JP2019184292A - Hydrogen filling method and hydrogen embrittlement characteristic evaluation method - Google Patents

Hydrogen filling method and hydrogen embrittlement characteristic evaluation method Download PDF

Info

Publication number
JP2019184292A
JP2019184292A JP2018072083A JP2018072083A JP2019184292A JP 2019184292 A JP2019184292 A JP 2019184292A JP 2018072083 A JP2018072083 A JP 2018072083A JP 2018072083 A JP2018072083 A JP 2018072083A JP 2019184292 A JP2019184292 A JP 2019184292A
Authority
JP
Japan
Prior art keywords
sample
hydrogen
counter electrode
filling
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018072083A
Other languages
Japanese (ja)
Other versions
JP7172103B2 (en
Inventor
裕嗣 崎山
Hirotsugu Sakiyama
裕嗣 崎山
大村 朋彦
Tomohiko Omura
朋彦 大村
徹志 千田
Tetsushi Senda
徹志 千田
小林 憲司
Kenji Kobayashi
憲司 小林
宏太 富松
Kota Tomimatsu
宏太 富松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018072083A priority Critical patent/JP7172103B2/en
Publication of JP2019184292A publication Critical patent/JP2019184292A/en
Application granted granted Critical
Publication of JP7172103B2 publication Critical patent/JP7172103B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

【課題】試料に効率的に水素を充填することができる方法、およびそれにより水素が充填された試料の水素脆化特性を評価する方法を提供する。
【解決手段】試料への水素充填方法であって、(a)前記試料および対極を電解液に浸漬する工程と、(b)前記試料と前記対極との距離を、0mmを超えて100mm以下に調整する工程と、(c)前記試料と前記対極との間に電位差を生じさせて、前記試料に電気化学的に水素を充填する工程と、を備える、水素充填方法。
【選択図】 なし
A method for efficiently filling a sample with hydrogen and a method for evaluating the hydrogen embrittlement characteristics of the sample filled with hydrogen are provided.
A method for filling a sample with hydrogen, comprising: (a) a step of immersing the sample and the counter electrode in an electrolyte; and (b) a distance between the sample and the counter electrode exceeding 0 mm and not more than 100 mm. A hydrogen filling method comprising: a step of adjusting; and (c) causing a potential difference between the sample and the counter electrode to electrochemically fill the sample with hydrogen.
[Selection figure] None

Description

本発明は、水素充填方法および水素脆化特性評価方法に関する。   The present invention relates to a hydrogen filling method and a hydrogen embrittlement characteristic evaluation method.

高強度鋼の開発において、水素により強度および靭性が劣化する水素脆化が大きな問題となっている。しかし、水素脆化に関係する材料組織的な変化は定かでなく、水素脆化のメカニズム解明が求められている。そして、そのためには、効率的に水素を鋼中に充填する方法の確立が必要となる。   In the development of high-strength steel, hydrogen embrittlement, whose strength and toughness deteriorate due to hydrogen, has become a major problem. However, material structural changes related to hydrogen embrittlement are not clear, and elucidation of the mechanism of hydrogen embrittlement is required. For this purpose, it is necessary to establish a method for efficiently filling hydrogen into steel.

鋼中に水素を充填する方法として、電気化学的に水素チャージを行う方法が一般的に用いられている(例えば、特許文献1〜4を参照。)。   As a method of filling hydrogen in steel, a method of electrochemically charging hydrogen is generally used (see, for example, Patent Documents 1 to 4).

特開2004−309197号公報JP 2004-309197 A 特開2013−124998号公報JP2013-124998A 特開2013−124999号公報JP 2013-124999 A 特開2016−57163号公報JP, 2006-57163, A

上記の方法においては、電解液中に試料および対極を浸漬し、それらの間に電位差を生じさせることによって、電気化学的に水素を試料に充填する。しかしながら、上記の文献においては、水素チャージを行う際の試験条件について十分に検討がなされておらず、より効率的に水素を試料中に充填するためには、改善の余地が残されている。   In the above-described method, the sample and the counter electrode are immersed in an electrolytic solution, and a potential difference is generated therebetween, thereby electrochemically filling the sample with hydrogen. However, in the above-mentioned documents, the examination conditions for performing hydrogen charging have not been sufficiently studied, and there remains room for improvement in order to more efficiently fill the sample with hydrogen.

本発明は、上記の問題を解決し、試料に効率的に水素を充填することができる方法、およびそれにより水素が充填された試料の水素脆化特性を評価する方法を提供することを目的とする。   An object of the present invention is to solve the above problems and to provide a method capable of efficiently filling a sample with hydrogen, and a method for evaluating the hydrogen embrittlement characteristics of the sample filled with hydrogen thereby. To do.

本発明は、上記の問題を解決するためになされたものであり、下記の水素充填方法および水素脆化特性評価方法を要旨とする。   The present invention has been made to solve the above-described problems, and the gist of the present invention is the following hydrogen filling method and hydrogen embrittlement characteristic evaluation method.

(1)試料への水素充填方法であって、
(a)前記試料および対極を電解液に浸漬する工程と、
(b)前記試料と前記対極との距離を、0mmを超えて100mm以下に調整する工程と、
(c)前記試料と前記対極との間に電位差を生じさせて、前記試料に電気化学的に水素を充填する工程と、を備える、
水素充填方法。
(1) A method of filling a sample with hydrogen,
(A) immersing the sample and the counter electrode in an electrolytic solution;
(B) adjusting the distance between the sample and the counter electrode to more than 0 mm and not more than 100 mm;
(C) generating a potential difference between the sample and the counter electrode, and electrochemically filling the sample with hydrogen.
Hydrogen filling method.

(2)前記(b)の工程において、前記試料と前記対極との距離を、50mm以下に調整する、
上記(1)に記載の水素充填方法。
(2) In the step (b), the distance between the sample and the counter electrode is adjusted to 50 mm or less.
The hydrogen filling method according to (1) above.

(3)試料の水素脆化特性を評価する方法であって、
上記(1)または(2)に記載される(a)〜(c)の工程と、
(d)前記試料に含まれる水素濃度を測定する工程と、を備える、
水素脆化特性評価方法。
(3) A method for evaluating the hydrogen embrittlement characteristics of a sample,
The steps (a) to (c) described in (1) or (2) above;
(D) measuring the concentration of hydrogen contained in the sample,
Hydrogen embrittlement characteristic evaluation method.

(4)試料の水素脆化特性を評価する方法であって、
上記(1)または(2)に記載される(a)〜(c)の工程と、
(e)前記試料に対して応力を負荷する工程と、を備える、
水素脆化特性評価方法。
(4) A method for evaluating the hydrogen embrittlement characteristics of a sample,
The steps (a) to (c) described in (1) or (2) above;
(E) applying a stress to the sample,
Hydrogen embrittlement characteristic evaluation method.

本発明によれば、試料に水素を効率的に充填することが可能となる。   According to the present invention, it is possible to efficiently fill a sample with hydrogen.

本発明の一実施形態に係る水素充填方法および水素脆化特性評価方法について、詳細に説明する。   A hydrogen filling method and a hydrogen embrittlement characteristic evaluation method according to an embodiment of the present invention will be described in detail.

本発明の一実施形態に係る水素充填方法は、(a)浸漬工程、(b)調整工程、および(c)水素充填工程を備える。各工程について詳しく説明する。   A hydrogen filling method according to an embodiment of the present invention includes (a) an immersion step, (b) an adjustment step, and (c) a hydrogen filling step. Each step will be described in detail.

(a)浸漬工程
浸漬工程においては、試料および対極を電解液に浸漬する。試料の種類については特に制限はないが、導電性を有する試料が対象となる。導電性を有する試料としては、例えば、鋼などの金属材料が挙げられる。試料の形状についても特に制限はない。例えば、板状であってもよいし、円柱状であってもよい。
(A) Immersion step In the immersion step, the sample and the counter electrode are immersed in the electrolytic solution. Although there is no restriction | limiting in particular about the kind of sample, The sample which has electroconductivity becomes object. Examples of the conductive sample include metal materials such as steel. There is no particular limitation on the shape of the sample. For example, a plate shape may be sufficient and a column shape may be sufficient.

試料の寸法についても特に制限はないが、水素濃度測定の精度を安定させる観点から、0.5g以上であるのが好ましく、1g以上であるのがより好ましい。なお、試料表面に汚れまたは酸化皮膜等が付着していると、水素の充填が阻害されるおそれがある。そのため、試料表面は洗浄し、汚れおよび酸化皮膜等は除去しておくことが望ましい。   Although there is no restriction | limiting in particular also about the dimension of a sample, From a viewpoint of stabilizing the precision of hydrogen concentration measurement, it is preferable that it is 0.5 g or more, and it is more preferable that it is 1 g or more. If dirt or an oxide film adheres to the sample surface, filling of hydrogen may be hindered. Therefore, it is desirable to clean the sample surface and remove dirt, oxide film, and the like.

また、対極の材質についても特に制限はないが、例えば白金を用いることができる。対極の形状については特に制限はなく、例えば、線状(棒状)または板状のものを用いればよい。なお、試料全体に効率的に水素を充填するためには、試料の表面積に対する対極の表面積が下記(A)式を満足することが好ましい。
S2/S1≧0.1 ・・・(A)
但し、(A)式中の各記号の意味は以下のとおりである。
S1:試料の表面積(mm
S2:対極の表面積(mm
The material of the counter electrode is not particularly limited, but platinum can be used, for example. There is no restriction | limiting in particular about the shape of a counter electrode, For example, what is necessary is just to use a linear (bar shape) or plate-shaped thing. In order to efficiently fill the entire sample with hydrogen, it is preferable that the surface area of the counter electrode with respect to the surface area of the sample satisfies the following formula (A).
S2 / S1 ≧ 0.1 (A)
However, the meaning of each symbol in the formula (A) is as follows.
S1: Sample surface area (mm 2 )
S2: Surface area of the counter electrode (mm 2 )

さらに、電解液の成分については特に制限はなく、酸性、中性またはアルカリ性のいずれでも構わない。簡便に準備できかつ導電しやすいものとしてNaCl溶液が好ましい。この時、導通が取れればNaClの濃度は問わないが、例えば、0.5質量%以上とすることが好ましい。   Furthermore, there is no restriction | limiting in particular about the component of electrolyte solution, Any of acidic, neutral, or alkaline may be sufficient. A NaCl solution is preferable because it can be easily prepared and easily conducts electricity. At this time, the concentration of NaCl is not limited as long as conduction is obtained, but it is preferably 0.5% by mass or more, for example.

加えて、水素をより多量に充填したい場合は、HCl、HSOなどの酸を用いてもよく、また、触媒毒であるチオシアンアンモニウム(NHSCN)、チオ尿素などを溶液に加えてもよい。一方、試料の腐食抑制の観点から、NaOHなどのアルカリ溶液を用いてもよい。 In addition, if you want to charge more hydrogen, you can use acids such as HCl and H 2 SO 4 , and add catalyst poison thiocyanammonium (NH 4 SCN) and thiourea to the solution. Also good. On the other hand, an alkaline solution such as NaOH may be used from the viewpoint of inhibiting corrosion of the sample.

(b)調整工程
調整工程においては、試料と対極との距離を調整する。これまで、試料と対極との距離については、実験結果に大きく影響を及ぼす要素としては考えておらず、特別な検討はなされてこなかった。また、一般的には、発生する電界の均一性の観点からある程度の距離を確保すべきと考えられてきた。
(B) Adjustment process In an adjustment process, the distance of a sample and a counter electrode is adjusted. So far, the distance between the sample and the counter electrode has not been considered as a factor that greatly affects the experimental results, and no special study has been made. In general, it has been considered that a certain distance should be secured from the viewpoint of the uniformity of the generated electric field.

しかしながら、本発明者らが、試料および対極の距離と水素充填量との関係について検討を行った結果、従来の考えとは異なり、接触しない範囲で距離が近いほど水素充填量が増加する傾向にあることを見出した。   However, as a result of studying the relationship between the distance between the sample and the counter electrode and the hydrogen filling amount, the present inventors have found that the hydrogen filling amount tends to increase as the distance is shorter in the non-contact range, unlike the conventional idea. I found out.

そのため、本発明においては、調整工程において、試料と対極との距離を、0mmを超えて100mm以下に調整する。上記の距離は短ければ短い方が好ましく、50mm以下であることが好ましく、10mm以下であることがより好ましく、5mm以下であることがさらに好ましい。なお、試料と対極との接触を避ける必要があるため、その距離は1mm以上であることが好ましい。   Therefore, in the present invention, in the adjustment step, the distance between the sample and the counter electrode is adjusted to more than 0 mm and not more than 100 mm. The shorter the distance, the better. The distance is preferably 50 mm or less, more preferably 10 mm or less, and even more preferably 5 mm or less. In addition, since it is necessary to avoid contact with a sample and a counter electrode, it is preferable that the distance is 1 mm or more.

ここで、本発明において、試料と対極との距離とは、試料の表面上の任意の点と対極の表面上の任意の点との最短距離を指すものとする。   Here, in the present invention, the distance between the sample and the counter electrode refers to the shortest distance between an arbitrary point on the surface of the sample and an arbitrary point on the surface of the counter electrode.

(c)水素充填工程
水素充填工程においては、試料と対極との間に電位差を生じさせて、試料に電気化学的に水素を充填する。具体的には、試料および対極を、電線等を介して外部電源に接続し、試料と対極との間に電位差を生じさせて、試料を対極に対して負電位にすることによって、試料に水素が充填される。この際、例えば、外部電源にポテンショ/ガルバノスタットを用いることで、水素の充填を電流制御(定電流)で行うことができる。
(C) Hydrogen filling step In the hydrogen filling step, a potential difference is generated between the sample and the counter electrode, and the sample is electrochemically filled with hydrogen. Specifically, the sample and the counter electrode are connected to an external power source via an electric wire or the like, a potential difference is generated between the sample and the counter electrode, and the sample is set to a negative potential with respect to the counter electrode. Is filled. At this time, for example, by using a potentio / galvanostat as an external power source, hydrogen can be charged by current control (constant current).

(d)水素濃度測定工程
本発明の一実施形態に係る水素脆化特性評価方法においては、上述の(a)〜(c)の工程に加えて、試料に含まれる水素濃度を測定する工程を備える。水素濃度の測定は、上述の方法によって試料に水素を充填した後に行ってもよいし、水素充填の前後の両方で行ってもよい。水素脆化特性を評価するための重要なパラメータの1つである試料中の水素濃度を測定することにより、試料の水素脆化特性を評価することが可能となる。
(D) Hydrogen concentration measurement step In the hydrogen embrittlement characteristic evaluation method according to one embodiment of the present invention, in addition to the steps (a) to (c) described above, a step of measuring the hydrogen concentration contained in the sample is performed. Prepare. The measurement of the hydrogen concentration may be performed after the sample is filled with hydrogen by the above-described method, or may be performed both before and after the hydrogen filling. By measuring the hydrogen concentration in the sample, which is one of important parameters for evaluating the hydrogen embrittlement characteristics, the hydrogen embrittlement characteristics of the sample can be evaluated.

試料中の水素濃度の測定方法については特に制限はなく、例えば、ガスクロマトグラフ式昇温脱離水素分析装置(TDA)を用いて、試料を100℃/hの昇温速度で400℃まで加熱した後、放出された水素量を測定することにより求めることができる。   The method for measuring the hydrogen concentration in the sample is not particularly limited. For example, the sample was heated to 400 ° C. at a temperature increase rate of 100 ° C./h using a gas chromatographic temperature-programmed desorption hydrogen analyzer (TDA). Later, it can be determined by measuring the amount of hydrogen released.

(e)応力負荷工程
本発明の他の実施形態に係る水素脆化特性評価方法においては、上述の(a)〜(c)の工程に加えて、試料に対して応力を負荷する工程を備える。試料に対する応力の負荷は、上述の方法によって試料に水素を充填した後に行ってもよいし、水素充填しながら行ってもよい。試料に負荷する応力の種類については特に制限されず、引張応力、圧縮応力、曲げ応力、ねじり応力のいずれであってもよい。そして、例えば、破断が生じた際の応力を測定することによって、試料の水素脆化特性を直接的に評価することが可能である。
(E) Stress loading step In the hydrogen embrittlement characteristic evaluation method according to another embodiment of the present invention, in addition to the steps (a) to (c) described above, a step of applying stress to the sample is provided. . The stress load on the sample may be performed after the sample is filled with hydrogen by the above-described method, or may be performed while filling with hydrogen. The type of stress applied to the sample is not particularly limited, and may be any of tensile stress, compressive stress, bending stress, and torsional stress. For example, the hydrogen embrittlement characteristics of the sample can be directly evaluated by measuring the stress when the fracture occurs.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.

低合金鋼であり、bcc相の体積率が95%以上であるJIS SCM435鋼を試料として用いて、水素の充填を行った。試料の寸法および形状は、長さ20mm、幅10mm、厚さ1.0mmの薄板状とした。対極には、長さ30mm、幅10mm、厚さ0.2mmの薄板状の白金を用いた。そして、電解液には3%NaCl溶液を使用した。電解液の温度は25℃で一定とした。   JIS SCM435 steel, which is a low alloy steel and has a volume ratio of bcc phase of 95% or more, was used as a sample for hydrogen filling. The size and shape of the sample was a thin plate having a length of 20 mm, a width of 10 mm, and a thickness of 1.0 mm. As the counter electrode, a thin plate-like platinum having a length of 30 mm, a width of 10 mm, and a thickness of 0.2 mm was used. A 3% NaCl solution was used as the electrolytic solution. The temperature of the electrolyte was constant at 25 ° C.

そして、電解液に上記の試料および対極を浸漬した後、試料と対極とが互いに平行であり、距離が表1に示す長さとなるようにそれぞれ配置した。そして、外部電源を用いて試料と対極との間に電位差を生じさせて、試料を対極に対して負電位にした。なお、外部電源としてはポテンショ/ガルバノスタットを用い、電流密度を1.0mA/cmとした。また、充填時間は24時間で一定とした。 And after immersing said sample and a counter electrode in electrolyte solution, it arrange | positioned so that a sample and a counter electrode may be mutually parallel, and distance may become the length shown in Table 1, respectively. Then, a potential difference was generated between the sample and the counter electrode using an external power source, and the sample was set to a negative potential with respect to the counter electrode. Note that a potentio / galvanostat was used as the external power source, and the current density was 1.0 mA / cm 2 . The filling time was constant at 24 hours.

Figure 2019184292
Figure 2019184292

その後、各試料中に充填された水素濃度の測定を行った。具体的には、TDAを用いて、試料を100℃/hの昇温速度で400℃まで加熱した後、放出された水素量を測定することにより、試料中に充填された水素濃度を求めた。その結果を表1に併せて示す。   Thereafter, the concentration of hydrogen charged in each sample was measured. Specifically, using TDA, the sample was heated to 400 ° C. at a rate of temperature increase of 100 ° C./h, and then the hydrogen concentration filled in the sample was determined by measuring the amount of released hydrogen. . The results are also shown in Table 1.

表1を参照して、試料と対極との距離が200mmと、本発明の規定を満足しない試験No.7においては、充填された水素濃度が0.19ppm未満と低い結果となった。それに対して、距離を100mm以下とした本発明例の試験No.1〜6では、水素濃度が0.20ppm以上となり良好な結果となった。特に、距離を10mm以下とした場合においては、充填量が著しく増加する結果となった。   Referring to Table 1, the distance between the sample and the counter electrode is 200 mm, which is a test No. that does not satisfy the provisions of the present invention. In No. 7, the filled hydrogen concentration was less than 0.19 ppm. On the other hand, test no. In 1 to 6, the hydrogen concentration was 0.20 ppm or more, and good results were obtained. In particular, when the distance was 10 mm or less, the filling amount was remarkably increased.

本発明によれば、試料に水素を効率的に充填することが可能となる。また、本発明に係る水素充填方法を採用することにより、水素脆化特性の評価を効率的に行うことが可能となり、水素脆化のメカニズム解明に寄与することができる。   According to the present invention, it is possible to efficiently fill a sample with hydrogen. In addition, by adopting the hydrogen filling method according to the present invention, it becomes possible to efficiently evaluate the hydrogen embrittlement characteristics and contribute to elucidation of the mechanism of hydrogen embrittlement.

Claims (4)

試料への水素充填方法であって、
(a)前記試料および対極を電解液に浸漬する工程と、
(b)前記試料と前記対極との距離を、0mmを超えて100mm以下に調整する工程と、
(c)前記試料と前記対極との間に電位差を生じさせて、前記試料に電気化学的に水素を充填する工程と、を備える、
水素充填方法。
A method of filling a sample with hydrogen,
(A) immersing the sample and the counter electrode in an electrolytic solution;
(B) adjusting the distance between the sample and the counter electrode to more than 0 mm and not more than 100 mm;
(C) generating a potential difference between the sample and the counter electrode, and electrochemically filling the sample with hydrogen.
Hydrogen filling method.
前記(b)の工程において、前記試料と前記対極との距離を、50mm以下に調整する、
請求項1に記載の水素充填方法。
In the step (b), the distance between the sample and the counter electrode is adjusted to 50 mm or less.
The hydrogen filling method according to claim 1.
試料の水素脆化特性を評価する方法であって、
請求項1または請求項2に記載される(a)〜(c)の工程と、
(d)前記試料に含まれる水素濃度を測定する工程と、を備える、
水素脆化特性評価方法。
A method for evaluating the hydrogen embrittlement characteristics of a sample,
The steps (a) to (c) described in claim 1 or claim 2,
(D) measuring the concentration of hydrogen contained in the sample,
Hydrogen embrittlement characteristic evaluation method.
試料の水素脆化特性を評価する方法であって、
請求項1または請求項2に記載される(a)〜(c)の工程と、
(e)前記試料に対して応力を負荷する工程と、を備える、
水素脆化特性評価方法。
A method for evaluating the hydrogen embrittlement characteristics of a sample,
The steps (a) to (c) described in claim 1 or claim 2,
(E) applying a stress to the sample,
Hydrogen embrittlement characteristic evaluation method.
JP2018072083A 2018-04-04 2018-04-04 Hydrogen filling method and hydrogen embrittlement property evaluation method Active JP7172103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018072083A JP7172103B2 (en) 2018-04-04 2018-04-04 Hydrogen filling method and hydrogen embrittlement property evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018072083A JP7172103B2 (en) 2018-04-04 2018-04-04 Hydrogen filling method and hydrogen embrittlement property evaluation method

Publications (2)

Publication Number Publication Date
JP2019184292A true JP2019184292A (en) 2019-10-24
JP7172103B2 JP7172103B2 (en) 2022-11-16

Family

ID=68340676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018072083A Active JP7172103B2 (en) 2018-04-04 2018-04-04 Hydrogen filling method and hydrogen embrittlement property evaluation method

Country Status (1)

Country Link
JP (1) JP7172103B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309197A (en) * 2003-04-03 2004-11-04 Sumitomo Metal Ind Ltd Evaluation method for delayed fracture resistance
US20120024077A1 (en) * 2010-07-29 2012-02-02 Kyushu University, National University Corporation Inclusion rating method
JP2015004532A (en) * 2013-06-19 2015-01-08 富士通株式会社 Sensor, method for adjusting sensor and method for measuring using sensor
JP2017219532A (en) * 2016-06-03 2017-12-14 日本電信電話株式会社 Method for calculating area of test piece in hydrogen embrittlement property evaluation test and method for calculating test cell size
JP2017223502A (en) * 2016-06-14 2017-12-21 太平洋セメント株式会社 Measurement method and estimation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309197A (en) * 2003-04-03 2004-11-04 Sumitomo Metal Ind Ltd Evaluation method for delayed fracture resistance
US20120024077A1 (en) * 2010-07-29 2012-02-02 Kyushu University, National University Corporation Inclusion rating method
JP2015004532A (en) * 2013-06-19 2015-01-08 富士通株式会社 Sensor, method for adjusting sensor and method for measuring using sensor
JP2017219532A (en) * 2016-06-03 2017-12-14 日本電信電話株式会社 Method for calculating area of test piece in hydrogen embrittlement property evaluation test and method for calculating test cell size
JP2017223502A (en) * 2016-06-14 2017-12-21 太平洋セメント株式会社 Measurement method and estimation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
北村 房男: "第3回 測定の前に理解しておきたい電気化学の基礎(3)", ELECTROCHEMISTRY, vol. 81,7, JPN6022012806, 5 July 2013 (2013-07-05), JP, pages 584 - 588, ISSN: 0004741892 *

Also Published As

Publication number Publication date
JP7172103B2 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
Shi et al. Galvanostatic anodic polarisation curves and galvanic corrosion of high purity Mg in 3.5% NaCl saturated with Mg (OH) 2
JP4901662B2 (en) Test piece for evaluating hydrogen embrittlement of thin steel sheet and method for evaluating hydrogen embrittlement of thin steel sheet
Shi et al. Actuation by hydrogen electrosorption in hierarchical nanoporous palladium
Ejaz et al. The effects of hydrogen on anodic dissolution and passivation of iron in alkaline solutions
JP2013124998A (en) Hydrogen embrittlement resistance characteristic evaluation method for thin steel sheet
JP6354476B2 (en) Characterization method for hydrogen embrittlement of steel
Seikh et al. Microstructure characterization and corrosion resistance properties of Pb-Sb alloys for lead acid battery spine produced by different casting methods
Dean et al. Do Deep Eutectic Solvents Behave Like Ionic Liquid Electrolytes? A Perspective from the Electrode-Electrolyte Interface
JP4823991B2 (en) Evaluation method for hydrogen embrittlement of thin steel sheet
Kim et al. Effect of plastic deformation on the corrosion resistance of ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuel cells
Shaldaev et al. Determination of corrosion rate of molybdenum, rhenium and their alloys in sodium chloride solution by the method of Tafel extrapolation
JP2019184292A (en) Hydrogen filling method and hydrogen embrittlement characteristic evaluation method
JP2019184585A (en) Hydrogen filling method and hydrogen embrittlement characteristic evaluation method
JP2020030187A (en) Hydrogen filling method and hydrogen embrittlement characteristics evaluation method
JP6724761B2 (en) Hydrogen embrittlement evaluation apparatus, hydrogen embrittlement evaluation method, and test piece used therein
JP7020255B2 (en) Hydrogen filling method and hydrogen embrittlement characteristic evaluation method
JP2020030186A (en) Hydrogen filling method and hydrogen embrittlement characteristics evaluation method
JP2017044569A (en) Battery state measuring method and battery state measuring apparatus
Peng et al. Effects of H2SO4 content on electrochemical activation of etched tunnels on aluminum foil
JP5986126B2 (en) Hydrogen embrittlement evaluation method
JP2017207302A (en) Intrusion hydrogen amount measurement method and intrusion hydrogen amount measurement device
JP2013124999A (en) Hydrogen embrittlement resistance characteristic evaluation method for thin steel sheet
Khatbi et al. Electrochemical and metallurgical behavior of lead-aluminum casting alloys as grids for lead-acid batteries
JP5223783B2 (en) Method for predicting the amount of corrosion of metallic materials in contact with different metals
JP2020134339A (en) Hydrogen filling method and hydrogen embrittlement characteristic evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R151 Written notification of patent or utility model registration

Ref document number: 7172103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151