JP2024003583A - ガラス母材の製造装置およびガラス母材の製造方法 - Google Patents
ガラス母材の製造装置およびガラス母材の製造方法 Download PDFInfo
- Publication number
- JP2024003583A JP2024003583A JP2022102814A JP2022102814A JP2024003583A JP 2024003583 A JP2024003583 A JP 2024003583A JP 2022102814 A JP2022102814 A JP 2022102814A JP 2022102814 A JP2022102814 A JP 2022102814A JP 2024003583 A JP2024003583 A JP 2024003583A
- Authority
- JP
- Japan
- Prior art keywords
- core tube
- flow rate
- glass
- gas
- additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 title claims abstract description 97
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000000654 additive Substances 0.000 claims abstract description 64
- 230000000996 additive effect Effects 0.000 claims abstract description 55
- 239000002245 particle Substances 0.000 claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 17
- 238000005245 sintering Methods 0.000 claims abstract description 14
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 46
- 239000010419 fine particle Substances 0.000 claims description 12
- 239000007789 gas Substances 0.000 description 89
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 36
- 229910052731 fluorine Inorganic materials 0.000 description 36
- 239000011737 fluorine Substances 0.000 description 36
- 230000008569 process Effects 0.000 description 18
- 230000018044 dehydration Effects 0.000 description 11
- 238000006297 dehydration reaction Methods 0.000 description 11
- 239000002994 raw material Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000428 dust Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01406—Deposition reactors therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
【課題】より安定して均一に添加物を添加してガラス母材を製造する製造装置及び製造方法を提供する。【解決手段】本開示のガラス母材製造装置は、ガラス微粒子堆積体を内部に収容する炉心管と炉心管の外側に配置されたヒータとを備えたガラス微粒子堆積体を加熱して焼結する加熱炉と、ガラス微粒子堆積体に添加する添加物を含んだ添加物ガスを炉心管内部に供給するガス供給口と、ガス供給口に供給する添加物ガスの流量を調整する流量調整器と、加熱炉に接続されて、炉心管の内部の気体を排出する排気管と、排気管に設けられ、炉心管の内部を減圧するポンプと、炉心管の内部の圧力を測定する圧力計と、ポンプよりも上流の排気管に配置され、開度を調整することで炉心管からの排気流量を調整する開度調整弁と、添加物ガスを炉心管内部に供給中に、圧力計の測定値が目標圧力になるように、流量調整器および開度調整弁の少なくとも一方を制御する制御装置と、を備える。【選択図】図2
Description
本開示は、ガラス母材の製造装置およびガラス母材の製造方法に関する。
特許文献1には、ガラス微粒子堆積体を、脱水および焼結することにより透明なガラス母材を製造する方法が開示されている。
特許文献1には、透明ガラス母材の製造中に例えばフッ素を添加してもよいことが開示されている。フッ素を添加しながら透明ガラス母材を製造すると、ガラス母材の屈折率は下がることが知られている。
ところで、ガラス微粒子堆積体に対してフッ素は均一に添加されることが望ましいが、実際にはフッ素の添加にムラが生じることがある。フッ素の添加にムラが生じると透明なガラス母材および透明なガラス母材からの成型品における屈折率が均一とならない。
本開示は、より安定して均一に添加物を添加してガラス母材を製造する製造装置及び製造方法を提供することを目的とする。
本開示の一態様に係るガラス母材の製造装置は、
ガラス微粒子堆積体を内部に収容する炉心管と、前記炉心管の外側に配置されたヒータと、を備え、前記ガラス微粒子堆積体を加熱して焼結する加熱炉と、
前記ガラス微粒子堆積体に添加する添加物を含んだ添加物ガスを前記炉心管内部に供給するガス供給口と、
前記ガス供給口に供給する前記添加物ガスの流量を調整する流量調整器と、
前記加熱炉に接続されて、前記炉心管の内部の気体を排出する排気管と、
前記排気管に設けられ、前記炉心管の内部を減圧するポンプと、
前記炉心管の内部の圧力を測定する圧力計と、
前記ポンプよりも上流の前記排気管に配置され、開度を調整することで前記炉心管からの排気流量を調整する開度調整弁と、
前記添加物ガスを前記炉心管内部に供給中に、前記圧力計の測定値が目標圧力になるように、前記流量調整器および前記開度調整弁の少なくとも一方を制御する制御装置と、を備える。
ガラス微粒子堆積体を内部に収容する炉心管と、前記炉心管の外側に配置されたヒータと、を備え、前記ガラス微粒子堆積体を加熱して焼結する加熱炉と、
前記ガラス微粒子堆積体に添加する添加物を含んだ添加物ガスを前記炉心管内部に供給するガス供給口と、
前記ガス供給口に供給する前記添加物ガスの流量を調整する流量調整器と、
前記加熱炉に接続されて、前記炉心管の内部の気体を排出する排気管と、
前記排気管に設けられ、前記炉心管の内部を減圧するポンプと、
前記炉心管の内部の圧力を測定する圧力計と、
前記ポンプよりも上流の前記排気管に配置され、開度を調整することで前記炉心管からの排気流量を調整する開度調整弁と、
前記添加物ガスを前記炉心管内部に供給中に、前記圧力計の測定値が目標圧力になるように、前記流量調整器および前記開度調整弁の少なくとも一方を制御する制御装置と、を備える。
本開示の一態様に係るガラス母材の製造方法は、
炉心管の内部に収容されたガラス微粒子堆積体に対して、添加物を含んだ添加物ガスを導入しながら前記ガラス微粒子堆積体を加熱して焼結することで、添加物を含んだガラス母材を製造する方法であって、
圧力計により測定された前記炉心管の内部の圧力が目標圧力となるように、前記炉心管に導入される添加物ガスの流量と前記炉心管から排出される排気流量の少なくとも一方を制御する。
炉心管の内部に収容されたガラス微粒子堆積体に対して、添加物を含んだ添加物ガスを導入しながら前記ガラス微粒子堆積体を加熱して焼結することで、添加物を含んだガラス母材を製造する方法であって、
圧力計により測定された前記炉心管の内部の圧力が目標圧力となるように、前記炉心管に導入される添加物ガスの流量と前記炉心管から排出される排気流量の少なくとも一方を制御する。
上記開示の構成によれば、より安定して均一に添加物を添加してガラス母材を製造することができる。
[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。
(1)本開示の一態様に係るガラス母材の製造装置は、
ガラス微粒子堆積体を内部に収容する炉心管と、前記炉心管の外側に配置されたヒータと、を備え、前記ガラス微粒子堆積体を加熱して焼結する加熱炉と、
前記ガラス微粒子堆積体に添加する添加物を含んだ添加物ガスを前記炉心管内部に供給するガス供給口と、
前記ガス供給口に供給する前記添加物ガスの流量を調整する流量調整器と、
前記加熱炉に接続されて、前記炉心管の内部の気体を排出する排気管と、
前記排気管に設けられ、前記炉心管の内部を減圧するポンプと、
前記炉心管の内部の圧力を測定する圧力計と、
前記ポンプよりも上流の前記排気管に配置され、開度を調整することで前記炉心管からの排気流量を調整する開度調整弁と、
前記添加物ガスを前記炉心管内部に供給中に、前記圧力計の測定値が目標圧力になるように、前記流量調整器および前記開度調整弁の少なくとも一方を制御する制御装置と、を備える。
上記の製造装置によれば、ガラス微粒子堆積体の焼結中に、制御装置は流量調整器および開度調整弁の少なくとも一方を制御するので、焼結中における圧力は一定の値(目標圧力)をとることができる。このとき、炉心管内におけるガラス微粒子堆積体の周囲を添加物ガスが定常に流れようとするので、添加物ガスの流れの澱み等が発生しにくくなり、ガラス微粒子堆積体に添加される添加物のムラが減少する。これにより、より安定して屈折率が均一なガラス母材を製造できる。
最初に本開示の実施態様を列記して説明する。
(1)本開示の一態様に係るガラス母材の製造装置は、
ガラス微粒子堆積体を内部に収容する炉心管と、前記炉心管の外側に配置されたヒータと、を備え、前記ガラス微粒子堆積体を加熱して焼結する加熱炉と、
前記ガラス微粒子堆積体に添加する添加物を含んだ添加物ガスを前記炉心管内部に供給するガス供給口と、
前記ガス供給口に供給する前記添加物ガスの流量を調整する流量調整器と、
前記加熱炉に接続されて、前記炉心管の内部の気体を排出する排気管と、
前記排気管に設けられ、前記炉心管の内部を減圧するポンプと、
前記炉心管の内部の圧力を測定する圧力計と、
前記ポンプよりも上流の前記排気管に配置され、開度を調整することで前記炉心管からの排気流量を調整する開度調整弁と、
前記添加物ガスを前記炉心管内部に供給中に、前記圧力計の測定値が目標圧力になるように、前記流量調整器および前記開度調整弁の少なくとも一方を制御する制御装置と、を備える。
上記の製造装置によれば、ガラス微粒子堆積体の焼結中に、制御装置は流量調整器および開度調整弁の少なくとも一方を制御するので、焼結中における圧力は一定の値(目標圧力)をとることができる。このとき、炉心管内におけるガラス微粒子堆積体の周囲を添加物ガスが定常に流れようとするので、添加物ガスの流れの澱み等が発生しにくくなり、ガラス微粒子堆積体に添加される添加物のムラが減少する。これにより、より安定して屈折率が均一なガラス母材を製造できる。
(2)前記(1)のガラス母材の製造装置において、
前記目標圧力は、絶対圧で1kPa以上50kPa以下であることが好ましい。
炉心管内部における添加物ガスの圧力は、最終的に出来上がるガラス母材の屈折率に影響する。上記構成によると、添加物ガスの絶対圧が1kPa以上50kPa以下で焼結された場合、ガラスファイバのクラッド部に適した均一な屈折率を有するガラス母材を製造することができる。
前記目標圧力は、絶対圧で1kPa以上50kPa以下であることが好ましい。
炉心管内部における添加物ガスの圧力は、最終的に出来上がるガラス母材の屈折率に影響する。上記構成によると、添加物ガスの絶対圧が1kPa以上50kPa以下で焼結された場合、ガラスファイバのクラッド部に適した均一な屈折率を有するガラス母材を製造することができる。
(3)前記(1)または(2)のガラス母材の製造装置において、
さらに、前記排気管において前記開度調整弁と直列に設けられ、開度を調整することで前記炉心管からの排気流量を調整する補助弁を備えてもよい。
開度調整弁1つだけの開度調整で排気流量を調整する場合、少しの開度の変更で大きく排気流量が変わることがある。しかしながら、補助弁が設けられることにより、排気流量を二段階で調整できる。これにより、1つの弁で開度を調節した場合の排気流量の変動が小さくなるので、排気流量の微調整が容易となる。
さらに、前記排気管において前記開度調整弁と直列に設けられ、開度を調整することで前記炉心管からの排気流量を調整する補助弁を備えてもよい。
開度調整弁1つだけの開度調整で排気流量を調整する場合、少しの開度の変更で大きく排気流量が変わることがある。しかしながら、補助弁が設けられることにより、排気流量を二段階で調整できる。これにより、1つの弁で開度を調節した場合の排気流量の変動が小さくなるので、排気流量の微調整が容易となる。
(4)前記(1)から(3)のいずれかのガラス母材の製造装置において、
さらに、前記炉心管と前記開度調整弁との間で前記排気管から分岐して、前記開度調整弁と前記ポンプとの間で前記排気管と合流するバイパス管を備え、
前記バイパス管には開閉弁が設けられていてもよい。
フッ素ガス等の添加物をガラス微粒子堆積体に添加しない場合は、内部の圧力を調整する必要がない。上記構成によれば、開度調整弁を完全に閉め切ると同時に開閉弁を開けることで、添加物を添加しない場合のガラス母材も製造できる。
さらに、前記炉心管と前記開度調整弁との間で前記排気管から分岐して、前記開度調整弁と前記ポンプとの間で前記排気管と合流するバイパス管を備え、
前記バイパス管には開閉弁が設けられていてもよい。
フッ素ガス等の添加物をガラス微粒子堆積体に添加しない場合は、内部の圧力を調整する必要がない。上記構成によれば、開度調整弁を完全に閉め切ると同時に開閉弁を開けることで、添加物を添加しない場合のガラス母材も製造できる。
(5)本開示の一態様に係るガラス母材の製造方法は、
炉心管の内部に収容されたガラス微粒子堆積体に対して、添加物を含んだ添加物ガスを導入しながら前記ガラス微粒子堆積体を加熱して焼結することで、添加物を含んだガラス母材を製造する方法であって、
圧力計により測定された前記炉心管の内部の圧力が目標圧力となるように、前記炉心管に導入される添加物ガスの流量と前記炉心管から排出される排気流量の少なくとも一方を制御する。
上記構成のガラス母材の製造方法によれば、圧力計により測定された炉心管の内部の圧力が目標圧力となるように、炉心管に導入される添加物ガスの導入速度と炉心管から排出される排気流量を制御するので、炉心管内におけるガラス微粒子堆積体の周囲を添加物ガスが定常に流れようとする。添加物ガスの流れの澱み等が発生しにくくなり、ガラス微粒子堆積体に添加される添加物のムラが減少する。これにより、より安定して屈折率が均一なガラス母材を製造できる。
炉心管の内部に収容されたガラス微粒子堆積体に対して、添加物を含んだ添加物ガスを導入しながら前記ガラス微粒子堆積体を加熱して焼結することで、添加物を含んだガラス母材を製造する方法であって、
圧力計により測定された前記炉心管の内部の圧力が目標圧力となるように、前記炉心管に導入される添加物ガスの流量と前記炉心管から排出される排気流量の少なくとも一方を制御する。
上記構成のガラス母材の製造方法によれば、圧力計により測定された炉心管の内部の圧力が目標圧力となるように、炉心管に導入される添加物ガスの導入速度と炉心管から排出される排気流量を制御するので、炉心管内におけるガラス微粒子堆積体の周囲を添加物ガスが定常に流れようとする。添加物ガスの流れの澱み等が発生しにくくなり、ガラス微粒子堆積体に添加される添加物のムラが減少する。これにより、より安定して屈折率が均一なガラス母材を製造できる。
[本開示の実施形態の詳細]
以下、本開示に係る光ファイバの製造方法の実施の形態の例を、図面を参照しつつ説明する。以下の説明では、異なる図面であっても同一又は相当の要素には同一の符号又は名称を付し、重複する説明を適宜省略する。また、各図面に示された各部材の寸法は、説明の便宜上のものであって、実際の各部材の寸法とは異なる場合がある。
以下、本開示に係る光ファイバの製造方法の実施の形態の例を、図面を参照しつつ説明する。以下の説明では、異なる図面であっても同一又は相当の要素には同一の符号又は名称を付し、重複する説明を適宜省略する。また、各図面に示された各部材の寸法は、説明の便宜上のものであって、実際の各部材の寸法とは異なる場合がある。
まず、ガラス母材の製造装置1について説明をする。製造装置1は、内部に配置されたガラス微粒子堆積体を脱水し焼結させて、透明なガラス母材を製造する加熱炉10を有している。ガラス微粒子堆積体は、例えば、OVD法(外付け気相蒸着法)やVAD法(気相軸付け法)などにより石英ガラスなどの種棒にガラス微粒子を堆積させることで得られる。
加熱炉10は、真空容器11と、炉心管12と、ヒータ13と、ヒートシールド14と、を備える。炉心管12は、真空容器11の内部に設けられている。炉心管12は、その内部にガラス微粒子堆積体を搬入したり、逆に内部からガラス微粒子堆積体を搬出したりできるように構成されている。
ヒータ13は、炉心管12の周囲を囲うように設けられている。ヒータ13が発熱することによって、炉心管12内部の雰囲気温度を上昇させることができる。
ヒートシールド14は、ヒータ13の周囲を囲うように設けられている。ヒートシールド14は、ヒータ13によって発生した熱を、ヒートシールド14内部から逃げることを抑制する。ヒートシールド14は、例えば断熱材などにより構成される。
製造装置1は、さらに、ガス供給管21と、排気管23と、を備える。ガス供給管21は、炉心管12に設けられたガス供給口21aに、炉心管12内のガラス微粒子堆積体に添加するための添加物を含んだ添加物ガスを供給する。換言すれば、ガス供給口21aは添加物ガスを炉心管12内部に供給する。
添加物は、例えば四フッ化ケイ素(SiF4)、六フッ化硫黄(SF6)、四フッ化炭素(CF4)などのフッ素原料である。フッ素原料を添加すると、製造されるガラス母材の屈折率が低下することが知られている。また、添加物ガスは、添加物の他に、窒素、アルゴン、ヘリウム等を含んで構成されていてもよい。
本実施形態においては、添加物としてフッ素原料を添加する場合について例示する。したがって、本実施形態の説明においては、添加物ガスをフッ素ガスと呼称することがある。
なお、ガス供給口21aは、炉心管12の内部にガラス微粒子堆積体を配置した際に、ガラス微粒子堆積体よりも上方に設けられることが望ましい。炉心管12の底には塵等が溜まっている可能性があるが、ガラス微粒子堆積体よりも上方にガス供給口21aが設けられる場合、炉心管12の底の塵等を舞い上げにくく、製造されるガラス母材に塵等が付着しにくい。
本実施形態においては、添加物としてフッ素原料を添加する場合について例示する。したがって、本実施形態の説明においては、添加物ガスをフッ素ガスと呼称することがある。
なお、ガス供給口21aは、炉心管12の内部にガラス微粒子堆積体を配置した際に、ガラス微粒子堆積体よりも上方に設けられることが望ましい。炉心管12の底には塵等が溜まっている可能性があるが、ガラス微粒子堆積体よりも上方にガス供給口21aが設けられる場合、炉心管12の底の塵等を舞い上げにくく、製造されるガラス母材に塵等が付着しにくい。
ガス供給管21には、マスフローコントローラ(以下、MFC22)が設けられている。MFC22は流量調整器の一例である。MFC22は、ガス供給管21を通ってガス供給口21aから供給される添加物ガスの流量を調整する。
排気管23は、加熱炉10の真空容器11に接続されている。排気管23にはポンプ24が設けられている。ポンプ24が稼働することにより、炉心管12を含む加熱炉10の内部の気体は排出され、炉心管12の内部が減圧される。
製造装置1は、圧力計25を備えている。本実施形態においては、真空容器11の直後(ポンプ24および後述する各種弁、各種バルブよりも上流側)の排気管23から分岐して設けられていて、炉心管12の内部圧力を測定する。圧力計25は、炉心管12の圧力がある程度推定できる位置であれば、どの場所に設けられてもよい。
圧力計25よりも下流で、ポンプ24よりも上流の排気管23には、第1開閉弁31と、開度調整弁32と、補助弁33とが設けられている。
開度調整弁32は、開度を調整することにより、排気管23から排出されるガスの排気流量を調整できる。補助弁33も同様に開度を調整可能に構成されている。
第1開閉弁31は、開度の調整は行われない開閉弁である。したがって、第1開閉弁31は、全開または全閉のいずれか一方に調整することによって、排気流量を変更することができる。例えば、開度調整弁32および補助弁33の開度を維持したまま、一時的に開度調整弁32および補助弁33のガスの通過を停止する場合、第1開閉弁31を全閉状態とする。再び第1開閉弁31を全開状態とすることで、開度調整弁32および補助弁33の開度が維持されたまま、開度調整弁32および補助弁33のガスの通過を再度開始できる。
開度調整弁32は、開度を調整することにより、排気管23から排出されるガスの排気流量を調整できる。補助弁33も同様に開度を調整可能に構成されている。
第1開閉弁31は、開度の調整は行われない開閉弁である。したがって、第1開閉弁31は、全開または全閉のいずれか一方に調整することによって、排気流量を変更することができる。例えば、開度調整弁32および補助弁33の開度を維持したまま、一時的に開度調整弁32および補助弁33のガスの通過を停止する場合、第1開閉弁31を全閉状態とする。再び第1開閉弁31を全開状態とすることで、開度調整弁32および補助弁33の開度が維持されたまま、開度調整弁32および補助弁33のガスの通過を再度開始できる。
さらに製造装置1は、炉心管12を含む真空容器11と開度調整弁32(もしくは第1開閉弁31)との間の排気管23から分岐し、開度調整弁32(もしくは補助弁33)とポンプ24との間の排気管23と合流するバイパス管26を備えている。
バイパス管26には、第2開閉弁34が設けられている。第2開閉弁34は、開度の調整は行われない開閉弁である。したがって、第2開閉弁34は、全開または全閉のいずれか一方に調整することによって、排気流量を変更することができる。第2開閉弁34は開閉弁の一例である。
バイパス管26には、第2開閉弁34が設けられている。第2開閉弁34は、開度の調整は行われない開閉弁である。したがって、第2開閉弁34は、全開または全閉のいずれか一方に調整することによって、排気流量を変更することができる。第2開閉弁34は開閉弁の一例である。
製造装置1は、さらに制御装置40を備える。制御装置40は、例えば、圧力計25、MFC22、開度調整弁32、補助弁33と通信可能に接続されている。
制御装置40は、圧力計25から測定された測定圧力を受信できる。また、制御装置40は、MFC22、開度調整弁32、補助弁33に対して開度を変更させることができる。場合に応じて、第1開閉弁31および第2開閉弁34の開閉を制御装置40が制御してもよい。
制御装置40は、圧力計25から測定された測定圧力を受信できる。また、制御装置40は、MFC22、開度調整弁32、補助弁33に対して開度を変更させることができる。場合に応じて、第1開閉弁31および第2開閉弁34の開閉を制御装置40が制御してもよい。
フッ素原料を添加したガラス母材の製造には、脱水工程、フッ素添加工程、透明化工程を行う必要がある。脱水工程、フッ素添加工程、透明化工程、および、それぞれの前後の遷移工程を含めて焼結工程と呼ぶ。焼結工程において、ヒータ温度、炉心管12の内部圧力、フッ素ガス流量、開度調整弁32と補助弁33と第2開閉弁34との開度が制御装置40によってどのように制御されるかを説明する。図2は、本実施形態におけるヒータ温度、炉心管内部圧力、フッ素ガス流量および開度調整弁と補助弁とバイパス弁との開度の一例を示した図である。
炉心管12の内部へのガラス微粒子堆積体の配置が完了して、ガラス母材の製造を開始する時点(時刻t0)では、ヒータ13は加熱されていない(初期温度T0)。また、時刻t0において、炉心管12内の圧力は真空状態であることが望ましい(圧力P0)。なお、真空状態は、十分に圧力が低い状態のことを指し、完全な真空を意味しない。
ポンプ24は、焼結工程中(時刻t0から時刻t9)、常に炉心管12からガスを排出するように動作している。時刻t0において真空状態とするために、MFC22は全閉しているので、フッ素ガスの流量は0である。さらに第2開閉弁34は、全開状態となっている。これにより、MFC22からガスが流入しないにもかかわらず、炉心管12内のガスは、少なくともバイパス管26を通って排出されようとするため、炉心管12内の真空状態が維持される。
なお、本実施形態において、時刻t0で開度調整弁32の開度は0%である。本実施形態において、補助弁33は常に一定の開度を保っているが、開度調整弁32の開度が0%である時に、炉心管12内のガスは開度調整弁32および補助弁33を介して排出されない。
なお、本実施形態において、時刻t0で開度調整弁32の開度は0%である。本実施形態において、補助弁33は常に一定の開度を保っているが、開度調整弁32の開度が0%である時に、炉心管12内のガスは開度調整弁32および補助弁33を介して排出されない。
ガラス母材の製造が開始されると(時刻t0から時刻t1)、ヒータ13の温度は脱水温度T1まで上昇する。時刻t1において脱水工程が開始され、脱水工程が終了する時刻t2までヒータ13の温度は脱水温度T1を維持する。すなわち、時刻t1から時刻t2まで、炉内を真空状態で脱水温度T1に維持して脱水工程を行う。脱水工程では、ガラス微粒子堆積体の内部に残留していたOH基や塩素ガスなどが排出される。
脱水工程が終了すると(時刻t2)、制御装置40は第2開閉弁34を閉めさせるとともにMFC22に目標フッ素ガス流量Q1でフッ素ガスを供給するように制御する。これにより、時刻t2から時刻t3の間では、炉心管12からのガスの排出が停止した状態で炉心管12にフッ素ガスが流入するので、炉心管12内の圧力が上昇する。また、ヒータ13の温度が添加温度T2(>T1)となるように、ヒータ13の温度は上昇する。
ここで、目標フッ素ガス流量Q1は、例えば0.1リットル/分以上20リットル/分以下であり、好ましくは0.3リットル/分以上5リットル/分以下である。なお、炉心管12内の圧力を速く上昇させるため、炉心管12内の圧力が目標圧力P1に近づくまでは、目標フッ素ガス流量Q1を上回る流量でフッ素ガスを供給してもよい。
ここで、目標フッ素ガス流量Q1は、例えば0.1リットル/分以上20リットル/分以下であり、好ましくは0.3リットル/分以上5リットル/分以下である。なお、炉心管12内の圧力を速く上昇させるため、炉心管12内の圧力が目標圧力P1に近づくまでは、目標フッ素ガス流量Q1を上回る流量でフッ素ガスを供給してもよい。
さらに、時刻t3において、制御装置40は開度調整弁32の開度を上昇させる。これにより、炉心管12の内部にフッ素ガスが流入されると同時に、炉心管12からのガスの排出が開始される。この際、制御装置40は開度調整弁32の開度を調整する。これにより、排気流量を微調整できるようになるので、測定圧力を基に、炉心管12内が目標圧力P1となるように制御することが可能となる。
目標圧力P1は、絶対圧で1kPa以上50kPa以下の範囲で設定されることが望ましい。
目標圧力P1は、絶対圧で1kPa以上50kPa以下の範囲で設定されることが望ましい。
測定圧力が目標圧力P1で安定し(時刻t4)、ヒータ13の温度が添加温度T2まで上昇した状態で(時刻t5)、フッ素添加工程が行われる。フッ素添加工程では添加物のフッ素原料がガラス微粒子堆積体の内部に浸透する。フッ素添加工程中においても、開度調整弁32の開度の調整によって、測定圧力と目標圧力P1とが等しくなるように、圧力が制御され続けている。
フッ素添加工程が終了すると(時刻t6)、制御装置40はMFC22にフッ素ガスの供給を停止させる。また、ヒータ13は透明化温度T3(>T2)まで温度の上昇を開始する。さらに、第2開閉弁34を開けてバイパス管26から炉心管12内のガスを排出する。これにより、炉心管12内の圧力は再び真空状態となる。
本実施形態の制御装置40は、さらに、時刻t6から開度調整弁32の開度をさらに上昇させている。これにより、炉心管12内のガスはバイパス管26だけでなく、開度調整弁32および補助弁33を通って排出されるので、炉心管12内の圧力が真空状態に至るまでの時間が短縮される。これにより、ヒータ13の温度が透明化温度T3に到達する前に炉心管12の内部を真空状態にできるので、ガラス母材の内部にガスが残存しにくくなり、ガラス母材中の気泡の発生を抑制できる。
本実施形態の制御装置40は、さらに、時刻t6から開度調整弁32の開度をさらに上昇させている。これにより、炉心管12内のガスはバイパス管26だけでなく、開度調整弁32および補助弁33を通って排出されるので、炉心管12内の圧力が真空状態に至るまでの時間が短縮される。これにより、ヒータ13の温度が透明化温度T3に到達する前に炉心管12の内部を真空状態にできるので、ガラス母材の内部にガスが残存しにくくなり、ガラス母材中の気泡の発生を抑制できる。
炉心管12内の圧力が真空状態となると(時刻t7)、制御装置40は開度調整弁32の開度を0%に下げるように制御する。その後、ヒータ13の温度が透明化温度T3に上昇すると(時刻t8)、透明化工程を開始する。透明化工程では、ガラス微粒子堆積体が緻密化されて透明なガラス母材となる。
透明化工程が完了すると(時刻t9)、ヒータ13は発熱を停止する。その後、透明化されたガラス母材が取り出される。
なお、フッ素原料の添加を行わない場合は、時刻t0から時刻t9まで、MFC22および第1開閉弁31を全閉に、第2開閉弁34を全開にして、常にポンプ24によるガスの排気を行いながら、ガラス母材を製造する。
ところで、ガラス微粒子堆積体に添加物を添加して焼結する際に、開度調整弁を用いず開閉弁のみにより炉心管内のガスを排出する場合は、均一な添加物が均一に添加されないことがある。例えば、開閉弁を閉めて、真空に近い状態で添加物ガスを添加すると、添加物ガスが下流に流れにくいため、ガス供給口付近に澱んで、ガス供給口から離れた部分のガラス微粒子堆積体に添加物が浸透しにくいことがある。ガラス微粒子堆積体への添加物の添加が不均一となると、ガラス母材の屈折率が均一とならず品質にムラが出るため出荷製品を製造できない場合がある。
本実施形態の製造装置1及び製造方法においては、添加物ガスを炉心管12内部に供給中に、制御装置40はMFC22および開度調整弁32の少なくとも一方を制御することで、焼結中における圧力を一定の値(目標圧力P1)に制御する。このため、炉心管12内におけるガラス微粒子堆積体の周囲を添加物ガスが定常に流れようとするので、添加物ガスの流れの澱み等が発生しにくくなり、ガラス微粒子堆積体に添加される添加物のムラが減少する。これにより、より安定して屈折率が均一なガラス母材を製造できる。
本実施形態において、目標圧力P1は絶対圧で1kPa以上50kPa以下の範囲で設定されている。フッ素ガスを添加する場合、1kPaよりも小さい圧力では、フッ素原料が十分に添加されず、製造されるガラス母材の屈折率が十分に下がらないことがある。一方、50kPaよりも大きい圧力の場合、大気圧に近い状態でフッ素原料の添加が行われる。炉心管12内の圧力が大気圧に近づくと、ガラス微粒子堆積体にガスが残留して気泡が発生しやすくなる。目標圧力P1が絶対圧で1kPa以上50kPa以下の範囲である場合、屈折率の低下と品質の維持を両立したガラス母材を製造できる。
本実施形態の製造装置1は、さらに、排気管23において開度調整弁32と直列に設けられ、開度を調整することで炉心管12からの排気流量を調整する補助弁33を備えている。補助弁33を備えていることによって、開度調整弁32による排気流量の微調整を行いやすくなる。
補助弁33を備えることによる効果をさらに詳細に説明する。図3は、補助弁の有無によるガス排出流量の制御の違いを説明する図である。図3の縦軸は開度調整弁32を通って排出されるガスの排気流量を示している。図3の横軸は開度調整弁32の開度を表している。図3の一点鎖線のグラフは補助弁無しの場合を表し、実線のグラフは補助弁33有の場合を表している。図3に示すように、排気流量は開度調整弁32の開度に比例する。排気流量を範囲Qに収めようとする場合、補助弁がない場合では開度範囲Aとなるように調整する必要がある。
一方、補助弁33を設けた場合であって、かつ、補助弁33の開度が100%でない場合、補助弁33がない場合と同じ開度調整弁32の開度であっても排気流量は低くなる。つまり、図3に示すように、開度調整弁32の開度に対する排気流量の傾きが緩やかとなる。開度調整弁32の開度に対する排気流量の傾きは補助弁33の開度が小さくなるほど緩やかとなる。
このとき、排気流量を範囲Qに収めようとする場合、開度調整弁32の開度を適切な開度範囲となるように調整する必要がある。ここで、補助弁33を設けた場合の開度範囲Bは、補助弁を設けられていない場合の開度範囲Aよりも範囲が広くなる。換言すれば、開度を調節した場合の排気流量の変動が小さくなる。
開度を調整するための弁を1つだけ用いて排気流量を調整する場合、少しの開度の変更で大きく排気流量が変わることがある。しかしながら、本実施形態の製造装置1において、補助弁33が開度調整弁32と直列に設けられることにより、排気流量を二段階で調整できる。これにより、1つの弁で調節する排気流量の変動が小さくなるので、排気流量の微調整が容易となる。
本実施形態の製造装置1は、さらに、炉心管12と開度調整弁32との間で排気管23から分岐して、開度調整弁32とポンプとの間で排気管23と合流するバイパス管26を備え、バイパス管26には第2開閉弁34が設けられている。フッ素ガス等の添加物をガラス微粒子堆積体に添加しない場合は、内部の圧力を調整する必要がない場合に、開度調整弁32を完全に閉め切ると同時に第2開閉弁34を開けることで、添加物を添加しない場合のガラス母材も製造が容易となる。
以上、本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等に変更することができる。また、上記説明した各例が含む要素は、互いに組みわせることができる。
1 製造装置
10 加熱炉
11 真空容器
12 炉心管
13 ヒータ
14 ヒートシールド
21 ガス供給管
21a ガス供給口
22 マスフローコントローラ(MFC)
23 排気管
24 ポンプ
25 圧力計
26 バイパス管
31 第1開閉弁
32 開度調整弁
33 補助弁
34 第2開閉弁
40 制御装置
P1 目標圧力
Q1 目標フッ素ガス流量
T0 初期温度
T1 脱水温度
T2 添加温度
T3 透明化温度
10 加熱炉
11 真空容器
12 炉心管
13 ヒータ
14 ヒートシールド
21 ガス供給管
21a ガス供給口
22 マスフローコントローラ(MFC)
23 排気管
24 ポンプ
25 圧力計
26 バイパス管
31 第1開閉弁
32 開度調整弁
33 補助弁
34 第2開閉弁
40 制御装置
P1 目標圧力
Q1 目標フッ素ガス流量
T0 初期温度
T1 脱水温度
T2 添加温度
T3 透明化温度
Claims (5)
- ガラス微粒子堆積体を内部に収容する炉心管と、前記炉心管の外側に配置されたヒータと、を備え、前記ガラス微粒子堆積体を加熱して焼結する加熱炉と、
前記ガラス微粒子堆積体に添加する添加物を含んだ添加物ガスを前記炉心管内部に供給するガス供給口と、
前記ガス供給口に供給する前記添加物ガスの流量を調整する流量調整器と、
前記加熱炉に接続されて、前記炉心管の内部の気体を排出する排気管と、
前記排気管に設けられ、前記炉心管の内部を減圧するポンプと、
前記炉心管の内部の圧力を測定する圧力計と、
前記ポンプよりも上流の前記排気管に配置され、開度を調整することで前記炉心管からの排気流量を調整する開度調整弁と、
前記添加物ガスを前記炉心管内部に供給中に、前記圧力計の測定値が目標圧力になるように、前記流量調整器および前記開度調整弁の少なくとも一方を制御する制御装置と、
を備えたガラス母材の製造装置。 - 前記目標圧力は、絶対圧で1kPa以上50kPa以下である請求項1に記載のガラス母材の製造装置。
- さらに、前記排気管において前記開度調整弁と直列に設けられ、開度を調整することで前記炉心管からの排気流量を調整する補助弁を備える、
請求項1または請求項2に記載のガラス母材の製造装置。 - さらに、前記炉心管と前記開度調整弁との間で前記排気管から分岐して、前記開度調整弁と前記ポンプとの間で前記排気管と合流するバイパス管を備え、
前記バイパス管には開閉弁が設けられている、
請求項1または請求項2に記載のガラス母材の製造装置。 - 炉心管の内部に収容されたガラス微粒子堆積体に対して、添加物を含んだ添加物ガスを導入しながら前記ガラス微粒子堆積体を加熱して焼結することで、添加物を含んだガラス母材を製造する方法であって、
圧力計により測定された前記炉心管の内部の圧力が目標圧力となるように、前記炉心管に導入される添加物ガスの流量と前記炉心管から排出される排気流量の少なくとも一方を制御する、
ガラス母材の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022102814A JP2024003583A (ja) | 2022-06-27 | 2022-06-27 | ガラス母材の製造装置およびガラス母材の製造方法 |
CN202310749183.6A CN117303728A (zh) | 2022-06-27 | 2023-06-25 | 玻璃母材的制造装置以及玻璃母材的制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022102814A JP2024003583A (ja) | 2022-06-27 | 2022-06-27 | ガラス母材の製造装置およびガラス母材の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024003583A true JP2024003583A (ja) | 2024-01-15 |
Family
ID=89280017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022102814A Pending JP2024003583A (ja) | 2022-06-27 | 2022-06-27 | ガラス母材の製造装置およびガラス母材の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024003583A (ja) |
CN (1) | CN117303728A (ja) |
-
2022
- 2022-06-27 JP JP2022102814A patent/JP2024003583A/ja active Pending
-
2023
- 2023-06-25 CN CN202310749183.6A patent/CN117303728A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
CN117303728A (zh) | 2023-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101746949B (zh) | 用于制备光学预制件的方法和装置 | |
JP6809302B2 (ja) | ガラス微粒子堆積体の製造方法および製造装置 | |
US9527764B2 (en) | Quartz glass manufacturing method using hydrogen obtained by vaporizing liquid hydrogen | |
JP5148367B2 (ja) | 高周波誘導熱プラズマトーチを用いた光ファイバプリフォームの製造方法 | |
CN1922114B (zh) | 制造光纤预制件的方法及设备 | |
RU2187475C2 (ru) | Устройство для изготовления заготовки оптического волокна и способ усадки и смыкания осажденной трубки | |
JP2024003583A (ja) | ガラス母材の製造装置およびガラス母材の製造方法 | |
CN101481207A (zh) | 一种用于制造光纤预制件的装置 | |
KR100587996B1 (ko) | 다공질 유리 기재 소결 장치 및 그 방법 | |
JP4460062B2 (ja) | 光ファイバ母材の製造方法 | |
US9002162B2 (en) | Large core multimode optical fibers | |
JP7397169B2 (ja) | 光ファイバ母材の製造方法および加熱炉 | |
CN203866200U (zh) | 一种基于基管外径维持与修正控制制造光纤预制芯棒的装置 | |
JP2009091194A (ja) | ガラス微粒子堆積体の製造方法 | |
JP2012197208A (ja) | 光ファイバ用ガラス微粒子堆積体の製造方法 | |
JP6839558B2 (ja) | 光ファイバ多孔質母材の製造方法及び製造装置 | |
KR100907599B1 (ko) | 광파이버 모재 제조 장치 | |
CN111377605B (zh) | 光纤用母材的制造方法 | |
JP3928844B2 (ja) | 光ファイバ母材製造装置 | |
KR100378374B1 (ko) | 모재 제조 공법 중 클로즈 공정 및 그 장치 | |
JP2017214257A (ja) | 多孔質ガラス母材の焼結装置および焼結方法 | |
JP2003212556A (ja) | ガラス母材の製造方法及び製造装置 | |
Jenkins et al. | Cascaded control for regulating soot geometry in vapor-phase axial deposition | |
JP4239595B2 (ja) | 光ファイバ母材の製造方法 | |
KR20030046705A (ko) | 변형 화학기상 증착 공정의 원료물질 기화량 유지장치 |