JP5979731B2 - Method for monitoring the amount of hydrogen entering the metal part of a moving object - Google Patents

Method for monitoring the amount of hydrogen entering the metal part of a moving object Download PDF

Info

Publication number
JP5979731B2
JP5979731B2 JP2014001798A JP2014001798A JP5979731B2 JP 5979731 B2 JP5979731 B2 JP 5979731B2 JP 2014001798 A JP2014001798 A JP 2014001798A JP 2014001798 A JP2014001798 A JP 2014001798A JP 5979731 B2 JP5979731 B2 JP 5979731B2
Authority
JP
Japan
Prior art keywords
hydrogen
amount
cell
metal
metal part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014001798A
Other languages
Japanese (ja)
Other versions
JP2014089207A (en
Inventor
裕樹 中丸
裕樹 中丸
藤田 栄
栄 藤田
徹 水流
徹 水流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Tokyo Institute of Technology NUC
Original Assignee
JFE Steel Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Tokyo Institute of Technology NUC filed Critical JFE Steel Corp
Priority to JP2014001798A priority Critical patent/JP5979731B2/en
Publication of JP2014089207A publication Critical patent/JP2014089207A/en
Application granted granted Critical
Publication of JP5979731B2 publication Critical patent/JP5979731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、腐食に伴い金属内部へ侵入する水素量を正確に検出することができる、金属内部への侵入水素量の測定方法に関するものである。
また、本発明は、上記の測定方法を利用することにより、自動車、船舶、鉄道車両などの移動体を構成する金属材料の各部位について、使用状態で曝される腐食環境下で腐食することに伴い発生し金属材料中に侵入する水素量を連続的に検出することができる、モニタリング方法に関するものである。
The present invention relates to a method for measuring the amount of hydrogen penetrating into a metal, which can accurately detect the amount of hydrogen penetrating into the metal due to corrosion.
Further, the present invention uses the above measurement method to corrode each part of a metal material constituting a moving body such as an automobile, a ship, and a railway vehicle in a corrosive environment exposed in a use state. The present invention relates to a monitoring method capable of continuously detecting the amount of hydrogen generated and entering into a metal material.

近年、地球温暖化防止の観点から、自動車の走行時に排出されるCO2の削減を狙いとした車体の軽量化が求められている。これに伴い、使用する鋼板を高強度化することによって板厚を低減する努力が進められている。 In recent years, from the viewpoint of preventing global warming, there has been a demand for weight reduction of vehicle bodies aimed at reducing CO 2 emitted during driving of automobiles. Accordingly, efforts are being made to reduce the plate thickness by increasing the strength of the steel plate used.

上記した鋼板の高強度化に伴い、従来の自動車用部品では問題になることのなかった遅れ破壊に対する懸念が新たに浮上してきた。
遅れ破壊とは、高強度鋼部品が静的な負荷応力を受けた状態で、ある時間が経過したとき、外見的にはほとんど塑性変形を伴うことなしに、突然脆性的に破壊する現象であり、広義には液体金属接触割れや応力腐食割れなども含まれるが(非特許文献1)、自動車で問題になるのは腐食に伴い鋼中に侵入する水素によって引き起こされる水素脆化型の遅れ破壊である。
With the increase in strength of the steel sheet described above, concerns about delayed fracture that has not been a problem with conventional automotive parts have emerged.
Delayed fracture is a phenomenon in which high-strength steel parts suddenly break brittlely with little plastic deformation in appearance when a certain amount of time has passed under the condition of static load stress. In a broad sense, liquid metal contact cracking and stress corrosion cracking are also included (Non-Patent Document 1), but the problem in automobiles is hydrogen embrittlement-type delayed fracture caused by hydrogen entering the steel due to corrosion. It is.

従来から、引張り強さが1200MPa以上の高強度鋼製のボルトが大気環境中で遅れ破壊を起こすことは広く知られていて(非特許文献1)、かかる遅れ破壊は鋼中に侵入した微量の水素によって引き起こされると考えられている。この観点から、鋼中への水素侵入に着目した遅れ破壊の評価方法が種々提案されている。   Conventionally, it is widely known that bolts made of high-strength steel with a tensile strength of 1200 MPa or more cause delayed fracture in the atmospheric environment (Non-Patent Document 1). It is thought to be caused by hydrogen. From this viewpoint, various methods for evaluating delayed fracture focusing on hydrogen intrusion into steel have been proposed.

例えば、特許文献1には、電解溶液を保持する電解槽と、薄鋼板をU曲げ加工して負荷応力を付与したU字状の試験片に水素チャージを行う陰極と、この試験片のU曲げ部における水素濃度分布が、平均水素濃度の50%以内になるように配置された陽極と、電流発生手段を有することを特徴とする薄鋼板の水素脆化評価装置が提案されている。   For example, Patent Document 1 discloses an electrolytic cell for holding an electrolytic solution, a cathode for performing hydrogen charging on a U-shaped test piece to which a load stress is applied by U-bending a thin steel plate, and a U-bending of the test piece. An apparatus for evaluating hydrogen embrittlement of a thin steel sheet has been proposed, characterized in that it has an anode arranged so that the hydrogen concentration distribution in the part is within 50% of the average hydrogen concentration and a current generating means.

また、特許文献2には、鋼材に陰極チャージによって拡散性水素を含有させ、限界拡散性水素量を測定することによって、鋼材の遅れ破壊特性を評価する遅れ破壊特性の評価方法において、限界拡散性水素量の測定中に鋼材から水素が放出されることを防止するために、鋼材に亜鉛めっきを施す方法が提案されている。   Further, Patent Document 2 discloses that in a method for evaluating delayed fracture characteristics in which a steel material contains diffusible hydrogen by cathodic charging and the amount of critical diffusible hydrogen is measured to evaluate the delayed fracture property of the steel material, the critical diffusivity is determined. In order to prevent hydrogen from being released from the steel during measurement of the amount of hydrogen, a method of galvanizing the steel has been proposed.

さらに、非特許文献2には、大気暴露環境下で一定期間腐食させた高強度ボルトを回収して、ボルトに吸蔵された水素濃度を測定した例が報告されている。また、この非特許文献2には、鋼板の片面を外部環境に暴露する試験装置を用いた電気化学的水素透過法によって、反対面側から検出されるアノード電流値の変化から、大気暴露環境下での腐食による水素侵入挙動を調査した結果が報告されている。   Furthermore, Non-Patent Document 2 reports an example in which a high-strength bolt that has been corroded for a certain period in an atmospheric exposure environment is collected and the hydrogen concentration occluded in the bolt is measured. Further, in this Non-Patent Document 2, from the change of the anode current value detected from the opposite surface side by the electrochemical hydrogen permeation method using a test apparatus that exposes one side of a steel sheet to the external environment, The results of investigating the hydrogen intrusion behavior due to corrosion in the sea are reported.

なお、上述したように、現時点で最も遅れ破壊の問題が懸念される金属材料は、実用材料として広範に使用されている鋼材であるが、その他の金属材料においても今後は遅れ破壊の問題が生じる可能性が指摘されている(例えば非特許文献3)。   As described above, the metal material that is most concerned about the problem of delayed fracture is a steel material that is widely used as a practical material. However, the problem of delayed fracture will also occur in other metal materials in the future. The possibility is pointed out (for example, non-patent document 3).

特開2005-134152号公報JP 2005-134152 A 特開2005-69815号公報JP 2005-69815 A

「松山晋作:遅れ破壊、日刊工業新聞社、東京、(1989)」"Matsuyama Junsaku: Delayed Destruction, Nikkan Kogyo Shimbun, Tokyo, (1989)" 「大村等:鉄と鋼、Vol.91、No.5、p.42 (2005)」“Omura et al .: Iron and Steel, Vol.91, No.5, p.42 (2005)” 「高取等:鉄と鋼、Vol.78、No.5、p.149 (1992)」“Takatori et al .: Iron and Steel, Vol.78, No.5, p.149 (1992)” 「M.A.V.Devanathan, Z.Stachurski;Proc. Roy. Soc. London, Ser. A, 270, 90 (1962)」"M.A.V. Devanathan, Z.Stachurski; Proc. Roy. Soc. London, Ser. A, 270, 90 (1962)"

特許文献1に記載された技術は、薄鋼板のU曲げ部を陰極とした電解によって、外部から強制的に水素を侵入させる加速試験であることから、実際の使用環境とは異なる条件の下で、供試材の種類による遅れ破壊発現の優劣をつけることはできるものの、実際の使用環境での腐食に伴う水素侵入量で遅れ破壊が起こるか否かを推定するための判断材料にはならない。   The technique described in Patent Document 1 is an accelerated test in which hydrogen is forcibly entered from the outside by electrolysis using a U-bent portion of a thin steel plate as a cathode, and therefore under conditions different from the actual usage environment. Although it is possible to give superiority or inferiority to the occurrence of delayed fracture depending on the type of test material, it is not a judgment material for estimating whether or not delayed fracture occurs depending on the amount of hydrogen intrusion due to corrosion in the actual use environment.

同様に、特許文献2も、鋼中への水素の侵入は、陰極チャージによるものであるため、実際の使用環境での腐食に伴う水素侵入量で遅れ破壊が起こるか否かを判断することはできない。   Similarly, in Patent Document 2, since the hydrogen intrusion into the steel is due to cathodic charging, it is not possible to determine whether or not delayed fracture occurs depending on the amount of hydrogen intrusion due to corrosion in the actual use environment. Can not.

さらに、非特許文献2に開示の大気暴露試験によって得られるデータは、いずれも地勢的な特定環境と結びついた環境因子の下での試験結果にすぎず、構造体の移動に伴い変化する種々の環境下における腐食を継続的に把握することについては、考慮が払われていない。
また、非特許文献2に示された鋼板の片面を外部環境に暴露する試験装置を用いた大気暴露における水素透過試験では、環境の温度変化に伴うアノード側の残余電流の変化が考慮されていないことから、測定値の定量性にも問題があった。
Furthermore, the data obtained by the atmospheric exposure test disclosed in Non-Patent Document 2 are only test results under environmental factors associated with the terrain specific environment, and various data that change with the movement of the structure. No consideration has been given to continuously assessing corrosion in the environment.
Further, in the hydrogen permeation test in the atmospheric exposure using the test apparatus that exposes one side of the steel sheet to the external environment shown in Non-Patent Document 2, the change in the residual current on the anode side accompanying the temperature change in the environment is not taken into consideration. For this reason, there was a problem in the quantitativeness of the measured value.

上記したように、自動車のような移動体では、移動することによって地勢的な環境が変化し、さらに物理的要因(例えば振動、塵埃堆積−脱落、水・泥跳ね付着−乾燥など)が加わると、腐食環境が極端に変化する場合がある。
しかしながら、上記した振動などの物理的要因や地勢的な環境変化が避けられない移動体について、腐食に伴う水素侵入量を継続的かつ定量的に計測した例は、これまで皆無であった。
As described above, in a moving body such as an automobile, when the terrain environment is changed by moving, and physical factors (for example, vibration, dust accumulation-dropping, water / mud splash adhesion-drying, etc.) are added. The corrosive environment may change drastically.
However, there have been no examples of continuously and quantitatively measuring the amount of hydrogen intrusion due to corrosion of a moving body in which physical factors such as vibrations and terrain environmental changes cannot be avoided.

本発明は、上記の現状に鑑み開発されたもので、環境の温度変化に伴うアノード側の残余電流の変化を考慮して、腐食に伴って金属内部へ侵入する水素量を正確に計測することができる金属内部への侵入水素量の測定方法を提案することを目的とする。
また、本発明は、上記の測定方法を用いることにより、環境が目まぐるしく変化する移動体を構成する金属材料の各部位について、使用状態で曝される腐食環境下での腐食に伴い発生し、金属材料中に侵入する水素量を連続して監視することができる移動体の金属部位内部へ侵入する水素量のモニタリング方法を提案することを目的とする。
The present invention has been developed in view of the above situation, and accurately measures the amount of hydrogen penetrating into the metal due to corrosion in consideration of the change in the residual current on the anode side accompanying the temperature change in the environment. The purpose is to propose a method for measuring the amount of hydrogen penetrating into a metal.
Further, the present invention uses the above-described measurement method to cause each part of the metal material that constitutes the moving body whose environment changes rapidly, accompanied by corrosion in a corrosive environment exposed in use, An object of the present invention is to propose a method for monitoring the amount of hydrogen entering a metal part of a moving body, which can continuously monitor the amount of hydrogen entering the material.

さて、本発明者らは、上記の目的を達成すべく鋭意検討を重ねた結果、電気化学的な原理に基づく侵入水素量の新たな測定方法を開発した。
そして、この測定方法を利用すれば、移動体を構成する金属部品の腐食に伴い侵入する水素を連続的にモニタリングできることも見出した。
本発明は、上記の知見に立脚するものである。
As a result of intensive studies to achieve the above object, the present inventors have developed a new method for measuring the amount of invading hydrogen based on the electrochemical principle.
And when this measuring method was utilized, it also discovered that the hydrogen which penetrate | invades with corrosion of the metal component which comprises a moving body can be monitored continuously.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.移動体の金属部位内部へ侵入する水素量のモニタリング方法であって、
金属内部への侵入水素量の測定方法を、少なくともその一部が金属材料で構成される移動体の評価対象金属部位に適用し、該評価対象金属部位の腐食に伴い内部に侵入する水素の量を、該移動体の走行環境に伴い変化する腐食環境下において連続して測定し、
前記金属内部への侵入水素量の測定方法が、
金属材料の腐食に伴って発生し金属内部に侵入する水素の量を、電気化学的水素透過法を用いて、マルチチャンネルポテンショスタットにより測定する方法であり、被検体としての金属材料の片面を腐食環境に暴露し腐食反応により発生する水素の侵入面とする一方、該被検体の他面を水素検出面とし、該水素検出面側の電位を−0.1〜+0.3V vs SCEに保持した状態で該検出面に拡散してくる水素の流束をアノード電流として測定するに際し、
同一の被検体の水素検出面側に、少なくとも2つに分割された複数のセル群で構成された電気化学セルを配置し、該セル群の個々のセルの内部にはpHが9〜13の電解質水溶液を充填すると共に、それぞれ独立した参照電極と対極を設置し、
該セル群のうち少なくとも一つのセルを残余電流を補正するための基準セルとし、該基準セルの水素侵入面側に対応する箇所には腐食環境との接触を遮断する保護膜を設け、
該被検体の水素侵入面のうち、該基準セル以外のセルに対応する箇所においては、保護膜を設けずに該金属材料を直接腐食環境に暴露し、
該基準セル以外のセルで検出したアノード電流値を、該基準セルで検出した残余電流値により補正し、この補正したアノード電流値に基づいて腐食面側からの侵入水素量を算出することを特徴とする、移動体の金属部位内部へ侵入する水素量のモニタリング方法
但し、侵入水素量(透過水素量)の換算は以下の式に従う。
前記基準セル以外のセルで検出したアノード電流密度値から、前記基準セルで検出したアノード電流密度値を差し引いた値を透過水素電流密度:iH(μA/cm2=10-6A/cm2)としたとき、単位面積当たりの侵入水素量:MH(mol/scm2)またはmH(個/scm2)をそれぞれ、次式
H= iH×1.036×10-11 (mol/scm2),
H= iH× 6.24×1012 (個/scm2
により求める。
That is, the gist configuration of the present invention is as follows.
1. A method for monitoring the amount of hydrogen entering a metal part of a moving body,
A method for measuring the amount of hydrogen penetrating into the interior of a metal is applied to a metal part to be evaluated of a moving body, at least a part of which is made of a metal material, and the amount of hydrogen penetrating into the metal due to corrosion of the metal part to be evaluated Is continuously measured in a corrosive environment that varies with the traveling environment of the moving body,
A method for measuring the amount of hydrogen penetrating into the metal is
This is a method of measuring the amount of hydrogen generated by corrosion of metal materials and penetrating into the interior of the metal using a multi-channel potentiostat using the electrochemical hydrogen permeation method , and corrodes one side of the metal material as the specimen. In the state where the intrusion surface of hydrogen that is exposed to the environment and generated by a corrosion reaction is used, the other surface of the subject is a hydrogen detection surface, and the potential on the hydrogen detection surface side is maintained at −0.1 to +0.3 V vs. SCE. When measuring the flux of hydrogen diffusing to the detection surface as an anode current,
An electrochemical cell composed of a plurality of cell groups divided into at least two cells is disposed on the hydrogen detection surface side of the same subject, and each cell in the cell group has a pH of 9 to 13 Fill with electrolyte solution and install independent reference electrode and counter electrode,
At least one cell in the cell group is used as a reference cell for correcting the residual current, and a protective film that blocks contact with the corrosive environment is provided at a location corresponding to the hydrogen entry surface side of the reference cell,
Of the hydrogen intrusion surface of the specimen, in a location corresponding to a cell other than the reference cell, the metal material is directly exposed to a corrosive environment without providing a protective film,
An anode current value detected in a cell other than the reference cell is corrected by a residual current value detected in the reference cell, and an intrusion hydrogen amount from the corroded surface side is calculated based on the corrected anode current value. And a method for monitoring the amount of hydrogen entering the metal part of the moving body .
However, the intrusion hydrogen amount (permeated hydrogen amount) is converted according to the following equation.
The value obtained by subtracting the anode current density value detected in the reference cell from the anode current density value detected in a cell other than the reference cell is a permeated hydrogen current density: i H (μA / cm 2 = 10 −6 A / cm 2 ), The amount of invading hydrogen per unit area: M H (mol / scm 2 ) or m H (pieces / scm 2 )
M H = i H × 1.036 × 10 -11 (mol / scm 2 ),
m H = i H x 6.24 x 10 12 (pieces / scm 2 )
Ask for.

2.前記参照電極としてIr/Ir酸化物電極を用いることを特徴とする前記1に記載の移動体の金属部位内部へ侵入する水素量のモニタリング方法2. 2. The method for monitoring the amount of hydrogen penetrating into the metal part of the moving body according to 1 above, wherein an Ir / Ir oxide electrode is used as the reference electrode.

3.前記被検体の水素検出面側の表面を、予めPdまたはPd含有合金あるいはNiで被覆しておくことを特徴とする前記1または2に記載の移動体の金属部位内部へ侵入する水素量のモニタリング方法3. 3. Monitoring the amount of hydrogen penetrating into the metal part of the moving body according to 1 or 2 above, wherein the surface on the hydrogen detection surface side of the subject is coated with Pd or a Pd-containing alloy or Ni in advance. Way .

.前記移動体の評価対象金属部位の内部へ侵入する水素量から、該金属部位の遅れ破壊感受性を評価することを特徴とする、前記1〜3のいずれか一項に記載の移動体の金属部位内部へ侵入する水素量のモニタリング方法。 4 . The metal part of the mobile body according to any one of claims 1 to 3 , wherein the delayed fracture sensitivity of the metal part is evaluated from the amount of hydrogen that penetrates into the metal part to be evaluated of the mobile body. How to monitor the amount of hydrogen entering the interior.

本発明によれば、腐食に伴って金属の内部へ侵入する水素量を正確に検出することができる。
また、本発明によれば、自動車、船舶、鉄道車両などの移動体を構成する金属材料の各部位が、その使用状態で曝される腐食環境下で腐食することに伴い発生し、金属材料中に侵入する水素の量を連続的にモニタリングすることが可能となり、実際の使用環境での腐食に伴う水素侵入量で遅れ破壊が生じるか否かを判断するために必要な情報を得ることができる。
According to the present invention, it is possible to accurately detect the amount of hydrogen that penetrates into the metal due to corrosion.
Further, according to the present invention, each part of a metal material constituting a moving body such as an automobile, a ship, and a railway vehicle is generated as it corrodes in a corrosive environment exposed in its use state. It is possible to continuously monitor the amount of hydrogen penetrating into the gas and obtain the information necessary to determine whether delayed destruction occurs due to the amount of hydrogen penetrating due to corrosion in the actual usage environment. .

電気化学的水素透過法の説明図である。It is explanatory drawing of an electrochemical hydrogen permeation method. 本発明の実施に用いて好適なセル構造を模式的に示した図である。It is the figure which showed typically the suitable cell structure used for implementation of this invention. 保護膜の無いセルの腐食面(水素侵入面)側および水素検出面側での反応を模式的に示した図である。It is the figure which showed typically reaction by the corrosion surface (hydrogen intrusion surface) side and hydrogen detection surface side of a cell without a protective film. Ir線を0.2MのNaOH水溶液中に浸漬したときの電位の経時変化を示した図である。FIG. 6 is a graph showing a change in potential with time when an Ir line is immersed in a 0.2 M NaOH aqueous solution. 実施例における温度および湿度の変化を示した図である。It is the figure which showed the change of the temperature and humidity in an Example. 各チャンネルで検出されたアノード電流の経時変化を示した図である。It is the figure which showed the time-dependent change of the anode current detected by each channel. 実験後のサンプルの腐食面側の外観写真である。It is an external appearance photograph of the corrosion side of the sample after the experiment. 測定装置を自動車に搭載してアノード電流の測定を行う際の計測システムを模式的に示した図である。It is the figure which showed typically the measurement system at the time of mounting a measuring apparatus in a motor vehicle and measuring an anode current. 本発明に従う基準電極による補正を行った場合(発明例)と補正を行わなかった場合(比較例)とで、自動車の各部位において測定されたアノード電流密度の違いを比較して示した図である。The figure which compared and showed the difference of the anode current density measured in each site | part of a motor vehicle with the case where correction | amendment by the reference electrode according to this invention was performed (invention example), and the case where correction | amendment was not performed (comparative example). is there.

本発明は、自動車、自動二輪車、鉄道などの各種車両や船舶、航空機など自力で移動可能な移動体のすべてに適用可能な技術であるが、以下、自動車を代表例として実施の形態について詳細に説明する。また、評価対象とする金属材料としては必ずしも鋼板に限定されるわけではないが、ここでは代表例として鋼板に適用した場合について説明する。   The present invention is a technique that can be applied to various vehicles such as automobiles, motorcycles, railways, and mobile bodies that can be moved on their own, such as ships, aircraft, etc. explain. The metal material to be evaluated is not necessarily limited to a steel plate, but here, a case where it is applied to a steel plate will be described as a representative example.

本発明は、金属材料の腐食に伴い発生し内部に侵入する水素の量を、電気化学的水素透過法の測定原理を適用して測定するもので、水素侵入面側の鋼板表面を腐食環境に曝すことにより、腐食時に発生した水素が鋼中に侵入するので、反対面側から水素を取り出すことによって侵入水素量を測定する。   The present invention measures the amount of hydrogen generated by metal material corrosion and penetrating into the interior by applying the measurement principle of the electrochemical hydrogen permeation method. By exposing, the hydrogen generated during the corrosion penetrates into the steel, and the amount of penetrating hydrogen is measured by taking out hydrogen from the opposite side.

電気化学的水素透過法は、1962年にDevanathanとStachurskiによって開発された手法(非特許文献4)で、図1に模式的に示すように、2つの電解槽1a,1bが1枚の試料2を挟んで向かい合わせに配置されている。同図の場合、左側の電解槽1aの試料面を定電位または定電流でカソード分極して、水素発生・水素チャージを行い、右側の電解槽1bでは試料2を定電位アノード分極することによって試料2を透過してきた水素を水素イオンに酸化し、その電流値から透過した水素の量を求めるものである。
図中、符号3a,3bは参照電極、4a,4bは電極であり、特に4bは対電極または係数電極という。そして、電極4aは、定電位を付与するポテンショスタットまたは定電流を付与するガルバノスタットと接続され、一方と電極4bは、定電位を付与するポテンショスタットと接続されている。なお、5a,5bは、対電極 4a,4bで発生するガス等の影響を除去するための焼結ガラスフリットである。
The electrochemical hydrogen permeation method is a technique developed by Devanathan and Stachurski in 1962 (Non-Patent Document 4). As schematically shown in FIG. 1, two electrolytic cells 1a and 1b are formed of one sample 2 It is arranged facing each other across. In the case of the figure, the sample surface of the left electrolytic cell 1a is cathode-polarized at a constant potential or a constant current to generate hydrogen and charge, and the right electrolytic cell 1b is subjected to constant-potential anodic polarization. The hydrogen permeated through 2 is oxidized into hydrogen ions, and the amount of permeated hydrogen is determined from the current value.
In the figure, reference numerals 3a and 3b are reference electrodes, 4a and 4b are electrodes, and 4b is particularly referred to as a counter electrode or a coefficient electrode. The electrode 4a is connected to a potentiostat for applying a constant potential or a galvanostat for applying a constant current, and one of the electrodes 4b is connected to a potentiostat for applying a constant potential. Reference numerals 5a and 5b denote sintered glass frits for removing the influence of gas and the like generated at the counter electrodes 4a and 4b.

上記した電気化学的水素透過法そのものは、「鋼板中の水素拡散係数の測定手法」として従来から良く知られた手法である。
本来の電気化学的水素透過法は、図1に示したように、試料の片面側を陰極にして水素を電解チャージし、反対面側を陽極にして引き抜く手法であるが、これを応用して、水素チャージ面側に相当する面を腐食環境に曝すという研究が報告されている(前掲非特許文献2)。
しかしながら、非特許文献2に開示された測定方法では、温度の変化による測定電流値の変化が考慮されていないという問題があったことは、前述したとおりである。また、電気化学的水素透過法によって水素検出面側で測定されるアノード電流には、水素の酸化電流の他に、供試材の不動態保持電流が重畳されている。この不動態保持電流は、残余電流の主体をなすもので、様々な因子に影響されるが、特に温度による変化が大きい。
The above-described electrochemical hydrogen permeation method itself is a method that has been well known as “a method for measuring a hydrogen diffusion coefficient in a steel sheet”.
As shown in FIG. 1, the original electrochemical hydrogen permeation method is a method in which hydrogen is electrolytically charged with one side of the sample as a cathode and extracted with the opposite side as an anode. A study has been reported in which the surface corresponding to the hydrogen charge surface is exposed to a corrosive environment (Non-Patent Document 2).
However, as described above, the measurement method disclosed in Non-Patent Document 2 has a problem that the change in the measurement current value due to the change in temperature is not taken into consideration. In addition to the hydrogen oxidation current, the anode holding current measured on the hydrogen detection surface side by the electrochemical hydrogen permeation method is superimposed with the passive holding current of the test material. This passive holding current is the main component of the residual current, and is influenced by various factors, but it varies greatly with temperature.

電気化学的水素透過法によって水素検出面側で測定されるアノード電流は微弱な電流であることから、残余電流の温度依存性を補正しないと正確なアノード電流を測定することはできない。   Since the anode current measured on the hydrogen detection surface side by the electrochemical hydrogen permeation method is weak, accurate anode current cannot be measured unless the temperature dependence of the residual current is corrected.

上記の問題を解決するために、本発明者等は、種々検討を重ねた結果、水素検出面側に設ける電気化学セルを、同一の被検体の上に少なくとも2つ以上に分割された複数のセル群で構成し、その内の少なくとも一つのセルについては残余電流を補正するための基準セルとし、かつこの基準セルの水素侵入面側に対応する部分に腐食環境を遮断するための保護膜を設けることによって、残余電流の温度依存性の補正を可能としたのである。   In order to solve the above problem, the present inventors have made various studies, and as a result, the electrochemical cell provided on the hydrogen detection surface side is divided into at least two or more divided on the same subject. It is composed of a group of cells, and at least one of the cells is used as a reference cell for correcting the residual current, and a protective film for blocking the corrosive environment is provided at a portion corresponding to the hydrogen entry surface side of the reference cell. By providing it, the temperature dependence of the residual current can be corrected.

図2に、本発明のセル構造を模式的に示す。図2の例では、被検体としての鋼板6の水素検出面側に4つのセル7a,7b,7c,7dが設けられていて、一番左側のセル7aが残余電流を補正するための基準セルである。図中、符号8が対極(Pt線)、9が参照電極(Ir線)である。
同図において、各セルにおける鋼板の表面温度、セル内の電解質溶液の温度等はすべて同じ温度とする。また、基準セル7aの水素侵入面側には保護膜10が設けられている。このような保護膜10で被覆された部分は腐食せず、従って水素侵入も起こらないことから、基準セルの水素検出面側で測定される電流は残余電流そのものと考えられる。
FIG. 2 schematically shows the cell structure of the present invention. In the example of FIG. 2, four cells 7a, 7b, 7c, 7d are provided on the hydrogen detection surface side of a steel plate 6 as an object, and the leftmost cell 7a is a reference cell for correcting the residual current. It is. In the figure, reference numeral 8 is a counter electrode (Pt line), and 9 is a reference electrode (Ir line).
In the figure, the surface temperature of the steel plate in each cell, the temperature of the electrolyte solution in the cell, etc. are all the same temperature. A protective film 10 is provided on the hydrogen entry surface side of the reference cell 7a. Since the portion covered with such a protective film 10 does not corrode and therefore does not enter hydrogen, the current measured on the hydrogen detection surface side of the reference cell is considered as the residual current itself.

図3に、保護膜の無いセル(チャンネルともいう)の腐食面(水素侵入面)側および水素検出面側での反応を模式的に示す。
水素検出面側の表面電位を水素のイオン化反応に十分な電位に保持することで、拡散によって検出面側に到達した水素はすべて水素イオンとして取り出される。なお、本発明において、水素検出面側の鋼板の表面は不動態化されている。これにより、水素検出側で検出されるアノード電流が実質的に水素透過電流に相当すると考えることができる。
従って、かくして得られた電流値を、基準セルで求めた残余電流値で補正することにより、温度変化に伴う残余電流の変化にかかわらず、正確なアノード電流値を計測することができ、その結果、このアノード電流値に基づいて正確な侵入水素量を算出することが可能になるのである。
FIG. 3 schematically shows reactions on the corroded surface (hydrogen intrusion surface) side and the hydrogen detection surface side of a cell (also referred to as a channel) without a protective film.
By maintaining the surface potential on the hydrogen detection surface side at a potential sufficient for the ionization reaction of hydrogen, all the hydrogen that has reached the detection surface side by diffusion is taken out as hydrogen ions. In the present invention, the surface of the steel plate on the hydrogen detection surface side is passivated. Thereby, it can be considered that the anode current detected on the hydrogen detection side substantially corresponds to the hydrogen permeation current.
Therefore, by correcting the current value thus obtained with the residual current value obtained by the reference cell, an accurate anode current value can be measured regardless of the change in the residual current due to the temperature change. Thus, it is possible to calculate an accurate intrusion hydrogen amount based on the anode current value.

以下、本発明を具体的に説明する。
本発明において、水素検出面側の鋼板を不動態の状態に保持するためには、アノード極室内の溶液はpH:9〜13の電解質溶液とすることが必要である。というのは、pHが9未満では所定の電位において鋼板の表面の不動態を保持することが困難であり、一方、pHが13を超えると、不慮の事故により漏洩した場合に、環境へのダメージが大きいからである。適正なpHの電解質溶液としては、0.1〜0.5M(モル/リットル)程度のNaOH水溶液が好適である。なお、本発明では、適正なpHの電解質溶液として、必ずしも0.1〜0.2MのNaOH水溶液に限定されるわけではなく、水素検出面の鋼板表面を水素のイオン化反応に十分な電位に保持する際に、鋼板の表面の不動態化状態を確保できる電解質溶液であればいずれでも良い。さらに、電解質溶液に代えて、ゲル状の電解質を用いることは、液漏れの防止だけでなく、取り扱いの容易さからも有利である。
Hereinafter, the present invention will be specifically described.
In the present invention, in order to keep the steel plate on the hydrogen detection surface side in a passive state, the solution in the anode electrode chamber needs to be an electrolyte solution having a pH of 9 to 13. This is because if the pH is less than 9, it is difficult to maintain the surface passivation of the steel sheet at a given potential, while if the pH exceeds 13, damage to the environment will occur if it is accidentally leaked. Because is big. As an electrolyte solution having an appropriate pH, an aqueous NaOH solution of about 0.1 to 0.5 M (mol / liter) is suitable. In the present invention, the electrolyte solution having an appropriate pH is not necessarily limited to a 0.1 to 0.2 M NaOH aqueous solution, but when the steel plate surface of the hydrogen detection surface is maintained at a potential sufficient for the ionization reaction of hydrogen. Any electrolyte solution can be used as long as it can ensure a passivated state of the surface of the steel sheet. Furthermore, using a gel electrolyte instead of the electrolyte solution is advantageous not only for preventing liquid leakage but also for ease of handling.

また、本発明において、水素検出面の電位は、常時、−0.1〜+0.3V vs SCEに保持しておく必要がある。というのは、水素検出面の電位がこの範囲を外れると、安定した水素のイオン化電流を得ることができなくなるからである。
ここで、SCEは、飽和カロメル電極のことであり、このSCEの標準水素電極(SHE)に対する電位は+0.244 V(vs SHE,25℃)で示される。
In the present invention, the potential of the hydrogen detection surface must be kept at −0.1 to +0.3 V vs. SCE at all times. This is because if the potential of the hydrogen detection surface is out of this range, a stable hydrogen ionization current cannot be obtained.
Here, SCE is a saturated calomel electrode, and the potential of this SCE with respect to the standard hydrogen electrode (SHE) is represented by +0.244 V (vs SHE, 25 ° C.).

なお、電位を制御するための参照電極としては、現在実用化されている各種電極が使用可能である。
ただし、Ag/AgCl電極のような塩化物を含む電極を用いる場合、アノード極室溶液中への塩化物イオンのコンタミにより、サンプル表面の不動態が破壊されて残余電流が大きくなり、測定値が不正確になるおそれがある。
In addition, as the reference electrode for controlling the potential, various electrodes that are currently in practical use can be used.
However, when using an electrode containing chloride such as an Ag / AgCl electrode, contamination of the chloride ion into the anode electrode chamber solution destroys the passivation of the sample surface, increasing the residual current, resulting in a measured value. May be inaccurate.

そこで、上記のような問題を回避できる参照電極について種々検討した結果、アノード極室溶液中にIr線を浸漬することでIr/Ir酸化物電極となり、長期間安定な電位が得られることが解明された。すなわち、参照電極として最も好適な電極はIr/Ir酸化物電極である。
図4に、Ir線を0.2MのNaOH水溶液中に浸漬したときの電位の経時変化について調べた結果を示す。浸漬初期に電位が変化しているのは、Ir線の表面にIr酸化物(IrO)が安定に形成されるまでの時間と考えられる。しかしながら、所定時間経過後は、−0.04 vs SSE程度の電位が安定して得らることが分かる。
ここで、SSEは、銀−塩化銀電極のことであり、このSSEの標準水素電極(SHE)に対する電位は+0.199 V(vs SHE,25℃)で示される。
Therefore, as a result of various studies on reference electrodes that can avoid the above-mentioned problems, it has been clarified that an Ir / Ir oxide electrode can be obtained by immersing Ir wire in an anode electrode chamber solution, and a stable potential can be obtained for a long time. It was done. That is, the most suitable electrode as the reference electrode is an Ir / Ir oxide electrode.
FIG. 4 shows the results of examining the time-dependent change in potential when the Ir line is immersed in a 0.2 M NaOH aqueous solution. The potential change at the initial stage of immersion is considered to be the time until Ir oxide (IrO) is stably formed on the surface of the Ir wire. However, it can be seen that a potential of about −0.04 vs. SSE is stably obtained after a predetermined time has elapsed.
Here, SSE is a silver-silver chloride electrode, and the potential of this SSE with respect to a standard hydrogen electrode (SHE) is represented by +0.199 V (vs SHE, 25 ° C.).

また、本発明において、水素検出面の表面は、水素拡散定数が大きく、かつ水素の酸化反応を促進させるような金属で被覆することが好ましく、かような金属としては、PdやPd合金、Niなどが挙げられる。これらの金属または合金を被覆することによって、水素検出面の残余電流を低い値に保持することが可能となるだけでなく、水素検出面側での侵入水素の酸化反応が促進されるので、水素のイオン化によるアノード電流の感度を高めることができる。なお、Pdは、Niに比べると、水素拡散定数が大きく、また残余電流の温度依存性を低減できるという利点がある。   In the present invention, the surface of the hydrogen detection surface is preferably coated with a metal having a large hydrogen diffusion constant and promoting the oxidation reaction of hydrogen. Examples of such a metal include Pd, Pd alloy, Ni Etc. By coating these metals or alloys, it is possible not only to keep the residual current of the hydrogen detection surface at a low value, but also to promote the oxidation reaction of the intruding hydrogen on the hydrogen detection surface side. The sensitivity of the anode current due to ionization of can be increased. Note that Pd has an advantage that the hydrogen diffusion constant is larger than Ni and the temperature dependence of the residual current can be reduced.

PdやPd合金で被覆する場合は、[Pd(NH3)4]Cl2・H2O等のパラジウムイオンを含有する水溶液中で陰極電解することで、めっきを行えばよい。Pd合金としては、Pd−NiやPd−Co合金などが使用可能である。ここに、PdめっきまたはPd合金めっきの膜厚は10〜100nmとすることが好ましい。
また、Niで被覆する場合は、ワット浴等の既知のめっき浴中で陰極電解することで、Niめっきを行えばよい。Niめっきの膜厚も10〜100nmにすることが好ましい。
さらに、Niめっきの上に、PdやPd合金をめっきすることもできる。
When coating with Pd or a Pd alloy, plating may be performed by cathodic electrolysis in an aqueous solution containing palladium ions such as [Pd (NH 3 ) 4 ] Cl 2 .H 2 O. As the Pd alloy, Pd—Ni, Pd—Co alloy or the like can be used. Here, the film thickness of Pd plating or Pd alloy plating is preferably 10 to 100 nm.
In the case of coating with Ni, Ni plating may be performed by cathodic electrolysis in a known plating bath such as a watt bath. The thickness of the Ni plating is preferably 10 to 100 nm.
Further, Pd or a Pd alloy can be plated on the Ni plating.

水素侵入面に設ける保護膜については、特に制限はなく、腐食環境を遮断できるものであればいずれでもよい。具体的手段としては、ステンレス箔の貼着が挙げられる。   The protective film provided on the hydrogen entry surface is not particularly limited, and any protective film can be used as long as it can block the corrosive environment. Specific means includes attaching stainless steel foil.

上記したように、本発明では、温度変化などの環境の変化の如何にかかわらず、腐食に伴って金属の内部へ侵入する水素量を正確に検出することができる。
従って、本発明の測定方法を、自動車、船舶、鉄道車両などの移動体に適用すれば、移動体を構成する金属材料の各部位が、その使用状態で曝される環境の変化に左右されることなく、金属材料中に侵入する水素量を連続的かつ正確にモニタリングすることができる。
その結果、各種移動体にについて、それらの実際の使用環境での腐食に伴う水素侵入量で遅れ破壊が生じるか否かを的確に判断することが可能となる。
As described above, according to the present invention, it is possible to accurately detect the amount of hydrogen that enters the interior of the metal due to corrosion regardless of environmental changes such as temperature changes.
Therefore, when the measurement method of the present invention is applied to a moving body such as an automobile, a ship, and a railway vehicle, each part of the metal material constituting the moving body is affected by a change in the environment exposed in the usage state. Therefore, the amount of hydrogen entering the metal material can be continuously and accurately monitored.
As a result, it is possible to accurately determine whether or not various types of moving bodies are delayed and destroyed by the amount of hydrogen intrusion due to corrosion in their actual use environment.

実施例1
実験は、図2に示した構造になるセル数4個(CH1〜4)の測定装置を用いて行った。被検体としては、水素検出面側にPdを厚み:100nmでめっきした板厚:1.0mmの軟鋼板を用いた。基準セルはチャンネル3(CH3)であり、このCH3の腐食面側に対応する箇所には保護膜としてステンレス箔を貼着した。各セルの腐食面側の表面に0.5M NaClを300mL 滴下、ついで25℃,35%RH(相対湿度)で4時間以上乾燥したのち、25℃,85%RH(相対湿度)に24時間以上保持し、その後、段階的に温度を上昇させた。水素検出面の電位は0V vs SCEに保持した。この時の温度変化および湿度変化を図5に示す。
Example 1
The experiment was performed using a measuring device having four cells (CH1 to CH4) having the structure shown in FIG. As a test object, a mild steel plate having a thickness of 1.0 mm plated with Pd at a thickness of 100 nm on the hydrogen detection surface side was used. The reference cell was channel 3 (CH3), and a stainless steel foil was attached as a protective film to the portion corresponding to the corroded surface side of CH3. Drop 300 mL of 0.5M NaCl on the corrosive surface of each cell, then dry at 25 ° C and 35% RH (relative humidity) for 4 hours or more, then hold at 25 ° C and 85% RH (relative humidity) for 24 hours or more Then, the temperature was raised stepwise. The potential of the hydrogen detection surface was kept at 0 V vs SCE. The temperature change and humidity change at this time are shown in FIG.

図5に示した温度変化に対応して、各チャンネルで検出されたアノード電流密度の変化を図6に示す。
本来、鋼板表面で腐食の起こっていない基準電極(CH3)のアノード電流密度値も、温度の上昇に伴って上昇していることが分かる。これは、水素検出面側のPdの酸化電流による残余電流が温度の上昇により増加したためと考えられる。このように、残余電流の温度依存性は、無視できないレベルである。
Corresponding to the temperature change shown in FIG. 5, the change in the anode current density detected in each channel is shown in FIG.
It can be seen that the anode current density value of the reference electrode (CH3), which does not inherently corrode on the steel plate surface, also increases as the temperature increases. This is presumably because the residual current due to the oxidation current of Pd on the hydrogen detection surface side increased due to the temperature rise. Thus, the temperature dependence of the residual current is a level that cannot be ignored.

実験後のサンプルの腐食面側の外観写真を図7に示す。
4Chのアノード電流密度値が他のChに比べて小さかったのは、最初に滴下した0.2M NaClの位置がずれていたために、検出面に対応する水素侵入面側の腐食面積が小さかったためである。
A photograph of the appearance of the corroded surface of the sample after the experiment is shown in FIG.
The reason why the anode current density value of 4Ch was smaller than that of other Ch is that the corrosion area on the hydrogen intrusion surface side corresponding to the detection surface was small because the position of 0.2M NaCl dropped first was shifted. .

従って、CH1およびCH2で得られたアノード電流密度値から、基準電極(CH3)のアノード電流密度値をそれぞれ差し引けば、各セル(CH1,CH2)における正確な透過水素電流密度値を得ることができ、さらにこれらの値を平均することにより、被検体鋼板の透過水素電流密度値を求めることができる。
そして、上記のようにして求めた透過水素電流密度値から、次式により、透過水素量(侵入水素量)を算出する。
かくして、温度変化の如何にかかわらず、正確な透過水素電流値ひいては透過水素量(侵入水素量)を検出することができる。
Therefore, by subtracting the anode current density value of the reference electrode (CH3) from the anode current density values obtained for CH1 and CH2, it is possible to obtain an accurate permeated hydrogen current density value in each cell (CH1, CH2). Further, by averaging these values, the permeated hydrogen current density value of the specimen steel plate can be obtained.
Then, the permeated hydrogen amount (intrusion hydrogen amount) is calculated from the permeated hydrogen current density value obtained as described above by the following equation.
Thus, it is possible to detect an accurate permeated hydrogen current value and thus a permeated hydrogen amount (intruded hydrogen amount) regardless of the temperature change.

透過水素量の換算は以下の式に従う。
透過水素電流密度 iHμA/cm2=10-6A/cm2
単位面積当たりの透過水素量 MH(mol/scm2),mH(個/scm2
H = iH ×1.036×10-11(mol/scm2),
H = iH × 6.24×1012 (個/scm2
The permeated hydrogen amount is converted according to the following formula.
Permeated hydrogen current density i H ( μ A / cm 2 = 10 −6 A / cm 2 )
Permeated hydrogen per unit area MH (mol / scm 2 ), m H (pieces / scm 2 )
M H = i H × 1.036 × 10 -11 (mol / scm 2 ),
m H = i H x 6.24 x 10 12 (pieces / scm 2 )

実施例2
実施例1で用いた測定装置を、実際に自動車に搭載し、図8に模式的に示す計測システムを構築した。4チャンネルセルの設置箇所は、a)フェンダー、b)室内、c)床下(フロア下面)の3箇所とした。バッテリー駆動のマルチチャンネルポテンショスタットを作成し、専用バッテリーと一緒にトランク内に収納した。供試材は、実施例1と同じ板厚:1.0mmの軟鋼板とし、月曜日から金曜日までの5日間、毎日、9:00〜15:00の6時間にわたって製鉄所の構内を平均時速:40km/hで走行する。なお、15:00から翌日の9:00までは駐車場に停車する。
Example 2
The measurement apparatus used in Example 1 was actually mounted on an automobile, and a measurement system schematically shown in FIG. 8 was constructed. Four channel cells were installed at three locations: a) a fender, b) a room, and c) under the floor (floor lower surface). A battery-powered multichannel potentiostat was created and housed in the trunk along with a dedicated battery. The test material is the same steel plate thickness of 1.0 mm as in Example 1, and the average speed of 40 km in the premises of the steel works for 6 hours from 9:00 to 15:00 every day for 5 days from Monday to Friday. Drive at / h. In addition, it will stop at the parking lot from 15:00 to 9:00 the next day.

この間に検出されたアノード電流密度の最大値について、基準電極による補正を行ったものを発明例とし、補正を行わなかったものを比較例として、図9に比較して示す。
試験片をセットしてから初期の5日間で、各部位での腐食はまだほとんど起きておらず、図9に示したとおり、発明例のアノード電流密度は設置部位による違いは見られなかった。これに対し、比較例では、設置部位によるアノード電流密度の違いが見られた。この違いは、設置部位により、昼間の日照で温度が上昇した部位(フェンダー)と、あまり温度が上昇しなかった(床下)部位の違いと考えられる。
実測されたアノード電流密度値について、本発明に従い、基準電極による補正を行うことにより、温度変化の影響を受けることなしに正確なアノード電流密度値(透過水素電流密度値)が得られることが分かる。
The maximum value of the anode current density detected during this period is corrected by the reference electrode as an invention example, and the correction value not corrected is shown as a comparative example in comparison with FIG.
In the initial 5 days after setting the test piece, corrosion at each site has hardly occurred yet, and as shown in FIG. 9, the anode current density of the inventive example was not different depending on the installation site. On the other hand, in the comparative example, a difference in anode current density depending on the installation site was observed. This difference is considered to be the difference between the site where the temperature rose due to daylight (fender) and the site where the temperature did not rise much (under the floor) depending on the installation site.
It can be seen that an accurate anode current density value (permeated hydrogen current density value) can be obtained without being affected by a temperature change by correcting the measured anode current density value by the reference electrode according to the present invention. .

本発明により、環境が絶え間なく変化する移動体について、それを構成する金属材料の各部位が使用状態で曝される腐食環境下での腐食に伴い発生し、金属材料中に侵入する水素の量を、連続的かつ正確にモニタリングすることが可能となる。   According to the present invention, the amount of hydrogen generated by corrosion in a corrosive environment in which each part of the metal material constituting the moving body whose environment changes continuously is exposed in use and enters the metal material. Can be continuously and accurately monitored.

1 電解槽
2 試料
3 参照電極
4 電極
4b 対電極
5 焼結ガラスフリット
6 被検体(鋼板)
7 セル
7a 基準セル
8 対極
9 参照電極
10 保護膜
DESCRIPTION OF SYMBOLS 1 Electrolysis tank 2 Sample 3 Reference electrode 4 Electrode 4b Counter electrode 5 Sintered glass frit 6 Test object (steel plate)
7 cell 7a reference cell 8 counter electrode 9 reference electrode
10 Protective film

Claims (4)

移動体の金属部位内部へ侵入する水素量のモニタリング方法であって、
金属内部への侵入水素量の測定方法を、少なくともその一部が金属材料で構成される移動体の評価対象金属部位に適用し、該評価対象金属部位の腐食に伴い内部に侵入する水素の量を、該移動体の走行環境に伴い変化する腐食環境下において連続して測定し、
前記金属内部への侵入水素量の測定方法が、
金属材料の腐食に伴って発生し金属内部に侵入する水素の量を、電気化学的水素透過法を用いて、マルチチャンネルポテンショスタットにより測定する方法であり、被検体としての金属材料の片面を腐食環境に暴露し腐食反応により発生する水素の侵入面とする一方、該被検体の他面を水素検出面とし、該水素検出面側の電位を−0.1〜+0.3V vs SCEに保持した状態で該検出面に拡散してくる水素の流束をアノード電流として測定するに際し、
同一の被検体の水素検出面側に、少なくとも2つに分割された複数のセル群で構成された電気化学セルを配置し、該セル群の個々のセルの内部にはpHが9〜13の電解質水溶液を充填すると共に、それぞれ独立した参照電極と対極を設置し、
該セル群のうち少なくとも一つのセルを残余電流を補正するための基準セルとし、該基準セルの水素侵入面側に対応する箇所には腐食環境との接触を遮断する保護膜を設け、
該被検体の水素侵入面のうち、該基準セル以外のセルに対応する箇所においては、保護膜を設けずに該金属材料を直接腐食環境に暴露し、
該基準セル以外のセルで検出したアノード電流値を、該基準セルで検出した残余電流値により補正し、この補正したアノード電流値に基づいて腐食面側からの侵入水素量を算出することを特徴とする、移動体の金属部位内部へ侵入する水素量のモニタリング方法
但し、侵入水素量(透過水素量)の換算は以下の式に従う。
前記基準セル以外のセルで検出したアノード電流密度値から、前記基準セルで検出したアノード電流密度値を差し引いた値を透過水素電流密度:iH(μA/cm2=10-6A/cm2)としたとき、単位面積当たりの侵入水素量:MH(mol/scm2)またはmH(個/scm2)をそれぞれ、次式
H= iH×1.036×10-11 (mol/scm2),
H= iH× 6.24×1012 (個/scm2
により求める。
A method for monitoring the amount of hydrogen entering a metal part of a moving body,
A method for measuring the amount of hydrogen penetrating into the interior of a metal is applied to a metal part to be evaluated of a moving body, at least a part of which is made of a metal material, and the amount of hydrogen penetrating into the metal due to corrosion of the metal part to be evaluated Is continuously measured in a corrosive environment that varies with the traveling environment of the moving body,
A method for measuring the amount of hydrogen penetrating into the metal is
This is a method of measuring the amount of hydrogen generated by corrosion of metal materials and penetrating into the interior of the metal using a multi-channel potentiostat using the electrochemical hydrogen permeation method , and corrodes one side of the metal material as the specimen. In the state where the intrusion surface of hydrogen that is exposed to the environment and generated by a corrosion reaction is used, the other surface of the subject is a hydrogen detection surface, and the potential on the hydrogen detection surface side is maintained at −0.1 to +0.3 V vs. SCE. When measuring the flux of hydrogen diffusing to the detection surface as an anode current,
An electrochemical cell composed of a plurality of cell groups divided into at least two cells is disposed on the hydrogen detection surface side of the same subject, and each cell in the cell group has a pH of 9 to 13 Fill with electrolyte solution and install independent reference electrode and counter electrode,
At least one cell in the cell group is used as a reference cell for correcting the residual current, and a protective film that blocks contact with the corrosive environment is provided at a location corresponding to the hydrogen entry surface side of the reference cell,
Of the hydrogen intrusion surface of the specimen, in a location corresponding to a cell other than the reference cell, the metal material is directly exposed to a corrosive environment without providing a protective film,
An anode current value detected in a cell other than the reference cell is corrected by a residual current value detected in the reference cell, and an intrusion hydrogen amount from the corroded surface side is calculated based on the corrected anode current value. And a method for monitoring the amount of hydrogen entering the metal part of the moving body .
However, the intrusion hydrogen amount (permeated hydrogen amount) is converted according to the following equation.
The value obtained by subtracting the anode current density value detected in the reference cell from the anode current density value detected in a cell other than the reference cell is a permeated hydrogen current density: i H (μA / cm 2 = 10 −6 A / cm 2 ), The amount of invading hydrogen per unit area: M H (mol / scm 2 ) or m H (pieces / scm 2 )
M H = i H × 1.036 × 10 -11 (mol / scm 2 ),
m H = i H x 6.24 x 10 12 (pieces / scm 2 )
Ask for.
前記参照電極としてIr/Ir酸化物電極を用いることを特徴とする請求項1に記載の移動体の金属部位内部へ侵入する水素量のモニタリング方法The Ir / Ir oxide electrode is used as the reference electrode, The method for monitoring the amount of hydrogen entering the metal part of the moving body according to claim 1. 前記被検体の水素検出面側の表面を、予めPdまたはPd含有合金あるいはNiで被覆しておくことを特徴とする請求項1または2に記載の移動体の金属部位内部へ侵入する水素量のモニタリング方法3. The amount of hydrogen penetrating into the metal part of the moving body according to claim 1, wherein the surface of the specimen on the hydrogen detection surface side is previously coated with Pd, a Pd-containing alloy, or Ni . Monitoring method . 前記移動体の評価対象金属部位の内部へ侵入する水素量から、該金属部位の遅れ破壊感受性を評価することを特徴とする、請求項1〜3のいずれか一項に記載の移動体の金属部位内部へ侵入する水素量のモニタリング方法。 The metal of the mobile body according to any one of claims 1 to 3 , wherein the delayed fracture sensitivity of the metal part is evaluated from the amount of hydrogen entering the metal part to be evaluated of the mobile body. How to monitor the amount of hydrogen entering the site.
JP2014001798A 2014-01-08 2014-01-08 Method for monitoring the amount of hydrogen entering the metal part of a moving object Active JP5979731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014001798A JP5979731B2 (en) 2014-01-08 2014-01-08 Method for monitoring the amount of hydrogen entering the metal part of a moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014001798A JP5979731B2 (en) 2014-01-08 2014-01-08 Method for monitoring the amount of hydrogen entering the metal part of a moving object

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010042800A Division JP2011179893A (en) 2010-02-26 2010-02-26 Method for measuring amount of hydrogen penetrated into metal and method for monitoring amount of hydrogen penetrated into metal region of moving body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015149802A Division JP6130447B2 (en) 2015-07-29 2015-07-29 Method for monitoring the amount of hydrogen entering the metal part of a moving object

Publications (2)

Publication Number Publication Date
JP2014089207A JP2014089207A (en) 2014-05-15
JP5979731B2 true JP5979731B2 (en) 2016-08-31

Family

ID=50791180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014001798A Active JP5979731B2 (en) 2014-01-08 2014-01-08 Method for monitoring the amount of hydrogen entering the metal part of a moving object

Country Status (1)

Country Link
JP (1) JP5979731B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880400B (en) * 2014-12-02 2017-06-27 浙江工业大学 High Pressure Hydrogen pervasion test device and method of testing
JP6540596B2 (en) * 2016-05-16 2019-07-10 Jfeスチール株式会社 Method of measuring intruding hydrogen amount and intruding hydrogen amount measuring device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134684A (en) * 1975-05-16 1976-11-22 Nippon Paint Co Ltd Method and equipment to measure the corrosion resistance of coated met al plate
JPS6056251A (en) * 1983-09-07 1985-04-01 Nippon Paint Co Ltd Hydrogen measurement of clad metal and apparatus thereof
JPS63115750U (en) * 1987-01-20 1988-07-26
JP2005121510A (en) * 2003-10-17 2005-05-12 Kawasaki Heavy Ind Ltd Corrosive environment sensor, corrosive environment sensor kit, and corrosive environment evaluation method
JP2005227096A (en) * 2004-02-12 2005-08-25 Suenaga Tomokazu Immunoassay analyzer, chip electrode, and test chip
JP2006064469A (en) * 2004-08-25 2006-03-09 Kawasaki Heavy Ind Ltd Corrosive environment sensor and corrosive environment evaluation method
DE102008027038A1 (en) * 2008-06-06 2009-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for detecting chemical or biological species and electrode arrangement therefor
JP2011179893A (en) * 2010-02-26 2011-09-15 Jfe Steel Corp Method for measuring amount of hydrogen penetrated into metal and method for monitoring amount of hydrogen penetrated into metal region of moving body

Also Published As

Publication number Publication date
JP2014089207A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP2011179893A (en) Method for measuring amount of hydrogen penetrated into metal and method for monitoring amount of hydrogen penetrated into metal region of moving body
WO2014054186A1 (en) Device for determining amount of hydrogen penetrating into metal
JP5700673B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
JP5777098B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
Fajardo et al. Effect of impurities on the enhanced catalytic activity for hydrogen evolution in high purity magnesium
Ootsuka et al. Evaluation of hydrogen absorption into steel in automobile moving environments
CN114364975B (en) Hydrogen permeation test device
JP5754566B2 (en) Device for measuring the amount of hydrogen penetrating into metal
JP5888692B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
Thomas et al. Oxygen consumption upon electrochemically polarised zinc
JP5979731B2 (en) Method for monitoring the amount of hydrogen entering the metal part of a moving object
JP6130447B2 (en) Method for monitoring the amount of hydrogen entering the metal part of a moving object
JP6172097B2 (en) Monitoring method of intrusion hydrogen amount into steel constituting car body
JP6540596B2 (en) Method of measuring intruding hydrogen amount and intruding hydrogen amount measuring device
CN115931538B (en) Method for measuring influence degree of hydrogen in acidic environment on metal stress corrosion cracking
JP2018115942A (en) Hydrogen invasion evaluation method, hydrogen invasion evaluation system and hydrogen invasion evaluation cell
Chalaftris Evaluation of aluminium–based coatings for cadmium replacement
Isacsson et al. Galvanically induced atmospheric corrosion on magnesium alloys: a designed experiment evaluated by extreme value statistics and conventional techniques
TWI502196B (en) Measurement device for intrusion of hydrogen into the metal
KR20070054860A (en) Electrochemistry test cell for estimation of corrosion and blazing fire of body and chassis and estimation method using the same
Zhang Study on the Influence of Galvanic Corrosion on Ship Structural Materials
Hata et al. Investigation of Relationship between Corrosion and Hydrogen Entry Behavior of Electro-Galvanized Steel under Atmospheric Environment
Klengel et al. A new method for prediction of corrosion processes in Aluminum housing materials for electronic components
Lyon et al. Electrochemical detection of hydrogen using a solid-state probe
Diaz-Ballote et al. Electrochemical noise analysis of galvanized steel immersed in saturated calcium hydroxide solutions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160411

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160721

R150 Certificate of patent or registration of utility model

Ref document number: 5979731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250