JP2024002750A - マイクロ流路チップ及びマイクロ流路チップの製造方法 - Google Patents

マイクロ流路チップ及びマイクロ流路チップの製造方法 Download PDF

Info

Publication number
JP2024002750A
JP2024002750A JP2022102143A JP2022102143A JP2024002750A JP 2024002750 A JP2024002750 A JP 2024002750A JP 2022102143 A JP2022102143 A JP 2022102143A JP 2022102143 A JP2022102143 A JP 2022102143A JP 2024002750 A JP2024002750 A JP 2024002750A
Authority
JP
Japan
Prior art keywords
substrate
flow path
lid
microchannel chip
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022102143A
Other languages
English (en)
Inventor
妃奈 長谷
Hina Hase
典仁 福上
Norihito Fukugami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Holdings Inc
Original Assignee
Toppan Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Holdings Inc filed Critical Toppan Holdings Inc
Priority to JP2022102143A priority Critical patent/JP2024002750A/ja
Priority to PCT/JP2023/018667 priority patent/WO2023248660A1/ja
Publication of JP2024002750A publication Critical patent/JP2024002750A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)

Abstract

【課題】壁部と蓋材とを熱圧着によって接合する際の圧力および加熱によって部材に破損および反りが発生することを抑制し、通液時の液漏れが発生しないマイクロ流路チップ、およびその製造方法を提供することを目的とする。【解決手段】マイクロ流路チップ1は、基板10と、基板10上に設けられた流路部13と、流路部13の蓋となるカバー層12と、樹脂材料で構成され、基板10とカバー層12との間に配置されて基板10上に流路部13およびカバー層12を支持する蓋材支持部111を形成する隔壁層11と、を備え、流路部13は、隔壁層11において開口幅が2000μm以下の開口部として形成され、隔壁層11は、開口面積率が20%以上60%以下であり、隔壁層11とカバー層12とが熱圧着により接合されており、カバー層12は、隔壁層11の基板10とは反対側の面である表面11aと接合している。【選択図】図2

Description

本開示は、マイクロ流路チップ及びその製造方法に関するものである。
近年、リソプロセスや厚膜プロセス技術を応用して、微細な反応場を形成し、数μLから数nL単位での検査を可能とする技術が提案されている。このような微細な反応場を利用した技術をμ-TAS(Micro Total Analysis system)という。
μ-TASは、遺伝子検査、染色体検査、細胞検査、医薬品開発などの領域や、バイオ技術、環境中の微量な物質検査、農作物等の飼育環境の調査、農作物の遺伝子検査などに応用される。μ-TAS技術の導入により、自動化、高速化、高精度化、低コスト、迅速性、環境インパクトの低減など、大きな効果を得られる。
μ-TASでは、多くの場合、基板上に形成されたマイクロメートルサイズの流路(マイクロ流路、マイクロチャンネル)が利用され、このような基板はチップ、マイクロチップ、マイクロ流路チップなどと呼ばれる。
従来、こうしたマイクロ流路チップは、射出成形、モールド成形、切削加工、エッチングなどの技術を用いて作製されていた。またマイクロ流路チップの基板としては、製造が容易であり、光学的な検出も可能であることから、主にガラス基板が用いられている。一方で、軽量でありながらガラス基板に比べて破損しにくく、且つ、安価な樹脂材料を用いたマイクロ流路チップの開発も進められている。樹脂材料を用いたマイクロ流路チップの製造方法としては、主にフォトリソグラフィーにより流路用樹脂パターンを成形し、そこに蓋材を接合してマイクロ流路チップを作製する方法がある。この方法によれば、従来技術では困難な側面もあった微細な流路パターンの形成も可能である。
こうしたマイクロ流路チップは、複数の部材同士を接合させて作製される。例えば、特許文献1には、接着剤を介して接合する方法からなるマイクロ流路チップについて開示されている。また、例えば特許文献2に記載のように、大気圧またはその近傍下においてプロセスガスをプラズマ化し、基板表面を改質し、接着剤を使うことなく部材同士を接合する方法も提案されている(例えば、特許文献2)。
特開2007-240461号公報 特開2011-104886号公報
マイクロ流路チップの作製時には、複数の部材同士を接合するため、当該部材に接合方法に応じた圧力を加える必要がある。例えば流路が形成される壁部(隔壁部)と蓋材との接合時には、接合方法に応じてこれらの部材が加圧される。接合方法としては、例えば熱圧着法が用いられる。
近年、流路パターン構造の複雑化に伴ってマイクロ流路チップにおいて流路部分(壁部の開口領域)の表面積が増えているが、壁部の開口面積や開口幅の増大に伴い壁部と蓋材との接触面積が減少すると、壁部と蓋材とを接合する際の加圧への耐性が低減し、熱圧着法による接合時の圧力によって部材(基板、壁部、蓋材等)が破損してしまうおそれがある。
加圧への耐性向上のためには、壁部の開口面積や開口幅を過度に減少させて壁部と蓋材との接触面積を増大させることが考えられるが、接触面積が過度に増大した場合、熱圧着法による接合時の加熱による部材の膨張、およびその後の収縮に起因する変形により部材に反りが発生して接合不良が生じたり、部材が破損してしまうおそれがある。また、壁部と蓋材との接合時に部材に破損や反りが発生すると、マイクロ流路チップに通液した際に、液漏れが起きる場合がある。
したがって、部材同士を熱圧着で接合する場合には、壁部と蓋材との接合時において加圧への耐性低減や加熱による部材(基板、壁部、蓋材)の変形を抑制して接合安定性を向上し、圧力および加熱による破損および反りの発生を抑制し、通液時の液漏れを防ぐことが求められる。
そこで、本開示は上記課題に鑑み、壁部と蓋材とを熱圧着によって接合する際の圧力および加熱によって部材に破損および反りが発生することを抑制し、通液時の液漏れが発生しないマイクロ流路チップ、およびその製造方法を提供することを目的とする。
上記課題を解決するために、本開示の一態様に係るマイクロ流路チップは、基板と、前記基板上に設けられた流路と、前記流路の蓋となる蓋材と、樹脂材料で構成され、前記基板と前記蓋材との間に配置されて前記基板上に流路および前記蓋材を支持する蓋材支持部を形成する隔壁部と、を備え、前記流路は、前記隔壁部において開口幅が2000μm以下の開口部として形成され、前記隔壁部は、開口面積率が20%以上60%以下であり、 前記隔壁部と前記蓋材とが熱圧着により接合されており、前記蓋材は、前記隔壁部の前記基板とは反対側の面と接合していることを特徴とするマイクロ流路チップ。
また、本開示の一態様に係るマイクロ流路チップの製造方法は、基板上に、樹脂を塗工する工程と、塗工した前記樹脂を露光する工程と、露光した前記樹脂を現像及び洗浄し、前記基板上に隔壁部を形成する工程と、前記隔壁部をポストベーク処理する工程と、前記隔壁部の前記基板とは反対側の面に蓋材を熱圧着により接合する工程と、を含み、前記流路を形成する工程において、前記現像により前記基板上の余分な樹脂を除去することにより、前記隔壁部が前記基板上に流路および前記蓋材を支持する蓋材支持部を形成し、且つ前記流路として開口幅が2000μm以下の開口部を前記隔壁部に形成し、前記隔壁部の開口面積率を20%以上60%以下とすることを特徴とする。
本開示の態様によれば壁部と蓋材とを熱圧着によって接合する際の圧力および加熱によって部材に破損および反りが発生することを抑制し、通液時の液漏れが発生しないマイクロ流路チップを提供することができる。
本開示の第一実施形態に係るマイクロ流路チップの一構成例を示す平面模式図である。 は本開示の第一実施形態に係るマイクロ流路チップの一構成例を示す断面模式図である。 (a)は、本開示の第一実施形態に係るマイクロ流路チップの隔壁部および流路部の一構成例を示す平面模式図であり、(b)は、図3(a)に示す流路部の構成を拡大して示す図である。 本開示の第一実施形態に係るマイクロ流路チップの製造方法の一例を示すフローチャートである。 本開示の第一実施形態の一の変形例に係るマイクロ流路チップにおける流路部の一配置例を示す平面模式図である。 本開示の第一実施形態の他の変形例に係るマイクロ流路チップにおける流路部の一配置例を示す平面模式図(その1)である。 本開示の第一実施形態の他の変形例に係るマイクロ流路チップにおける流路部の一配置例を示す平面模式図(その2)である。 本開示の第一実施形態の他の変形例に係るマイクロ流路チップにおける流路部の一配置例を示す平面模式図(その3)である。 本開示の第二実施形態に係るマイクロ流路チップの一構成例を示す平面模式図である。 本開示の第二実施形態に係るマイクロ流路チップの一構成例を示す断面模式図である。
以下、実施形態を通じて本開示を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。また、図面は特許請求の範囲にかかる発明を模式的に示すものであり、各部の幅、厚さ等の寸法は現実のものとは異なり、これらの比率も現実のものとは異なる。
本開示の第一実施形態に係るマイクロ流路チップについて説明する。なお、以下の説明では、マイクロ流路チップの基板側を「下」、マイクロ流路チップの基板側と反対側(蓋材側)を「上」として説明する場合がある。
本発明者らは、鋭意検討の結果、マイクロ流路チップにおいて、壁部が流路および蓋材を支持する蓋材支持部を形成し、壁部の開口面積率および壁部に形成された開口部の寸法(例えば、流路の開口幅および蓋材支持部の間隙)が特定条件を満たすように制御することにより、複数部材(ここでは、壁部および蓋材)を接合する際の加圧への耐性低減や加熱による部材の変形が抑制され接合安定性が向上することを見出した。これにより、本発明者らは、壁部と蓋材とを接合する際の圧力および加熱によって部材(基板、壁部、蓋材)の破損および反りが生じることを抑制し、通液時に液漏れが発生しないマイクロ流路チップ及びその製造方法を発明するに至った。なお壁部の開口面積率についての詳細は、後述する。
以下、図面を参照して本開示の各実施形態の各態様について説明する。
1.第一実施形態
(1.1)マイクロ流路チップの基本構成
図1及び図2は、本開示の第一実施形態(以下、「本実施形態」という)に係るマイクロ流路チップ1の一構成例を説明するための概略図である。具体的には、図1は本実施形態のマイクロ流路チップ1の平面概略図である。また、図2は、図1に示すA-A線でマイクロ流路チップ1を切断した断面を示す概略断面図である。
図1に示すように、マイクロ流路チップ1は、流体(例えば液体)を導入するための入力部4と、基板10上に形成されて入力部4から導入された流体が流れる流路部13と、流路部13から流体を排出するための出力部5とを備えている。出力部5は流体の排出(排出部)する構成に限られず、流体と薬液とを接触する構成(薬剤固定部)であってもよい。以下、流体の排出部または薬液固定部のうち少なくとも一方として機能する構成を総称して「出力部」と称する。
基板10上には流路部13を確定する隔壁層(隔壁部)11が形成されており、流路部13は表面11a側に開口した開口部である。マイクロ流路チップ1において、流路部13は、蓋材であるカバー層12に覆われており、入力部4および出力部5は、カバー層12に設けられた貫通孔である。また、マイクロ流路チップ1には、基板10上に形成された隔壁層11の一部であって蓋材を支持する蓋材支持部111を備えている。各構成の詳細は後述する。
図1では、透明性を有するカバー層12を介して視認される基板10、隔壁層11、流路部13および蓋材支持部111を図示している。
マイクロ流路チップ1において、入力部4及び出力部5は、少なくとも1つ以上設けられていればよく、それぞれ複数個設けられていてもよい。またマイクロ流路チップ1において、流路部13は、一つ以上であればよく、複数設けられてもよいし、入力部4から導入された流体の合流や分離が可能な設計であってもよい。具体的には、一つの流路部13に対して入力部4が複数でもよいし、複数の流路部13に対して入力部4が一つであってもよい。また同様に、一つの流路部13に対して出力部5が複数であってもよいし、複数の流路部13に対して出力部5が一つであってもよい。
図1および図2に示すマイクロ流路チップ1は、一例として3つの流路部13(流路部13a,13b,13c)を有する流路群130を備えている。
ここで、まずマイクロ流路チップ1において、流路部13(流路部13a~13c)を構成する部材(基板10、隔壁層11、カバー層12)の詳細について説明する。
図2に示すように、マイクロ流路チップ1は、2つの基材(第一基材、第二基材)に挟まれた壁部である隔壁層(隔壁部の一例)11によって流体が流れる流路である流路部13が画定されている。本例では、隔壁層11の上面側に設けられて流路部13の上部を覆うカバー層12が第一基材に相当し、隔壁層11の底面側に設けられて流路部13の底部を形成する基板10が第二基材に相当する。つまり、マイクロ流路チップ1は、基板10上に設けられた流路部13と、流路部13の蓋となるカバー層12と、基板10と、カバー層12と基板10との間に配置されて基板10上に流路部13および蓋材支持部111を形成する隔壁層11と、を備えている。より具体的には、マイクロ流路チップ1は、基板10と、基板10上に設けられて流路を形成する隔壁層11と、隔壁層11の基板10とは反対側の面に接合されて流路部13を覆うカバー層12と、を備えている。詳しくは後述するが、本例において隔壁層11とカバー層12とは熱圧着により接合されている。
入力部4から導入された流体が流れる流路部13は、基板10と隔壁層11とカバー層12とに囲まれた領域である。流路部13は、基板10上に対向して設けられた隔壁層11によって画定され、基板10とは反対側を蓋材となるカバー層12に覆われている。上述のように、流路部13には、カバー層12に設けられた入力部4から流体が導入され、流路部13を流れた流体は出力部5から排出される。
(1.1.1)基板
基板10は、マイクロ流路チップ1の基礎となる部材であり、基板10上に設けられた隔壁層11によって流路部13が構成される。つまり、基板10および隔壁層11は、マイクロ流路チップ1の本体部といえる。
また、図2に示すように、基板10は、カバー層12と対向する面(表面10a)において流路部13が設けられる流路領域91と、流路部13が設けられていない非流路領域92とを有している。つまり、基板10において、流路領域91上には隔壁層11により流路部13が形成され、非流路領域92上にはカバー層12を支持する蓋材支持部111が形成されている。また、非流路領域92において、蓋材支持部111が形成されていない部分は基板10の表面10aが露出している。つまり、非流路領域92上において、蓋材支持部111以外の箇所には隔壁層11は設けられていない。
基板10は、透光性材料又は非透光性材料のいずれかによって形成することができる。例えば、流路部13内の状態(流体の状態)を光によって検出、観察する場合は、該光に対して透明性に優れる材料を用いることができる。これにより、例えば基板10側から流路部13内の状態を観察することができる。透光性材料としては、樹脂又はガラス等を用いることができる。基板10を形成する透光性材料に用いる樹脂としては、マイクロ流路チップ1の本体部の形成に適しているという観点から、アクリル樹脂、メタクリル樹脂、ポリプロピレン、ポリカーボネート樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ウレタン樹脂、シリコーン樹脂、フッ素系樹脂等が挙げられる。
また例えば、流路部13内の状態(流体の状態)を光によって検出、観察する必要がない場合は、非透光性材料を用いてもよい。非透光性材料としては、シリコンウエハ、銅板等が挙げられる。基板10の厚みは特に限定されないが、流路形成工程においてはある程度の剛性は必要となることから、10μm(0.01mm)以上10mm以下の範囲内が好ましい。
(1.1.2)隔壁層
隔壁層11は、基板10上に設けられて、流路部13を形成する構成である。具体的には、隔壁層11の対抗する側面11bによって流路部13が画定される。図2に示すように、本実施形態において隔壁層11は、基板10上において複数の流路部13(流路部13a,13b,13c)を有する流路群130を形成している。マイクロ流路チップ1は、複数の流路部13を有することで、同時に複数の検査を行うことや、異なる種類の流体を用いた検査を行うこと等が可能となり、マイクロ流路チップをより幅広く活用することができる。複数の流路部13のそれぞれは、独立していてもよいし、一部が交差していてもよい。
隔壁層11は、樹脂材料で形成することができる。隔壁層11の樹脂材料としては、例えば感光性樹脂を用いることができる。
隔壁層11を形成する感光性樹脂は、紫外光領域である190nm以上400nm以下の波長の光に対して感光性を有することが望ましい。当該感光性樹脂としては、液体レジスト又はドライフィルムレジスト等のフォトレジストを用いることができる。これらの感光性樹脂は、感光領域が溶解するポジ型、又は感光領域が不溶化するネガ型のいずれであってもよい。マイクロ流路チップ1における隔壁層11の形成に適する感光性樹脂組成物としては、アルカリ可溶性高分子と付加重合性モノマーと光重合開始剤とを含むラジカルネガ型の感光性樹脂を挙げることができる。例えば、感光性樹脂材料としては、アクリル系樹脂、アクリルウレタン系樹脂(ウレタンアクリレート系樹脂)、エポキシ系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂、ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ノルボルネン系樹脂、フェノールノボラック系樹脂、その他の感光性を有する樹脂を単独で又は複数混合あるいは共重合して用いることができる。
なお本実施形態においては、隔壁層11の樹脂材料は感光性樹脂に限定されるものではなく、例えば、シリコーンゴム(PDMS:ポリジメチルシロキサン)や、合成樹脂を用いてもよい。合成樹脂としては、例えばポリメタクリル酸メチル樹脂(PMMA)、ポリカーボネート(PC)、ポリスチレン樹脂(PS)、ポリプロピレン(PP)、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)などを用いることができる。隔壁層11の樹脂材料は、用途に応じて適宜選択されることが望ましい。
(1.1.2.1)蓋材支持部
次に、基板10上に隔壁層11が形成する蓋材支持部について説明する。
隔壁層11は、基板10の流路領域91上に流路部13を形成し、非流路領域92上に蓋材支持部(例えば、蓋材支持部111)を形成する。蓋材支持部は隔壁層11の一部による樹脂構造体として形成される。つまり、本実施形態においてマイクロ流路チップ1には、流路領域91上だけでなく非流路領域92上にも隔壁層11の一部(蓋材支持部111)が設けられている。これにより、隔壁層11とカバー層12との接触面積を確実に確保することができ、隔壁層11とカバー層12との接合時における押圧力を分散して(押圧力の集中を防いで)加圧への耐性を向上するとともに、接合後の剥離不良を防ぐことができる。また、隔壁層11が蓋材支持部111を形成することにより、マイクロ流路チップ1自体の剛性が向上し、保管時や使用時において圧力が加わった際の部材の破損や反りの発生も抑制することができる。
マイクロ流路チップ1において、蓋材支持部の形状や数は限定されないが、隔壁層11とカバー層12との接触面積を拡大する観点では、非流路領域92上には蓋材支持部として隔壁層11の一部による樹脂構造体が一つ以上形成されることが好ましい。つまり、マイクロ流路チップ1には、非流路領域92上において一つ又は複数の樹脂構造体が蓋材支持部として形成されていることが好ましい。これにより、隔壁層11とカバー層12との接触面積をより確実に確保することができ、隔壁層11とカバー層12との接合時における加圧への耐性をより向上することができる。
図1および図2に示すように、本例では、基板10上(具体的には非流路領域92上)において、蓋材支持部111が3つ形成されている。
また、マイクロ流路チップ1では、基板10上において隔壁層11の厚みTは変化しない。すなわち、隔壁層11は、流路領域91上と非流路領域92上とで厚みが変化しない。このため、流路領域91において流路部13を形成する隔壁層11と、蓋材支持部111を形成する隔壁層11とは、厚みTが同等である。したがって隔壁層11は、基板10とは反対側の面(表面11a)において、安定的にカバー層12と接合される。
また隔壁層11は、流路領域91上および非流路領域92上のいずれにおいても、基板10とは反対側の面(表面11a)において、カバー層12と接合している。つまり、非流路領域92上の蓋材支持部111も、基板10とは反対側の面(表面11a)においてカバー層12と接合している。本実施形態において、蓋材支持部111の基板10とは反対側の面(表面11a)、すなわちカバー層12側の面において、カバー層12と面接触している。これにより、蓋材支持部111を含む隔壁層11は、基板10とは反対側の面(表面11a)において、より安定的にカバー層12と接合される。
また、本実施形態において、蓋材支持部111を含む隔壁層11の表面11aは、平坦である。これにより、隔壁層11はより安定的にカバー層12と接合される。なお、隔壁層11の表面11aには、カバー層12との接合の安定性に影響しない程度であれば、微小な凹凸が設けられていてもよい。
本実施形態において、蓋材支持部111の形状は特に限定されず、種々の形状とすることができる。図1に示すように、本例において蓋材支持部111は、平面視で長方形状を有する樹脂構造体である。ここで、平面視は、隔壁層11の表面11aと直交する方向から見ることを示す。つまり、平面視での蓋材支持部111の形状は、表面11aの形状である。
より具体的には、本例において非流路領域92上には、複数(3つ)の蓋材支持部111が樹脂構造体の平面形状である長方形の長辺と平行に配置されている。つまり、基板10の非流路領域92上において、複数の蓋材支持部111がストライプ状(線状)のパターン110を形成している。また、本例において複数の蓋材支持部111は、平面形状である長方形の長辺と流路部13とが平行となるように配置されている。
なお、本開示はこれに限られず、ストライプ状のパターン110を形成する複数の蓋材支持部111は、非流路領域92上において2つ以上配置されていればよい。また、蓋材支持部111は、平面形状である長方形の長辺が流路部13と直交する仮想直線に平行となるように配置されてもよいし、平面視で長方形状である非流路領域92の対角線と平行に配置されてもよい。また、平面視で長方形状の蓋材支持部111の配置は、ストライプ状のパターン110に限られず、例えば平面視で長方形状の非流路領域92の内周を囲むように、非流路領域92の四辺に沿って配置されてもよい。
複数の蓋材支持部111がストライプ状のパターン110を形成する場合、蓋材支持部111における表面11aの長辺は流路部13の長さ(後述する流路長L)と同等以上の長さであることが好ましい。これにより、開口部である流路部13の分だけ減少する隔壁層11とカバー層12との接触面積を補い、カバー層12との接合安定性を向上することができる。
なお、ストライプ状のパターン110を構成する蓋材支持部111の平面形状は長方形に限られず、角丸形状でもよいし、楕円形状でもよい。また、蓋材支持部111の平面形状において各辺は直線に限られず、波線状や鋸歯状の部分が含まれてもよい。
なお、図1および図2では、蓋材支持部(本例では蓋材支持部111)が複数形成される構成を例示したが、本開示はこれに限られない。まず、蓋材支持部のパターンは、ストライプ状のパターン110に限られず種々のパターンとして形成することができる。また上述のように、マイクロ流路チップにおいて基板10上(具体的には非流路領域92上)に形成される蓋材支持部は一つであってもよい。蓋材支持部が一つである場合、当該蓋材支持部の表面11aの面積は、複数の蓋材支持部が形成される場合における一つの蓋材支持部の表面11aの面積よりも大きいことが好ましい。つまり、蓋材支持部が一つである場合、当該蓋材支持部の表面11aの面積は、複数の蓋材支持部(例えば3つの蓋材支持部111)のうち一つの蓋材支持部の表面11aの面積よりも大きいことが好ましい。
また、蓋材支持部が一つである場合、当該一つの蓋材支持部の表面11aの面積は、複数の蓋材支持部の表面11aの総面積(面積の合計)と同等以上であることが好ましい。例えば、蓋材支持部が一つである場合、当該一つの蓋材支持部の表面11aの面積は、3つの蓋材支持部111の表面11aの面積の合計(3つの蓋材支持部111の総面積)と同等以上であればよい。これにより、蓋材支持部が一つである場合も、複数の蓋材支持部が形成される場合(例えば、ストライプ状のパターン110が形成される場合)と同等に、隔壁層11とカバー層12との接触面積を確保し、接合安定性を向上することができる。
なお、蓋材支持部が一つである場合、蓋材支持部の平面視の形状(表面11a形状)は、特に限定されず、多角形形状でも円形状でもよいし、文字やキャラクター形状でもよい。
(1.1.3)カバー層
本実施形態に係るマイクロ流路チップ1において、カバー層12は、隔壁層11の基板10とは反対側の面(表面11a)に設けられており、図1に示すように流路部13を覆う蓋材である。上述のように、カバー層12は、隔壁層11の基板10とは反対側の面にと接合しており、隔壁層11を挟んで基板10と対向している。より具体的には、図2に示すように、断面視においてカバー層12は、蓋材支持部111を含む隔壁層11に支持されており、流路部13が形成された隔壁層11の表面11aの開口部において基板10と対向し、基板10との対向面が流路部13の上部を画定している。カバー層12は、基板10の流路領域91上の隔壁層11および非流路領域92上の蓋材支持部111によって支持されることで、隔壁層11とカバー層12との接触面積(接合面積)が十分に確保され、隔壁層11との接合安定性が向上する。
カバー層12は、透光性材料又は非透光性材料のいずれかによって形成することができる。例えば、流路内の状態を光によって検出、観察する場合は、該光に対して透明性に優れる材料を用いることができる。透光性材料としては、特に限定されないが、樹脂又はガラス等を用いることができる。カバー層12を形成する樹脂としては、マイクロ流路チップ1の本体部の形成に適しているという観点から、アクリル樹脂、メタクリル樹脂、ポリプロピレン、ポリカーボネート樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ウレタン樹脂、シリコーン樹脂、フッ素系樹脂等が挙げられる。カバー層12の厚みは特に限定されないが、カバー層12に対して入力部4および出力部5それぞれに該当する貫通孔を設けることを鑑みると、10μm以上10mm以下の範囲内が好ましい。またカバー層12には、隔壁層11との接合前に、流体(液体)を導入する入力部4、流体を排出する出力部5のそれぞれに相当する孔を予め開けておくことが望ましい。
(1.1.4)隔壁層の開口領域の構成
ここで、本実施形態に係るマイクロ流路チップ1における基板10上における隔壁層11の開口領域に関する構成について、図1から図3を用いて詳細に説明する。
以下では、マイクロ流路チップ1における流路部13の寸法および流路部13を形成した隔壁層11における開口面積率について説明する。
上述のように、マイクロ流路チップは、流路パターン構造が複雑化しており壁部における開口領域が増大傾向にある。この開口領域の増大によって壁部と蓋材とを接合する際の接合安定性が低減する場合がある。接合安定性が低減すると、例えばマイクロ流路チップ1の作製時において蓋材と壁部とを接合する際等に、マイクロ流路チップ1を構成する各部材(本例では、基板、壁部、蓋材)の破損や反りの発生等の不具合が生じ得る。
例えば、壁部の開口領域が増大して接合安定性が低減すると、加圧に対する壁部の耐性が低減し、壁部と蓋材とを接合する際に壁部が破損し、さらに蓋材、基板にも破損が及ぶ場合がある。一方で、壁部の開口領域が過度に減少し、壁部と蓋材との接触面積が増大し過ぎた場合、熱圧着法による接合時の加熱による部材の膨張、およびその後の収縮で生じた変形に起因して部材が破損してしまうおそれがある。特に、壁部と蓋材とが異種材料で構成されたマイクロ流路チップの場合、各材料の熱膨張係数が異なることから、熱圧着時の加熱による膨張およびその後の収縮の差により、部材に破損、反りが生じ易い。
また基板、壁部および蓋材といった部材に破損が生じると、マイクロ流路チップの通液時において、液漏れが発生する場合がある。したがって、マイクロ流路チップでは、部材同士を熱圧着で接合する場合には、壁部と蓋材との接合時において加圧への耐性低減および加熱による部材(基板、壁部、蓋材)の変形を抑制して接合安定性を向上することが求められる。
本実施形態に係るマイクロ流路チップ1は、以下に示すように、隔壁層11における開口部である流路部13の寸法および隔壁層11の開口面積率が特定の条件を満たす構成となっている。さらに、マイクロ流路チップ1は、上述のように隔壁層11によって形成された蓋材支持部111を備えている。これにより、加圧に対する壁部の耐性を向上し、部材(基板、壁部、蓋材)に破損、反りが発生することを抑制して通液時の液漏れが発生しないマイクロ流路チップを提供することができる。
図3(a)は、図1に示すマイクロ流路チップ1において隔壁層11に形成された流路部13を示す平面概略図であり、図3(b)は、図3(a)に示す流路部13(流路部13a)を拡大して示す図である。図3(a)、図3(b)では、理解を容易にするため、カバー層12の図示を省略している。
マイクロ流路チップ1において流路部13は、開口部として流路領域91上の隔壁層11(具体的には、表面11a)に形成される。図3(a)に示すように、隔壁層11の表面11aに形成された開口部である流路部13において、流路部13の底部を構成する基板10(表面10a)が露出している。なお本開示の構成はこれに限られず、流路部13の底部において基板10が露出しない構成(例えば、流路部13の底部が隔壁層11や別部材に覆われている構成)であってもよい。
また流路部13は、入力部40と、出力部50との間に形成される。入力部40は、隔壁層11に形成された開口部であって、カバー層12の入力部4を介して導入された流体を受け付けて、流路部13に導入するための構成である。また、出力部50は、隔壁層11に形成された開口部であって、流路部13を通過した流体を受け付けてカバー層12の出力部5へ排出するため構成である。出力部50は流体の排出(排出部)するための構成に限られず、流体と薬液とを接触させるための構成(薬剤固定部)であってもよい。例えば、予め出力部50に薬液を入れておくことで、出力部50に向かって流路部13を送液された流体と薬液とを接触させることができる。以下、流体の排出部または薬液固定部として機能する構成を総称して「出力部」と称する。
マイクロ流路チップ1において、隔壁層11の入力部40はカバー層12の入力部4と対向する位置に設けられ、隔壁層11の出力部50はカバー層12の出力部5と対向する位置に設けられている。
本実施形態において、複数の流路部13を有する流路群は、入力部40および出力部50と、流路部13とを含めた構成としてもよい。これにより、流路群は流体を導入・排出する領域も含めた構成とすることができる。
流路部13が形成された隔壁層11に対してカバー層12が接合されることで、流路部13は基板10、隔壁層11およびカバー層12で囲まれ、液漏れを発生させずに流体を送液可能な構成となる。
隔壁層11に形成される流路部13の寸法について説明する。図2および図3(b)に示すように、流路部13の幅Wは、対向する隔壁層11間(具体的には、側面11b間)の幅であって、隔壁層11に形成された開口部の開口端の幅(開口幅)を示す。
本実施形態に係るマイクロ流路チップ1における流路部13は、隔壁層11において開口幅が2000μm(2mm)以下の開口部として形成される。本実施形態において、流路部13の幅Wを2000μm以下とすることにより、蓋材であるカバー層12を隔壁層11に接合する際に、隔壁層11における流路部13の近傍領域にかかる圧力が、隔壁層11の他の領域に比べて増大することを抑制できる。つまり、隔壁層11とカバー層12とを接合する際の接合安定性を向上することができる。
なお、マイクロ流路チップ1において、流路部13は、入力部40と出力部50との間において開口幅(幅W)が増減する構成であってもよい。例えば、流路部13は、入力部40と出力部50との中間領域に向かって幅Wが拡大する形状でもよい。したがって、マイクロ流路チップ1における流路部13は、開口幅が最も広い領域(隔壁層11の側面11b間の幅が最も広い領域)において、幅Wが2000μm以下であればよい。
また後述する隔壁層11の厚み(流路部13の高さ)と同様に、解析・検査対象の物質よりは流路部13の幅を大きくする必要から、隔壁層11によって画定される流路部13の幅Wは、5μm以上であることが好ましい。つまり、流路部13の幅Wは、5μm以上2000μm以下の範囲内が好ましい。これにより、隔壁層11とカバー層12とを接合する際の接合安定性を向上し、且つ流路部13内において解析・検査対象の物質を含む流体の送液性を向上することができる。
また、図3(b)に示すように、流路部13の流路長Lは、隔壁層11に開口部として形成された流路部13の長さ、すなわち入力部4と出力部5との間の開口端の長さを示す。つまり流路長Lは、入力部4から導入された流体が出力部5から排出されるまでの送液区間の長さである。本実施形態において、流路部13の流路長Lは、10mm以上100mm以下の範囲内が好ましく、30mm以上70mm以下の範囲内がより好ましく、40mm以上60mm以下の範囲内がさらに好ましい。流路長Lを10mm以上100mm以下の範囲内とすることで、反応溶液の十分な反応時間を確保することができる。
また、図2に示す流路部13の高さ、すなわち基板10上における隔壁層11の厚みTは特に限定されないが、流路部13に導入される流体に含まれる解析・検査対象の物質(例えば、薬剤、菌、細胞、赤血球、白血球等)よりは流路部13の高さ(隔壁層11の厚みT)を大きくする必要がある。このため、流路部13の高さ(隔壁層11の厚みT)は、5μm以上500μm以下の範囲内が好ましい。
次に、隔壁層11における開口面積率について説明する。隔壁層11の開口面積率(Ar)とは、マイクロ流路チップ1において、平面視で隔壁層11を形成した基板10とカバー層12とが重なり合う領域全体の面積(重畳面積SA)に対する、隔壁層11の開口領域の面積(開口面積OA)の割合である(Ar(%)=開口面積OA/重畳面積SA)。
なお図1に示すように、カバー層12には貫通孔として入力部4、出力部5が設けられている。このため、重畳面積SAには、入力部4、出力部5と基板10とが重なり合う領域の面積は含まれない。また同様に、隔壁層11において、カバー層12の入力部4、出力部5に対向する位置に形成された入力部40および出力部50も開口面積OAには含まれない。
例えば、図1および図2に示すマイクロ流路チップ1の場合、基板10の表面10a全体、すなわち流路領域91および非流路領域92にカバー層12が重なっている。このため、本例における重畳面積SAは、基板10の上面の面積から入力部4,出力部5の面積を除いた値となる(重畳面積SA=基板10の表面10aの面積-入力部4,出力部5の面積)。
また、本例のマイクロ流路チップ1では、基板10の流路領域91において隔壁層11が複数の流路部13(流路群130)を形成している。また、上述のように、基板10上の非流路領域92において蓋材支持部111以外の箇所は基板10が露出した開口領域である。このため、本例における開口面積OAは、流路領域91上における流路群130(流路部13a~13c)の開口面積OA(=流路部13a~13cの幅W×流路長L)と、非流路領域92上の開口面積(=表面10a内の非流路領域92の面積-蓋材支持部111における表面11aの面積)の合計である。このため、図1および図2に示すマイクロ流路チップ1の開口面積率Arは、以下のようにして算出される。
開口面積率Ar(%)=(流路部13a~13cの開口面積と非流路領域92上の開口面積との合計/重畳面積SA)
なおカバー層12はマイクロ流路チップ1の蓋材として機能すればよく、用途に合わせて種々の形状に設計することができる。カバー層12は、少なくとも流路部13が形成された基板10の一部、すなわち流路領域91を覆うように設計されていればよく、例えば平面視において隔壁層11が形成された基板10全体を覆うように設計することができる。
本実施形態に係るマイクロ流路チップ1では、隔壁層11とカバー層12との接合方法として、熱圧着が用いられる。熱圧着により隔壁層11とカバー層12とを接合する場合、隔壁層11の加圧への耐性の向上に加え、加熱時の熱膨張係数による隔壁層11およびカバー層12の変形によりカバー層12と隔壁層11との接合に不具合(接合不良)が生じることを回避することが必要となる。
そこで、マイクロ流路チップ1において、隔壁層11とカバー層12とが熱圧着により接合(貼合)される場合、隔壁層11は、開口面積率Arが20%以上60%以下の範囲内である。すなわち、マイクロ流路チップ1には、隔壁層11において開口面積率Arが20%以上60%以下となるように、一つ又は複数の流路部13および蓋材支持部111が形成されている。隔壁層11において、開口面積率Arを当該範囲内とすることにより、蓋材であるカバー層12を隔壁層11に接合する際に、隔壁層11における流路部13の近傍領域にかかる圧力が、隔壁層11の他の領域に比べて増大することを抑制できる。さらに、隔壁層11の開口面積率Arを当該範囲内とすることにより、加熱時の熱膨張係数による隔壁層11、カバー層12の変形に起因する部材(基板10、隔壁層11、カバー層12)の破損および反りの発生を抑制し、さらに当該破損や反りによってカバー層12と隔壁層11との接合に不具合が生じること(接合不良)を回避することができる。すなわち、隔壁層11の開口面積率Arを当該範囲内とすることにより、壁部と蓋材との接合時においてマイクロ流路チップ1を構成する部材の加圧への耐性低減および加熱による部材の変形を抑制して接合安定性を向上することができる。
また、マイクロ流路チップ1は、隔壁層11は、開口面積率Arが20%以上60%以下であるという条件に加えて、上述したように流路部13の幅W(開口幅)が2000μm以下であるという条件を満たすことにより、隔壁層11とカバー層12との接合安定性がさらに向上し、接合時における基板10、隔壁層11およびカバー層12の破損を抑制することができる。
つまり、マイクロ流路チップ1において、流路部13は隔壁層11において開口幅が2000μm以下の開口部として形成され、隔壁層11は、開口面積率が20%以上60%以下である。これにより、接合安定性(例えば隔壁層11における加圧への耐性)が向上して、熱圧着によって接合する際の圧力(加圧)および加熱によって部材(基板10、隔壁層11およびカバー層12)に破損および反りが発生することを抑制し、通液時の液漏れが発生しないマイクロ流路チップを提供することができる。
本実施形態に係るマイクロ流路チップ1は、隔壁層11の開口面積率が20%以上60%以下であるという条件を満たしていれば、流路領域91上において隔壁層11が一つ又は複数の流路部13を形成することができ、非流路領域92上において種々の形状による複数の蓋材支持部111を形成することができる。
また、マイクロ流路チップ1において、隔壁層11の開口領域以外の面積、すなわち隔壁層11において樹脂が残存している領域(表面11a)の面積(樹脂面積RA)は、重畳面積SAと開口面積OAとの差分として算出される(樹脂面積RA=重畳面積SA-開口面積OA)。したがって、重畳面積SAに対する開口面積OAの割合の残余が樹脂面積率RAr(%)となるため、開口面積率が20%のとき樹脂面積率は80%であり、60%のとき樹脂面積率RArは40%である。樹脂面積RAは、隔壁層11とカバー層12との接触面積を示す。つまり、隔壁層11の加圧への耐性を向上して隔壁層11とカバー層12とを接合する際の接合安定性を向上するためには、隔壁層11とカバー層12との接触面積である樹脂面積率RArは、40%以上80%以下の範囲内であればよい。つまり、マイクロ流路チップにおいて、樹脂面積率RAr40%以上80%以下の範囲内となるように、流路部13および蓋材支持部111を形成すればよい。なお、樹脂面積率RArの調整は、蓋材支持部111の形状やサイズを調整することで、容易に制御することができる。
(1.2)マイクロ流路チップの製造方法
次に、本実施形態に係るマイクロ流路チップ1の製造方法について説明する。図4は、本実施形態に係るマイクロ流路チップ1の製造方法の一例を示すフローチャートである。
ここでは、隔壁層11を感光性樹脂で形成する場合を例にとって説明する。
(ステップS1)
本実施形態に係るマイクロ流路チップ1の製造方法では、まず基板10上へ樹脂を塗工する工程を行う。これにより、基板10上に隔壁層11を形成するための樹脂層を設ける。本実施形態に係るマイクロ流路チップ1の製造方法では、例えば基板10上に感光性樹脂による樹脂層(感光性樹脂層)を形成する。
基板10上への感光性樹脂層の形成方法は、例えば、基板10への感光性樹脂の塗工により行われる。塗工は、例えば、スピンコーティング、スプレーコーティング、バーコーティングなどにより行われることができ、中でも膜厚制御性の観点からはスピンコーティングが好ましい。基板10上には、例えば液状、固体状、ゲル状、フィルム状など種々の形態の感光性樹脂を塗工することができる。中でも、液体レジストによって感光性樹脂層を形成することが好ましい。
また、基板10上には、樹脂層(例えば、感光性樹脂層)の厚み、すなわち隔壁層11の厚みTが5μm以上500μm以下の範囲内となるように樹脂(例えば、感光性樹脂)を塗工することが好ましい。なお、隔壁層11の厚みはこれに限定されない。
(ステップS2)
基板10上に感光性樹脂を形成すると、次に、基板10上に塗工した樹脂(例えば、感光性樹脂)内に含まれる溶媒(溶剤)を除去する目的で加熱処理(プリベーク処理)する工程を行う。なお、本実施形態に係るマイクロ流路チップ1の製造方法において、プリベーク処理は必須の工程ではなく、適宜、樹脂の特性に合わせて最適な温度、時間で実施すればよい。例えば、基板10上の樹脂層が感光性樹脂である場合は、プリベーク温度、時間は感光性樹脂の特性に応じて、適宜、最適な条件で行う。
(ステップS3)
次に、基板10上に塗工した樹脂(例えば感光性樹脂)を露光する工程を行う。具体的には、基板10上に塗工した感光性樹脂には、露光により流路パターンが描画される。また本工程では、流路パターンと同様に、隔壁層11を形成するための感光性樹脂に対し、露光により蓋材支持部111を形成するための溝部(間隙パターン)が描画される。図1から図3に示すように、隔壁層11によって形成される複数の蓋材支持部111は、それぞれ間隙を設けて形成されている。つまり、蓋材支持部111は、隔壁層11を形成するための感光性樹脂に蓋材支持部111を画定するための間隙パターンを描画することで、図1から図3に示す形状(本例では、ストライプ状のパターン)に形成される。これにより、隔壁層11の一部として形成樹脂構造物である複数の蓋材支持部111を形成することができる。
露光は、例えば、紫外線を光源とした露光装置、レーザー描画装置により行うことができる。中でも、紫外線を光源としたプロキシミティ露光やコンタクト露光装置を用いた露光が好ましい。プロキシミティ露光装置の場合、マイクロ流路チップ1における流路パターン配列および間隙パターン配列を有するフォトマスクを介して露光が行われる。フォトマスクはクロム及び酸化クロムの二層構造を遮光膜とするフォトマスクなどを使用すればよい。
また上述のように、隔壁層11には、紫外光領域である190nm以上400nm以下の波長の光に対して感光性を有する感光性樹脂が用いられる。したがって、本工程(露光工程)では、基板10上に塗工される感光性樹脂を、190nm以上400nm以下の波長の光に感光させればよい。
なお、基板10上における樹脂層の形成に化学増幅型レジストなどを用いる場合には、露光により発生した酸の触媒反応を促すために、露光後にさらに加熱処理(ポストエクスポージャーベーク:PEB)を行うとよい。
(ステップS4)
次に、露光した感光性樹脂に対して現像を行い、流路パターンおよび蓋材支持部111を画定する間隙パターンを形成する工程を行う。
現像は、例えば、スプレー、ディップ、パドル形式などの現像装置にて感光性樹脂と現像液の反応により行われる。現像液は、例えば炭酸ナトリウム水溶液、水酸化テトラメチルアンモニウム、水酸化カリウム、有機溶剤などを用いることができる。現像液は感光性樹脂の特性に応じた最適なものを適宜使用すればよく、これらに限定されるものではない。また、濃度や現像処理時間は、感光性樹脂の特性に合わせて適宜最適な条件に調整することができる。
(ステップS5)
次に、洗浄により基板10上の樹脂層(感光性樹脂層)から現像に用いた現像液を完全に除去する工程を行う。洗浄は、例えば、スプレー、シャワー、浸漬形式などの洗浄装置によって行うことができる。洗浄水としては、例えば純水、イソプロピルアルコールなどから、現像処理に用いた現像液を除去するために最適な洗浄水を適宜使用すればよい。洗浄後はスピンドライヤ、IPAベーパドライヤ、自然乾燥などにより乾燥を行う。
(ステップS6)
次に、流路パターン、すなわち流路部13および蓋材支持部111を形成する隔壁層11に対して加熱処理(ポストベーク)する工程を行う。このポストベーク処理により、現像や洗浄時の残留水分を除去する。ポストベーク処理は、例えば、ホットプレート、オーブン、などを用いて行われる。上記ステップS5の洗浄工程での乾燥が不十分な場合、現像液や洗浄時の水分が隔壁層11に残留している場合がある。また、プリベーク処理において除去されなかった溶剤も隔壁層11に残留している場合がある。ポストベーク処理を行うことで、それらを除去することができる。
(ステップS7)
次に、ポストベーク処理後の隔壁層11にカバー層12を接合する工程を行う。本工程では、図1に示すように、隔壁層11の基板10とは反対側の面に熱圧着によりカバー層12を接合する。これにより、流路部13および蓋材支持部111を形成する隔壁層11がカバー層12に覆われ、図1に示すマイクロ流路チップ1が形成される。本工程には、隔壁層11とカバー層12とを隙間なく接合するように圧力を加える工程(加圧工程)、および隔壁層11とカバー層12とを加熱する工程(加熱工程)が含まれる。なお、「隙間なく接合」された隔壁層11とカバー層12とにおいて、マイクロ流路チップ1の通液時において液漏れが発生しない程度のごく微小の隙間は許容される。
上記熱圧着による方法では、例えば隔壁層11とカバー層12との接合面に表面改質処理を施した上で熱圧着を行う。表面改質処理の一例としては、例えばプラズマ処理がある。表面改質処理には、プラズマ処理の他に、コロナ放電処理、エキシマレーザー処理などがある。表面改質処理の種類は、隔壁層11の表面の反応性を向上させ、隔壁層11とカバー層12との親和性及び接着の相性に応じて、適宜最適な処理方法を選択すればよい。
部材同士(本例では、隔壁層11とカバー層12)を熱圧着で接合させる際には、例えば表面改質処理を行った後に熱プレス機や熱ロール機を用いた熱圧着を行うことが好ましい。本実施形態におけるマイクロ流路チップ1は、接着剤を用いずに熱圧着により、隔壁層11上にカバー層12を設ける。これにより、接着剤成分の流路内への溶出を防いで流路内の溶液の反応阻害を抑制することができる。
またカバー層12には、隔壁層11との接合前に、予め流体の入力部4、出力部5(図1参照)に相当する孔をおくことが望ましい。これにより、隔壁層11との接合後に孔を開ける場合よりも、ゴミやコンタミネーションの問題が生じることを抑制することができる。カバー層12の厚みは、貫通孔を設けることを鑑みると、10μm以上10mm以下の範囲内で形成することが好ましい。また、カバー層12の材料は透光性材料又は非透光性材料のいずれかを用いて形成するこができ、透光性材料として樹脂又はガラス等を用いることが好ましい。なお、本発明においてカバー層12の厚みおよび材料は上述の構成に限定されない。
このように、本実施形態に係るマイクロ流路チップ1の製造方法では、フォトリソグラフィーを用いて基板10上に流路部13を構成する隔壁層11を形成することができる。
例えば基板10上に塗工された感光性樹脂がポジ型レジストの場合、露光領域が現像時に溶解されて流路部13となり、未露光領域に残存する感光性樹脂が隔壁層11となる。また、基板10上に塗工された感光性樹脂がネガ型レジストの場合、露光領域に残存する感光性樹脂が隔壁層11となり、未露光領域が現像時に溶解されて流路部13となる。
このように、本実施形態に係るマイクロ流路チップ1の製造方法では、フォトリソグラフィーを用いて基板10上に流路部13を構成する隔壁層11を形成することができる。
例えば基板10上に塗工された感光性樹脂がポジ型レジストの場合、露光領域が現像時に溶解されて流路部13となり、未露光領域に残存する感光性樹脂が隔壁層11となる。また、基板10上に塗工された感光性樹脂がネガ型レジストの場合、露光領域に残存する感光性樹脂が隔壁層11となり、未露光領域が現像時に溶解されて流路部13となる。
以上説明したように、本実施形態に係るマイクロ流路チップ1の製造方法は、基板10上に、樹脂を塗工する工程(上記ステップS1)と、塗工した樹脂を露光する工程(上記ステップS3)と、露光した樹脂を現像及び洗浄し基板10上に隔壁層11を形成する工程(上記ステップS4および上記ステップS5)と、隔壁層11をポストベーク処理する工程(上記ステップS6)と、隔壁層11の基板10とは反対側の面にカバー層12を熱圧着により接合する工程(上記ステップS8)と、を含んでいる。さらに、隔壁層11を形成する現像工程(上記ステップS4)において基板10上の余分な樹脂(感光性樹脂層)を除去することにより、基板10上に流路部13およびカバー層12を支持する蓋材支持部111を形成し、且つ流路部13となる開口幅が2000μm以下の開口部(流路パターン)を隔壁層11に形成し、隔壁層11の開口面積率を20%以上60%以下とする。
これにより、隔壁層11における加圧への耐性低減および加熱時の熱膨張係数による隔壁層11およびカバー層12の変形が抑制されて接合安定性が向上し、隔壁層11とカバー層12との接合時の加圧および加熱によって部材(基板10、隔壁層11およびカバー層12)に破損および反りが発生することが抑制され、通液時の液漏れが発生しないマイクロ流路チップ1を作製することができる。
また、マイクロ流路チップ1の作製時には、カバー層12において平面視で流路部13に重ならない領域、すなわち流路部13と対向していない領域において、シールの貼付やインクジェットプリンタによる所定情報(例えばマイクロ流路チップの識別番号等)の印字が行われる場合がある。マイクロ流路チップ1では、上述のように接合安定性が向上されているため、隔壁層11に接合後のカバー層12へのシールの貼付や印字の際の加圧による部材(基板10、隔壁層11およびカバー層12)の破損や反りの発生も抑制することができる。
さらに、本実施形態に係るマイクロ流路チップ1の製造方法において、隔壁層11とカバー層12との接合工程(上記ステップS8)には、隔壁層11とカバー層12とを隙間なく接合するように圧力を加える工程、および隔壁層11とカバー層12とを加熱する工程が含まれる。上述のように、本実施形態に係るマイクロ流路チップ1の製造方法では、隔壁層11が流路部13およびカバー層12を支持する蓋材支持部111を形成し、流路部13は開口幅が2000μm以下であり、隔壁層11の開口面積率は20%以上60%以下である。このため、隔壁層11の加圧および加熱への耐性が向上し、マイクロ流路チップ1の作製時において複数部材(本例では、隔壁層11およびカバー層12)の接合工程における接合安定性(基板、壁部における加圧への耐性)が向上する。このため、接合時の加圧および加熱によって部材(基板10、隔壁層11およびカバー層12)に破損および反りが発生することを抑制し、通液時の液漏れが発生しないマイクロ流路チップを提供することができる。また、接合安定性の向上により、マイクロ流路チップ1の作製時には加圧および加熱による破損を防ぐために低圧力、低温での接合を行う必要がない。したがって、低圧力および低温での接合に起因して部材同士の接合が不十分となるような不具合(接合不良)の発生を抑制することができる。
(1.3)変形例
以下、本実施形態の変形例に係るマイクロ流路チップについて、図5から図7を用いて説明する。
図5は、本実施形態の変形例に係るマイクロ流路チップ101の一構成例を説明するための平面概略図である。
マイクロ流路チップ101は、マイクロ流路チップ1と同様に、基板10と、基板10上に複数の流路部13(流路部13a~13c)を有する流路群130を形成する隔壁層11と、カバー層12と、を備えている。
図5に示すように、マイクロ流路チップ101は、非流路領域92上において、隔壁層11によりカバー層12を支持する蓋材支持部112が形成されている点で、マイクロ流路チップ1と相違している。以下、蓋材支持部112について説明する。
図5に示すように、本例において蓋材支持部112は、平面視で円形状を有する樹脂構造体である。より具体的には、本例において非流路領域92上には、複数の蓋材支持部112が15個(=3列×5行)整列して配置されている。つまり、基板10の非流路領域92上において、複数の蓋材支持部112がドット状(点状)のパターン120を形成している。蓋材支持部112がドット状(点状)のパターン120を形成することにより、隔壁層11とカバー層12との接触面積の調整が容易であり、隔壁層11の開口面積率Arを適切に制御することができる。また、ドット状(点状)のパターン120は、設計により、複数の蓋材支持部112のそれぞれを非流路領域92内の任意の位置に配置可能である。このため、マイクロ流路チップ1の使用目的、隔壁層11およびカバー層12の材料等に合わせて、蓋材支持部112を柔軟に配置することができる。
蓋材支持部112は、マイクロ流路チップ1の蓋材支持部111と同様に、露光工程(上記ステップS3)、現像工程(上記ステップS4)においてドット状(点状)のパターン120に応じた間隙パターンを形成することで、隔壁層11の一部として形成することができる。
なお、本開示はこれに限られず、ドット状のパターン120を形成する複数の蓋材支持部112は、非流路領域92上において少なくとも2つ以上配置されていればよい。このとき蓋材支持部112は、非流路領域92において少なくとも基板10の角部に相当する領域(図5に示すドット状のパターン120のうち、3列目の上から1番目、5番目の蓋材支持部112の領域)に配置されていればよい。また、ドット状のパターン120を形成する複数の蓋材支持部112は、平面形状が円形でなくてもよい。例えば、蓋材支持部112の平面形状は、多角形状でもよい。つまり、蓋材支持部112は、隔壁層11の一部で形成された平面視で多角形状または円形状を有する樹脂構造体であり、非流路領域92上には、複数の当該樹脂構造体が点状に配置されてもよい。またこの場合、多角形状には、L字型を含んでもよい。蓋材支持部112の平面形状が、L字型の場合、L字の屈曲部分が非流路領域92の角部に沿うように配置してもよい。
また、図6に示すマイクロ流路チップ102のように、非流路領域92上において、隔壁層11によりカバー層12を支持する蓋材支持部113を形成してもよい。図6に示すように、本例において蓋材支持部113は、平面視で文字形状を有する樹脂構造体である。より具体的には、本例において非流路領域92上には、文字形状の複数の蓋材支持部113が9個連続して、線状に配置されている。つまり、基板10の非流路領域92上において、複数の蓋材支持部113が文字列パターン131を形成している。蓋材支持部113が文字列パターン131を形成することにより、隔壁層11とカバー層12との接触面積を確保しつつ、非流路領域92上においてマイクロ流路チップ1に係る種々の情報(例えば、識別番号や製品名等)を表示することができる。
蓋材支持部113は、マイクロ流路チップ1の蓋材支持部111と同様に、露光工程(上記ステップS3)、現像工程(上記ステップS4)において文字列パターン131に応じた間隙パターンを形成することで、隔壁層11の一部として形成することができる。
なお、本開示はこれに限られず、文字列パターン131を形成する複数の蓋材支持部113は、非流路領域92上において少なくとも2つ以上設けられていればよい。また、文字列パターン131を構成する蓋材支持部113は、アルファベット、数字、カタカナ、ひたがな、漢字等いずれの文字であってもよく、また記号を含んでもよい。また、蓋材支持部113は、文字形状に限らず、所定の模様(幾何学模様、木目模様、和柄等)を含んでもよいし、動物や人のキャラクター等、種々の形状等を含んでもよい。
また、図7に示すマイクロ流路チップ103のように、非流路領域92が複数形成されていてもよい。この場合、複数の非流路領域92の間に流路領域91を配置してもよい。図7では、非流路領域92を2つの領域(非流路領域92a,92b)に分割し、非流路領域92a,92bの間に流路領域91を設けている。本例では、基板10はマイクロ流路チップ1,101,102と同様に四角形状であり、2つの非流路領域92は、基板10の4つの角部を含んで形成されている。
また、マイクロ流路チップ103における蓋材支持部114は、非流路領域92a,92bにそれぞれ含まれる基板の4つの角部に形成されている。より具体的には、蓋材支持部114は、図5に示す蓋材支持部112と同様に、平面形状が円形形状であって、4つの角部に点状に配置されている。つまり、基板10の非流路領域92上において、複数の蓋材支持部114が局所点在パターン140を形成している。
なお、本開示はこれに限られず、蓋材支持部114は非流路領域92a,92bに含まれる基板10の4つの角部のうち、2以上の角部に形成されていればよい。これにより、マイクロ流路チップ103では、接合安定性が低減し易い基板10の角部上に局所的に蓋材支持部114を配置して、隔壁層11とカバー層12との接合面積を確保し、接合安定性を向上させることができる。また、蓋材支持部114を局所点在パターン140で配置することにより、蓋材支持部114を多数配置することなく、効果的に接合安定性を向上させることができる。
また本開示はこれに限られず、蓋材支持部114は、蓋材支持部112と同様に、L字型を含めた多角形状でもよい。また、蓋材支持部114は文字形状でもよい。
また、図8に示すマイクロ流路チップ104のように、非流路領域92が流路領域91を囲むように設けられていてもよい。つまり、非流路領域92が基板10の表面10aにおける周縁部に形成され、流路領域91が表面10aの中央領域に形成されていてもよい。
またマイクロ流路チップ104における蓋材支持部115は、非流路領域92において基板10の表面10aの内周を囲むように配置されている。より具体的には、蓋材支持部115は、図1に示す蓋材支持部111と同様に、平面形状が長方形状であって、基板10の表面10aの四辺に沿って配置されている。つまり、基板10の非流路領域92上において、複数の蓋材支持部115が枠状パターン150を形成している。これにより、マイクロ流路チップ104では、接合不良が発生し易い基板10の周縁部に蓋材支持部115を配置して、隔壁層11とカバー層12との接合面積を確保し、接合安定性を向上させることができる。
2.第二実施形態
(2.1)マイクロ流路チップの概要
以下、本開示の第二実施形態に係るマイクロ流路チップ2について、図9および図10を用いて説明する。図9は、本開示の第二実施形態に係るマイクロ流路チップ2の一構成例を説明する平面概略図であり、図10は、本開示の第二実施形態に係るマイクロ流路チップ2の一構成例を説明するための断面図である。
図9および図10に示すように、マイクロ流路チップ2は、基板10と、基板10上に配置された密着層15と、基板10上に複数の流路部13a~13cおよび蓋材支持部111を有する流路群130を形成する隔壁層11と、カバー層12と、を備えている。具体的には、マイクロ流路チップ2は、隔壁層11と基板10との間に密着層15を備えている。密着層15を備える点で、マイクロ流路チップ2は、上記第一実施形態に係るマイクロ流路チップ1と相違する。
(2.2)密着層の構成
以下、密着層15について説明する。なお、密着層15以外の各構成(基板10、隔壁層11、カバー層12及び流路部13)については、マイクロ流路チップ1と同様の構成であるため、同一の符号を付し、説明を省略する。
マイクロ流路チップ2には、基板10と樹脂層(例えば感光性樹脂層)、すなわち隔壁層11との密着性を向上する目的で、基板10上に疎水化表面処理(HMDS処理)を施したり、薄膜の樹脂をコートしてもよい。特に基板10にガラスを用いる場合などは、図5に示すように基板10と隔壁層11(感光性樹脂層)との間に薄膜による密着層15を設けてもよい。この場合、流路部13を流れる流体(例えば液体)は、基板10ではなく密着層15と接することになる。このため、密着層15は、流路部13に導入される流体への耐性を有していればよい。基板10上に密着層15を設けることで、感光性樹脂による流路パターンの解像性向上などへも寄与することができる。
上述のように、密着層15は基板10上に形成される。このため図9、図10に示すように、本実施形態に係るマイクロ流路チップ2においては、流路部13の底部は密着層15で形成され、流路部13において、流路部13の底部を構成する密着層15(具体的には、密着層15の表面15a)が露出している。
<実施例>
以下に本開示の実施例について具体的に説明するが、本開示はこれに限定されるものではない。
[マイクロ流路チップの作製]
<実施例1>
本発明者は、図1および図2に示した通り、基板上に隔壁層を形成し、隔壁層とカバー層とを接合してマイクロ流路チップを製造した。
実施例1に係るマイクロ流路チップ1の製造方法について説明する。まず基板としてガラスを用いた。
ガラス基板上へ透明体の感光性樹脂を塗工して、感光性樹脂層を形成した。感光性樹脂にアクリル系感光性樹脂を使用した。感光性樹脂は、スピンコーターにて回転数1100rpm、30秒でガラス基板上に塗工した。膜厚は50μmになるように回転数、時間を調整した。次に、ホットプレート上にて感光性樹脂内に含まれる残留溶媒を除去する目的で加熱処理(プリベーク)を行った。プリベークは、温度90℃で20分実施した。
次に、ガラス基板上の感光性樹脂層を露光して流路パターンおよび蓋材支持部を形成するための間隙パターンを描画した。具体的には、マイクロ流路のパターン配列を有するフォトマスクおよび蓋材支持部の間隙パターン配列を有するフォトマスクを介して、感光性樹脂へパターン露光した。フォトマスクはクロム及び酸化クロムの二層構造を遮光膜とするフォトマスクを使用した。また、露光にはプロキシミティ露光装置を用いた。露光装置は高圧水銀灯を光源とし、i線フィルタのカットフィルタを入れて露光した。露光量は170mJ/cmとした。
次に、露光した感光性樹脂層に対して現像を行い、流路パターンおよび蓋材支持部を形成するための間隙パターンを形成する隔壁層とした。具体的には、アルカリ現像液(TMAH2.38%)を用いて感光性樹脂層を60秒間現像することにより、未露光部分を溶解し、流路構造をパターニングした。
続いて、超純水によるシャワー洗浄を行い、基板上の感光性樹脂層から現像液を除去し、スピンドライヤにて乾燥を行った。
次に、流路パターンおよび蓋材支持部を形成するための間隙パターンを形成するマイクロ流路チップ用部材(基板および隔壁層)をオーブンで100℃、10分、加熱処理(ポストベーク)した。
上記現像工程では、ポストベーク(残存水分の除去)後の隔壁層において、流路部の開口幅(流路幅)が10μm、流路長が500mmとなり、隔壁層の開口面積率Arが20%となるように流路構造および蓋材支持部を形成(パターンニング)した。蓋材支持部は、図7に示すように、平面形状が円形状であり、基板10上の4つの角部にそれぞれ配置する局所点在パターン(図7参照)として形成した。各蓋材支持部の基板と反対側の面(円形状の面)は直径を500μmとした。
次に、流路部を形成した隔壁層と別途作製したカバー層との接合面に対して表面改質処理を施した上で、60℃に加熱しながら隔壁層とカバー層とを熱圧着により接合した。カバー層は予め流路の入出口の孔を開けた厚さが5mmのポリカーボネートを使用した。これにより、本実施例によるマイクロ流路チップを得た。
<実施例2>
ガラス基板上に形成した隔壁層に、現像により、流路部の開口幅が500μmとなるように流路構造を形成した。それ以外は実施例1と同様にして、実施例2に係るマイクロ流路チップを得た。
<実施例3>
ガラス基板上に形成した隔壁層に、現像により、流路部の開口幅が2000μmとなるように流路構造を形成した。それ以外は実施例1と同様にして、実施例3に係るマイクロ流路チップを得た。
<実施例4>
蓋材支持部は、平面形状が長方形状であり、基板10上の4辺に配置する枠状のパターン(図8参照)として形成した。各蓋材支持部のサイズ(基板と反対側の面の面積)は、25平方ミリメートル(0.5mm(500μm)×50mm=25mm)とした。それ以外は実施例1と同様にして、実施例4に係るマイクロ流路チップを得た。
<実施例5>
ガラス基板上に形成した隔壁層に、現像により、流路部の開口幅が500μmとなるように流路構造を形成した。それ以外は実施例4と同様にして、実施例5に係るマイクロ流路チップを得た。
<実施例6>
ガラス基板上に形成した隔壁層に、現像により、流路部の開口幅が2000μmとなるように流路構造を形成した。それ以外は実施例4と同様にして、実施例6に係るマイクロ流路チップを得た。
<実施例7>
ガラス基板上に形成した隔壁層に、現像により、隔壁層の開口面積率Arが60%となるように流路構造および蓋材支持部を形成した。それ以外は実施例1と同様にして、実施例7に係るマイクロ流路チップを得た。
<実施例8>
ガラス基板上に形成した隔壁層に、現像により、流路部の開口幅が500μmとなるように流路構造を形成した。それ以外は実施例7と同様にして、実施例8に係るマイクロ流路チップを得た。
<実施例9>
ガラス基板上に形成した隔壁層に、現像により、流路部の開口幅が2000μmとなるように流路構造を形成した。それ以外は実施例7と同様にして、実施例9に係るマイクロ流路チップを得た。
<実施例10>
ガラス基板上に形成した隔壁層に、現像により、隔壁層の開口面積率Arが60%となるように流路構造および蓋材支持部を形成した。それ以外は実施例4と同様にして、実施例10に係るマイクロ流路チップを得た。
<実施例11>
ガラス基板上に形成した隔壁層に、現像により、流路部の開口幅が500μmとなるように流路構造を形成した。それ以外は実施例10と同様にして、実施例11に係るマイクロ流路チップを得た。
<実施例12>
ガラス基板上に形成した隔壁層に、現像により、流路部の開口幅が2000μmとなるように流路構造を形成した。それ以外は実施例10と同様にして、実施例12に係るマイクロ流路チップを得た。
<比較例1>
ガラス基板上に形成した隔壁層に、現像により、隔壁層の開口面積率Arが10%となるように流路構造および蓋材支持部を形成した。それ以外は実施例1と同様にして、比較例1に係るマイクロ流路チップを得た。
<比較例2>
ガラス基板上に形成した隔壁層に、現像により、流路部の開口幅が3000μmとなるように流路構造を形成した。それ以外は実施例1と同様にして、比較例2に係るマイクロ流路チップを得た。
<比較例3>
ガラス基板上に形成した隔壁層に、現像により、隔壁層の開口面積率Arが80%となり、流路部の開口幅が500μmとなるように流路構造および蓋材支持部を形成した。それ以外は実施例1と同様にして、比較例3に係るマイクロ流路チップを得た。
<比較例4>
ガラス基板上に形成した隔壁層に、現像により、隔壁層の開口面積率Arが20%となり、流路部の開口幅が500μmとなるように流路構造を形成し、蓋材支持部を形成しなかった。それ以外は実施例1と同様にして、比較例4に係るマイクロ流路チップを得た。
[評価方法]
実施例1から実施例12および比較例1から比較例4に記載のマイクロ流路チップにおいて、カバー層の接合後に以下の方法により、接合時の破損および反りの発生有無、液漏れの有無の評価を行った。
(破損および反りの有無)
実施例1から実施例12および比較例1から比較例4のマイクロ流路チップに対し、目視で破損の有無を確認した。目視で破損および反りがいずれも確認されない場合を「〇(合格)」、目視で破損又は反りの少なくとも一方が確認された場合を「×(不合格)」とした。
(液漏れの有無)
実施例1から実施例12および比較例1から比較例4のマイクロ流路チップに対し、着色した反応溶液10μLの量をピペットにて採取し、カバー層の入力口流路により導入し、その送液の様子を顕微鏡にて観察した。
観察結果に基づいて、以下の基準により「〇」、「×」の2段階でマイクロ流路チップの液漏れ状態について評価した。
<評価基準>
〇:隔壁層とカバー層との接合箇所において流路内からの液漏れが観察されなかった
×:隔壁層とカバー層との接合箇所において流路内からの液漏れが観察された
なお、マイクロ流路チップの破損により通液が実施できないものは「-」で表記した。
実施例および比較例の評価結果を、マイクロ流路チップの隔壁層における開口面積率、流路の開口幅、流路長、蓋材支持部の構成とともに表1に示す。
Figure 2024002750000002
実施例1から実施例12のマイクロ流路チップは、接合後に破損および反りがいずれも生じておらず、通液後の液漏れがないことを確認した。一方、比較例1から比較例4のマイクロ流路チップは、接合後に破損または反りが生じており、このうち比較例1のマイクロ流路チップはさらに通液後に液漏れを確認した。また、比較例2から比較例4のマイクロ流路チップは、破損が大きく通液が実施できなかった。
以上の結果から、本実施例のマイクロ流路チップは、隔壁層が流路部および蓋材支持部を形成し、隔壁層の開口面積率および隔壁層に形成された開口部の寸法(例えば、流路の開口幅、蓋材支持部間の間隙)が特定条件を満たすように制御することにより、複数部材(ここでは、壁部および蓋材)を接合する際の接合安定性が向上して、隔壁層とカバー層とを接合する際の圧力による部材の破損および反りの発生が抑制され、通液時に液漏れが発生しないことが確認できた。
具体的には、実施例1から実施例12に係るマイクロ流路チップのように、隔壁層において基板上に流路部およびカバー層を支持する蓋材支持部を形成し、流路部を開口幅が2000μm以下の開口部として形成し、隔壁層の開口面積率が20%以上60%以下であることにより、隔壁層とカバー層とを熱圧着によって接合する際の圧力および加熱によって部材に破損および反りが発生することを抑制し、通液時の液漏れが発生しないことが確認された。
また、例えば、本開示は以下のような構成を取ることができる。
(1)
基板と、
前記基板上に設けられた流路と、
前記流路の蓋となる蓋材と、
樹脂材料で構成され、前記基板と前記蓋材との間に配置されて前記基板上に流路および前記蓋材を支持する蓋材支持部を形成する隔壁部と、
を備え、
前記流路は、前記隔壁部において開口幅が2000μm以下の開口部として形成され、
前記隔壁部は、開口面積率が20%以上60%以下であり、
前記隔壁部と前記蓋材とが熱圧着により接合されており、
前記蓋材は、前記隔壁部の前記基板とは反対側の面と接合している
ことを特徴とするマイクロ流路チップ。
(2)
前記基板は、前記蓋材と対向する面において前記流路が設けられる流路領域と、前記流路が設けられない非流路領域とを有し、
前記流路領域上には、前記隔壁部により前記流路が形成され、
前記非流路領域上には、前記蓋材支持部として前記隔壁部の一部による樹脂構造体が一つ以上形成される
ことを特徴とする上記(1)に記載のマイクロ流路チップ。
(3)
前記隔壁部は、前記流路領域上と前記非流路領域上とで厚みが変化しない
ことを特徴とする上記(2)に記載のマイクロ流路チップ。
(4)
前記蓋材支持部は、前記隔壁部の一部で形成された平面視で長方形状を有する前記樹脂構造体であり、
前記非流路領域上には、複数の前記蓋材支持部が前記長方形の長辺と平行に配置される
ことを特徴とする上記(2)又は(3)に記載のマイクロ流路チップ。
(5)
前記蓋材支持部は、前記隔壁部の一部で形成された平面視で多角形形状または円形状を有する前記樹脂構造体であり、
前記非流路領域上には、複数の前記樹脂構造体が点状に配置される
ことを特徴とする上記(4)に記載のマイクロ流路チップ。
(6)
前記基板は、四角形状であり、
前記非流路領域には、前記基板の4つの角部が含まれ、
前記蓋材支持部は、前記非流路領域に含まれる前記基板の4つの角部のうち2以上の角部に形成されている
ことを特徴とする上記(2)から(5)のいずれか1項に記載のマイクロ流路チップ。
(7)
前記隔壁部の一部である前記蓋材支持部は、前記基板とは反対側の面において前記蓋材と面接触している
ことを特徴とする上記(1)から(6)のいずれか1項に記載のマイクロ流路チップ。
(8)
前記隔壁部は、複数の前記流路を有する流路群を前記基板上に形成する
ことを特徴とする上記(1)から(7)のいずれか1項に記載のマイクロ流路チップ。
(9)
前記基板と、前記隔壁部および前記蓋材支持部との間に密着層が設けられている
ことを特徴とする上記(1)から(8)のいずれか1項に記載のマイクロ流路チップ。
(10)
前記隔壁部を形成する樹脂材料は、紫外光領域である190nm以上400nm以下の波長の光に対して感光性を有する感光性樹脂である、
ことを特徴とする上記(1)から(9)のいずれか1項に記載のマイクロ流路チップ。
(11)
基板上に、樹脂を塗工する工程と、
塗工した前記樹脂を露光する工程と、
露光した前記樹脂を現像及び洗浄し、前記基板上に隔壁部を形成する工程と、
前記隔壁部をポストベーク処理する工程と、
前記隔壁部の前記基板とは反対側の面に蓋材を熱圧着により接合する工程と、を含み、
前記流路を形成する工程において、前記現像により前記基板上の余分な樹脂を除去することにより、前記隔壁部が前記基板上に流路および前記蓋材を支持する蓋材支持部を形成し、且つ前記流路として開口幅が2000μm以下の開口部を前記隔壁部に形成し、前記隔壁部の開口面積率を20%以上60%以下とする
ことを特徴とするマイクロ流路チップの製造方法。
(12)
前記隔壁部の前記基板とは反対側の面に前記蓋材を接合する工程には、
前記隔壁部と前記蓋材とを隙間なく接合するように圧力を加える工程、および前記隔壁部と前記蓋材とを加熱する工程が含まれる
ことを特徴とする上記(11)に記載のマイクロ流路チップの製造方法。
(13)
前記樹脂を露光する工程において、感光性樹脂を、紫外光領域のうち190nm以上400nm以下の波長の光に感光させる
ことを特徴とする上記(11)また(12)に記載のマイクロ流路チップの製造方法。
本開示は、研究用途、診断用途、検査、分析、培養などを目的としたマイクロ流路チップにおいて、複雑な製造工程が必要なく上蓋を形成できるマイクロ流路チップ及びその製造方法として好適に使用することができる。
1、2、101、102、103 … マイクロ流路チップ
4、40 … 入力部
5、50 … 出力部
10 … 基板
11 … 隔壁層
12 … カバー層
13、13a、13b、13c … 流路部
15 … 密着層
91 … 流路領域
92 … 非流路領域
111、112、113、114、115 … 蓋材支持部
130 … 流路群

Claims (13)

  1. 基板と、
    前記基板上に設けられた流路と、
    前記流路の蓋となる蓋材と、
    樹脂材料で構成され、前記基板と前記蓋材との間に配置されて前記基板上に流路および前記蓋材を支持する蓋材支持部を形成する隔壁部と、
    を備え、
    前記流路は、前記隔壁部において開口幅が2000μm以下の開口部として形成され、
    前記隔壁部は、開口面積率が20%以上60%以下であり、
    前記隔壁部と前記蓋材とが熱圧着により接合されており、
    前記蓋材は、前記隔壁部の前記基板とは反対側の面と接合している
    ことを特徴とするマイクロ流路チップ。
  2. 前記基板は、前記蓋材と対向する面において前記流路が設けられる流路領域と、前記流路が設けられない非流路領域とを有し、
    前記流路領域上には、前記隔壁部により前記流路が形成され、
    前記非流路領域上には、前記蓋材支持部として前記隔壁部の一部による樹脂構造体が一つ以上形成される
    ことを特徴とする請求項1に記載のマイクロ流路チップ。
  3. 前記隔壁部は、前記流路領域上と前記非流路領域上とで厚みが変化しない
    ことを特徴とする請求項2に記載のマイクロ流路チップ。
  4. 前記隔壁部の一部である前記蓋材支持部は、前記基板とは反対側の面において前記蓋材と面接触している
    ことを特徴とする請求項3に記載のマイクロ流路チップ。
  5. 前記蓋材支持部は、前記隔壁部の一部で形成された平面視で長方形状を有する前記樹脂構造体であり、
    前記非流路領域上には、複数の前記蓋材支持部が前記長方形の長辺と平行に配置される
    ことを特徴とする請求項4に記載のマイクロ流路チップ。
  6. 前記蓋材支持部は、前記隔壁部の一部で形成された平面視で多角形形状または円形状を有する前記樹脂構造体であり、
    前記非流路領域上には、複数の前記樹脂構造体が点状に配置される
    ことを特徴とする請求項4に記載のマイクロ流路チップ。
  7. 前記基板は、四角形状であり、
    前記非流路領域には、前記基板の4つの角部が含まれ、
    前記蓋材支持部は、前記非流路領域に含まれる前記基板の4つの角部のうち2以上の角部に形成されている
    ことを特徴とする請求項4に記載のマイクロ流路チップ。
  8. 前記隔壁部は、複数の前記流路を有する流路群を前記基板上に形成する
    ことを特徴とする請求項1に記載のマイクロ流路チップ。
  9. 前記基板と、前記隔壁部および前記蓋材支持部との間に密着層が設けられている
    ことを特徴とする請求項1に記載のマイクロ流路チップ。
  10. 前記隔壁部を形成する樹脂材料は、紫外光領域である190nm以上400nm以下の波長の光に対して感光性を有する感光性樹脂である、
    ことを特徴とする請求項1から請求項9のいずれか1項に記載のマイクロ流路チップ。
  11. 基板上に、樹脂を塗工する工程と、
    塗工した前記樹脂を露光する工程と、
    露光した前記樹脂を現像及び洗浄し、前記基板上に隔壁部を形成する工程と、
    前記隔壁部をポストベーク処理する工程と、
    前記隔壁部の前記基板とは反対側の面に蓋材を熱圧着により接合する工程と、を含み、
    前記流路を形成する工程において、前記現像により前記基板上の余分な樹脂を除去することにより、前記隔壁部が前記基板上に流路および前記蓋材を支持する蓋材支持部を形成し、且つ前記流路として開口幅が2000μm以下の開口部を前記隔壁部に形成し、前記隔壁部の開口面積率を20%以上60%以下とする
    ことを特徴とするマイクロ流路チップの製造方法。
  12. 前記隔壁部の前記基板とは反対側の面に前記蓋材を接合する工程には、
    前記隔壁部と前記蓋材とを隙間なく接合するように圧力を加える工程、および前記隔壁部と前記蓋材とを加熱する工程が含まれる
    ことを特徴とする請求項11に記載のマイクロ流路チップの製造方法。
  13. 前記樹脂を露光する工程において、感光性樹脂を、紫外光領域のうち190nm以上400nm以下の波長の光に感光させる
    ことを特徴とする請求項11または請求項12に記載のマイクロ流路チップの製造方法。
JP2022102143A 2022-06-24 2022-06-24 マイクロ流路チップ及びマイクロ流路チップの製造方法 Pending JP2024002750A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022102143A JP2024002750A (ja) 2022-06-24 2022-06-24 マイクロ流路チップ及びマイクロ流路チップの製造方法
PCT/JP2023/018667 WO2023248660A1 (ja) 2022-06-24 2023-05-18 マイクロ流路チップ、マイクロ流路基材、マイクロ流路チップの製造方法及びマイクロ流路基材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022102143A JP2024002750A (ja) 2022-06-24 2022-06-24 マイクロ流路チップ及びマイクロ流路チップの製造方法

Publications (1)

Publication Number Publication Date
JP2024002750A true JP2024002750A (ja) 2024-01-11

Family

ID=89473062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022102143A Pending JP2024002750A (ja) 2022-06-24 2022-06-24 マイクロ流路チップ及びマイクロ流路チップの製造方法

Country Status (1)

Country Link
JP (1) JP2024002750A (ja)

Similar Documents

Publication Publication Date Title
US7204139B2 (en) Analytical chip, analytical-chip unit, and analysis apparatus
US7670772B2 (en) Microfluidic chip for multiple bioassay and method of manufacturing the same
Itoga et al. Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns
CN101506728B (zh) 密封的室结构
JP3990307B2 (ja) 樹脂成形品の製造方法、金属構造体の製造方法、チップ
JPWO2007094254A1 (ja) マイクロ流路チップ及びその製造方法
EP1431018B1 (en) Method of producing resin molded product
WO2023248660A1 (ja) マイクロ流路チップ、マイクロ流路基材、マイクロ流路チップの製造方法及びマイクロ流路基材の製造方法
JP2024002750A (ja) マイクロ流路チップ及びマイクロ流路チップの製造方法
US7682541B2 (en) Manufacturing method of a microchemical chip made of a resin
JP2013156070A (ja) 検出容器およびそれを使用する試料検出方法
JP2024002751A (ja) マイクロ流路基材及びマイクロ流路基材の製造方法
JP2024002749A (ja) マイクロ流路チップ及びマイクロ流路チップの製造方法
US20190283284A1 (en) Method of manufacturing microchannel
WO2023008398A1 (ja) マイクロ流路チップ及びマイクロ流路チップの製造方法
JP7310874B2 (ja) マイクロ流路チップ及びマイクロ流路チップの製造方法
JP7310875B2 (ja) マイクロ流路チップ及びマイクロ流路チップの製造方法
JP2023018440A (ja) マイクロ流路チップ及びマイクロ流路チップの製造方法
WO2023127757A1 (ja) マイクロ流路チップ及びマイクロ流路チップの製造方法
JP2023018439A (ja) マイクロ流路チップ及びマイクロ流路チップの製造方法
WO2023199631A1 (ja) マイクロ流路チップおよびマイクロ流路チップの製造方法
JP2023018620A (ja) マイクロ流路チップ及びマイクロ流路チップの製造方法
JP2024077296A (ja) マイクロ流路チップ及びマイクロ流路チップの製造方法
JP3876674B2 (ja) 液体混合方法および液体開放弁
Temiz et al. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Patterning Capture Antibodies Using Microcontact Printing and Dry-Film Resists