc≦18 ・・・(iii)
In the step (b), the temperature of the electrolytic solution is further adjusted so as to satisfy the following formula (iii):
The hydrogen filling method according to claim 1 or 2.
Tc ≦ 18 (iii)
前記(b)の工程において、前記電解液の温度を、前記電解液中の溶質のイオンの質量モル濃度m(mol/kg)との関係で、さらに下記(iv)式を満足するように調整する、
請求項1から請求項3のいずれかに記載の水素充填方法。
−1.86×m<Tc ・・・(iv)
In the step (b), the temperature of the electrolytic solution is adjusted so as to further satisfy the following formula (iv) in relation to the molar concentration m (mol / kg) of ions of the solute in the electrolytic solution. To
The hydrogen filling method according to any one of claims 1 to 3.
−1.86 × m <Tc (iv)
前記(b)の工程において、前記試料と前記対極との距離を、0mmを超えて100mm以下に調整する、
請求項1から請求項4までのいずれかに記載の水素充填方法。
In the step (b), the distance between the sample and the counter electrode is adjusted to more than 0 mm and not more than 100 mm.
The hydrogen filling method according to any one of claims 1 to 4.
試料の水素脆化特性を評価する方法であって、
請求項1から請求項5までのいずれかに記載される(a)〜(c)の工程と、
(d)前記試料に含まれる水素濃度を測定する工程と、を備える、
水素脆化特性評価方法。
A method for evaluating the hydrogen embrittlement characteristics of a sample,
The steps (a) to (c) described in any one of claims 1 to 5,
(D) measuring the concentration of hydrogen contained in the sample,
Hydrogen embrittlement characteristic evaluation method.
試料の水素脆化特性を評価する方法であって、
請求項1から請求項5までのいずれかに記載される(a)〜(c)の工程と、
(e)前記試料に対して応力を負荷する工程と、を備える、
水素脆化特性評価方法。
A method for evaluating the hydrogen embrittlement characteristics of a sample,
The steps (a) to (c) described in any one of claims 1 to 5,
(E) applying a stress to the sample,
Hydrogen embrittlement characteristic evaluation method.
JP2019047572A 2018-04-04 2019-03-14 Hydrogen filling method and hydrogen embrittlement characteristic evaluation method Pending JP2019184585A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018072085 2018-04-04
JP2018072085 2018-04-04

Publications (1)

Publication Number Publication Date
JP2019184585A true JP2019184585A (en) 2019-10-24

Family

ID=68340083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019047572A Pending JP2019184585A (en) 2018-04-04 2019-03-14 Hydrogen filling method and hydrogen embrittlement characteristic evaluation method

Country Status (1)

Country Link
JP (1) JP2019184585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7492944B2 (en) 2020-09-24 2024-05-30 Jfeテクノリサーチ株式会社 Hydrogen charging method and hydrogen embrittlement characteristic evaluation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003142A (en) * 1999-06-22 2001-01-09 Nippon Steel Corp Martensitic stainless steel for disk brake
US20040163738A1 (en) * 2002-12-12 2004-08-26 Oskar Pacher Chromium steel alloys and articles made thereof
JP2016057163A (en) * 2014-09-09 2016-04-21 新日鐵住金株式会社 Evaluation method of hydrogen embrittlement characteristic of steel material
JP2016121947A (en) * 2014-12-25 2016-07-07 東京電力ホールディングス株式会社 Test solution for hydrogen embrittlement of steel material, hydrogen charge method, and hydrogen embrittlement test method
JP2017031483A (en) * 2015-08-05 2017-02-09 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL FOR HIGH PRESSURE HYDROGEN GAS AND MANUFACTURING METHOD THEREFOR, PIPE, CONTAINER, VALVE AND JOINT CONSISTING OF THE STEEL MATERIAL
JP2017219532A (en) * 2016-06-03 2017-12-14 日本電信電話株式会社 Method for calculating area of test piece in hydrogen embrittlement property evaluation test and method for calculating test cell size

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003142A (en) * 1999-06-22 2001-01-09 Nippon Steel Corp Martensitic stainless steel for disk brake
US20040163738A1 (en) * 2002-12-12 2004-08-26 Oskar Pacher Chromium steel alloys and articles made thereof
JP2016057163A (en) * 2014-09-09 2016-04-21 新日鐵住金株式会社 Evaluation method of hydrogen embrittlement characteristic of steel material
JP2016121947A (en) * 2014-12-25 2016-07-07 東京電力ホールディングス株式会社 Test solution for hydrogen embrittlement of steel material, hydrogen charge method, and hydrogen embrittlement test method
JP2017031483A (en) * 2015-08-05 2017-02-09 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL FOR HIGH PRESSURE HYDROGEN GAS AND MANUFACTURING METHOD THEREFOR, PIPE, CONTAINER, VALVE AND JOINT CONSISTING OF THE STEEL MATERIAL
JP2017219532A (en) * 2016-06-03 2017-12-14 日本電信電話株式会社 Method for calculating area of test piece in hydrogen embrittlement property evaluation test and method for calculating test cell size

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
長瀬 拓,他4名: "残留オーステナイトを含む高強度鋼の水素脆化と相変態に起因するき裂発生点の局所解析", 鉄と鋼, vol. 102, no. 9, JPN7023001189, 2016, JP, pages 60 - 69, ISSN: 0005097793 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7492944B2 (en) 2020-09-24 2024-05-30 Jfeテクノリサーチ株式会社 Hydrogen charging method and hydrogen embrittlement characteristic evaluation method

Similar Documents

Publication Publication Date Title
JP6152455B2 (en) Surface-treated steel sheet for battery container, battery container and battery
JPWO2019083044A1 (en) Surface-treated steel sheet and its manufacturing method
CN113748225B (en) Surface-treated steel sheet and method for producing same
JP6033304B2 (en) Surface-treated steel sheet for battery container, battery container and battery
Venegas et al. On the influence of crystallographic texture on pitting corrosion in pipeline steels
JP2019184585A (en) Hydrogen filling method and hydrogen embrittlement characteristic evaluation method
Reimer et al. Time Dependence of the Open Circuit Potential of Platinum Disk Electrodes in Half Cell Experiments
Lai et al. EIS and XPS studies on passive film of AISI 304 stainless steel in dilute sulfuric acid solution
JP6200719B2 (en) Method for producing surface-treated steel sheet for battery container
JP6260752B1 (en) Steel plate for battery outer can, battery outer can and battery
JP4823991B2 (en) Evaluation method for hydrogen embrittlement of thin steel sheet
Wang et al. Effects of stirring action during friction on electrode processes of AISI 304 stainless steel in sulphuric acid
JP2019184293A (en) Hydrogen filling method and hydrogen embrittlement characteristic evaluation method
JP2020030187A (en) Hydrogen filling method and hydrogen embrittlement characteristics evaluation method
JP2021056132A (en) Method for filling hydrogen and method for evaluating embrittlement characteristic of hydrogen
JP7078185B2 (en) Ni-plated steel sheet and its manufacturing method
Kim et al. Electrochemical investigation of exchange current density of uranium and rare-earths couples (M3+/M0) in LiCl-KCl eutectic electrolyte
JP6724761B2 (en) Hydrogen embrittlement evaluation apparatus, hydrogen embrittlement evaluation method, and test piece used therein
JP2019184292A (en) Hydrogen filling method and hydrogen embrittlement characteristic evaluation method
Bennett et al. Investigating the nucleation and growth of electrodeposited Pt on polycrystalline diamond electrodes
Rosalbino et al. Influence of rare earth metals on the characteristics of anodic oxide films on aluminium and their dissolution behaviour in NaOH solution
Khatbi et al. Electrochemical and metallurgical behavior of lead-aluminum casting alloys as grids for lead-acid batteries
Leng et al. The effects of testing conditions on corrosion behaviours of SS316L for bipolar plate of PEMFC
EP3269847A1 (en) Method for producing surface-treated steel sheet for battery containers, and surface-treated steel sheet for battery containers
JP2020134339A (en) Method for filling hydrogen and method for evaluating hydrogen embrittlement characterization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230704