JP2023543025A - 複数の光波長を放出するバンドエッジ発光強化有機発光ダイオードベースのデバイス - Google Patents

複数の光波長を放出するバンドエッジ発光強化有機発光ダイオードベースのデバイス Download PDF

Info

Publication number
JP2023543025A
JP2023543025A JP2023519207A JP2023519207A JP2023543025A JP 2023543025 A JP2023543025 A JP 2023543025A JP 2023519207 A JP2023519207 A JP 2023519207A JP 2023519207 A JP2023519207 A JP 2023519207A JP 2023543025 A JP2023543025 A JP 2023543025A
Authority
JP
Japan
Prior art keywords
photonic crystal
light emitting
layer
refractive index
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023519207A
Other languages
English (en)
Inventor
エヌ. マグノ,ジョン
シー. コッホ,ジーン
Original Assignee
レッド バンク テクノロジーズ リミテッド ライアビリティ カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レッド バンク テクノロジーズ リミテッド ライアビリティ カンパニー filed Critical レッド バンク テクノロジーズ リミテッド ライアビリティ カンパニー
Publication of JP2023543025A publication Critical patent/JP2023543025A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

有機発光ダイオードを含み、複数の波長の光を同時に放出することができる、発光フォトニック結晶、及びその製造方法が開示される。開示された発光フォトニック結晶は、ストップバンドの2つのエッジの波長で光を放出する。開示されたデバイスのストップバンド幅の調整方法も開示される。

Description

発明者:John N. Magno及びGene C. Koch
優先権出願の相互参照
本出願は、2020年9月25日に出願された米国仮特許出願第63/083,450号(その全体が参照により本明細書に組み込まれる)、及び2020年9月25日に出願された米国仮特許出願第63/083,496号(その全体が参照により本明細書に組み込まれる)の、より早い出願日の米国特許法第119条(e)下の利益を主張する。
米国特許第11,139,456号として2021年10月5日に発行される予定の、2017年12月20日に出願された米国特許出願第15/738,214号は、単一の一次元フォトニック結晶内に、4分の1波の光学的厚さの単一のゾーン又は層として有機発光ダイオード(OLED)が埋設されている、(BE-OLEDと呼ばれる)発光フォトニック結晶デバイスを開示している。通常、フォトニック結晶の低屈折率ゾーン/高屈折率ゾーン交互構造の、低屈折率ゾーンのうち1つは、OLED構造を含む。BE-OLEDデバイスの機能は、フォトニック結晶内の「ストップバンド」(バンドギャップとも称される)の形成に依存する。ストップバンドは、光の伝播に対する波動方程式の解が存在しない、光波長の範囲である。すなわち、これらの波長については、フォトニック結晶に埋設された発光分子は、フォトニック結晶構造内の屈折率交互の方向に、光を放出することができない。フォトニック結晶では、ストップバンドの中心波長は、フォトニック結晶内の高屈折率ゾーン及び低屈折率ゾーンの各々の光学的厚さの4倍である値を有する。
以下の詳細な説明は、以下の図面を参照する。
図2のような2つのフォトニック結晶構造の、コンピュータモデル化された反射スペクトルを示す。 本開示によるバンドエッジ発光の実施形態を近似する、フォトニック結晶構造と、バンドエッジ発光の実施形態を近似する、フォトニック結晶構造とを示す。 3つのフォトニック結晶構造の、コンピュータモデル化された反射スペクトルを示す。 3つのフォトニック結晶構造の、コンピュータモデル化された反射スペクトルを示す。 本開示によるバンドエッジ発光の実施形態を近似する、2つのフォトニック結晶構造を示す。 2つのフォトニック結晶構造の、コンピュータモデル化された反射スペクトルを示す。 本発明のバンドエッジ発光の実施形態に近似する、フォトニック結晶構造を示す。 2つのフォトニック結晶構造の、コンピュータモデル化された反射スペクトルを示す。 本発明のバンドエッジ発光の実施形態を近似する、フォトニック結晶構造を示す。 2つのフォトニック結晶構造の、コンピュータモデル化された反射スペクトルを示す。 本開示による一実施形態の、層の積み重ねの一部分の屈折率プロファイルを示す。 本開示による、様々な実施形態の態様を例示する。 本開示による、様々な実施形態の態様を例示する。 2つのフォトニック結晶構造の、コンピュータモデル化された反射スペクトルを示す。 本開示によるバンドエッジ発光デバイスの実施形態を近似し、ストップバンド分光幅を調整する2つの異なる方法を使用する、フォトニック結晶の積み重ねの、コンピュータモデル化された反射スペクトルを示す。
BE-OLEDデバイスの発光機能は、これらのデバイス内で、ストップバンドのエッジ(一般に、短波長エッジ)が、OLED構造内の電界発光材料の発光スペクトルバンドと重なるという事実に依存する。フォトニック結晶と関連付けられたストップバンドのバンドエッジ波長の状態密度が、空気中又は真空中の同じ波長の状態密度よりもかなり高いことは、フォトニック結晶の特性である。その結果は、電界発光材料の発光が、他の媒体での発光よりも大幅に強化されるということである。加えて、バンドエッジ状態又はバンドエッジモードで放出された光のかなりの部分が、バンドエッジ波長内の高光束で光輝性分子を照らす、フォトニック結晶構造内に保持される。この保持された強い光は、電気励起のために励起状態にある電界発光材料の他の分子からの、追加の発光を誘導する。バンドエッジ伝搬モードに放出される光は、BE-OLEDの表面の法線の周りの狭いバンド状の角度内で発光せざるを得ないので、かつ、誘導された発光は、誘導光放射の伝播モードを複製するので、光は、BE-OLEDによって、狭い円錐状の角度内で放出される。BEOLEDの表面の法線の周りの狭い円錐状の角度内の発光は、BE-OLEDからの光のほぼ完全なアウトカップリングをもたらし、従来のOLEDよりも、はるかにエネルギー効率が高くなる。
BE-OLEDの高エネルギー効率及びコリメート発光は、多くの用途に非常に望ましい。加えて、これらのデバイスの狭いスペクトル発光バンドはまた、発光に高飽和色が必要なときに、非常に望ましい場合がある。しかしながら、狭いスペクトル発光バンドは、白色光を必要とする用途でBE-OLEDを使用することを意図する場合、問題である。この問題に対するいくつかの解決策は、既に検討されている。1つは、同じ基板上に互いに隣接し、異なる色を発光する、複数のBE-OLEDを据えることである。このアプローチの問題は、その製造の複雑さ、及び、発光角の全範囲にわたって均一な光色度を生成するために、色を一緒に混合するランプ光学素子を製造することが非常に困難なことである。米国特許出願公開第2018/0190929号は、(例えば、青色又は紫色の)より短波長の光を放出するBE-OLEDの発光面に発光材料がコーティングされた、BE-OLEDベースのデバイスを記載している。BE-OLEDからの光は、その材料から光輝性発光を生成する、光輝性材料によって吸収される。使用される光輝性材料は、白色光を放出することができる。この場合、発光が広い円錐状の角度にわたっており、このことは、いくつかの用途では望ましくない場合がある。加えて、BE-OLEDからのより短波長の光のいくつかが白色光輝性最上層を通して漏れると、発光角に対する発光の均一性が損なわれる可能性がある。BE-OLED発光の漏れをなくすために、十分な厚さの白色光輝性材料がコーティングされると、光輝性材料内の光吸収により、デバイスのエネルギー効率が損なわれる可能性がある。
複数の波長(例えば、白色光)で、狭い円錐状の角度内で光を放出し、かつ、放出する角度の範囲にわたって均一な色度を有する、BE-OLEDベースのデバイスが必要である。
米国特許出願第2018/0183007号では、バンドエッジ発光強化有機発光ダイオード(BE-OLED)は、好ましくは、デバイス内の他の材料層と同じ光学的厚さλ/4を有する有機層(例えば、本文献の図7の層710)で製造され得ることが開示されている(式中、λは、BE-OLEDの周期構造によって作成された、ストップバンドの中心波長である)。図2に描かれたデバイス250は、この種のデバイスである。
BE-OLEDデバイスは、有機層を有し得、同様に、3λ/4の層厚を有し得ることが判明している。このようなより厚い有機層をデバイスに組み込む可能性がある理由は、層710内の有機副層の厚さが、OLEDの性能を最適化する際の電子的な考慮事項によって、主に決定されることである。比較的薄い有機層を有する光学的制約は、最適なOLED性能に必要な副層厚に抵触する可能性があるため、青色発光デバイスでは上記は特に重要である。
層214及び層216は、層220及び層218と同様に、(光学的厚さの観点から)互いに同じ空間関係を有することが分かる。これらの層はまた、互いに同じ位相関係を有する。このような理由から、デバイス200の光学積層体は、デバイス250の光学積層体と同様の様式で、2つのバンドエッジを有するストップバンドを生成する、単一のフォトニック結晶として機能する。同様の理由から、3λ/4だけでなく、5λ/4及び7λ/4の厚さを有する層を含む光学積層体を有するデバイスもまた、単一のフォトニック結晶として機能する。
意外にも、我々は、より大きな光学的厚さの層を組み込むことが、BE-OLED構造におけるより薄い層、光学的厚さの層よりも、大きな性能上の利点を有することを学んだ。厚さ3λ/4又は5λ/4の層を追加することにより、BE-OLEDで作成されたストップバンドの幅が狭くなる。より厚い層を使用することにより、BE-OLEDのストップバンドを十分に縮小することによって、ストップバンドの両端で、2波長の光を放出するために使用することができる。
図1は、図2に示された構造を有するBE-OLED200を近似する、コンピュータシミュレーションした光反射スペクトル100を示す。光学的厚さが382.5nm(物理的厚さ=213nm)で、屈折率が1.77の有機層202は、BE-OLEDフォトニック結晶の積み重ねの510nmでの中心波長又は設計波長と比較して、3λ/4の光学的厚さを有する。本デバイスの反射スペクトル(実線)は、λ/4の有機層光学的厚さを有する同等のデバイス250(米国特許出願第2018/0183007号からの従来技術)の反射スペクトル(破線)に対してプロットされている。ストップバンドは、幅が約167nmから幅が132nmに狭くなっている。したがって、ここに示される実施形態では、約438nm及び610nmでピークに達するストップバンドのサイドバンドは、より薄い有機層を有するデバイスよりも反射性が高い。
5λ/4の光学的厚さを有する更に厚い有機層をデバイスに使用することができ、λ/4及び3λ/4の有機層厚さを有するデバイスのモデル化されたスペクトルと比較して、結果として生じるデバイスのコンピュータモデル化された反射スペクトルのプロット300の図3に示されるように、ストップバンドの幅の更なる減少をもたらす。
図4は、図5に示された構造510及び構造520のシミュレーションした反射スペクトルのプロット400を示し、構造250のスペクトルと比較する。構造510は、有機層に最も近い2つのn=1.39(低屈折率)の層が276nm(3λ/4の光学的厚さ)まで厚くされていることを除いて、構造250と同様である。構造520は、有機層(n=1.77)に最も近い2つのn=1.39(低屈折率)の層が276nm(3λ/4の光学的厚さ)まで厚くされていることを除いて、構造200と同様である。図4から、有機層以外の層の厚さをλ/4~3λ/4に増やすこともまた、BE-OLEDデバイスのストップバンドの幅を縮小するのに役立つことが分かる。
図6は、図7に示された構造710のシミュレーションした反射スペクトルを示し、構造510のスペクトルと比較する。構造710は、有機層(n=1.77)に最も近い追加の2つのn=1.39の層が276nm(3λ/4の光学的厚さ)まで厚くされていることを除いて、510のものと同様である。追加の2つのn=1.77の層を加えると、フォトニックストップバンドの幅が更に縮小する。
図8は、図9に示された構造910のシミュレーションし反射スペクトルを示し、構造250のスペクトルと比較する。構造910は、構造250内のn=1.39層のうちの2つが92nm~674nm(7λ/4の光学的厚さ)まで厚くされていることを除いて、構造250と同様である。予想されるように、この変更はストップバンドの幅を狭くする。
発光フォトニック結晶のストップバンド幅を狭めるための別のアプローチは、フォトニック結晶の多層積層体における、周期的に変化する屈折率の結晶のプロファイルを変更することである。図10は、プロファイルの周期をλ/2から変化させずに、OLED構造の周りに構築された、フッ化マグネシウム及び二酸化チタン交互の層を含む発光フォトニック結晶における、低屈折率(フッ化マグネシウム、屈折率A)の層の厚さ「a」の、高屈折率(二酸化チタン、屈折率B)の層の厚さ「b」に対する比率を変化させることの、フォトニック結晶の反射スペクトルへの影響を示す。図11は、a≠bの場合の層の積み重ねの屈折率プロファイルを示す。a=b=0.25λの反射スペクトル、a=0.35λ、b=0.15λの反射スペクトル、及びa=0.39λ、b=0.11λの反射スペクトルを図10に示す。「a」を0.25λ~0.39λに変更することにより、ストップバンドの幅が30nm超減少したことが明らかである。
これまでの本発明の実施形態の説明では、単一の発光フォトニック結晶内のOLED構造の両側に構築された構造によって構成された層は、それぞれ2つの材料のみを含み、1つは高屈折率を有し、1つは低屈折率を有していると想定されている。単一の発光フォトニック結晶の設計において、より高い屈折率層とより低い屈折率層との間に、1つ以上の中間屈折率層を介在させることは、有利であり得る。
1つの(前)面のみから光を生成する発光デバイスを生産することが望ましい場合、反射板、例えば、金属製反射板は、単一の発光フォトニック結晶と、それが構築される基板との間、又はその反対面上のいずれかで製造され得る。金属製反射板が使用される場合、注意が必要なのは、金属製反射板が、光の位相に4分の1の波動シフトをもたらす点であり、したがって、金属表面に直接隣接する層は、λ/4に等しい厚み付加部分によって増加された、光学的厚さを有すべきである。
本開示による単一の発光フォトニック結晶内の有機層は、単一の発光フォトニック結晶を構成する層の積み重ねの中央に置かれる必要はなく、実際には、使用される場合、金属製反射板に隣接していてもよい。この場合、金属製反射板は、デバイスの電極、又は電極の構成要素として機能し得る。
図12は、本開示による別の実施形態1200を示す。BE-OLED1202は、従来のOLEDを含む。従来のOLEDは、(インジウムスズ酸化物又はインジウム亜鉛酸化物などの)透明導電性酸化物から構成され得る陽極1218aと、
透明導電性酸化物層1218b及び非常に薄い低仕事関数金属層1216を順番に含み得る陰極と、を含む。BE-OLED光学構造が損なわれない限り、他の透明陽極構造及び透明陰極構造を使用することができる。従来のOLED構造は、ホール注入層1206、ホール輸送層1208、電界発光材料を含む層1210、電子輸送層1212、及び電子注入層1216を更に含み得る。従来のOLED構造は、ホールブロック層、電子ブロック層又は励起子ブロック層(図示せず)を更に含み得る。
実施例1200では、BE-OLED1202は、まず、基板1234上に鏡面反射金属層1226を堆積させることによって、基板1234上に構築される。(この反射板1226の存在は、デバイスからの両面放出が望ましいかどうかに応じて任意である。)次に、透明材料層の対1224が、反射層1226の上に構築される。まず、比較的高い屈折率を有する透明材料の層1228が層1226上に構築され、次に、層1228上に比較的低屈折率層1242が構築される。層1242と、BE-OLED1202によって構成された、他の光学機能屈折率ゾーンとは異なり、層1228は、BE-OLED1202内のフォトニック結晶構造によって生成される、ストップバンドの中心波長の半分の光学的厚さを有し得る。この半分の波の厚さは、金属層1226から反射された光波に生じる、位相シフトを補うことを意図している。一方、対1224の材料からなる、他の低屈折率層1242は、BE-OLED1202内のフォトニック結晶構造によって生成される、ストップバンドの中心波長の4分の1の光学的厚さを有する。デバイス1200の構造における層対は、図12を右から左へ読んで説明している。したがって、我々は、層対1224を高/低屈折率層対として称する。
更に4つの高/低屈折率層対1220が、対1224上に構築される。これらの層対は、各々、比較的高屈折率層1232及び比較的低屈折率層1230を含む。層1230及び層1232の全ては、BE-OLED1202内のフォトニック結晶構造によって生成される、ストップバンドの中心波長の4分の1に等しい、光学的厚さを有する。次に、従来のOLED構造の層を、1218a、1206、1208、1210、1212、1214、1216及び1218bの順に構築する。電極層1218a及び1218bは各々、BE-OLED1202内のフォトニック結晶構造によって生成される、ストップバンドの中心波長の4分の1に等しい、光学的厚さを有する。他のOLED層1206、1208、1210、1212、1214及び1216が結合し、BE-OLED1202内のフォトニック結晶構造によって生成される、ストップバンドの中心波長の4分の1に等しい、光学的厚さを有する、単一の低屈折率ゾーン104を作成する。更に5つの低/高屈折率層対1222が、陰極層1218bの上面上に構築される。層対1220と同様に、層対1222は、比較的低屈折率層1230及び比較的高屈折率層1232を含む。層対1222の全ての層は、BE-OLED1202内のフォトニック結晶構造によって生成される、ストップバンドの中心波長の4分の1に等しい、光学的厚さを有する。BE-OLED1202の機能が悪影響を受けない限り、OLED構造1204、及びその関連付けられた電極は、フォトニック結晶1202の中央に置かれる必要はなく、実際には、反射板1226に隣接して位置してもよい。
ゾーン1204の層が一緒に加えられると、BE-OLED1202内のフォトニック結晶構造によって生成される、ストップバンドの中心波長の4分の1に等しい光学的厚さを有する、単一の比較的低屈折率ゾーンが生成されるため、BE-OLEDは、実際には、単一のフォトニック結晶として機能する。例示的な実施形態100では、従来のOLED構造の一方の側に5つの高/屈折率対があり、他方の側に5つの低/高屈折率対がある。より少ない数の交互に並ぶ屈折率層の構成、又はより多い数の交互に並ぶ屈折率層の構成が可能であり、有利であり得る。
デバイス1200は、BE-OLED1202の上に構築された、第2の1-Dフォトニック結晶構造1250を更に含む。フォトニック結晶1250を生成するために、まず、BE-OLED1202の最後の低/高屈折率層対1222の上に、更に5つの低/高屈折率層対1238が構築される。これらの層対は、比較的低屈折率層1244及び比較的高屈折率層1246を含む。次に、光輝性材料を含む比較的低屈折率層1236が、層対1238の積み重ねの上に構築される。最後に、更に5つの高/低屈折率層対1240が、層1238の上に構築される。これらの屈折率層対1240はまた、比較的低屈折率層1244及び比較的高屈折率層1246も含む。フォトニック結晶構造1234(1244、1246及び1236)の全ての層は、フォトニック結晶構造1234のストップバンドの所望の中心波長の4分の1である、同じ光学的厚さを有する。
デバイス1200が通電されると、電子は、陰極層1218bからOLED構造1204の中心に向かって流れ、ホールは、陽極層1218aから同じ場所に向かって流れる。電子及びホールは、発光層1210内で接触し、電界発光材料の分子上に励起子を形成する。BE-OLED構造内の層厚は、フォトニック結晶ストップバンドのバンドエッジのうちの1つが、電界発光材料の発光バンド波長を覆うように、選択される。ほとんどの場合、ストップバンドの短波長端のバンドエッジは、電界発光バンドと重なるように選択される。これにより、BE-OLED内の層がより厚く、より容易に作製されることを可能にするだけでなく、OLED構造が機能的な厚さを有する有機層を含むことを可能にすることになる。電界発光材料は、フォトニック結晶内の光環境のために、バンドエッジモードに光を放出せざるを得ない。バンドエッジモードに放出された光は、発光分子上の励起子からの発光を、励起子の形成と同じくらい迅速に誘導するのに十分な発光強度が発光層にあるように、フォトニック結晶構造内に蓄積する。バンドエッジモードに放出された光は、デバイス内の層平面に垂直に伝播するので、誘導された発光からの光も同じことを行う。
BE-OLED構造内の層対の数を変化させ、また、隣接する層間の屈折率差を変化させることにより、BE-OLEDフォトニック結晶構造から逃げる光の量を制御することができる。反射板1226に向かって逃げる光が反射され、BE-OLED構造内に戻る。逆方向に逃げる光は、フォトニック結晶構造1250に入る。加えて、BE-OLED内の層対の数を変化させることにより、ストップバンドの幅、したがって、2つのバンドエッジが生じる波長が変化する。層対の数を増やすと、ストップバンドの幅が縮小する。
構造1250内の層厚は、BE-OLED1202によって放出される光よりも長い波長でのストップバンドを有する、フォトニック結晶構造を作成するので、BE-OLED1202から出る光は、構造1250内の最初の5つの層対を、比較的妨げられずに通過する。例えば、BE-OLED1203によって放出された光は、紫色光又は青色光であり得、一方、フォトニック結晶構造1250の短波長バンドエッジは、可視スペクトルの黄色部分にあり得る。
層1236内の光輝性材料は、その励起スペクトルが、BE-OLED1202の発光バンドと重なるように、選択される。BE-OLED1202から層1236に入る光は、ある程度は、層1236内の光輝性材料によって吸収され、したがって、発光分子上に励起子を形成する。構造1250内の層の厚さは、フォトニック結晶1250のストップバンドの短波長端のバンドエッジが、層1236内の光輝性材料の発光スペクトルと重なるように、選択される。したがって、この材料は、フォトニック結晶1250と関連付けられたバンドエッジモードに、材料の光輝性発光を放出せざるを得ない。BE-OLED1202の場合のように、層1236によって発光された光の一部分は、構造1250内に蓄積し、層1236内の光輝性分子からの更なる発光を誘導する。構造1250から構造1202に向かって後方に放出される光は、その構造又は反射板1226によって反射し戻る。構造1234内に保持されない光は、狭い円錐状の角度に広がる光線として、表面1248から出る。出光面1248の色度又は色温度は、層1236内の光輝性材料の濃度を変化させることにより、制御され得る。光輝性材料は、層1236の全ての厚さで存在し得るか、又は、層1236内のより薄い副層で存在し得る。光輝性材料はまた、構造1250の中心にある、2つ以上の層に存在し得る。
BE-OLED1202によって放出された光は、青色光又は紫色光であり得、構造1250によって放出された光は、黄色光であり得る。この場合、デバイス1200から放出された光は、白色光として認識される。
構造1234は、反射板1226での光位相シフトに対して適切な層厚の許容値をとった場合、かつ、BE-OLEDによって構成されたフォトニック結晶が、層1236によって放出された光を反射し戻らない場合、代替的に、BE-OLED1202と反射板1226との間に設置され得ることが容易に分かる。また、OLED1204の構成は、陰極対向反射板1226及び陽極対向構造1250で反転され得る。構造1250と同様の第2のフォトニック結晶が、表面1248の上に構築され得るが、この第3の構造は、構造1202及び構造1234とは異なる波長で光を放出するであろうこともまた、容易に分かる。例えば、BE-OLED1202は、青色光を放出し得、構造1250は、緑色光を放出し得、青色光と緑色光の両方は、第3の構造内の光輝性分子をポンプ又は励起して、第3のフォトニック結晶の更なる第3のセットのバンドエッジモードに、赤色光を放出し得る。結合された青色発光、緑色発光及び赤色発光は、白色光、すなわち、CIE 1931 2°XYZ色空間の色度座標が、CIE 1931 2°XYZ色空間の色度図のx=0.25~0.5及びy=0.2~0.45により画定された、長方形にある光として認識される。
図13は、本発明1300の別の実施形態を示す。本デバイスは、光輝性材料の層1324を追加していることを除き、上記の構造1202と同様のBE-OLED構造1302を含む。BE-OLED1202と同様に、BE-OLED1302は、従来のOLEDを含む。従来のOLEDは、(インジウムスズ酸化物又はインジウム亜鉛酸化物などの)透明導電性酸化物から構成され得る陽極1318aと、
透明導電性酸化物層1318b及び非常に薄い低仕事関数金属層1316を順番に含み得る陰極と、を含む。BE-OLED光学構造が損なわれない限り、他の透明陽極構造及び透明陰極構造を使用することができる。従来のOLED構造は、ホール注入層1306、ホール輸送層1308、電界発光材料を含む層1310、電子輸送層1312、及び電子注入層1316を更に含み得る。従来のOLED構造はまた、ホールブロック層、電子ブロック層又は励起子ブロック層(図示せず)も更に含み得る。
BE-OLED1302は、まず、基板1328上に鏡面反射金属層1326を堆積させることによって、基板1328上に構築される。(反射板1326は、デバイスからの両面発光が望ましいかどうかに応じて任意である。)透明材料の層1332が、反射層1326の上に構築される。BE-OLED1302によって構成された、他の光学機能屈折率ゾーンとは異なり、層1332は、BE-OLED1302内のフォトニック結晶構造によって生成される、ストップバンドの中心波長の半分の光学的厚さを有し得る。この半分の波の厚さは、金属層1326から反射された光波に生じる、位相シフトを補うことを意図している。
4つの屈折率層対1320が、層1332上に構築される。これらの層対は、各々、比較的低屈折率層1336及び比較的高屈折率層1338を含む。層1336及び層1338の全ては、BEOLED1302内のフォトニック結晶構造によって生成される、ストップバンドの中心波長の4分の1に等しい、光学的厚さを有する。デバイス1300の構造における屈折率層対は、図13を右から左へ読んで説明している。したがって、我々は、層対1320を低/高屈折率層対として称する。
次に、光輝性材料を含む層1324が、最後の屈折率層対1320の上に構築される。この層1324は、その両側の層と比較して、比較的低い屈折率を有する。次いで、層1338及び層1336を含む高/低屈折率層対1322が、層1324の上に構築される。
次に、従来のOLED構造の層を、1318a、1306、1308、1310、1312、1314、1316及び1318bの順に構築する。電極層1318a及び1318bは各々、BE-OLED1302内のフォトニック結晶構造によって生成される、ストップバンドの中心波長の4分の1に等しい、光学的厚さを有する。他のOLED層1306、1308、1310、1312、1314及び1316が結合し、BE-OLED1302内のフォトニック結晶構造によって生成される、ストップバンドの中心波長の4分の1に等しい、光学的厚さを有する、単一の低屈折率ゾーン1304を作成する。更に5つの低/高屈折率層対1320が、陰極層1318bの上面上に構築される。層対1320及び1322の全ての層は、BE-OLED1302内のフォトニック結晶構造によって生成される、ストップバンドの中心波長の4分の1に等しい、光学的厚さを有する。BE-OLED1302の機能が悪影響を受けない限り、OLED構造1304、及びその関連付けられた電極は、フォトニック結晶1302の中央に置かれる必要はなく、実際には、反射板1326に隣接して位置してもよい。
ゾーン1304の層が一緒に加えられると、BE-OLED1302内のフォトニック結晶構造によって生成される、ストップバンドの中心波長の4分の1に等しい光学的厚さを有する、単一の比較的低屈折率ゾーンが生成されるため、BE-OLED1302は、実際には、単一のフォトニック結晶として機能する。
デバイス1300が通電されると、電子は、陰極層1318bからOLED構造1304の中心に向かって流れ、ホールは、陽極層1318aから同じ場所に向かって流れる。電子及びホールは、発光層1310内で接触し、電界発光材料の分子上に励起子を形成する。BE-OLED構造内の層厚は、フォトニック結晶のストップバンドの短波長端におけるバンドエッジが、電界発光材料の発光バンド波長を覆うように、選択される。電界発光材料は、フォトニック結晶内の光環境のために、バンドエッジモードに光を放出せざるを得ない。バンドエッジモードに放出された光は、層1310の発光分子上の励起子からの発光を、励起子の形成と同じくらい迅速に誘導するのに十分な発光強度が発光層にあるように、フォトニック結晶構造内に蓄積する。バンドエッジモードに放出された光は、デバイス内の層平面に垂直に伝播するので、誘導された発光からの光も同じことを行う。
デバイス1300のフォトニック結晶構造内に保持された、発光層1310からの光は、ある程度は、層1324内の光輝性材料によって吸収され、光の生成を減衰する励起子を作成する。層1324内の光輝性材料は、その発光スペクトルが、デバイス1300によって構成されたフォトニック結晶のストップバンドの長波長バンドエッジと重なるように、選択される。層1324内の光輝性材料は、それによって、フォトニック結晶のバンドエッジモードにのみ光を放出せざるを得ない。層1310で生成された光の場合と同様に、バンドエッジモードに放出された光は、層1324の発光分子上の励起子からの発光を、励起子の形成と同じくらい迅速に誘導するのに十分な発光強度がその層にあるように、フォトニック結晶構造内に蓄積する。長波長バンドエッジでバンドエッジモードに放出された光は、デバイス内の層平面に垂直に伝播するので、層1324で誘導された発光からの光も同じことを行う。
デバイス1300の発光は、ストップバンドの両方のバンドエッジで発生するため、デバイス1300は、2つの別個の波長で発光する。例えば、短波長バンドエッジモードで紫色光又は青色光を放出し、長波長バンドエッジモードで赤色光を放出するデバイスが製作され得る。層1324内の光輝性材料の濃度を変化させることにより、生成された長波長光の量に対する短波長光の量の比率を変化させることができる。
BE-OLED構造1300内の層対の数を変化させ、また、隣接する層間の屈折率差を変化させることにより、BE-OLEDフォトニック結晶構造内の光保持量を制御することができる。(層対の数を変化させると、フォトニック結晶によって作成されたストップバンドの幅を変更し得ることを学んだ。意外にも、より多くの層対を追加すると、ストップバンドの分光幅を狭くすることを見出した。したがって、層厚、及び層対の数を調節することにより、以前は評価されなかった、予測可能かつ制御可能な様式でストップバンドの幅を調整することができる。層厚をλ/2の倍数で変更した場合、層厚を増やすことは影響がないと予想されたであろう。)図13のデバイス1300では、光輝性層1324は、OLED構造1304と反射板1326との間に位置する。層1324は、代替的に、OLED構造1304と発光面1330との間に設置され得ることが容易に分かる。また、OLED1304の構成は、陰極対向反射板1326及び陽極対向発光面1330で反転され得る。
BE-OLED構造1300の変形例では、デバイス内の第2の発光材料は、図13の層1324におけるものと同等であり、少なくともある程度は、光発光ではなく電気発光を通して発光する。これを達成するために、第2の材料は、層1310内の電界発光材料に非常に近接して位置しなければならず、したがって、デバイスの別個の4分の1の波の厚さの層として光学的に機能する層1324のような、別個の層に位置していない。ほとんどの場合、第2の電界発光材料と、エミッタ層1310に直接隣接して位置する1つ以上のホスト材料と、を含む別個の非常に薄い層が存在する。代替的に、第2の電界発光材料は、実際は層1310によって構成されてもよく、又は、別の非常に薄い層によって層1310から分離された層内にあってもよい。いずれの場合でも、層1310と、第2の発光材料を含む層と、層1306、1308、1312、1314及び1316と同様に機能する有機材料からなる、他の関連付けられた層は、BE-OLED1302内のフォトニック結晶構造によって生成されるストップバンドの中心波長の4分の1に等しい厚さを有する、単一の低屈折率ゾーンを形成するために結合する必要が、依然としてある。
デバイス1300のこの代替バージョンでは、第2の電界発光材料の分子は、励起状態エネルギーが、層1310の第1の電界発光材料から分子に、Forster型(双極子-双極子結合媒介)又はDexter型(電子移動媒介)励起子移動によって伝達されるときに、発光するように通電されるが、層1310の電界発光材料による発光、及び第2の電界発光材料による吸収を通した、いくつかのエネルギー伝達もまた可能であり得る。層1324内の発光材料の場合と同様に、第2の電界発光材料は、発光スペクトルが、デバイス1300によって構成されたフォトニック結晶のストップバンドの長波長バンドエッジと重なるように、選択される。第2の電界発光材料は、それによって、フォトニック結晶のバンドエッジモードにのみ光を放出せざるを得ない。層1324で生成された光の場合と同様に、バンドエッジモードに放出された光は、第2の発光材料を含む層の発光分子上の励起子からの発光を、励起子の形成と同じくらい迅速に誘導するのに十分な発光強度がその層にあるように、フォトニック結晶構造内に蓄積する。デバイス1300の場合と同様に、光は、デバイスのストップバンドの両側の長波長及び短波長の両方の発光バンドで、放出される。
図14は、本発明の更に別の実施形態1400を示す。デバイス1400は、デバイス1200の機能をデバイス1300の機能と組み合わせ、例えば、赤、緑及び青の3つの波長の光を放出することができるデバイスをもたらす。
BE-OLED1402の構造は、デバイス1300の構造と本質的に同じである。構造1404内の層、層対1420及び1422、並びに電極1418a及び1418bは全て、デバイス1300で見られる同等の構造である、構造1304内の層、層対1320及び1322、並びに電極1318a及び1318bと、同じ機能を果たす。フォトニック結晶構造1440は、デバイス1200の構造1250と本質的に同じ方式で機能する。層対1444及び1446、並びに層1442は、デバイス1200内の層対1238及び1240、並びに層1236と本質的に同じ目的を果たす。
デバイス1400が通電されると、電子は、陰極層1418bからOLED構造1404の中心に向かって流れ、ホールは、陽極層1418aから同じ場所に向かって流れる。電子及びホールは、発光層1410内で接触し、電界発光材料の分子上に励起子を形成する。BE-OLED構造内の層厚は、フォトニック結晶のストップバンドの短波長端におけるバンドエッジが、電界発光材料の発光バンド波長を覆うように、選択される。電界発光材料は、フォトニック結晶内の光環境のために、バンドエッジモードに光を放出せざるを得ない。バンドエッジモードに放出された光は、層1410の発光分子上の励起子からの発光を、励起子の形成と同じくらい迅速に誘導するのに十分な発光強度が発光層にあるように、フォトニック結晶構造内に蓄積する。バンドエッジモードに放出された光は、デバイス内の層平面に垂直に伝播するので、誘導された発光からの光も同じことを行う。
BE-OLED1402のフォトニック結晶構造内に保持された、発光層1410からの光は、ある程度は、層1424内の光輝性材料によって吸収され、光の生成を減衰する励起子を作成する。層1424内の光輝性材料は、その発光スペクトルが、構造1402によって構成されたフォトニック結晶のストップバンドの長波長バンドエッジと重なるように、選択される。層1424内の光輝性材料は、それによって、フォトニック結晶のバンドエッジモードにのみ光を放出せざるを得ない。層1410で生成された光の場合と同様に、バンドエッジモードに放出された光は、層1424の発光分子上の励起子からの発光を、励起子の形成と同じくらい迅速に誘導するのに十分な発光強度がその層にあるように、フォトニック結晶構造内に蓄積する。長波長バンドエッジでバンドエッジモードに放出された光は、デバイス内の層平面に垂直に伝播するので、層1424で誘導された発光からの光も同じことを行う。光輝性材料は、層1424の全ての厚さで存在し得るか、又は、層1424内のより薄い副層で存在し得る。BE-OLED構造1402内の層対の数を変化させ、また、隣接する層間の屈折率差を変化させることにより、BE-OLEDフォトニック結晶構造から逃げる光の量を制御することができる。反射板1426に向かって逃げる光が反射され、BE-OLED構造1402内に戻る。逆方向に逃げる光は、フォトニック結晶構造1440に入る。
構造1440内の層厚は、BE-OLED1402によって放出される2つの波長の光よりも長い波長でのストップバンドを有する、フォトニック結晶構造を作成するように、選択される。したがって、BE-OLED1402から出る光は、構造1440内の最初の5つの層対を、比較的妨害されずに通過する。
層1442内の光輝性材料は、その励起スペクトルが、BE-OLED1402の発光バンドの一方又は両方と重なるように、選択される。BE-OLED1402から層1442に入る光は、ある程度は、層1436内の光輝性材料によって吸収され、したがって、発光分子上に励起子を形成する。構造1440内の層の厚さは、フォトニック結晶1440のストップバンドの短波長端のバンドエッジが、層1442内の光輝性材料の発光スペクトルと重なるように、選択される。したがって、この材料は、フォトニック結晶1440と関連付けられたバンドエッジモードに、材料の光輝性発光を放出せざるを得ない。BE-OLED1402の場合のように、層1442によって発光された光の一部分は、構造1440内に蓄積し、層1442内の光輝性分子からの更なる発光を誘導する。構造1440から構造1402に向かって後方に放出される光は、反射板1426によって反射し戻る。構造1440内に保持されない光は、狭い円錐状の角度に広がる光線として、表面1430から出る。出光面1430の色度又は色温度は、層1424及び1442内の光輝性材料の濃度を変化させることにより、制御され得る。光輝性材料は、層1442の全ての厚さで存在し得るか、又は、層1442内のより薄い副層で存在し得る。光輝性材料はまた、構造1440の中心にある、2つ以上の層に存在し得る。
デバイス1300の場合と同様に、デバイス1400の代替的な変形例は、層1410に近接した第2の電界発光材料で置き換える、層1424を省略し得る。この材料はまた、層アセンブリ1402のフォトニック結晶構造のストップバンドの長波長エッジで、バンドエッジモードに光を放出する。
デバイス1400では、構造1402内の励起子の主要源は、デバイスで使用される3つの発光材料の中で最短発光波長を有する、発光材料である。短波長(例えば、青色又は紫色)エミッタは、場合によっては最も効率が低く、人の目の最大感度は、緑色から黄色の波長であるので、RGB発光デバイス内の励起子の主要源が、緑色から黄色の波長範囲で発光する、発光材料であることが望ましい場合がある。この要件を満たすRGB発光デバイスは、実施形態1300の構造を有する緑色及び赤色発光BE-OLEDで覆われた、従来の青色発光BE-OLEDからなり得る。
実施形態1200、1300、及び1400を説明する際、発光材料又は電界発光材料に言及する場合、材料という用語は、単一の分子種を含む物質に限定されることを意味するものではない。複数の分子種を含む電界発光エキシプレックスの開発で、最近かなりの進展があり、材料という用語は、これらの電界発光材料、及び複数の分子種を含む他の電界発光材料を、単一の発光分子種として記述することを意味する。
実施形態1300及び1400の分光分布出力波長が、フォトニック結晶構造によって生成されるストップバンドの幅に、強く依存することは明らかである。実施形態1200、1300、及び1400における構造の方形波プロファイルは、200nmを超える、分光的にかなり広いストップバンドをもたらす。ストップバンドの分光幅を狭めるための方策は、屈折率交互のプロファイルを変更することである。上で考察されたように、図11に示されたグラフは、本発明のフォトニック結晶におけるストップバンドの幅を縮小する方法を示す。本図は、フォトニック結晶の代替的な屈折率プロファイル1102の屈折率対厚さのプロットを示す。屈折率変動の周期はλ/2のままであり、式中、λは、フォトニック結晶ストップバンドの中心波長である。しかしながら、材料Aの低屈折率層の光学的厚さaはλ/4<a<λ/2であり、材料の高屈折率層の厚さbは0<b<λ/4である。図5は、層厚bに対する層厚a(a+b=0.50)の変化する比率について、波長に対する、コンピュータシミュレーションしたフォトニック結晶構造からの反射を示す。a対bの比率が増加するにつれて、BE-OLEDのフォトニック結晶構造によって生成されるストップバンドの幅が縮小することは明らかである。これらのシミュレーションは、陰極透明金属酸化物層及び陽極透明金属酸化物層の屈折率に対するモデリングプログラムの限界もまた2.36に設定され、有機層は、1.80の均一屈折率を有するものとしてモデリングされたため、低屈折率材料(例えば、MgF)については屈折率1.39、高屈折率材料(例えば、TiO)については屈折率2.36を使用して、生成された。
BE-OLEDのフォトニック結晶構造によって生成されるストップバンドの分光幅を狭めるための別のアプローチは、λ/4の光学的厚さを有する、フォトニック結晶構造の層のうちの1つ以上の厚さを、上で考察され、例えば、図1で実証されているように、λ/2ずつ増加させ、3λ/4、5λ/4、又は7λ/4の光学的厚さを有する層をもたらすことである。このことはまた、有機層1404の厚さを増加させることにより、デバイスの電子機能を最適化するための副層厚を選択する自由度がより高くなるので、デバイス1400内に青色発光BE-OLED構造1402を生成するときに有用であることを証明し得る。a対bの比率を変更するアプローチは、また層厚をλ/2ずつ増加させるアプローチを組み合わせてもよい。例えば、有機層光学的厚さが3λ/4すなわち375nmで、a=0.39及びb=0.11のデバイスの結果は、図15にプロットされている。このデバイスの反射率バンドは、比較のために、a=b=0.25で、有機層の光学的厚さがλ/4のデバイスに対してプロットされる。
図16は、図14のデバイス1400と同様の発光デバイスの結合反射スペクトルを示す。光は、3つのフォトニック結晶バンドエッジ発光バンドA、B、及びCで放出される。
様々な実施形態では、有機発光ダイオードデバイスは、単一の発光フォトニック結晶内に配置された有機電界発光エミッタ材料を更に有する、単一の発光フォトニック結晶を含み、電界発光エミッタ材料は、フォトニック結晶の全光学的厚さの10%未満の光学的厚さを有するゾーンに局在する。これらの実施形態では、有機電界発光エミッタ材料は、フォトニック結晶のストップバンドと少なくとも部分的に重なる、自由空間発光スペクトルを有し、フォトニック結晶は、有機電界発光エミッタ材料が重なる、ストップバンドのエッジに対応する波長で光を放出する。また、これらの実施形態では、単一の発光フォトニック結晶は、より低い屈折率の層が有機電界発光エミッタ材料を含む、変化する屈折率の層の積み重ねで構成される。
本開示による発光デバイスの様々な実施形態では、有機電界発光エミッタ材料を含む、第1の単一の発光フォトニック結晶内のより低い屈折率の層はまた、隣接層に対して低屈折率を各々有する、追加の有機材料を含み得、有機材料は、電荷担体輸送材料、電荷担体注入材料、又は電荷担体注入材料のうちの少なくとも1つである。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、周期λ/2の屈折率の周期的変調を有する層の積み重ねを含み、式中、λは、フォトニック結晶ストップバンドの中心波長に等しい。この変調は、層の物理的厚さの観点からではなく、それらの光学的厚さの観点から、一様に周期的である。1つの変調周期によって構成された層は、数が2つで、同じ厚さであり得るが、それらの層は、数が2つで、異なる光学的厚さであり得、その結果、作成されるストップバンドの幅が狭くなる。また、1つの光学的厚さ変調周期によって構成された、3つ以上の層が存在してもよい。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、(2n+1)λ/2に等しい光学的厚さを有する1つ以上の材料層を含み得、式中、nは、1~3の値を有し得、λは、フォトニック結晶ストップバンドの中心波長に等しい。これらの層の存在は、層の積み重ねが、単一のフォトニック結晶として機能するのを止めるものではないが、フォトニック結晶のストップバンドの幅を狭めるのに役立つ。これらの厚さ(2n+1)λ/2の層のうちの1~7つは、必要とされるストップバンド幅の縮小、及びフォトニック結晶内のこれらの層の総数に応じて、導入され得る。厚さ(2n+1)λ/2の層のうちの1つは、有機電界発光エミッタ材料を含み得る。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、分布ブラッグ反射器を含み得る。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、方形波変調の形態をとる、屈折率の周期的変調を有し得る。存在する場合、この変調は、層の物理的厚さの観点からではなく、それらの光学的厚さの観点から、一様に周期的である。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、発光の透過軸が、単一の発光フォトニック結晶によって構成された層に垂直であってもよい。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、有機電界発光エミッタ材料の分子は、発光の透過軸に平行な、誘導された発光を最大化するように、空間的に配向され得る。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、有機発光ダイオードの電極及び有機層が、周期的に変化する屈折率を有する構造の一部を形成するように、有機発光ダイオードを含み得る。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、電界発光エミッタによって放出された発光光の測定自由空間放射輝度が、エミッタ材料の発光スペクトルの測定ピーク自由空間放射輝度の4分の1よりも大きい波長で発生し得る、ストップバンドのバンドエッジを有する。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、エミッタ層に光を1回通すための光吸収が1%未満である波長で発生し得る、ストップバンドのバンドエッジを有する。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、エミッタ層に光を1回通すための光吸収が1/2%未満である波長で発生し得る、ストップバンドのバンドエッジを有する。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、該単一の発光フォトニック結晶によって構成された層の積み重ねの中央に置かれた、有機材料の層を含み得る。有機材料の層は、有機電界発光エミッタ材料を含み得る。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、該単一の発光フォトニック結晶によって構成された層の積み重ねの中心を外れた、有機材料の層を含み得る。有機材料の層は、有機電界発光エミッタ材料を含み得る。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、反射金属の層に隣接する、有機材料の層を含み得る。有機材料の層は、有機電界発光エミッタ材料を含み得る。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、光の屈折率の周期的変調を有し得、単一の発光フォトニック結晶は、160ナノメートル未満離れている短波長バンドエッジ及び長波長バンドエッジを有するストップバンドを生成するのに十分な周期的変調の周期を含み得る。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、光の屈折率の周期的変調を有し得、単一の発光フォトニック結晶は、110ナノメートル未満離れている短波長バンドエッジ及び長波長バンドエッジを有するストップバンドを生成するのに十分な周期的変調の周期を含み得る。
本開示による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、光の屈折率の周期的変調を有し得、単一の発光フォトニック結晶は、70ナノメートル未満離れている短波長バンドエッジ及び長波長バンドエッジを有するストップバンドを生成するのに十分な周期的変調の周期を含み得る。
本開示による発光デバイスの様々な実施形態では、単一のフォトニック結晶内に配置された有機電界発光エミッタ材料を有する、第1の単一の発光フォトニック結晶を含み、有機電界発光エミッタ材料は、フォトニック結晶の全光学的厚さの10%未満を有するゾーンに含まれる。これらの実施形態では、第1の単一の発光フォトニック結晶内の有機電界発光エミッタ材料は、フォトニック結晶のストップバンドと少なくとも部分的に重なる、自由空間発光スペクトルを有し、フォトニック結晶は、有機電界発光エミッタ材料が重なる、ストップバンドのエッジに対応する波長で光を放出する。これらの実施形態では、第1の単一の発光フォトニック発光結晶は、より低い屈折率の層が有機電界発光エミッタ材料を含む、変化する屈折率の層の積み重ねで構成される。これらの実施形態では、発光デバイスは、単一のフォトニック結晶内に配置された光輝性材料を各々有する、1つ以上の他の単一の発光フォトニック結晶を更に含み、他の単一の発光フォトニック結晶の各々では、光輝性材料は、フォトニック結晶のストップバンドと少なくとも部分的に重なる、自由空間発光スペクトルを有する。これらの実施形態では、他の単一の発光フォトニック結晶の各々は、ストップバンドのエッジに対応する波長で光を放出し、他の単一の発光フォトニック結晶の各々は、周期的に変化する屈折率を有し、第1の単一の発光フォトニック結晶からの光が、他の単一の発光フォトニック結晶内の光輝性材料によって吸収され、他の単一の発光フォトニック結晶に光輝性発光をさせるときに、1つ以上の他の単一の発光フォトニック結晶からの発光が生成される。
本開示の段落87による発光デバイスの様々な実施形態では、複数の単一の発光フォトニック結晶の各々は、変化する屈折率の一連の層を更に含み得る。
本開示の段落87による発光デバイスの様々な実施形態では、有機電界発光エミッタ材料を含む、第1の単一の発光フォトニック結晶内のより低い屈折率の層はまた、隣接層に対して低屈折率を各々有する、追加の有機材料を含み得、有機材料は、電荷担体輸送材料、電荷担体注入材料、又は電荷担体注入材料のうちの少なくとも1つである。
本開示の段落87による発光デバイスの様々な実施形態では、発光デバイスは、基板上に構築され得る。その基板は、透明であってもよく、発光デバイスからの光が、基板の底部から放出されることを可能にする。
本開示の段落87による発光デバイスの様々な実施形態では、発光デバイスは、発光デバイスと基板との間に介在された金属製反射板を備える、基板上に構築され得る。
本開示の段落87による発光デバイスの様々な実施形態では、発光デバイスは、基板からの第1の単一発光フォトニック結晶の反対側に位置する、1つ以上の他の単一の発光フォトニック結晶のうちの1つ以上を備える、基板上に構築され得る。
本開示の段落87による発光デバイスの様々な実施形態では、発光デバイスは、第1の単一発光フォトニック結晶と基板との間に位置する、1つ以上の他の単一の発光フォトニック結晶のうちの1つ以上を備える、基板上に構築され得る。
本開示の段落87による発光デバイスの様々な実施形態では、発光デバイスは、第1の単一発光フォトニック結晶によって構成された電界発光エミッタが局在しているゾーンと、基板との間に介在された陽極を備える、陽極を備え得る。
本開示の段落87による発光デバイスの様々な実施形態では、発光デバイスは、第1の単一発光フォトニック結晶によって構成された電界発光エミッタが局在しているゾーンが、陽極と基板との間に介在された、陽極を備え得る。
本開示の段落87による発光デバイスの様々な実施形態では、1つ以上の他の単一の発光フォトニック結晶のうちの少なくとも1つにおいて、光輝性材料は、該単一の発光フォトニック結晶によって構成された単一の層によって構成され得る。光輝性材料は、その単一の層の厚さの一部分のみに存在し得る。
本開示の段落87による発光デバイスの様々な実施形態では、1つ以上の他の単一の発光フォトニック結晶のうちの少なくとも1つ以上は、光輝性材料を含む2つ以上の層を含み得る。
本開示の段落87による発光デバイスの様々な実施形態では、第1の単一の発光フォトニック結晶内に配置された有機電界発光エミッタ材料を有する、第1の単一の発光フォトニック結晶と、他の1つの単一の発光フォトニック結晶内に配置された光輝性材料を有する、他の1つの単一の発光フォトニック結晶とは、発光デバイスによって構成され得る。この発光デバイスは、青色光又は紫色光、及び黄色光の混合物を放出し得、この放出された光の混合物は、白色光として認識され得る。
本開示の段落87による発光デバイスの様々な実施形態では、第1の単一の発光フォトニック結晶内に配置された有機電界発光エミッタ材料を有する、該第1の単一の発光フォトニック結晶と、他の2つの単一の発光フォトニック結晶の各々の内に配置された異なる光輝性材料を有する、他の2つの単一の発光フォトニック結晶とは、発光デバイスによって構成され得る。この発光デバイスは、青色光又は紫色光、緑色光、及び赤色光の混合物を放出し得、この放出された光の混合物は、白色光として認識され得る。この放出された光の混合物は、CIE 1931 2°XYZ色空間の色度図のx=0.25~0.5及びy=0.2~0.45により画定された長方形にある、CIE 1931 2°XYZ色空間の色度座標を有し得る。
本開示の段落87による発光デバイスの様々な実施形態では、他の単一の発光フォトニック結晶のうちの少なくとも1つによって構成された光輝性材料は、有機光輝性材料である。
本開示の段落87による発光デバイスの様々な実施形態では、他の単一の発光フォトニック結晶のうちの少なくとも1つによって構成された光輝性材料は、有機金属光輝性材料である。有機金属光輝性材料は、有機イリジウム光輝性材料であってもよい。
本開示の段落87による発光デバイスの様々な実施形態では、電界発光材料を含む層は、金属製反射板に隣接して位置してもよい。
本開示の段落87による発光デバイスの様々な実施形態では、有機発光デバイスに含まれる第1の単一の発光フォトニック結晶は、(2n+1)λ/2に等しい光学的厚さを有する1つ以上の材料層を含み得、式中、nは、1~3の値を有し得、λは、フォトニック結晶ストップバンドの中心波長に等しい。これらの層の存在は、層の積み重ねが、単一のフォトニック結晶として機能するのを止めるものではないが、フォトニック結晶のストップバンドの幅を狭めるのに役立つ。これらの厚さ(2n+1)λ/2の層のうちの1~7つは、必要とされるストップバンド幅の縮小、及びフォトニック結晶内のこれらの層の総数に応じて、導入され得る。厚さ(2n+1)λ/2の層のうちの1つは、有機電界発光エミッタ材料を含み得る。
本開示の段落87による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる第1の単一の発光フォトニック結晶は、周期λ/2の屈折率の周期的変調を有する層の積み重ねを含み、式中、λは、フォトニック結晶ストップバンドの中心波長に等しい。この変調は、層の物理的厚さの観点からではなく、それらの光学的厚さの観点から、一様に周期的である。1つの変調周期によって構成された層は、数が2つで、同じ厚さであり得るが、それらの層は、数が2つで、異なる光学的厚さであり得、その結果、作成されるストップバンドの幅が狭くなる。また、1つの光学的厚さ変調周期によって構成された、3つ以上の層が存在してもよい。
本開示の段落87による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる第1の単一の発光フォトニック結晶は、光の屈折率の周期的変調を有し得、単一の発光フォトニック結晶は、160ナノメートル未満離れている短波長バンドエッジ及び長波長バンドエッジを有するストップバンドを生成するのに十分な周期的変調の周期を含み得る。
本開示の段落87による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる第1の単一の発光フォトニック結晶は、光の屈折率の周期的変調を有し得、単一の発光フォトニック結晶は、110ナノメートル未満離れている短波長バンドエッジ及び長波長バンドエッジを有するストップバンドを生成するのに十分な周期的変調の周期を含み得る。
本開示の段落87による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる第1の単一の発光フォトニック結晶は、光の屈折率の周期的変調を有し得、単一の発光フォトニック結晶は、70ナノメートル未満離れている短波長バンドエッジ及び長波長バンドエッジを有するストップバンドを生成するのに十分な周期的変調の周期を含み得る。
本開示による発光デバイスの様々な実施形態では、単一の発光フォトニック結晶は、単一の発光フォトニック結晶内に配置された有機電界発光エミッタ材料を含み、電界発光エミッタ材料は、フォトニック結晶の全光学的厚さの10%未満の光学的厚さを有するゾーンに局在する。これらの実施形態では、有機電界発光エミッタ材料は、フォトニック結晶のストップバンドと少なくとも部分的に重なる、自由空間発光スペクトルを有し、電界発光エミッタ材料は、有機電界発光エミッタ材料が重なる、ストップバンドの短波長エッジに対応する波長で光を放出する。これらの実施形態では、単一の発光フォトニック結晶は、より低い屈折率の層が有機電界発光エミッタ材料を含む、変化する屈折率の層の積み重ねで構成される。また、これらの実施形態では、単一の発光フォトニック結晶は、第2の発光材料を更に含み得る。
本開示の段落108による発光デバイスの様々な実施形態では、発光材料は、電界発光材料であってもよい。
本開示の段落108による発光デバイスの様々な実施形態では、発光材料は、光輝性材料であってもよい。
本開示の段落108による発光デバイスの様々な実施形態では、有機電界発光エミッタ材料を含む、単一の発光フォトニック結晶内のより低い屈折率の層はまた、隣接層に対して低屈折率を各々有する、追加の有機材料を含み得、有機材料は、電荷担体輸送材料、電荷担体注入材料、又は電荷担体注入材料のうちの少なくとも1つである。
本開示の段落108による発光デバイスの様々な実施形態では、発光材料は、フォトニック結晶のストップバンドの長波長エッジと少なくとも部分的に重なる、自由空間発光スペクトルを有し得る。光輝性材料は、ストップバンドの長波長エッジに対応する波長で光を放出し得る。
本開示の段落108による発光デバイスの様々な実施形態では、発光材料は、有機材料であってもよい。
本開示の段落108による発光デバイスの様々な実施形態では、発光材料は、有機金属材料であってもよい。
本開示の段落108による発光デバイスの様々な実施形態では、発光材料は、フォトニック結晶の単一の層によって構成され得る。
本開示の段落108による発光デバイスの様々な実施形態では、発光材料は、2つ以上の層に位置し得る。
本開示の段落108による発光デバイスの様々な実施形態では、ストップバンドのバンドエッジは、波長が140nm未満離れていてもよい。
本開示の段落108による発光デバイスの様々な実施形態では、発光デバイスは、2つの別個の発光バンドで光を放出し得る。放出された光は、白色光として認識され得る。
本開示の段落108による発光デバイスの様々な実施形態では、発光材料は、電界発光材料であってもよく、この電界発光材料は、有機電界発光エミッタと同じ層に位置し得る。
本開示の段落108による発光デバイスの様々な実施形態では、発光デバイスは、基板の上に構築され得る。
本開示の段落108による発光デバイスの様々な実施形態では、発光デバイスは、透明基板の上に構築され得、透明基板は、基板の底部から光が放出されることを可能にし得る。
本開示の段落108による発光デバイスの様々な実施形態では、金属製反射板は、基板と発光デバイスとの間に介在され得る。
本開示の段落108による発光デバイスの様々な実施形態では、発光材料は、単一の層によって構成され得、有機電界発光材料を含む層は、発光材料を含む層と、金属製反射板との間に介在され得る。
本開示の段落108による発光デバイスの様々な実施形態では、発光材料は、発光材料は、単一の層によって構成され得、発光材料を含む層は、有機電界発光材料を含む層と、金属製反射板との間に介在され得る。
本開示の段落108による発光デバイスの様々な実施形態では、発光デバイスは、陽極及び基板を備え得、陽極は、有機電界発光材料が局在するゾーンと、基板との間に介在され得る。
本開示の段落108による発光デバイスの様々な実施形態では、発光デバイスは、陽極及び基板を備え得、有機電界発光材料が局在するゾーンは、陽極と基板との間に介在され得る。
本開示の段落108による発光デバイスの様々な実施形態では、発光デバイスは、金属製反射板を備え得、有機電界発光材料を含む層は、金属製反射板に隣接して位置してもよい。
本開示の段落108による発光デバイスの様々な実施形態では、有機発光デバイスに含まれる単一の発光フォトニック結晶は、(2n+1)λ/2に等しい光学的厚さを有する1つ以上の材料層を含み得、式中、nは、1~3の値を有し得、λは、フォトニック結晶ストップバンドの中心波長に等しい。これらの層の存在は、層の積み重ねが、単一のフォトニック結晶として機能するのを止めるものではないが、フォトニック結晶のストップバンドの幅を狭めるのに役立つ。これらの厚さ(2n+1)λ/2の層のうちの1~7つは、必要とされるストップバンド幅の縮小、及びフォトニック結晶内の層の総数に応じて、導入され得る。厚さ(2n+1)λ/2の層のうちの1つは、有機電界発光エミッタ材料を含み得る。
本開示の段落108による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、周期λ/2の屈折率の周期的変調を有する層の積み重ねを含み、式中、λは、フォトニック結晶ストップバンドの中心波長に等しい。この変調は、層の物理的厚さの観点からではなく、それらの光学的厚さの観点から、一様に周期的である。1つの変調周期によって構成された層は、数が2つで、同じ厚さであり得るが、それらの層は、数が2つで、異なる光学的厚さであり得、その結果、作成されるストップバンドの幅が狭くなる。また、1つの光学的厚さ変調周期によって構成された、3つ以上の層が存在してもよい。
本開示の段落108による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、光の屈折率の周期的変調を有し得、単一の発光フォトニック結晶は、160ナノメートル未満離れている短波長バンドエッジ及び長波長バンドエッジを有するストップバンドを生成するのに十分な周期的変調の周期を含み得る。
本開示の段落108による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、光の屈折率の周期的変調を有し得、単一の発光フォトニック結晶は、110ナノメートル未満離れている短波長バンドエッジ及び長波長バンドエッジを有するストップバンドを生成するのに十分な周期的変調の周期を含み得る。
本開示の段落108による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる単一の発光フォトニック結晶は、光の屈折率の周期的変調を有し得、単一の発光フォトニック結晶は、70ナノメートル未満離れている短波長バンドエッジ及び長波長バンドエッジを有するストップバンドを生成するのに十分な周期的変調の周期を含み得る。
本開示による発光デバイスの様々な実施形態では、発光フォトニック結晶は、単一の発光フォトニック結晶内に配置された有機電界発光エミッタ材料を含み、電界発光エミッタ材料は、フォトニック結晶の全光学的厚さの10%未満の光学的厚さを有するゾーンに局在する。これらの実施形態では、有機電界発光エミッタ材料は、フォトニック結晶のストップバンドと少なくとも部分的に重なる、自由空間発光スペクトルを有し、電界発光エミッタ材料は、有機電界発光エミッタ材料が重なる、ストップバンドの短波長エッジに対応する波長で光を放出する。これらの実施形態では、単一の発光フォトニック結晶は、より低い屈折率の層が有機電界発光エミッタ材料を含む、変化する屈折率の層の積み重ねで構成される。これらの実施形態では、単一の発光フォトニック結晶は、第2の発光材料を更に含み得る。これらの実施形態では、発光デバイスは、単一のフォトニック結晶内に配置された光輝性材料を各々有する、1つ以上の他の単一の発光フォトニック結晶を更に含み、他の単一の発光フォトニック結晶の各々では、光輝性材料は、フォトニック結晶のストップバンドと少なくとも部分的に重なる、自由空間発光スペクトルを有する。これらの実施形態では、他の単一の発光フォトニック結晶の各々は、ストップバンドのエッジに対応する波長で光を放出し、他の単一の発光フォトニック結晶の各々は、周期的に変化する屈折率を有し、第1の単一の発光フォトニック結晶からの光が、他の単一の発光フォトニック結晶内の光輝性材料によって吸収され、他の単一の発光フォトニック結晶に光輝性発光をさせるときに、1つ以上の他の単一の発光フォトニック結晶からの発光が生成される。
本開示の段落133による発光デバイスの様々な実施形態では、発光材料は、電界発光材料であってもよい。
本開示の段落133による発光デバイスの様々な実施形態では、発光材料は、光輝性材料であってもよい。
本開示の段落133による発光デバイスの様々な実施形態では、有機電界発光エミッタ材料を含む、第1の単一の発光フォトニック結晶内のより低い屈折率の層はまた、隣接層に対して低屈折率を各々有する、追加の有機材料を含み得、有機材料は、電荷担体輸送材料、電荷担体注入材料、又は電荷担体注入材料のうちの少なくとも1つである。
本開示の段落133による発光デバイスの様々な実施形態では、発光材料は、第1の単一の発光フォトニック結晶のストップバンドの長波長エッジと少なくとも部分的に重なる、自由空間発光スペクトルを有し得る。光輝性材料は、ストップバンドの長波長エッジに対応する波長で光を放出し得る。
本開示の段落133による発光デバイスの様々な実施形態では、発光材料は、有機材料であってもよい。
本開示の段落133による発光デバイスの様々な実施形態では、発光材料は、有機金属材料であってもよい。
本開示の段落133による発光デバイスの様々な実施形態では、発光材料は、第1の単一の発光フォトニック結晶の単一の層によって構成され得る。
本開示の段落133による発光デバイスの様々な実施形態では、発光材料は、2つ以上の層に位置し得る。
本開示の段落133による発光デバイスの様々な実施形態では、ストップバンドのバンドエッジは、波長が140nm未満離れていてもよい。
本開示の段落133による発光デバイスの様々な実施形態では、発光デバイスは、3つの別個の発光バンドで光を放出し得る。放出された光は、白色光として認識され得る。
本開示の段落133による発光デバイスの様々な実施形態では、発光デバイスは、4つの別個の発光バンドで光を放出し得る。放出された光は、白色光として認識され得る。
本開示の段落133による発光デバイスの様々な実施形態では、発光材料は、電界発光材料であってもよく、この電界発光材料は、有機電界発光エミッタと同じ層に位置し得る。
本開示の段落133による発光デバイスの様々な実施形態では、発光デバイスは、基板の上に構築され得る。
本開示の段落133による発光デバイスの様々な実施形態では、発光デバイスは、透明基板の上に構築され得、透明基板は、基板の底部から光が放出されることを可能にし得る。
本開示の段落133による発光デバイスの様々な実施形態では、金属製反射板は、基板と発光デバイスとの間に介在され得る。
本開示の段落133による発光デバイスの様々な実施形態では、発光材料は、単一の層によって構成され得、有機電界発光材料を含む層は、発光材料を含む層と、金属製反射板との間に介在され得る。
本開示の段落133による発光デバイスの様々な実施形態では、発光材料は、発光材料は、単一の層によって構成され得、発光材料を含む層は、有機電界発光材料を含む層と、金属製反射板との間に介在され得る。
本開示の段落133による発光デバイスの様々な実施形態では、発光デバイスは、陽極及び基板を備え得、陽極は、有機電界発光材料が局在するゾーンと、基板との間に介在され得る。
本開示の段落133による発光デバイスの様々な実施形態では、発光デバイスは、陽極及び基板を備え得、有機電界発光材料が局在するゾーンは、陽極と基板との間に介在され得る。
本開示の段落133による発光デバイスの様々な実施形態では、有機電界発光エミッタ材料を含む、単一の発光フォトニック結晶内のより低い屈折率の層はまた、隣接層に対して低屈折率を各々有する、追加の有機材料を含み得、有機材料は、電荷担体輸送材料、電荷担体注入材料、又は電荷担体注入材料、及び、加えて、発光材料のうちの少なくとも1つである。
本開示の段落133による発光デバイスの様々な実施形態では、発光デバイスは、金属製反射板を備え得、有機電界発光材料を含む層は、金属製反射板に隣接して位置してもよい。
本開示の段落133による発光デバイスの様々な実施形態では、有機発光デバイスに含まれる第1の単一の発光フォトニック結晶は、(2n+1)λ/2に等しい光学的厚さを有する1つ以上の材料層を含み得、式中、nは、1~3の値を有し得、λは、フォトニック結晶ストップバンドの中心波長に等しい。これらの層の存在は、層の積み重ねが、単一のフォトニック結晶として機能するのを止めるものではないが、第1の単一の発光フォトニック結晶のストップバンドの幅を狭めるのに役立つ。これらの厚さ(2n+1)λ/2の層のうちの1~7つは、必要とされるストップバンド幅の縮小、及び第1の単一の発光フォトニック結晶内の層の総数に応じて、導入され得る。厚さ(2n+1)λ/2の層のうちの1つは、有機電界発光エミッタ材料を含み得る。
本開示の段落133による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる第1の単一の発光フォトニック結晶は、周期λ/2の屈折率の周期的変調を有する層の積み重ねを含み、式中、λは、フォトニック結晶ストップバンドの中心波長に等しい。この変調は、層の物理的厚さの観点からではなく、それらの光学的厚さの観点から、一様に周期的である。1つの変調周期によって構成された層は、数が2つで、同じ厚さであり得るが、それらの層は、数が2つで、異なる光学的厚さであり得、その結果、作成されるストップバンドの幅が狭くなる。また、1つの光学的厚さ変調周期によって構成された、3つ以上の層が存在してもよい。
本開示の段落133による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる第1の単一の発光フォトニック結晶は、光の屈折率の周期的変調を有し得、第1の単一の発光フォトニック結晶は、160ナノメートル未満離れている短波長バンドエッジ及び長波長バンドエッジを有するストップバンドを生成するのに十分な周期的変調の周期を含み得る。
本開示の段落133による発光デバイスの様々な実施形態では、有機発光ダイオードデバイスに含まれる第1の単一の発光フォトニック結晶は、光の屈折率の周期的変調を有し得、第1の単一の発光フォトニック結晶は、110ナノメートル未満離れている短波長バンドエッジ及び長波長バンドエッジを有するストップバンドを生成するのに十分な周期的変調の周期を含み得る。
本開示の段落133による発光デバイスの様々な実施形態では、
有機発光ダイオードデバイスに含まれる第1の単一の発光フォトニック結晶は、
光の屈折率の周期的変調を有し得、
第1の単一の発光フォトニック結晶は、70ナノメートル未満離れている短波長バンドエッジ及び長波長バンドエッジを有するストップバンドを生成するのに十分な周期的変調の周期を含み得る。
本開示の段落133による発光デバイスの様々な実施形態では、他の単一の発光フォトニック結晶の各々は、変化する屈折率の一連の層を更に含み得る。
本開示の段落133による発光デバイスの様々な実施形態では、有機電界発光エミッタ材料を含む、第1の単一の発光フォトニック結晶内のより低い屈折率の層はまた、隣接層に対して低屈折率を各々有する、追加の有機材料を含み得、有機材料は、電荷担体輸送材料、電荷担体注入材料、又は電荷担体注入材料のうちの少なくとも1つである。
本開示の段落133による発光デバイスの様々な実施形態では、発光デバイスは、基板上に構築され得る。その基板は、透明であってもよく、発光デバイスからの光が、基板の底部から放出されることを可能にする。
本開示の段落133による発光デバイスの様々な実施形態では、発光デバイスは、発光デバイスと基板との間に介在された金属製反射板を備える、基板上に構築され得る。
本開示の段落133による発光デバイスの様々な実施形態では、発光デバイスは、基板からの第1の単一発光フォトニック結晶の反対側に位置する、1つ以上の他の単一の発光フォトニック結晶のうちの1つ以上を備える、基板上に構築され得る。
本開示の段落133による発光デバイスの様々な実施形態では、発光デバイスは、第1の単一発光フォトニック結晶と基板との間に位置する、1つ以上の他の単一発光フォトニック結晶のうちの1つ以上を備える、基板上に構築され得る。
本開示の段落133による発光デバイスの様々な実施形態では、発光デバイスは、第1の単一発光フォトニック結晶によって構成された電界発光エミッタが局在しているゾーンと、基板との間に介在された陽極を備える、陽極を備え得る。
本開示の段落133による発光デバイスの様々な実施形態では、発光デバイスは、第1の単一発光フォトニック結晶によって構成された電界発光エミッタが局在しているゾーンが、陽極と基板との間に介在された、陽極を備え得る。
本開示の段落133による発光デバイスの様々な実施形態では、1つ以上の他の単一の発光フォトニック結晶のうちの少なくとも1つにおいて、光輝性材料は、その単一の発光フォトニック結晶によって構成された単一の層によって構成され得る。光輝性材料は、その単一の層の厚さの一部分のみに存在し得る。
本開示の段落133による発光デバイスの様々な実施形態では、1つ以上の他の単一の発光フォトニック結晶のうちの少なくとも1つ以上は、光輝性材料を含む2つ以上の層を含み得る。
本開示の段落133による発光デバイスの様々な実施形態では、第1の単一の発光フォトニック結晶内に配置された有機電界発光エミッタ材料を有する、第1の単一の発光フォトニック結晶と、他の1つの単一の発光フォトニック結晶内に配置された光輝性材料を有する、他の1つの単一の発光フォトニック結晶とは、発光デバイスによって構成され得る。この発光デバイスは、青色光又は紫色光、及び黄色光の混合物を放出し得、この放出された光の混合物は、白色光として認識され得る。
本開示の段落133による発光デバイスの様々な実施形態では、第1の単一の発光フォトニック結晶内に配置された有機電界発光エミッタ材料を有する、該第1の単一の発光フォトニック結晶と、他の2つの単一の発光フォトニック結晶の各々の内に配置された異なる光輝性材料を有する、他の2つの単一の発光フォトニック結晶とは、発光デバイスによって構成され得る。この発光デバイスは、青色光又は紫色光、緑色光、及び赤色光の混合物を放出し得、この放出された光の混合物は、白色光として認識され得る。この放出された光の混合物は、CIE 1931 2°XYZ色空間の色度図のx=0.25~0.5及びy=0.2~0.45により画定された長方形にある、CIE 1931 2°XYZ色空間の色度座標を有し得る。
本開示の段落133による発光デバイスの様々な実施形態では、他の単一発光フォトニック結晶のうちの少なくとも1つによって構成された光輝性材料は、有機光輝性材料である。
本開示の段落133による発光デバイスの様々な実施形態では、他の単一発光フォトニック結晶のうちの少なくとも1つによって構成された光輝性材料は、有機金属光輝性材料である。有機金属光輝性材料は、有機イリジウム光輝性材料であってもよい。
上述の様々な実施形態では、有機材料への言及は、有機金属材料を含むとみなし得る。
上述の様々な実施形態では、有機材料への言及は、通電時に励起錯体発光を生成し得る、有機材料の組み合わせを含むとみなし得る。

Claims (12)

  1. 単一の発光フォトニック結晶であって、前記単一の発光フォトニック結晶は、前記単一のフォトニック結晶内に配置された有機電界発光エミッタ材料を有し、
    前記有機電界発光エミッタ材料は、前記フォトニック結晶の光学的厚さの10%未満を有するゾーンに局在する、有機発光材料を含み、
    前記有機電界発光エミッタ材料は、前記フォトニック結晶のストップバンドと少なくとも部分的に重なる、自由空間発光スペクトルを有し、
    前記フォトニック結晶は、前記有機電界発光エミッタ材料が重なる、前記ストップバンドのエッジに対応する波長で光を放出し、
    前記フォトニック結晶は、変化する屈折率の層の積み重ねを更に含み、
    より低い屈折率の材料の層は、前記有機電界発光エミッタ材料を含む、単一の発光フォトニック結晶。
  2. 前記層の積み重ねが、λ/2の変調周期を有する屈折率の(光学的厚さで測定された)周期的変調を有し、式中、λは、前記フォトニック結晶ストップバンドの中心波長に等しい、請求項1に記載の単一の発光フォトニック結晶。
  3. 前記単一の発光フォトニック結晶によって構成された、変化する屈折率の前記層の積み重ねが、より高い屈折率を有する材料の第1の層、及びより低い屈折率を有する材料の第2の層を含む、異なる屈折率を有する材料の少なくとも1対の層を含み、
    前記2つの層を合わせた全光学的厚さがλ/2に等しく、式中、λは、前記フォトニック結晶ストップバンドの前記中心波長に等しい、請求項1に記載の単一の発光フォトニック結晶。
  4. 前記層の積み重ねを通る前記屈折率変調の前記周期が、(2n+1)λ/4に等しい光学的厚さを有する一定屈折率の層の挿入によって、1~7回中断され、式中、nは、1~3の整数であり、λは、前記フォトニック結晶の前記ストップバンドの前記中心波長である、請求項2に記載の単一の発光フォトニック結晶。
  5. 前記層の積み重ねを通る前記屈折率変調の前記周期が、3λ/4の厚さを有する層によって1回中断され、前記層の積み重ねの前記屈折率変調を中断する前記層が、前記有機電界発光エミッタ材料を含む、請求項4に記載の単一の発光フォトニック結晶。
  6. 前記ストップバンドの前記エッジは、前記有機電界発光エミッタ材料による自由空間発光性発光の測定放射輝度が、前記エミッタ材料の前記自由空間発光スペクトルのピーク放射輝度の4分の1よりも大きい波長で発生する、請求項1に記載の単一のフォトニック結晶。
  7. 前記第1の材料層及び前記第2の材料層が、同じ光学的厚さを有しない、請求項3に記載の単一の発光フォトニック結晶。
  8. 請求項1に記載の単一の発光フォトニック結晶を含み、前記単一のフォトニック結晶内に配置された光輝性材料を各々が有する、1つ以上の他の発光フォトニック結晶を更に含む、発光デバイスであって、
    前記他の単一の発光フォトニック結晶の各々において、前記有機光輝性材料は、前記フォトニック結晶の前記ストップバンドと少なくとも部分的に重なる、自由空間発光スペクトルを有し、
    前記他の単一の発光フォトニック結晶の各々は、ストップバンドの前記エッジに対応する波長で光を放出し、
    前記他の単一の発光フォトニック結晶の各々は、周期的に変化する屈折率を有し、
    第1の単一の発光フォトニック結晶からの光が、前記他の単一の発光フォトニック結晶内の前記光輝性エミッタ材料によって吸収され、前記他の単一の発光フォトニック結晶に光輝性発光をさせるときに、前記1つ以上の他の単一の発光フォトニック結晶からの発光が生成される、発光デバイス。
  9. 前記フォトニック結晶が、前記ストップバンドの前記短波長エッジに対応する波長で光を放出し、
    第2の有機電界発光エミッタ材料が、前記単一のフォトニック結晶内に配置され、
    前記第2の有機電界発光エミッタ材料が、前記フォトニック結晶のストップバンドと少なくとも部分的に重なる、自由空間発光スペクトルを有し、
    前記フォトニック結晶がまた、前記第2の有機電界発光エミッタ材料が重なる、前記ストップバンドの前記長波長エッジに対応する波長で光を放出する、請求項1に記載の単一のフォトニック結晶。
  10. 隣接層に対応する低屈折率を各々が有する前記電界発光材料及び追加の有機材料を含む、前記層が、金属製反射板に隣接して位置する、請求項1に記載の単一のフォトニック結晶。
  11. 単一の発光フォトニック結晶であって、前記単一の発光フォトニック結晶は、前記単一のフォトニック結晶内に配置された有機電界発光エミッタ材料を有し、λ/2(式中、λは、前記フォトニック結晶ストップバンドの前記中心波長に等しい)の変調周期を有する屈折率の(光学的厚さで測定された)周期的変調を有する、層の積み重ねと、1つ以上のストップバンド内に光を放出し、それによって、前記単一の発光フォトニック結晶に、2つの別個の異なるストップバンドエッジと関連付けられた光を放出させるように構成された、エミッタと、を含む、単一の発光フォトニック結晶。
  12. 単一の発光フォトニック結晶であって、前記単一の発光フォトニック結晶は、前記単一のフォトニック結晶内に配置された有機電界発光エミッタ材料を有し、λ/2(式中、λは、前記フォトニック結晶ストップバンドの前記中心波長に等しい)の変調周期を有する屈折率の(光学的厚さで測定された)周期的変調を有する、層の積み重ねを含み、前記層の積み重ねを通る前記屈折率変調の前記周期は、(2n+1)λ/4に等しい光学的厚さを有する一定屈折率の層の挿入によって、1~7回中断され、式中、nは、1~3の整数であり、λは、前記フォトニック結晶の前記ストップバンドの前記中心波長である、単一の発光フォトニック結晶。
JP2023519207A 2020-09-25 2021-09-24 複数の光波長を放出するバンドエッジ発光強化有機発光ダイオードベースのデバイス Pending JP2023543025A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063083496P 2020-09-25 2020-09-25
US202063083450P 2020-09-25 2020-09-25
US63/083,450 2020-09-25
US63/083,496 2020-09-25
PCT/US2021/052013 WO2022067073A1 (en) 2020-09-25 2021-09-24 Band edge emission enhanced organic light emitting diode-based devices that emit multiple light wavelengths

Publications (1)

Publication Number Publication Date
JP2023543025A true JP2023543025A (ja) 2023-10-12

Family

ID=80823090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023519207A Pending JP2023543025A (ja) 2020-09-25 2021-09-24 複数の光波長を放出するバンドエッジ発光強化有機発光ダイオードベースのデバイス

Country Status (5)

Country Link
US (1) US20220102685A1 (ja)
EP (1) EP4218065A4 (ja)
JP (1) JP2023543025A (ja)
KR (1) KR20230092923A (ja)
WO (1) WO2022067073A1 (ja)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637294A (en) * 1969-12-19 1972-01-25 Bell Telephone Labor Inc Interference filter with alternately designed pairs of dielectric layers
CN1666576A (zh) * 2002-05-08 2005-09-07 泽奥勒克斯公司 使用反馈增强型发光二极管的显示器件
EP1783520A3 (en) * 2005-11-07 2008-01-09 JDS Uniphase Corporation Optical grating trim retarders
TWI317182B (en) * 2006-07-07 2009-11-11 Au Optronics Corp Tandem organic electroluminescent elements and uses of the same
US8891571B2 (en) * 2008-05-02 2014-11-18 Ricoh Company, Ltd. Vertical cavity surface emitting laser device, vertical cavity surface emitting laser array, optical scanning apparatus, image forming apparatus, optical transmission module and optical transmission system
EP2443640B1 (en) * 2009-06-17 2014-10-22 NLAB Solar AB Dye sensitised solar cell and method of manufacture
TWI458131B (zh) * 2011-06-27 2014-10-21 Lextar Electronics Corp 半導體發光元件
JP6062954B2 (ja) * 2012-11-08 2017-01-18 パイオニア株式会社 ミラー装置
JP6951328B2 (ja) * 2015-06-24 2021-10-20 ジョン エヌ マグノ 局限されたエミッタを備えるバンド端放出強化型有機発光ダイオード
US11398614B2 (en) * 2015-07-01 2022-07-26 Red Bank Technologies Llc Active matrix enhanced organic light emitting diode displays for large screen graphic display application
KR20180003164A (ko) * 2016-06-30 2018-01-09 허호구 밴드 에지 방출 증대 유기 발광 다이오드
KR20180070263A (ko) * 2016-12-16 2018-06-26 엘지디스플레이 주식회사 유기 발광 표시 장치
US10680185B2 (en) * 2018-01-04 2020-06-09 Red Bank Technologies Llc Active matrix enhanced organic light emitting diode displays for large screen graphic display applications

Also Published As

Publication number Publication date
KR20230092923A (ko) 2023-06-26
EP4218065A4 (en) 2024-08-21
EP4218065A1 (en) 2023-08-02
WO2022067073A1 (en) 2022-03-31
US20220102685A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
JP5284036B2 (ja) 発光装置
US8740438B2 (en) Illumination module
US7478930B2 (en) Backlight unit with an oxide compound-laminated optical layer
US20100277887A1 (en) Polarized white light emitting diode
JP4557289B2 (ja) 表示装置
US20060145172A1 (en) Light emitting diode with a quasi-omnidirectional reflector
TWI504308B (zh) 發光元件及顯示裝置
JP2008521165A (ja) 有機発光デバイス、それを製造するための方法、および複数の有機発光デバイスを備えるアレイ
JP2009026574A (ja) 表示装置
JP2004111398A (ja) 光学共振効果を利用した有機電界発光素子
KR101890460B1 (ko) 유기 발광 다이오드
KR20080050899A (ko) 광추출효율이 향상된 유기전계 발광소자
JP2003123987A (ja) 光共振器
JP2018519652A (ja) 局限されたエミッタを備えるバンド端放出強化型有機発光ダイオード
JP2011513964A (ja) 発光ダイオードデバイス
TWI504309B (zh) 發光元件及顯示裝置
JP5607733B2 (ja) Oledベースの発光デバイス
US20130181197A1 (en) Organic electroluminescent devices
JP2005079014A (ja) 発光装置
CN111710800B (zh) 显示面板及显示面板的制备方法
US7838889B2 (en) Solid-state area illumination system
US10923633B2 (en) Top-emitting light-emitting diode
JP2023543025A (ja) 複数の光波長を放出するバンドエッジ発光強化有機発光ダイオードベースのデバイス
KR101057349B1 (ko) 휘도가 강화된 백색광원
CN114050220A (zh) 透明显示面板、显示装置、发光显示器件及制备方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240924