JP2017207302A - Intrusion hydrogen amount measurement method and intrusion hydrogen amount measurement device - Google Patents

Intrusion hydrogen amount measurement method and intrusion hydrogen amount measurement device Download PDF

Info

Publication number
JP2017207302A
JP2017207302A JP2016098164A JP2016098164A JP2017207302A JP 2017207302 A JP2017207302 A JP 2017207302A JP 2016098164 A JP2016098164 A JP 2016098164A JP 2016098164 A JP2016098164 A JP 2016098164A JP 2017207302 A JP2017207302 A JP 2017207302A
Authority
JP
Japan
Prior art keywords
hydrogen
current density
temperature
intrusion
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016098164A
Other languages
Japanese (ja)
Other versions
JP6540596B2 (en
Inventor
宏紀 原田
Hiroki Harada
宏紀 原田
河野 崇史
Takashi Kono
崇史 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016098164A priority Critical patent/JP6540596B2/en
Publication of JP2017207302A publication Critical patent/JP2017207302A/en
Application granted granted Critical
Publication of JP6540596B2 publication Critical patent/JP6540596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an intrusion hydrogen amount measurement method which can exactly and continuously measure an intrusion hydrogen amount by removing an influence of a passive state holding current even in a corrosive atmosphere in which a temperature is changed.SOLUTION: In an intrusion hydrogen amount measurement method, one face of a specimen composed of a metal material is exposed to a corrosive atmosphere, and set as a hydrogen intrusion face, the other face of the specimen is set as a hydrogen detection face having a plated film, anode current density: iis measured by using an electrochemical cell which is installed on the hydrogen detection face, a temperature: T of a test atmosphere is measured, passive state holding current density: iis calculated from the temperature: T of the test atmosphere on the basis of a relationship between the pre-acquired passive state holding current density: i, and the temperature: T of the test atmosphere which are expressed by the following formula (1), hydrogen permeation current density: iis acquired by subtracting the passive state holding current density: ifrom the anode current density: i, and an intrusion hydrogen amount is calculated. i=A×e...(1).SELECTED DRAWING: Figure 1

Description

本発明は、腐食によって金属内部に侵入する水素量(侵入水素量)を電気化学的水素透過法により測定する侵入水素量測定方法に関し、特に、温度が変化する腐食環境(変温環境)においても、温度によって変動するバックグラウンドとしての不働態保持電流の影響を取り除いて、正確に侵入水素量を測定することができる侵入水素量測定方法に関する。また本発明は、前記侵入水素量測定方法を実施するための侵入水素量測定装置に関する。   The present invention relates to a method for measuring the amount of intrusion hydrogen that measures the amount of hydrogen penetrating into a metal due to corrosion (the amount of intrusion hydrogen) by an electrochemical hydrogen permeation method. The present invention relates to a method for measuring the amount of penetrating hydrogen that can accurately measure the amount of penetrating hydrogen by removing the influence of the passive state holding current as a background that varies with temperature. The present invention also relates to an intrusion hydrogen amount measuring apparatus for carrying out the intrusion hydrogen amount measurement method.

近年、省資源、省エネルギーの観点から、あらゆる分野で高強度鋼の使用が拡大している。しかし、高強度鋼の使用には弊害もあり、材料強度が増加するほど水素脆化の発生リスクが高まることが知られている(非特許文献1)。特に自動車分野では、引張強度1180MPa級の超高強度鋼板が使用され始めており、このような鋼板は大気環境でも水素脆化の発生が懸念されている。大気環境では腐食反応に伴って鋼中に水素が侵入し、温度、湿度、飛来塩分等の環境因子が変化することで侵入水素量も変化する。よって、大気環境での水素侵入挙動を把握するためには、侵入水素量を連続的にモニタリングする技術が望まれる。   In recent years, the use of high-strength steel has been expanded in all fields from the viewpoint of saving resources and energy. However, it is known that the use of high-strength steel has an adverse effect, and the risk of hydrogen embrittlement increases as the material strength increases (Non-Patent Document 1). In particular, in the automobile field, ultra high strength steel sheets having a tensile strength of 1180 MPa class have begun to be used, and there is a concern that such steel sheets may cause hydrogen embrittlement even in an atmospheric environment. In the atmospheric environment, hydrogen penetrates into the steel with a corrosion reaction, and the amount of invading hydrogen also changes due to changes in environmental factors such as temperature, humidity, and salinity. Therefore, in order to grasp the hydrogen intrusion behavior in the atmospheric environment, a technique for continuously monitoring the amount of intrusion hydrogen is desired.

非特許文献2には、電気化学的水素透過法に基づき、試験片である金属の一方の面を大気腐食環境にさらし、鋼中に侵入、透過してきた水素を前記試験片の反対側の検出面でアノード電流としてモニタリングした結果が報告されている。ここで、電気化学的水素透過法で測定されるアノード電流には、鋼中を透過してきた水素原子を検出面でイオン化する際に測定される水素透過電流に加えて、バックグラウンドとしての不働態保持電流が含まれる。この不働態保持電流は、温度に依存することが知られているが(非特許文献3)、非特許文献2に記載された方法においては、この温度依存性が考慮されていないため、水素侵入量を正確に評価することができない。   Non-Patent Document 2 discloses that, based on an electrochemical hydrogen permeation method, one side of a metal that is a test piece is exposed to an atmospheric corrosion environment, and hydrogen that has penetrated into and permeated through the steel is detected on the opposite side of the test piece. The results of monitoring the anode current on the surface have been reported. Here, the anode current measured by the electrochemical hydrogen permeation method includes the hydrogen permeation current measured when ionizing hydrogen atoms that have permeated through the steel at the detection surface, and a passive state as a background. Holding current is included. This passive state holding current is known to depend on temperature (Non-Patent Document 3), but in the method described in Non-Patent Document 2, this temperature dependency is not taken into consideration, so that hydrogen intrusion occurs. The amount cannot be accurately estimated.

そこで、特許文献1では、電気化学的水素透過法による侵入水素量の測定において、不働態保持電流の影響を補正する方法が提案されている。具体的には、同一試験片に対して2つ以上の測定セルを設置し、そのうち一つの測定セルの水素侵入面に保護膜を設けて水素の侵入を防ぐことで不働態保持電流測定用の基準セルとし、通常の測定セルで測定されたアノード電流から基準セルで測定された不働態保持電流を差し引くことによって、温度によって変動する不働態保持電流の影響を取り除いている。   Therefore, Patent Document 1 proposes a method for correcting the influence of the passive state holding current in the measurement of the intrusion hydrogen amount by the electrochemical hydrogen permeation method. Specifically, two or more measurement cells are installed for the same test piece, and a protective film is provided on the hydrogen entry surface of one measurement cell to prevent hydrogen from entering, thereby measuring the passive state holding current. By subtracting the passive state holding current measured in the reference cell from the anode current measured in the normal measurement cell as the reference cell, the influence of the passive state holding current that varies with temperature is removed.

特開2014−89207号公報JP 2014-89207 A

松山晋作、「遅れ破壊」、日刊工業新聞社、1989年Matsuyama Junsaku, "Delayed Destruction", Nikkan Kogyo Shimbun, 1989 大村ら、鉄と鋼、2005年、Vol.91、No.5、p.478−484Omura et al., Iron and Steel, 2005, Vol. 91, no. 5, p. 478-484 柴田俊夫、材料と環境、2011年、Vol.60、p.374−379Toshio Shibata, Materials and Environment, 2011, Vol. 60, p. 374-379 武藤ら、材料と環境、1998年、Vol.47、p.519−527Muto et al., Materials and Environment, 1998, Vol. 47, p. 519-527 櫛田隆弘、材料と環境、2000年、Vol.49、p.195−200Takahiro Kushida, Materials and Environment, 2000, Vol. 49, p. 195-200

特許文献1に記載された方法によれば、侵入水素量の測定精度を向上させることができる。しかし、本発明者らの検討の結果、同一の試験片であっても、位置によって不働態保持電流が異なり、その結果、特許文献1記載の方法ではバックグラウンドの補正が困難となる場合があることが分かった。   According to the method described in Patent Document 1, it is possible to improve the measurement accuracy of the intrusion hydrogen amount. However, as a result of the study by the present inventors, even in the same test piece, the passive state holding current differs depending on the position, and as a result, it may be difficult to correct the background by the method described in Patent Document 1. I understood that.

本発明は、かかる事情に鑑みてなされたものであって、温度が変化する腐食環境においても、不働態保持電流の影響を取り除いて正確かつ連続的に侵入水素量を測定することができる侵入水素量測定方法およびそのための測定装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and intrusion hydrogen that can accurately and continuously measure the amount of intrusion hydrogen even in a corrosive environment where the temperature changes, by removing the influence of the passive state holding current. It is an object of the present invention to provide a quantity measuring method and a measuring apparatus therefor.

本発明者らは、上記目的を達成するために、鋭意検討を重ねた結果、予めバックグラウンド電流である不働態保持電流の温度依存性を数式化しておき、測定の際に、前記数式を用いて試験環境の温度から不働態保持電流値を算出して補正を行うことで、温度が変動する環境においても正確に侵入水素量を測定できることを見出した。   As a result of intensive studies to achieve the above object, the present inventors formulate the temperature dependence of the passive state holding current, which is the background current, in advance, and uses the above formula in the measurement. It was found that the amount of penetrating hydrogen can be measured accurately even in an environment where the temperature fluctuates by calculating and correcting the passive state holding current value from the temperature of the test environment.

本発明は、上記知見に基づいてなされたものであり、その要旨構成は次のとおりである。
1.温度が変化する腐食環境において、腐食によって金属内部に侵入する水素量を電気化学的水素透過法により測定する侵入水素量測定方法であって、
金属材料からなる試験片の一方の面を腐食環境に晒して水素侵入面とし、
前記試験片の他方の面を、めっき皮膜を備える水素検出面とし、
前記水素検出面に設置した電気化学セルでアノード電流密度:iaを測定し、
試験環境の温度:Tを測定し、
予め求めた、下記(1)式で表される不働態保持電流密度:ipと試験環境の温度:Tとの関係に基づいて、測定された前記試験環境の温度:Tから不働態保持電流密度:ipを算出し、
前記アノード電流密度:iaから前記不働態保持電流密度:ipを差し引くことによって、水素透過電流密度:iHを求め、
前記水素透過電流密度:iHから侵入水素量を算出する、侵入水素量測定方法。

p = A×e−B/T …(1)
(ここで、A、Bは、前記めっき皮膜の性状に依存する定数である)
This invention is made | formed based on the said knowledge, The summary structure is as follows.
1. In a corrosive environment where the temperature changes, an intrusion hydrogen amount measurement method that measures the amount of hydrogen penetrating into the metal by corrosion using an electrochemical hydrogen permeation method,
One side of a test piece made of a metal material is exposed to a corrosive environment to form a hydrogen intrusion surface,
The other surface of the test piece is a hydrogen detection surface provided with a plating film,
Electrochemical cell anode current density installed in the hydrogen detecting surface: measuring the i a,
Measure the temperature of the test environment: T
Previously determined, passive holding current density is expressed by the following equation (1): i p and temperature of the test environment: Based on the relationship between T, the measured temperature of the said test environment: from T passive holding current density: to calculate the i p,
The anode current density from said i a passive holding current density by subtracting i p, the hydrogen permeation current density: seeking i H,
The hydrogen permeation current density: a method for measuring an intrusion hydrogen amount, wherein the intrusion hydrogen amount is calculated from i H.
I p = A × e− B / T (1)
(Here, A and B are constants depending on the properties of the plating film)

2.前記試験環境の温度:Tとして、前記試験片の温度を測定する、上記1に記載の侵入水素量測定方法。 2. 2. The method for measuring an intrusion hydrogen amount according to 1 above, wherein the temperature of the test piece is measured as T of the test environment.

3.前記腐食環境が、直射日光の照射を受ける屋外暴露環境である、上記1または2に記載の侵入水素量測定方法。 3. 3. The method for measuring the amount of invading hydrogen according to 1 or 2 above, wherein the corrosive environment is an outdoor exposure environment that is exposed to direct sunlight.

4.上記2に記載の侵入水素量測定方法を実施するための侵入水素量測定装置であって、
前記試験片の水素検出面に設置される電気化学セルと、
前記試験片の温度を測定する温度測定手段と、
前記電気化学セルおよび前記温度測定手段と接続された制御手段とを有し、
前記制御手段が、
前記電気化学セルによるアノード電流密度:iaの測定と、前記温度測定手段による試験片の温度:Tの測定を同時に行い、
予め求めた前記(1)式の関係に基づいて測定された前記試験片の温度:Tから不働態保持電流密度:ipを算出し、
前記アノード電流密度:iaから前記不働態保持電流密度:ipを差し引くことによって、水素透過電流密度:iHを求め、
前記水素透過電流密度:iHから侵入水素量を算出するよう構成されている、侵入水素量測定装置。
4). An intrusion hydrogen amount measuring apparatus for carrying out the intrusion hydrogen amount measurement method described in 2 above,
An electrochemical cell installed on the hydrogen detection surface of the test piece;
Temperature measuring means for measuring the temperature of the test piece;
Control means connected to the electrochemical cell and the temperature measuring means;
The control means is
It was measured for T simultaneously: the measurement of i a, the temperature measuring means due to the test piece temperature: anode current density due to the electrochemical cell
Previously determined (1) of the test piece was measured based on a relationship type temperature: T from passive holding current density: calculating a i p,
The anode current density from said i a passive holding current density by subtracting i p, the hydrogen permeation current density: seeking i H,
An intrusion hydrogen amount measuring apparatus configured to calculate an intrusion hydrogen amount from the hydrogen permeation current density: i H.

本発明によれば、温度が変化する腐食環境においても、不働態保持電流の影響を取り除いて正確かつ連続的に侵入水素量を測定することができる。   According to the present invention, even in a corrosive environment where the temperature changes, it is possible to accurately and continuously measure the amount of invading hydrogen by removing the influence of the passive state holding current.

本発明の一実施形態における侵入水素量測定装置を示す模式図である。It is a schematic diagram which shows the intrusion hydrogen amount measuring apparatus in one Embodiment of this invention. 測定セルと基準セルにおける不働態保持電流の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the passive state holding current in a measurement cell and a reference cell. 測定セルと基準セルにおけるアノード電流と試験片温度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the anode current and test piece temperature in a measurement cell and a reference cell. 実施例および比較例の方法で得られた水素透過電流密度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the hydrogen permeation current density obtained by the method of the Example and the comparative example.

本発明の一実施形態である侵入水素量測定方法においては、腐食によって金属内部に侵入する水素量が、電気化学的水素透過法により測定される。その際、金属材料からなる試験片の一方の面を腐食環境に晒して水素侵入面とし、前記試験片の他方の面を水素検出面とした状態で、試験体中の水素透過流束を前記水素検出面に設置した電気化学セルを用いてアノード電流密度として測定する。   In the method for measuring the amount of intrusion hydrogen that is one embodiment of the present invention, the amount of hydrogen that penetrates into the metal due to corrosion is measured by an electrochemical hydrogen permeation method. At that time, the hydrogen permeation flux in the test specimen was measured in a state where one surface of the test piece made of a metal material was exposed to a corrosive environment to be a hydrogen intrusion surface and the other surface of the test piece was a hydrogen detection surface. The anode current density is measured using an electrochemical cell installed on the hydrogen detection surface.

上記アノード電流密度:iaには、試験片中を透過してきた水素原子のイオン化電流である水素透過電流密度:iHに加えて、バックグラウンド電流である不働態保持電流密度:ipが含まれており、前記不働態保持電流密度は温度に依存する(非特許文献3)。よって、温度が変動する環境で正確な水素透過電流を測定するためには、不働態保持電流の温度変化を加味した上でバックグラウンド補正を行う必要がある。 The anode current density: The i a, the hydrogen permeation current density is ionization current of the hydrogen atoms has been transmitted through the test piece: In addition to i H, background current at some passivation holding current density includes i p The passive state holding current density depends on temperature (Non-patent Document 3). Therefore, in order to accurately measure the hydrogen permeation current in an environment where the temperature fluctuates, it is necessary to perform background correction in consideration of the temperature change of the passive state holding current.

特許文献1では、同一の試験片上に通常の測定セルと基準セルとを設け、測定セルにおいて測定されたアノード電流から前記基準セルで測定された不働態保持電流を差し引くことによって、補正を行うことが提案されている。しかし、上述したように、同一の試験片であっても、位置によって不働態保持電流が異なるため、前記方法ではバックグラウンドの補正が困難となる場合があることが分かった。   In Patent Document 1, a normal measurement cell and a reference cell are provided on the same test piece, and correction is performed by subtracting the passive state holding current measured in the reference cell from the anode current measured in the measurement cell. Has been proposed. However, as described above, it was found that, even with the same test piece, the passive state holding current differs depending on the position, and therefore it may be difficult to correct the background by the above method.

ここで、電気化学的水素透過法において用いられる試験片の水素検出面には、Ni、Pd、またはそれらの合金等のめっき皮膜が被覆されることが一般的であるが、一つの試験体の表面であっても均一にめっき皮膜を形成することは困難であり、したがって、試験片表面上の位置によってめっき皮膜の性状に違いがある。このめっき皮膜の性状の違いが、不働態保持電流の温度依存性に影響するものと考えられる。   Here, the hydrogen detection surface of a test piece used in the electrochemical hydrogen permeation method is generally coated with a plating film such as Ni, Pd, or an alloy thereof. Even on the surface, it is difficult to form a plating film uniformly, and therefore there is a difference in the properties of the plating film depending on the position on the surface of the test piece. This difference in the properties of the plating film is considered to affect the temperature dependence of the passive state holding current.

そこで本発明では、不働態保持電流の温度依存性を予め測定して数式化しておき、前記数式を用いて測定時のバックグラウンド補正を行うこととした。これにより、測定用の基準セルを別途設けることなしに、試験環境の温度測定結果に基づいて補正を行うことが可能となる。   Therefore, in the present invention, the temperature dependence of the passive state holding current is measured in advance and converted into a formula, and the background correction at the time of measurement is performed using the formula. This makes it possible to perform correction based on the temperature measurement result of the test environment without separately providing a reference cell for measurement.

以下、本発明における補正の方法について、具体的に説明する。
不働態保持電流密度:ipは、その対数値が温度の逆数に対して直線関係を示す、アレニウスの式を満足することが知られている。よってまず、水素が侵入しない環境、すなわち試験片が腐食しない環境において、試験環境の温度を変化させて不働態保持電流密度を測定し、不働態保持電流密度を下記(1)式のように温度の関数として数式化する。
p = A×e−B/T …(1)
ここで、(1)式中のA、Bは、めっき皮膜の性状等に依存する定数であり、Tは試験環境の絶対温度(K)である。
Hereinafter, the correction method in the present invention will be specifically described.
Passive holding current density: i p denotes a linear relationship that logarithm is against the reciprocal of temperature, it is known to satisfy the Arrhenius equation. Therefore, first, in an environment where hydrogen does not enter, that is, in an environment where the test piece does not corrode, the temperature of the test environment is changed to measure the passive state holding current density. Formula as a function of.
i p = A × e −B / T (1)
Here, A and B in the formula (1) are constants depending on the properties of the plating film, and T is the absolute temperature (K) of the test environment.

ここで、前記数式化、すなわち、A、Bの決定は、試験片が腐食しない環境であれば任意の環境で行うことができる。試験片が腐食しない環境の例としては、水素侵入面に塩の付着がなく、低湿度の環境が挙げられる。この場合、湿度を30%RH以下とすることが好ましい。また、低湿度とすることに代えて、試験片の水素侵入面に該試験片の腐食を防止する保護膜を設けることもできる。前記保護膜は、試験片の水素侵入面の表面状態を変化させることなく、剥離できるものが好ましい。前記保護膜としては、例えば、樹脂からなる保護膜を用いることができ、前記樹脂としてはエポキシ樹脂系塗料等を用いることができる。   Here, the above mathematical expression, that is, determination of A and B can be performed in any environment as long as the test piece does not corrode. An example of an environment where the test piece does not corrode is a low humidity environment where no salt adheres to the hydrogen entry surface. In this case, the humidity is preferably 30% RH or less. Moreover, it can replace with low humidity and can also provide the protective film which prevents the corrosion of this test piece in the hydrogen penetration | invasion surface of a test piece. The protective film is preferably one that can be peeled off without changing the surface state of the hydrogen entry surface of the test piece. As the protective film, for example, a protective film made of a resin can be used, and as the resin, an epoxy resin paint or the like can be used.

実際の水素侵入量の測定においては、試験環境の温度:Tを測定し、得られた試験環境の温度:Tの値と、上記(1)式から、当該温度における不働態保持電流密度:ipを計算し、電気化学的水素透過法で測定されるアノード電流密度:iaから不働態保持電流密度:ipを差し引くことによって、正味の水素透過電流密度:iHを求めることが出来る(下記(2)式)。なお、iH、ia、およびipの単位は特に限定されず、同じ単位であれば(2)式の計算が成り立つが、例えば、A/cmとすることができる。
H=ia−ip …(2)
In the actual measurement of the hydrogen intrusion amount, the temperature of the test environment: T is measured, and the obtained temperature of the test environment: T and the above equation (1), the passive state holding current density at the temperature: i The net hydrogen permeation current density: i H can be obtained by calculating p and subtracting the passive state current density: i p from the anode current density: i a measured by the electrochemical hydrogen permeation method ( (Formula (2) below). Note that the units of i H , i a , and i p are not particularly limited. If they are the same unit, the calculation of formula (2) can be established, and can be, for example, A / cm 2 .
i H = i a −i p (2)

前記試験環境の温度としては、試験片が置かれている環境の温度を用いることができる。しかし、例えば、屋外暴露環境で侵入水素量を測定する場合などでは、直射日光や放射冷却等の影響により試験環境の温度と試験片の温度が異なる場合がある(非特許文献4)。そのため、前記試験環境の温度として、試験片の温度を測定することにより、より正確な水素透過電流密度の測定が可能となる。   As the temperature of the test environment, the temperature of the environment where the test piece is placed can be used. However, for example, when measuring the amount of invading hydrogen in an outdoor exposure environment, the temperature of the test environment and the temperature of the test piece may be different due to the influence of direct sunlight, radiant cooling, or the like (Non-Patent Document 4). Therefore, the hydrogen permeation current density can be measured more accurately by measuring the temperature of the test piece as the temperature of the test environment.

上記のようにして得た水素透過電流密度から、侵入水素量を算出することができる。ここで、電気化学的水素透過法における侵入水素量は表面水素濃度(水素侵入面上における吸着水素濃度):Cabとして計算され、水素透過電流:iHを用いて下記(3)式により算出される。
ab=(iH×L×MH)/(D×F×d)×10 …(3)
ab:表面水素濃度(質量ppm)
H:水素透過電流密度(A/cm
L:試験片の板厚(cm)
D:試験片の金属材料中における水素拡散係数(cm/s)
F:ファラデー定数(C/mol)
H:水素原子のモル質量(g/mol)
d:試験片の金属材料の密度(g/cm
The amount of penetrating hydrogen can be calculated from the hydrogen permeation current density obtained as described above. Here, the amount of penetrating hydrogen in the electrochemical hydrogen permeation method is calculated as surface hydrogen concentration (adsorbed hydrogen concentration on the hydrogen penetrating surface): C ab , and calculated by the following formula (3) using hydrogen permeation current: i H. Is done.
C ab = (i H × L × M H ) / (D × F × d) × 10 6 (3)
C ab : Surface hydrogen concentration (mass ppm)
i H : Hydrogen permeation current density (A / cm 2 )
L: Thickness of the test piece (cm)
D: Hydrogen diffusion coefficient in the metal material of the test piece (cm 2 / s)
F: Faraday constant (C / mol)
M H : molar mass of hydrogen atom (g / mol)
d: Density of the metal material of the test piece (g / cm 3 )

なお、温度が変化する環境では材料中の水素拡散係数:Dが変化する。水素拡散係数も不働態保持電流同様、その対数値が温度の逆数に対して直線関係を示す、アレニウスの式を満足することが知られており、本発明の装置を用いることで、予め水素拡散係数の温度依存性を数式化しておけば、試験体の物温から水素拡散係数の温度変化を計算し、より精度良く侵入水素量を算出することが可能である。   In an environment where the temperature changes, the hydrogen diffusion coefficient D in the material changes. Like the passive state holding current, the hydrogen diffusion coefficient is known to satisfy the Arrhenius equation in which the logarithmic value shows a linear relationship with the reciprocal of temperature. By using the apparatus of the present invention, hydrogen diffusion is performed in advance. By formulating the temperature dependence of the coefficient, it is possible to calculate the temperature change of the hydrogen diffusion coefficient from the material temperature of the specimen and to calculate the amount of intrusion hydrogen more accurately.

以上のように、本発明によれば、温度が変化する腐食環境においても、基準セルを別途設けることなしに不働態保持電流の影響を取り除いて正確かつ連続的に侵入水素量を測定することができる。そのため、腐食環境で刻一刻と変化する侵入水素量を精度良く測定することができる。   As described above, according to the present invention, even in a corrosive environment where the temperature changes, it is possible to accurately and continuously measure the amount of intrusion hydrogen without removing the influence of the passive state holding current without separately providing a reference cell. it can. Therefore, it is possible to accurately measure the amount of invading hydrogen that changes every moment in a corrosive environment.

次に、本発明の侵入水素量測定装置について説明する。本発明の侵入水素量測定装置は、試験片の水素検出面に設置される電気化学セルと、前記試験片の温度を測定する温度測定手段と、前記電気化学セルおよび前記温度測定手段と接続された制御手段とを有している。   Next, the intrusion hydrogen amount measuring apparatus of the present invention will be described. The intrusion hydrogen amount measuring device of the present invention is connected to an electrochemical cell installed on a hydrogen detection surface of a test piece, a temperature measuring means for measuring the temperature of the test piece, the electrochemical cell and the temperature measuring means. Control means.

図1は、本発明の一実施形態における侵入水素量測定装置1を示す模式図である。試験片10の一方の面は腐食環境に晒されて水素侵入面11とされ、試験片の他方の面は水素検出面12とされている。水素検出面12には、図示されないめっき皮膜が備えられている。また、前記水素検出面12には、アノード電流を測定するための電気化学セル20が設置されている。   FIG. 1 is a schematic diagram showing an intrusion hydrogen amount measuring apparatus 1 according to an embodiment of the present invention. One surface of the test piece 10 is exposed to a corrosive environment to be a hydrogen intrusion surface 11, and the other surface of the test piece is a hydrogen detection surface 12. The hydrogen detection surface 12 is provided with a plating film (not shown). The hydrogen detection surface 12 is provided with an electrochemical cell 20 for measuring the anode current.

試験片10としては、金属材料からなる任意のものを用いることができるが、図1に示した例では、板状の鋼板が用いられている。試験片10の厚さは特に限定されず、任意の厚さとすることができる。しかし、試験片が過度に厚いと、腐食環境の変化と、測定される水素透過電流の変化との間の時間的遅れが増大し、その結果、環境因子と侵入水素量との関係が不明確となる場合がある。そのため、特に、試験片を構成する材料の水素拡散係数が小さい場合には板厚を薄くしたほうがよい。また、材料中の水素拡散が非定常であると正確な表面水素濃度の計算が出来ない点でも板厚は薄い方が良い。具体的には、試験片の板厚を1mm以下とすることが好ましく、0.5mm以下とすることがより好ましい。一方、試験片が過度に薄いと、短期間で腐食による穴あきが発生するため、試験片の板厚は0.2mm以上とすることが好ましい。   As the test piece 10, an arbitrary one made of a metal material can be used, but in the example shown in FIG. 1, a plate-shaped steel plate is used. The thickness of the test piece 10 is not particularly limited, and can be an arbitrary thickness. However, if the specimen is too thick, the time lag between changes in the corrosive environment and changes in the measured hydrogen permeation current increases, resulting in an unclear relationship between environmental factors and the amount of intrusion hydrogen. It may become. Therefore, it is better to reduce the plate thickness especially when the hydrogen diffusion coefficient of the material constituting the test piece is small. In addition, if the hydrogen diffusion in the material is unsteady, it is better that the plate thickness is thinner in that accurate surface hydrogen concentration cannot be calculated. Specifically, the thickness of the test piece is preferably 1 mm or less, and more preferably 0.5 mm or less. On the other hand, if the test piece is excessively thin, perforation due to corrosion occurs in a short period of time. Therefore, the thickness of the test piece is preferably 0.2 mm or more.

電気化学セル20としては、水素検出面12におけるアノード電流を測定できるものであれば任意のものを用いることができる。図1に示した例においては、電気化学セル20は、電解液21と、電解液21を収容する収容体22と、収容体21の内部に設置された参照電極23と、対極24とを備えている。   As the electrochemical cell 20, any cell can be used as long as it can measure the anode current on the hydrogen detection surface 12. In the example shown in FIG. 1, the electrochemical cell 20 includes an electrolytic solution 21, a containing body 22 that contains the electrolytic solution 21, a reference electrode 23 installed inside the containing body 21, and a counter electrode 24. ing.

電解液21としては、アノード電流を測定できるものであれば任意のものを用いることができるが、通常は、電解質水溶液が用いられる。また、電解液21のpHが9未満であると、アノード電流測定時に水素検出面12における不働態を保持することが困難となる場合があるため、電解液21のpHは9以上とすることが好ましい。一方、pHが過度に高い、すなわち強アルカリ性であると、不慮の事故等により電解液が外部に漏洩した場合に、環境等へのダメージが大きいため、電解液のpHは13以下とすることが好ましい。前記条件を満たし、好適に用いることができる電解液としては、例えば、0.1〜1.0M(M=mol/L)程度のNaOH水溶液が挙げられる。また、電解液の漏洩防止や、取り扱いの容易さの観点からは、液体状の電解液に代えて、ゲル状の電解質を用いることも好ましい。   As the electrolyte solution 21, any electrolyte solution can be used as long as it can measure the anode current. Usually, an electrolyte aqueous solution is used. In addition, if the pH of the electrolytic solution 21 is less than 9, it may be difficult to maintain a passive state on the hydrogen detection surface 12 when measuring the anode current. Therefore, the pH of the electrolytic solution 21 may be 9 or more. preferable. On the other hand, if the pH is excessively high, that is, if it is strongly alkaline, the electrolyte solution may have a pH of 13 or less because damage to the environment or the like is great when the electrolyte solution leaks to the outside due to an accident. preferable. Examples of the electrolytic solution that satisfies the above conditions and can be suitably used include an aqueous NaOH solution of about 0.1 to 1.0 M (M = mol / L). From the viewpoint of preventing leakage of the electrolytic solution and ease of handling, it is also preferable to use a gel electrolyte instead of the liquid electrolyte solution.

収容体22としては、電解液21等を収容できるものであれば任意のものを用いることができるが、通常は、絶縁性であるガラスや樹脂等からなる容器が用いられる。特に、加工性や取り扱いの容易さからは樹脂製とすることが好ましく、アクリル樹脂製とすることがより好ましい。   Any container 22 can be used as long as it can accommodate the electrolytic solution 21 and the like. Usually, a container made of insulating glass or resin is used. In particular, from the viewpoint of workability and ease of handling, it is preferably made of resin, more preferably made of acrylic resin.

参照電極23は、電気化学セル20においてアノード電流を測定する際の電位の基準となる電極であり、基準電極とも称される。参照電極23としては、特に限定されることなく、一般的な電気化学測定に用いられるものなど現在実用化されている各種電極が使用可能である。好適に用いることができる参照電極の例としては、銀−塩化銀電極(SSE)が挙げられる。銀−塩化銀電極に用いる電解質水溶液としては、例えば、飽和KCl等を用いることができる。   The reference electrode 23 is an electrode that serves as a potential reference when measuring the anode current in the electrochemical cell 20 and is also referred to as a reference electrode. The reference electrode 23 is not particularly limited, and various electrodes currently in practical use such as those used for general electrochemical measurements can be used. Examples of reference electrodes that can be suitably used include silver-silver chloride electrodes (SSE). As the aqueous electrolyte solution used for the silver-silver chloride electrode, for example, saturated KCl or the like can be used.

対極24は、アノード電流の測定が可能であり、かつ水素検出面12における水素原子のイオン化反応を阻害しないものであれば、任意の不活性電極を用いることができる。好適に用いることができる対極の例としては、白金(Pt)電極が挙げられる。   As the counter electrode 24, any inert electrode can be used as long as it can measure the anode current and does not inhibit the ionization reaction of hydrogen atoms on the hydrogen detection surface 12. An example of a counter electrode that can be suitably used is a platinum (Pt) electrode.

参照電極23および対極24は、ポテンショスタット30に接続されている。また、試験片10もポテンショスタット30に接続されており、アノード電流測定時には作用電極となる。   The reference electrode 23 and the counter electrode 24 are connected to the potentiostat 30. Further, the test piece 10 is also connected to the potentiostat 30 and serves as a working electrode when measuring the anode current.

さらに、図1に示した例では、試験片10の温度を測定する温度測定手段としての熱電対40が、試験片10と接触するように設置されている。熱電対40としては、アルメル−クロメル(K熱電対)に代表されるような一般的熱電対など、任意のものを用いることができる。熱電対の設置方法は特に限定しないが、試験片と熱電対間の異種金属接触腐食を防ぐ観点からは、試験片と熱電対が接触している箇所を被覆しておくことが好ましい。   Furthermore, in the example shown in FIG. 1, a thermocouple 40 as a temperature measuring means for measuring the temperature of the test piece 10 is installed so as to be in contact with the test piece 10. As the thermocouple 40, arbitrary things, such as a general thermocouple represented by alumel-chromel (K thermocouple), can be used. The method of installing the thermocouple is not particularly limited, but it is preferable to cover a portion where the test piece and the thermocouple are in contact from the viewpoint of preventing the contact corrosion of different metals between the test piece and the thermocouple.

なお、本発明の侵入水素量測定装置は制御手段を備えており、前記制御手段は、前記電気化学セルによるアノード電流密度:iaの測定と、前記温度測定手段による試験片の温度:Tの測定を同時に行い、予め求めた前記(1)式の関係に基づいて測定された前記試験片の温度:Tから不働態保持電流密度:ipを算出し、前記アノード電流密度:iaから前記不働態保持電流密度:ipを差し引くことによって、水素透過電流密度:iHを求め、前記水素透過電流密度:iHから侵入水素量を算出するよう構成されている。図1に示した例では、ポテンショスタット30および温度ロガー50は、前記制御手段の一部と見なすこともできる。 Incidentally, absorbed hydrogen amount measuring apparatus of the present invention is provided with a control means, anode current density by the electrochemical cell: the measurement of i a, the temperature measuring means due to the test piece temperature: the T perform measurements simultaneously, previously obtained (1) of the test piece was measured based on a relationship type temperature: T from passive holding current density i p is calculated, and the anode current density from said i a by subtracting the i p, the hydrogen permeation current density: passive holding current density seek i H, the hydrogen permeation current density is from i H is configured to calculate the absorbed hydrogen amount. In the example shown in FIG. 1, the potentiostat 30 and the temperature logger 50 can also be regarded as a part of the control means.

また、本発明における測定条件は、水素検出面における水素のイオン化反応に十分な電位に保持した際に、鋼材の表面の不動態を保持できる溶液と電位の組み合わせであれば良く、特に限定されるものではない。一般的には、1NのNaOH水溶液中、−0.1〜0.3V vs. SCEの分極条件が広く用いられている(非特許文献3)。ここで、SCEとは、飽和カロメル電極のことであり、このSCEの標準水素電極(SHE)に対する電位は+0.244V(vs SHE,25℃)で示される。また、SSEを用いた場合には0Vで測定できる(非特許文献5)。   In addition, the measurement conditions in the present invention may be any combination of a solution and a potential that can maintain the passivation of the surface of the steel material when held at a potential sufficient for the hydrogen ionization reaction on the hydrogen detection surface, and are particularly limited. It is not a thing. In general, in a 1N NaOH aqueous solution, −0.1 to 0.3 V vs. SCE polarization conditions are widely used (Non-Patent Document 3). Here, SCE is a saturated calomel electrode, and the potential of this SCE with respect to a standard hydrogen electrode (SHE) is represented by +0.244 V (vs SHE, 25 ° C.). Moreover, when SSE is used, it can measure at 0V (nonpatent literature 5).

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(実施例)
試験片として板厚:1mmの軟鋼板を使用し、図1に示した構成の装置にて、以下に述べる条件で侵入水素量の測定を行った。前記試験片の水素検出面には、厚さ:約100nmのPdめっきを施した。電解液としては、1N NaOHを使用し、0V vs. SSEの条件でアノード分極した。
(Example)
A mild steel plate having a thickness of 1 mm was used as a test piece, and the amount of intrusion hydrogen was measured under the conditions described below using the apparatus having the configuration shown in FIG. The hydrogen detection surface of the test piece was subjected to Pd plating with a thickness of about 100 nm. As the electrolytic solution, 1N NaOH was used, and 0 V vs. Anodically polarized under SSE conditions.

(比較例)
また、比較のために、特許文献1の方法を模擬して、上記実施例と同一の試験片の水素検出面にバックグラウンド補正用の基準セルを配置し、水素侵入面の前記基準セルに対応する位置を保護膜で被覆した。以降、上記実施例における電気化学セルを「測定セル」、比較例における電気化学セルを「基準セル」と呼ぶこととする。上記のように保護膜を設けたこと以外、基準セルにおける測定条件は測定セルと同条件とした。
(Comparative example)
For comparison, a reference cell for background correction is arranged on the hydrogen detection surface of the same test piece as that of the above-mentioned example by simulating the method of Patent Document 1, and corresponds to the reference cell on the hydrogen intrusion surface. The position to be covered was covered with a protective film. Hereinafter, the electrochemical cell in the above example is referred to as “measurement cell”, and the electrochemical cell in the comparative example is referred to as “reference cell”. The measurement conditions in the reference cell were the same as those in the measurement cell except that the protective film was provided as described above.

[不働態保持電流密度の温度依存性]
侵入水素量の測定に先立って、上記測定セルと基準セルにおける、不働態保持電流密度の温度依然性を評価した。
[Temperature dependence of passive state holding current density]
Prior to the measurement of the intrusion hydrogen amount, the temperature dependence of the passive state holding current density in the measurement cell and the reference cell was evaluated.

不働態保持電流密度を測定するためには、水素侵入面における水素の侵入が生じない状態で電流の測定を行う必要がある。基準セルの水素侵入面は保護膜で被覆されているが、測定セルの水素侵入面には保護膜がないため、測定セルにおいて不働態保持電流密度を測定するには、測定セルの水素侵入面において腐食が生じないようにする必要がある。そこで、試験片の水素侵入面に塩の付着がなく、かつ低湿度環境(30%RH)で電流の測定を行った。この状態で測定される電流は、測定セル、基準セルのいずれにおいても水素透過電流を含まないため、不働態保持電流と見なすことができる。   In order to measure the passive state holding current density, it is necessary to measure the current in a state where hydrogen does not enter the hydrogen intrusion surface. The hydrogen intrusion surface of the reference cell is covered with a protective film, but there is no protective film on the hydrogen intrusion surface of the measurement cell. It is necessary to prevent corrosion from occurring in Therefore, the current was measured in a low humidity environment (30% RH) without salt adhesion on the hydrogen entry surface of the test piece. Since the current measured in this state does not include the hydrogen permeation current in either the measurement cell or the reference cell, it can be regarded as a passive state holding current.

図2は、上記の方法で測定された測定セルと基準セルにおける不働態保持電流の温度依存性を示すグラフである。ここでは、試験片の温度を20、30、40、50℃と変化させて不動態保持電流を測定した。図2より、不動態保持電流密度の対数値と、温度の逆数との間には直線関係があり、アレニウス式が成立することがわかる。上記の結果から、測定セルと基準セルにおける不動態保持電流密度の温度依存性を数式化すると、それぞれ以下のようになる。
測定セル:ip(nA/cm2)=1.124×1013×exp(-8.038×103/T)…(4)
基準セル:ip(nA/cm2)=2.455×1013×exp(-8.164×103/T)…(5)
また、各温度における不動態保持電流密度を基準セルと測定セルで比較すると、基準セルの不動態保持電流値密度の方が測定セルよりも大きく、同一試験体においても測定箇所が異なると不動態保持電流密度が異なることがわかる。
FIG. 2 is a graph showing the temperature dependence of the passive state holding current in the measurement cell and the reference cell measured by the above method. Here, the passive holding current was measured by changing the temperature of the test piece to 20, 30, 40, and 50 ° C. FIG. 2 shows that there is a linear relationship between the logarithmic value of the passive holding current density and the inverse of the temperature, and the Arrhenius equation is established. From the above results, the temperature dependence of the passive holding current density in the measurement cell and the reference cell is expressed as follows.
Measurement cell: i p (nA / cm 2 ) = 1.124 × 10 13 × exp (−8.038 × 10 3 / T) (4)
Reference cell: i p (nA / cm 2 ) = 2.455 × 10 13 × exp (-8.164 × 10 3 / T) (5)
In addition, when the passive holding current density at each temperature is compared between the reference cell and the measuring cell, the passive holding current value density of the reference cell is larger than that of the measuring cell, and even if the measurement location is different in the same specimen, It can be seen that the holding current density is different.

[水素透過電流密度の測定]
次に、前記試験片を屋外環境に暴露し、アノード電流と試験片の温度を同時に測定した。図3は、測定セルと基準セルにおけるアノード電流密度と試験片温度の経時変化を示すグラフである。測定結果より、基準セル、測定セルのいずれにおいても、アノード電流密度が温度変化の影響を受けて変動していることが分かる。
[Measurement of hydrogen permeation current density]
Next, the test piece was exposed to an outdoor environment, and the anode current and the temperature of the test piece were measured simultaneously. FIG. 3 is a graph showing temporal changes in anode current density and test piece temperature in the measurement cell and the reference cell. From the measurement results, it can be seen that the anode current density fluctuates under the influence of the temperature change in both the reference cell and the measurement cell.

ここで、特許文献1の方法にならって、バックグラウンド電流である不動態保持電流を除去するため、測定セルで測定されたアノード電流密度から基準セルにおける電流密度を差し引いた結果を、図4に比較例(破線)として示す。前記比較例においては、測定期間のほとんどで水素透過電流値密度が負の値を示している。これは、測定セルと基準セルで不動態保持電流が異なるために、バックグラウンド電流が過剰に除去された結果であると考えられる。よって、同一の試験体であっても測定する箇所によって不動態保持電流の温度依存性が異なる場合には、特許文献1で提案されている方法での温度補正が困難であることが分かる。   Here, in accordance with the method of Patent Document 1, the result of subtracting the current density in the reference cell from the anode current density measured in the measurement cell in order to remove the passive holding current that is the background current is shown in FIG. Shown as a comparative example (broken line). In the comparative example, the hydrogen permeation current value density shows a negative value in most of the measurement period. This is considered to be a result of excessive removal of the background current because the passive holding current is different between the measurement cell and the reference cell. Therefore, even if it is the same test body, when the temperature dependence of a passive holding current changes with locations to measure, it turns out that temperature correction by the method proposed by patent documents 1 is difficult.

一方、測定セルにおける不動態保持電流密度の温度依存性を表す上記(4)式と、図3に示した試験片温度の測定値から不動態保持電流密度を算出し、得られた不働態保持電流密度を、図3に実線で示した測定セルにおけるアノード電流密度から差し引くことによって、水素透過電流密度を求めた結果を、図4に本発明例(実線)として示す。図4に示した結果より、本発明によれば、温度が変化する腐食環境においても、不働態保持電流の影響を取り除いて正確かつ連続的に侵入水素量を評価できることがわかる。   On the other hand, the passive holding current density is calculated from the above equation (4) representing the temperature dependence of the passive holding current density in the measurement cell and the measured value of the test piece temperature shown in FIG. FIG. 4 shows the results of obtaining the hydrogen permeation current density by subtracting the current density from the anode current density in the measurement cell shown by the solid line in FIG. 3 as an example of the present invention (solid line). From the results shown in FIG. 4, it can be seen that according to the present invention, even in a corrosive environment where the temperature changes, the intrusion hydrogen amount can be accurately and continuously evaluated by removing the influence of the passive state holding current.

このように、本発明によれば、温度が変動する腐食環境において、金属材料に侵入する水素量を高い精度でかつ連続的に測定することができる。したがって、本発明を用いることにより、環境因子と侵入水素量の相関を正確に把握することができ、超高強度鋼を始めとする金属材料の、大気環境への適用可否の判断に極めて有効である。   Thus, according to the present invention, in a corrosive environment where the temperature fluctuates, the amount of hydrogen entering the metal material can be continuously measured with high accuracy. Therefore, by using the present invention, it is possible to accurately grasp the correlation between environmental factors and the amount of invading hydrogen, which is extremely effective in determining whether or not metallic materials such as ultra-high strength steel can be applied to the atmospheric environment. is there.

1 侵入水素量測定装置
10 試験片
11 水素侵入面
12 水素検出面
20 電気化学セル
21 電解液
22 収容体
23 参照電極
24 対極
30 ポテンショスタット
40 熱電対(温度測定手段)
50 温度ロガー
DESCRIPTION OF SYMBOLS 1 Intrusion hydrogen amount measuring apparatus 10 Test piece 11 Hydrogen penetration surface 12 Hydrogen detection surface 20 Electrochemical cell 21 Electrolytic solution 22 Container 23 Reference electrode 24 Counter electrode 30 Potentiostat 40 Thermocouple (Temperature measurement means)
50 temperature logger

Claims (4)

温度が変化する腐食環境において、腐食によって金属内部に侵入する水素量を電気化学的水素透過法により測定する侵入水素量測定方法であって、
金属材料からなる試験片の一方の面を腐食環境に晒して水素侵入面とし、
前記試験片の他方の面を、めっき皮膜を備える水素検出面とし、
前記水素検出面に設置した電気化学セルでアノード電流密度:iaを測定し、
試験環境の温度:Tを測定し、
予め求めた、下記(1)式で表される不働態保持電流密度:ipと試験環境の温度:T(K)との関係に基づいて、測定された前記試験環境の温度:Tから不働態保持電流密度:ipを算出し、
前記アノード電流密度:iaから前記不働態保持電流密度:ipを差し引くことによって、水素透過電流密度:iHを求め、
前記水素透過電流密度:iHから侵入水素量を算出する、侵入水素量測定方法。

p = A×e−B/T …(1)
(ここで、A、Bは、前記めっき皮膜の性状に依存する定数である)
In a corrosive environment where the temperature changes, an intrusion hydrogen amount measurement method that measures the amount of hydrogen penetrating into the metal by corrosion using an electrochemical hydrogen permeation method,
One side of a test piece made of a metal material is exposed to a corrosive environment to form a hydrogen intrusion surface,
The other surface of the test piece is a hydrogen detection surface provided with a plating film,
Electrochemical cell anode current density installed in the hydrogen detecting surface: measuring the i a,
Measure the temperature of the test environment: T
Previously determined, passive holding current density is expressed by the following equation (1): i p and temperature of the test environment: Based on the relationship between T (K), of said measured test environment temperature: not from T働態holding current density: calculating a i p,
The anode current density from said i a passive holding current density by subtracting i p, the hydrogen permeation current density: seeking i H,
The hydrogen permeation current density: a method for measuring an intrusion hydrogen amount, wherein the intrusion hydrogen amount is calculated from i H.
I p = A × e− B / T (1)
(Here, A and B are constants depending on the properties of the plating film)
前記試験環境の温度:Tとして、前記試験片の温度を測定する、請求項1に記載の侵入水素量測定方法。   The method for measuring an intrusion hydrogen amount according to claim 1, wherein the temperature of the test piece is measured as a temperature T of the test environment. 前記腐食環境が、直射日光の照射を受ける屋外暴露環境である、請求項1または2に記載の侵入水素量測定方法。   The method for measuring the amount of invading hydrogen according to claim 1 or 2, wherein the corrosive environment is an outdoor exposure environment that is exposed to direct sunlight. 請求項2に記載の侵入水素量測定方法を実施するための侵入水素量測定装置であって、
前記試験片の水素検出面に設置される電気化学セルと、
前記試験片の温度を測定する温度測定手段と、
前記電気化学セルおよび前記温度測定手段と接続された制御手段とを有し、
前記制御手段が、
前記電気化学セルによるアノード電流密度:iaの測定と、前記温度測定手段による試験片の温度:Tの測定を同時に行い、
予め求めた前記(1)式の関係に基づいて測定された前記試験片の温度:Tから不働態保持電流密度:ipを算出し、
前記アノード電流密度:iaから前記不働態保持電流密度:ipを差し引くことによって、水素透過電流密度:iHを求め、
前記水素透過電流密度:iHから侵入水素量を算出するよう構成されている、侵入水素量測定装置。
An intrusion hydrogen amount measuring apparatus for carrying out the intrusion hydrogen amount measurement method according to claim 2,
An electrochemical cell installed on the hydrogen detection surface of the test piece;
Temperature measuring means for measuring the temperature of the test piece;
Control means connected to the electrochemical cell and the temperature measuring means;
The control means is
It was measured for T simultaneously: the measurement of i a, the temperature measuring means due to the test piece temperature: anode current density due to the electrochemical cell
Previously determined (1) of the test piece was measured based on a relationship type temperature: T from passive holding current density: calculating a i p,
The anode current density from said i a passive holding current density by subtracting i p, the hydrogen permeation current density: seeking i H,
An intrusion hydrogen amount measuring apparatus configured to calculate an intrusion hydrogen amount from the hydrogen permeation current density: i H.
JP2016098164A 2016-05-16 2016-05-16 Method of measuring intruding hydrogen amount and intruding hydrogen amount measuring device Active JP6540596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016098164A JP6540596B2 (en) 2016-05-16 2016-05-16 Method of measuring intruding hydrogen amount and intruding hydrogen amount measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016098164A JP6540596B2 (en) 2016-05-16 2016-05-16 Method of measuring intruding hydrogen amount and intruding hydrogen amount measuring device

Publications (2)

Publication Number Publication Date
JP2017207302A true JP2017207302A (en) 2017-11-24
JP6540596B2 JP6540596B2 (en) 2019-07-10

Family

ID=60417025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016098164A Active JP6540596B2 (en) 2016-05-16 2016-05-16 Method of measuring intruding hydrogen amount and intruding hydrogen amount measuring device

Country Status (1)

Country Link
JP (1) JP6540596B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100939A (en) * 2017-12-06 2019-06-24 日本電信電話株式会社 Hydrogen permeation amount measuring method, hydrogen permeation amount measuring device, and hydrogen permeation amount measuring program
WO2022208611A1 (en) * 2021-03-29 2022-10-06 日本電信電話株式会社 Surface hydrogen amount analysis method, surface hydrogen amount analysis device, and surface hydrogen amount analysis program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537824B1 (en) * 1999-12-01 2003-03-25 Luiz Augusto Demaria Correa Process for metering hydrogen permeated in a metallurgical structure, and apparatus thereof
JP2014089207A (en) * 2014-01-08 2014-05-15 Jfe Steel Corp Method for measuring amount of hydrogen penetrating inside metal and method for monitoring amount of hydrogen penetrating inside metal site of movable body
JP2015031554A (en) * 2013-08-01 2015-02-16 日本電信電話株式会社 Hydrogen penetration potential prediction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537824B1 (en) * 1999-12-01 2003-03-25 Luiz Augusto Demaria Correa Process for metering hydrogen permeated in a metallurgical structure, and apparatus thereof
JP2015031554A (en) * 2013-08-01 2015-02-16 日本電信電話株式会社 Hydrogen penetration potential prediction method
JP2014089207A (en) * 2014-01-08 2014-05-15 Jfe Steel Corp Method for measuring amount of hydrogen penetrating inside metal and method for monitoring amount of hydrogen penetrating inside metal site of movable body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
柴田俊夫: "還元性環境下における炭素鋼腐食速度測定装置の開発", 材料と環境, vol. 60, no. 8, JPN6018040730, 2011, pages 374 - 379, ISSN: 0003899259 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100939A (en) * 2017-12-06 2019-06-24 日本電信電話株式会社 Hydrogen permeation amount measuring method, hydrogen permeation amount measuring device, and hydrogen permeation amount measuring program
WO2022208611A1 (en) * 2021-03-29 2022-10-06 日本電信電話株式会社 Surface hydrogen amount analysis method, surface hydrogen amount analysis device, and surface hydrogen amount analysis program

Also Published As

Publication number Publication date
JP6540596B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
KR101725747B1 (en) Apparatus for measuring amount of hydrogen penetrated into metal
JP2011179893A (en) Method for measuring amount of hydrogen penetrated into metal and method for monitoring amount of hydrogen penetrated into metal region of moving body
JP5700673B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
Danielson Use of the Devanathan–Stachurski cell to measure hydrogen permeation in aluminum alloys
Zhang et al. A new criterion to determine the critical pitting temperature (CPT) based on electrochemical noise measurement
Schaller et al. Spatial determination of diffusible hydrogen concentrations proximate to pits in a Fe–Cr–Ni–Mo steel using the Scanning Kelvin Probe
JP5777098B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
CN103091243B (en) A kind of assay method of heavy antisepsis organic coating useful life
Broli et al. Determination of characteristic pitting potentials for aluminium by use of the potentiostatic methods
Samide et al. Surface analysis of inhibitor film formed by 4-amino-N-(1, 3-thiazol-2-yl) benzene sulfonamide on carbon steel surface in acidic media
Steiner et al. Investigation of IG-SCC growth kinetics in Al-Mg alloys in thin film environments
JP6540596B2 (en) Method of measuring intruding hydrogen amount and intruding hydrogen amount measuring device
JP5754566B2 (en) Device for measuring the amount of hydrogen penetrating into metal
JP5888692B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
JP2008292408A (en) Temporal evaluation method for crevice corrosion initiation
JP2016095146A (en) Hydrogen entry evaluation method
CN115931538B (en) Method for measuring influence degree of hydrogen in acidic environment on metal stress corrosion cracking
JP5979731B2 (en) Method for monitoring the amount of hydrogen entering the metal part of a moving object
Wu et al. Evaluation of corrosion critical variables of 304 stainless steel by delay time of acoustic emission
Druart et al. Influence of sol–gel application conditions on metallic substrate for optical applications
Shively et al. Hydrogen permeability in a stable austenitic stainless steel
JP6130447B2 (en) Method for monitoring the amount of hydrogen entering the metal part of a moving object
JP2018115942A (en) Hydrogen invasion evaluation method, hydrogen invasion evaluation system and hydrogen invasion evaluation cell
JP7132886B2 (en) Corrosion Penetration Hydrogen Measuring Device and Corrosion Penetration Hydrogen Evaluation Method
JP5898106B2 (en) Method for measuring hydrogen content in metal structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R150 Certificate of patent or registration of utility model

Ref document number: 6540596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250