JP2023181096A - Exposure light frequency enhancement device, photomask, and method for manufacturing the same - Google Patents

Exposure light frequency enhancement device, photomask, and method for manufacturing the same Download PDF

Info

Publication number
JP2023181096A
JP2023181096A JP2023078840A JP2023078840A JP2023181096A JP 2023181096 A JP2023181096 A JP 2023181096A JP 2023078840 A JP2023078840 A JP 2023078840A JP 2023078840 A JP2023078840 A JP 2023078840A JP 2023181096 A JP2023181096 A JP 2023181096A
Authority
JP
Japan
Prior art keywords
light
frequency
layer
exposure
exposure light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023078840A
Other languages
Japanese (ja)
Other versions
JP7382113B1 (en
Inventor
季明華
Minghua Ji
黄早紅
Zaohong Huang
任新平
Xinping Ren
林岳明
Yueming Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Chuanxin Semiconductor Co Ltd
Original Assignee
Shanghai Chuanxin Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Chuanxin Semiconductor Co Ltd filed Critical Shanghai Chuanxin Semiconductor Co Ltd
Application granted granted Critical
Publication of JP7382113B1 publication Critical patent/JP7382113B1/en
Publication of JP2023181096A publication Critical patent/JP2023181096A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70325Resolution enhancement techniques not otherwise provided for, e.g. darkfield imaging, interfering beams, spatial frequency multiplication, nearfield lenses or solid immersion lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

To provide an exposure light frequency enhancement device for projection lithography.SOLUTION: An exposure light frequency enhancement device for projection lithography includes a translucent substrate 101 having a first surface and a second surface opposite to each other, and a surface plasmon layer 102 that is positioned on the first surface of the translucent substrate, generates surface plasmon by action of exposure light, in which a plurality of nano-unit structures are provided in arrangement at periodic intervals so as to match a wavelength of the exposure light in a first direction and a second direction of a plane of the surface plasmon layer and generate a sum frequency effect, a periodic dimension of the nano-unit structure is set at 1 to 5 times of the wavelength of the exposure light, a resonance frequency of a proximity light wave of the surface plasmon in the first direction and the second direction becomes the same or an integer multiple of the light frequency of a first light wave and a second light wave polarized in the same direction, sum frequency light transmitting through the translucent substrate is generated by formation of the sum frequency effect, and a ratio of output of the sum frequency light to the total output of the exposure light transmitting through the surface plasmon layer exceeds 30%.SELECTED DRAWING: Figure 8

Description

本発明は、半導体製造分野に属し、特に、投影リソグラフィ用の露光光周波数増強装置、フォトマスクおよびその製造方法に関する。 The present invention belongs to the field of semiconductor manufacturing, and particularly relates to an exposure light frequency intensifier for projection lithography, a photomask, and a method for manufacturing the same.

リソグラフィ技術は、集積回路の製造方法の継続的な発展に伴い、線幅の継続的な縮小し、半導体素子の面積がますます小さくなって、半導体のレイアウトは通常の単機能分離素子から集積化された高密度多機能の集積回路へと進化した。すなわち、初期のIC(集積回路)からLSI(大規模集積回路)、VLSI(超大規模集積回路)、そして今日のULSI(極超大規模集積回路)に至るまで、素子の面積はさらに縮小された。プロセスの研究開発の複雑性と、長期性、且つコストが高いなどの不利な要因の制約を考慮し、従来の技術レベルに基づいて素子の集積密度をさらに高め、同じウェハ上でできるだけ多くの有効なチップ数を得ることにより、全体利益を向上させることは、チップメーカによってますます重要視されるはずである。ここで、投影リソグラフィ工程は重要な役割を果たすものであり、本文章におけるリソグラフィ技術は全ての投影リソグラフィを指すものであることから、投影リソグラフィ装置、プロセスおよびマスク技術はその中でも最も重要である。 Lithography technology, with the continuous development of integrated circuit manufacturing methods, the line width continues to shrink, the area of semiconductor devices becomes smaller and smaller, and the semiconductor layout changes from ordinary single-function isolated elements to integrated has evolved into high-density, multifunctional integrated circuits. That is, from early ICs (integrated circuits) to LSIs (large scale integrated circuits), VLSIs (very large scale integrated circuits), and today's ULSIs (ultra large scale integrated circuits), the area of devices has been further reduced. Considering the constraints of unfavorable factors such as the complexity of process research and development, long term, and high cost, we will further increase the integration density of devices based on the conventional technology level and maximize the number of effective devices on the same wafer. Improving overall profits by increasing the number of chips will become increasingly important to chip manufacturers. Here, the projection lithography process plays an important role, and since the lithography technology in this document refers to all projection lithography, the projection lithography equipment, process and mask technology are the most important among them.

最も単純なバイナリフォトマスク(BIM)または位相シフトフォトマスク(PSM)は、いずれも約50~100nmの厚さを有するCrマスク層を有する。位相シフトフォトマスクの位相シフトは、パターン化された石英基板上のトレンチの深さによって提供される。 The simplest binary photomasks (BIMs) or phase shift photomasks (PSMs) both have a Cr mask layer with a thickness of about 50-100 nm. The phase shift of the phase shift photomask is provided by the depth of the trench on the patterned quartz substrate.

二層位相シフトフォトマスクは、遮光のCr層およびMoSiON層を含んでもよく、そのMoSiON層の厚さは、その位相シフトおよび減衰機能を確保するために、約50~150nmである。二層位相シフトフォトマスクのパターニングが終わると、二層位相シフトフォトマスクの位相シフト量および減衰量は、MoSiON層の厚さによって決められる。位相シフトフォトマスクには、より優れたフォトマスクを得るために、多層構造をさらに含んでもよい。 The two-layer phase shift photomask may include a light-blocking Cr layer and a MoSiON layer, and the thickness of the MoSiON layer is about 50-150 nm to ensure its phase shift and attenuation function. After patterning the two-layer phase shift photomask, the amount of phase shift and attenuation of the two-layer phase shift photomask are determined by the thickness of the MoSiON layer. The phase shift photomask may further include a multilayer structure to obtain a better photomask.

しかしながら、上記のフォトマスクは、ウェハ上でのパターンの解像度およびコントラストが十分でない問題が依然として存在している。 However, the above-described photomask still has the problem of insufficient pattern resolution and contrast on the wafer.

なお、上述した技術背景に対する説明は、本発明の技術手段を明確、且つ完全に理解させるための説明であり、また、当業者を理解させるために記述されているものである。これらの技術手段は、単なる本発明の背景技術部分として説明されたものであり、当業者により周知されたものではない。 The above description of the technical background is provided to provide a clear and complete understanding of the technical means of the present invention, and is provided for the understanding of those skilled in the art. These technical means are merely explained as a background technical part of the present invention and are not well known by those skilled in the art.

中国特許出願公開第102866580号明細書China Patent Application Publication No. 102866580

上述の従来技術の欠点に鑑みて、本発明の目的は、従来の投影リソグラフィ技術においてフォトマスクの解像度およびコントラストが十分でない問題を解決するために用いられる、露光光周波数増強装置、フォトマスクおよびその製造方法を提供することである。 In view of the above-mentioned shortcomings of the prior art, an object of the present invention is to provide an exposure light frequency intensifier, a photomask and its An object of the present invention is to provide a manufacturing method.

上記の目的およびその他関連目的を達成するために、本発明は、
対向する第1面および第2面を備える透光性基板と、
表面プラズモン層であって、前記透光性基板の第1面に位置し、複数のナノ単位構造を含み、複数の前記ナノ単位構造は、それぞれ前記表面プラズモン層の平面の第1方向および第2方向で前記露光光の波長と整合して和周波効果を発生することができる周期的間隔配列に設けられ、前記和周波数効果により前記透光性基板を透過する和周波光を生成することができ、前記和周波光の出力が前記表面プラズモン層を透過する露光光の総出力に占める比率が30%を超える、表面プラズモン層と、
を含む投影リソグラフィ用の露光光周波数増強装置を提供する。
In order to achieve the above objects and other related objects, the present invention provides:
a transparent substrate having a first surface and a second surface facing each other;
a surface plasmon layer, which is located on the first surface of the light-transmitting substrate and includes a plurality of nano unit structures, the plurality of nano unit structures are arranged in a first direction and a second direction of the plane of the surface plasmon layer, respectively; provided in a periodically spaced array capable of generating a sum frequency effect by matching the wavelength of the exposure light in a direction, and capable of generating a sum frequency light that is transmitted through the light-transmitting substrate by the sum frequency effect. , a surface plasmon layer in which the output of the sum frequency light accounts for more than 30% of the total output of the exposure light transmitted through the surface plasmon layer;
An exposure light frequency intensifier for projection lithography is provided.

選択的に、前記露光光は、前記行方向に平行に偏光され、且つ前記列方向に平行に偏光される2つの偏光を含む。 Optionally, the exposure light includes two polarized lights, one polarized in parallel to the row direction and one polarized in parallel to the column direction.

選択的に、前記第1方向および前記第2方向に配列されたナノ単位構造の周期寸法は、それぞれ前記露光光の波長の1倍~5倍の整数倍である。 Alternatively, periodic dimensions of the nano unit structures arranged in the first direction and the second direction are each an integral multiple of 1 to 5 times the wavelength of the exposure light.

選択的に、前記表面プラズモンは前記露光光の作用下で表面プラズモンを生成し、前記表面プラズモンの一部前記表面プラズモン層を透過して、近接場光の場強度を増強し、前記表面プラズモンの他の一部の近接場は、前記周期的間隔配列に基づいて、表面に平行な第1方向に偏光された第1光波と、第2方向に偏光された第2光波と共振整合して和周波効果を発生して前記表面プラズモン層に垂直な第3光波を形成し、前記第3光波は前記和周波光である。 Selectively, the surface plasmon generates surface plasmon under the action of the exposure light, and a part of the surface plasmon passes through the surface plasmon layer to enhance the field intensity of the near-field light, and the surface plasmon Another part of the near field is resonantly matched and summed with a first light wave polarized in a first direction parallel to the surface and a second light wave polarized in a second direction based on the periodic spacing arrangement. A frequency effect is generated to form a third light wave perpendicular to the surface plasmon layer, and the third light wave is the sum frequency light.

選択的に、第1方向および第2方向における前記表面プラズモンの近接場光波の共振周波数は、それぞれ同じ方向に偏光された第1光波および第2光波の光周波数と同一または整数倍である。 Optionally, the resonant frequencies of the near-field light waves of the surface plasmons in the first direction and the second direction are the same as or an integral multiple of the light frequencies of the first light wave and the second light wave polarized in the same direction, respectively.

選択的に、第1方向に配列された前記ナノ単位構造の周期寸法は、前記露光光の波長の1倍~5倍の整数倍であり、第1方向の共振周波数は第1光波の周波数の1倍~0.2倍になるようにし、第2方向に配列された前記ナノ単位構造の周期寸法は、前記露光光の波長の1倍~5倍の整数倍であり、第2方向の共振周波数は第2光波の周波数の1倍~0.2倍になるようにする。 Selectively, the periodic dimension of the nano unit structures arranged in the first direction is an integer multiple of 1 to 5 times the wavelength of the exposure light, and the resonance frequency in the first direction is equal to or greater than the frequency of the first light wave. The periodic dimension of the nano unit structures arranged in the second direction is an integral multiple of 1 to 5 times the wavelength of the exposure light, and resonance in the second direction The frequency is set to be 1 to 0.2 times the frequency of the second light wave.

選択的に、前記第1方向の共振周波数f1および波長λ1、前記第2方向の共振周波数f2および波長λ2、前記第3光波の周波数f3および波長λ3は、以下の式を満たす。
f3=f1+f2、λ3=λ1*λ2/(λ1+λ2)
Selectively, the resonant frequency f1 and wavelength λ1 in the first direction, the resonant frequency f2 and wavelength λ2 in the second direction, and the frequency f3 and wavelength λ3 of the third light wave satisfy the following formula.
f3=f1+f2, λ3=λ1*λ2/(λ1+λ2)

選択的に、前記表面プラズモン層の厚さは前記露光光の波長の1/2~3倍の間である。 Optionally, the thickness of the surface plasmon layer is between 1/2 and 3 times the wavelength of the exposure light.

選択的に、前記第1方向と前記第2方向が垂直である。 Optionally, the first direction and the second direction are perpendicular.

選択的に、前記表面プラズモン層の材料は、金属および紫外線に対する透明導電酸化物の一つを含み、前記金属は、Al、Au、AgおよびPdの1つ以上を含み、前記透明導電酸化物は、酸化インジウム、酸化スズ、酸化インジウムスズおよび酸化亜鉛の1つまたは複数の組み合せを含む。 Optionally, the material of the surface plasmon layer comprises one of a metal and a UV-transparent conductive oxide, the metal comprises one or more of Al, Au, Ag and Pd, and the transparent conductive oxide comprises one or more of Al, Au, Ag and Pd. , indium oxide, tin oxide, indium tin oxide and zinc oxide.

選択的に、前記和周波光の出力が前記表面プラズモン層を透過する露光光の総出力に占める比率が60%~80%である。 Selectively, the ratio of the output of the sum frequency light to the total output of the exposure light transmitted through the surface plasmon layer is 60% to 80%.

選択的に、前記ナノ単位構造の寸法と互いに隣接する2つの前記ナノ単位構造の間隔は同一である。 Alternatively, the dimensions of the nano-unit structures and the distance between two adjacent nano-unit structures are the same.

選択的に、前記ナノ単位構造の形状は、正方形、長方形、円形、および楕円形の1つを含む。 Optionally, the shape of the nanounit structure includes one of a square, a rectangle, a circle, and an ellipse.

本発明は、
透光性基板を提供するステップと、
前記透光性基板上に表面プラズモン層を形成するステップと、
を含む、上記何れかの手段に記載の投影リソグラフィ用の露光光周波数増強装置の製造方法をさらに提供する。
The present invention
providing a translucent substrate;
forming a surface plasmon layer on the transparent substrate;
There is further provided a method for manufacturing an exposure light frequency intensifier for projection lithography as described in any of the above means.

本発明は、
上記何れかの手段に記載の投影リソグラフィ用の露光光周波数増強装置と、
互いに対向する第1面および第2面を有し、前記第2面が前記増強装置の透光性基板の第2面と結合される透明基板と、
前記透明基板の第1面を覆う遮光層であって、この遮光層を貫通する露光窓を有する遮光層と、
を含む投影リソグラフィ用のフォトマスクをさらに提供する。
The present invention
an exposure light frequency intensifier for projection lithography according to any of the above means;
a transparent substrate having a first surface and a second surface facing each other, the second surface being combined with the second surface of the light-transmitting substrate of the enhancement device;
a light-shielding layer covering the first surface of the transparent substrate, the light-shielding layer having an exposure window penetrating the light-shielding layer;
A photomask for projection lithography is further provided.

選択的に、前記フォトマスクは位相シフト材料層をさらに含み、前記位相シフト材料層は前記透明基板と前記遮光層との間に位置され、前記露光窓の前記パターンは前記位相シフト材料層の上部に停止される。 Optionally, the photomask further includes a phase shift material layer, the phase shift material layer is located between the transparent substrate and the light blocking layer, and the pattern of the exposure windows is formed on the top of the phase shift material layer. will be stopped.

選択的に、前記透明基板の材料は、合成石英ガラスを含み、前記遮光層の材料は、クロム、酸化クロム、および窒化クロムの1つを含み、前記位相シフト材料層の材料は、酸化モリブデンシリコン、酸窒化モリブデンシリコン、酸化炭化窒化モリブデンシリコン、酸化クロムシリコン、酸窒化クロムシリコンおよび酸化炭化窒化クロムシリコンの1つを含む。 Optionally, the material of the transparent substrate includes synthetic quartz glass, the material of the light blocking layer includes one of chromium, chromium oxide, and chromium nitride, and the material of the phase shift material layer includes molybdenum silicon oxide. , molybdenum silicon oxynitride, molybdenum silicon oxycarbonitride, chromium silicon oxide, chromium silicon oxynitride, and chromium silicon oxycarbonitride.

本発明は、
互いに対向する第1面および第2面を有する透光性基板を提供するステップと、
前記透光性基板の第1面に表面プラズモン層を形成するステップと、
互いに対向する第1面および第2面を有し、前記透明基板の第1面に露光窓を有する遮光層を形成する透明基板を提供するステップと、
前記透光性基板の第2面と前記透明基板の第2面とを結合するステップと、を含む、
上記何れかの手段に記載の投影リソグラフィ用のフォトマスクの製造方法をさらに提供する。
The present invention
providing a translucent substrate having a first surface and a second surface facing each other;
forming a surface plasmon layer on the first surface of the transparent substrate;
providing a transparent substrate having a first surface and a second surface facing each other and forming a light shielding layer having an exposure window on the first surface of the transparent substrate;
combining a second surface of the light-transmitting substrate and a second surface of the transparent substrate;
A method for manufacturing a photomask for projection lithography as described in any of the above means is further provided.

本発明は、
上記何れかの手段に記載の投影リソグラフィ用の露光光周波数増強装置と、
前記透明基板の第2面を覆う遮光層であって、この遮光層を貫通する露光窓を有する遮光層と、を含む投影リソグラフィ用のフォトマスクをさらに提供する。
The present invention
an exposure light frequency intensifier for projection lithography according to any of the above means;
The present invention further provides a photomask for projection lithography, including a light-shielding layer covering the second surface of the transparent substrate and having an exposure window penetrating the light-shielding layer.

選択的に、前記フォトマスクは位相シフト材料層をさらに含み、前記位相シフト材料層は前記透明基板と前記遮光層との間に位置され、前記露光窓の前記パターンは前記位相シフト材料層の上部に停止される。 Optionally, the photomask further includes a phase shift material layer, the phase shift material layer is located between the transparent substrate and the light blocking layer, and the pattern of the exposure windows is formed on the top of the phase shift material layer. will be stopped.

選択的に、前記遮光層の材料は、クロム、酸化クロム、および窒化クロムの1つを含み、前記位相シフト材料層の材料は、酸化モリブデンシリコン、酸窒化モリブデンシリコン、酸化炭化窒化モリブデンシリコン、酸化クロムシリコン、酸窒化クロムシリコンおよび酸化炭化窒化クロムシリコンの1つを含む。 Optionally, the material of the light-blocking layer includes one of chromium, chromium oxide, and chromium nitride, and the material of the phase shift material layer includes molybdenum silicon oxide, molybdenum silicon oxynitride, molybdenum silicon oxide carbonitride, and molybdenum silicon oxide. including one of chromium silicon, chromium silicon oxynitride, and chromium silicon oxycarbonitride.

本発明は、
互いに対向する第1面および第2面を有する透光性基板を提供するステップと、
前記透光性基板の第1面に表面プラズモン層を形成するステップと、
前記透光性基板の第2面に露光窓が形成されている遮光層を形成するステップと、を含む、
上記何れかの手段に記載の投影リソグラフィ用のフォトマスクの製造方法をさらに提供する。
The present invention
providing a translucent substrate having a first surface and a second surface facing each other;
forming a surface plasmon layer on the first surface of the transparent substrate;
forming a light-shielding layer in which an exposure window is formed on the second surface of the light-transmitting substrate;
A method for manufacturing a photomask for projection lithography as described in any of the above means is further provided.

上述したように、本発明による露光光周波数増強装置、フォトマスクおよびその製造方法は、以下の有益な効果を奏する。
本発明による露光光周波数増強装置は、透光性基板の表面に表面プラズモン層を設け、表面プラズモン層は、複数のナノ単位構造を含み、複数のナノ単位構造は、表面プラズモン層の平面の第1方向および第2方向で、露光光(365nmのi-line光線、248nmの紫外線UV、193nmの深紫外線DUVなど)の波長と整合して和周波効果を発生することができる周期的間隔配列に設けられ、和周波効果により前記透光性基板を透過する和周波光を形成することができ、和周波光の出力が前記表面プラズモン層を透過する露光光の総出力に占める比率が30%を超える。本案は、和周波効果により、一部表面プラズモンの近接場が、表面に平行な第1方向に偏光された第1光波と第2方向に偏光された第2光波と相互作用することにより、第1方向および第2方向における表面プラズモンの近接場光波の共振周波数がそれぞれ同じ方向に偏光された第1光波および第2光波の光周波数と同一であるか整数倍になると、和周波効果を発生し、且つ表面に垂直な第3光波(和周波光)を形成し、第3光波の周波数は、第1方向および第2方向の共振周波数の和であり、第3光波の波長は第1光波の波長よりも小さく、且つ第2光波の波長よりも小さく、表面プラズモン層を透過した露光光は波長が変わらずに保持される第1部分と波長が短くなった第2部分を有するようにし、それにより、フォトリソグラフィ工程の解像度およびコントラストを大幅に向上させる。さらに、本案は、表面プラズモン層を設けることにより、和周波光の出力が前記表面プラズモン層を透過する露光光の総出力に占める比率が30%を超えるようにして、解像度のさらなる向上が確保される。
As described above, the exposure light frequency intensifier, photomask, and method for manufacturing the same according to the present invention have the following beneficial effects.
In the exposure light frequency intensifier according to the present invention, a surface plasmon layer is provided on the surface of a transparent substrate, the surface plasmon layer includes a plurality of nano unit structures, and the plurality of nano unit structures are arranged at the top of the plane of the surface plasmon layer. in one direction and in a second direction, in a periodically spaced array that can be matched to the wavelength of the exposure light (365 nm i-line light, 248 nm ultraviolet UV, 193 nm deep ultraviolet DUV, etc.) to generate a sum frequency effect. is provided, and can form a sum frequency light that passes through the light-transmitting substrate due to a sum frequency effect, and the output of the sum frequency light accounts for 30% of the total output of the exposure light that passes through the surface plasmon layer. exceed. In this case, due to the sum frequency effect, the near field of surface plasmons partially interacts with a first light wave polarized in a first direction parallel to the surface and a second light wave polarized in a second direction. When the resonant frequencies of the near-field light waves of surface plasmons in one direction and the second direction are the same as or an integral multiple of the optical frequencies of the first light wave and the second light wave polarized in the same direction, a sum frequency effect is generated. , and forms a third light wave (sum frequency light) perpendicular to the surface, the frequency of the third light wave is the sum of the resonant frequencies in the first direction and the second direction, and the wavelength of the third light wave is the same as that of the first light wave. wavelength and smaller than the wavelength of the second light wave, and the exposure light transmitted through the surface plasmon layer has a first part whose wavelength is kept unchanged and a second part whose wavelength is shortened. This greatly improves the resolution and contrast of the photolithography process. Furthermore, the present invention provides a surface plasmon layer so that the ratio of the sum frequency light output to the total output of exposure light transmitted through the surface plasmon layer exceeds 30%, thereby ensuring further improvement in resolution. Ru.

本発明の実施例1による露光光周波数増強装置の製造方法のあるステップで示される構造を示す図。1 is a diagram showing a structure shown in a certain step of a method for manufacturing an exposure light frequency intensifier according to Example 1 of the present invention; FIG. 本発明の実施例1による露光光周波数増強装置の製造方法のあるステップで示される構造を示す図。1 is a diagram showing a structure shown in a certain step of a method for manufacturing an exposure light frequency intensifier according to Example 1 of the present invention; FIG. 本発明の実施例1による露光光周波数増強装置の断面構造を示す図。1 is a diagram showing a cross-sectional structure of an exposure light frequency intensifier according to Example 1 of the present invention. 本発明の実施例1による露光光周波数増強装置の上面構造を示す図。1 is a diagram showing a top structure of an exposure light frequency intensifier according to a first embodiment of the present invention; FIG. 本発明の実施例2によるフォトマスクの製造方法のあるステップで示される構造を示す図。FIG. 3 is a diagram showing a structure shown in a certain step of a method for manufacturing a photomask according to Example 2 of the present invention. 本発明の実施例2によるフォトマスクの製造方法のあるステップで示される構造を示す図。FIG. 3 is a diagram showing a structure shown in a certain step of a method for manufacturing a photomask according to Example 2 of the present invention. 本発明の実施例2によるフォトマスクの製造方法のあるステップで示される構造を示す図。FIG. 3 is a diagram showing a structure shown in a certain step of a method for manufacturing a photomask according to Example 2 of the present invention. 本発明の実施例2による2つのフォトマスクの構造を示す図。FIG. 7 is a diagram showing the structure of two photomasks according to Example 2 of the present invention. 本発明の実施例2による2つのフォトマスクの構造を示す図。FIG. 7 is a diagram showing the structure of two photomasks according to Example 2 of the present invention. 本発明の実施例3による2つのフォトマスクの構造を示す図。FIG. 7 is a diagram showing the structure of two photomasks according to Example 3 of the present invention. 本発明の実施例3による2つのフォトマスクの構造を示す図。FIG. 7 is a diagram showing the structure of two photomasks according to Example 3 of the present invention.

添付図面は、明細書の一部を構成するもので、本出願の実施形態のさらなる理解のために提供され、本出願の実施形態を説明に、本文の説明とともに本出願の原理を説明するために用いられる。明らかに、以下の説明における図面は、本出願のいくつかの実施形態に過ぎない。 The accompanying drawings, which constitute a part of the specification, are provided to provide a further understanding of the embodiments of the present application and, together with the description, serve to explain the principles of the present application. used for. Obviously, the drawings in the following description are only some embodiments of the present application.

以下、特定の具体的実例によって本発明の実施形態を説明するが、当業者は、本明細書に開示される内容から本発明における他の利点および効果を容易に理解可能である。本発明はその他異なる具体的実施形態によっても実施または応用可能であり、本明細書の各詳細事項もまた、別の視点および応用によって、本発明の精神を逸脱しないことを前提に各種の補足または変更が可能である。 Embodiments of the present invention will be described below with specific specific examples, and those skilled in the art will readily understand other advantages and effects of the present invention from the content disclosed herein. The present invention can be implemented or applied in other specific embodiments, and each detail in this specification may also be modified from various supplements or applications according to other viewpoints and applications without departing from the spirit of the present invention. Changes are possible.

なお、本文では、用語「含む/有する」は、特徴、部材、ステップ又は構成要素が存在することを意味し、一つ又は複数の他の特徴、部材、ステップ又は構成要素の存在又は付加を排除しない。 In addition, in this text, the term "comprising/having" means that a feature, member, step, or component is present, and excludes the presence or addition of one or more other features, members, steps, or components. do not.

1つの実施形態に記載された特徴および/又は示された特徴は、同一又は類似の方式で1つ又はさらに多くの他の実施形態で用いられてもよく、他の実施形態における特徴と組み合わせてもよく、他の実施形態における特徴に代わってもよい。 Features described and/or illustrated in one embodiment may be used in the same or similar manner in one or more other embodiments and may be combined with features in other embodiments. may also be substituted for features in other embodiments.

本発明の実施例について詳細に説明する際に、説明の便宜上、素子構造を示す断面図について一般的な縮尺比率を使用せず、一部拡大し、且つ前記図面は例に過ぎず、本発明の範囲を限定するものではない。さらに、実際の作製において、長さ、幅および深さの三次元寸法が含まれるべきである。 When describing the embodiments of the present invention in detail, for convenience of explanation, a general scale ratio is not used for cross-sectional views showing the device structure, and some portions are enlarged, and the drawings are merely examples, and the present invention It does not limit the scope of. Additionally, the three dimensional dimensions of length, width and depth should be included in the actual fabrication.

説明の便宜上、本文において、「の下に」、「下方」、「未満」、「下面」、「上方」、「上に」などの空間関係用語を用いて図面に示される一つの要素または特徴が他の素子または特徴との関係を説明することがある。これら空間関係用語は、図に描かれている配向に加えて、使用中または動作中の装置の異なる配向を含むことを意図される。さらに、ある層が2つの層の「間」にあると言及される場合、それはその2つの層の間の唯一の層であり得るか、または1つ以上の介在層も存在し得る。 For convenience of explanation, spatial terms such as "below," "below," "less than," "below," "above," and "above" are used in the text to refer to an element or feature shown in a drawing. may describe relationships with other elements or features. These spatially related terms are intended to include different orientations of the device in use or operation in addition to the orientation depicted in the figures. Furthermore, when a layer is referred to as being "between" two layers, it can be the only layer between the two layers, or there can also be one or more intervening layers.

本願の文脈において、第1特徴が第2特徴の「上に」あると記載される構造は、第1特徴および第2特徴が直接接触して形成される実施形態を含んでもよく、ならびに第1特徴および第2特徴の間に形成される追加の特徴を含んでもよいが、第1特徴および第2特徴が直接接触しないこともある。 In the context of this application, structures described as having a first feature "on" a second feature may include embodiments in which the first feature and the second feature are formed in direct contact, as well as embodiments in which the first feature and the second feature are formed in direct contact. Additional features may be included that are formed between the feature and the second feature, but the first feature and the second feature may not be in direct contact.

なお、本実施例において提供される図示は、模式の方式で本発明の基本的な構想を説明するものに過ぎない。図面で、本発明に関する部品のみ示しており、実際に実施するときの部品の数、形状、および寸方に従って描くものではない。実際に実施するときに各部品の形態、数量、および比率は、任意に変更してもよく、且つそれら部品の構成形態はより複雑であり得る。 Note that the illustrations provided in this embodiment are merely for explaining the basic concept of the present invention in a schematic manner. In the drawings, only parts related to the invention are shown and are not drawn according to the number, shape, and size of the parts in actual implementation. When actually implemented, the form, quantity, and ratio of each part may be arbitrarily changed, and the configuration of these parts may be more complex.

図3および図4に示されるように、本実施形態は、投影リソグラフィ用の露光光周波数増強装置を提供し、前記増強装置は、対向する第1面および第2面を含む透光性基板101と、前記透光性基板101の第1面に位置し、複数のナノ単位構造を含む表面プラズモン層102であって、複数の前記ナノ単位構造は、それぞれ前記表面プラズモン層の平面の第1方向および第2方向で前記露光光の波長と整合して和周波効果を発生することができる周期的間隔配列に設けられ、前記周波数効果は、前記透光性基板を透過する和周波光を形成することができ、前記和周波光の出力が前記表面プラズモン層を透過する露光光の総出力に占める比率が30%を超える表面プラズモン層102と、を含む。 As shown in FIGS. 3 and 4, the present embodiment provides an exposure light frequency intensifier for projection lithography, wherein the intensifier includes a transparent substrate 101 including opposing first and second surfaces. and a surface plasmon layer 102 located on the first surface of the light-transmitting substrate 101 and including a plurality of nano unit structures, each of the plurality of nano unit structures extending in a first direction of the plane of the surface plasmon layer. and arranged in a periodically spaced array capable of generating a sum frequency effect in a second direction aligned with the wavelength of the exposure light, the frequency effect forming a sum frequency light that is transmitted through the transparent substrate. and a surface plasmon layer 102 in which the output of the sum frequency light accounts for more than 30% of the total output of exposure light transmitted through the surface plasmon layer.

一実施形態において、露光光は、前記第1方向に平行に偏光され、且つ第2方向に平行に偏光された2つの偏光を含む。 In one embodiment, the exposure light includes two polarized lights, one polarized in parallel to the first direction and one polarized in parallel to the second direction.

一実施形態において、第1方向および第2方向に配列されたナノ単位構造の周期寸法は、それぞれ前記露光光の波長の1~5の整数倍である。 In one embodiment, the periodic dimensions of the nano unit structures arranged in the first direction and the second direction are each an integer multiple of 1 to 5 of the wavelength of the exposure light.

一実施形態において、表面プラズモン層102は、露光光の作用下で表面プラズモンを生成するために用いられ、表面プラズモンの一部は前記表面プラズモン層102を透過して近接場光の場強度を増強し、表面プラズモンの他の一部の近接場は、前記周期的間隔配列に基づいて表面に平行な第1方向に偏光された第1光波と第2方向に偏光された第2光波と共振整合して和周波効果を発生して、前記表面プラズモン層に垂直な第3光波を形成し、前記第3光波は前記和周波光である。 In one embodiment, the surface plasmon layer 102 is used to generate surface plasmons under the action of exposure light, and a part of the surface plasmons is transmitted through the surface plasmon layer 102 to enhance the field intensity of the near-field light. The other part of the near field of the surface plasmon is resonantly matched with a first light wave polarized in a first direction parallel to the surface and a second light wave polarized in a second direction based on the periodic spacing arrangement. and generates a sum frequency effect to form a third light wave perpendicular to the surface plasmon layer, the third light wave being the sum frequency light.

一実施形態において、前記第3光波の波長は、前記第1光波の波長よりも小さく、且つ前記第2光波の波長よりも小さく設計されてもよい。 In one embodiment, the wavelength of the third light wave may be designed to be smaller than the wavelength of the first light wave and smaller than the wavelength of the second light wave.

一実施形態において、第1方向および第2方向における前記表面プラズモンの近接場光波の共振周波数は、それぞれ同じ方向に偏光された第1光波および第2光波の光周波数と同一であるか整数倍である。 In one embodiment, the resonant frequencies of the near-field light waves of the surface plasmons in the first direction and the second direction are the same as or an integral multiple of the light frequencies of the first light wave and the second light wave polarized in the same direction, respectively. be.

一実施形態において、前記透光性基板101の透光率は80%を超え、前記透光性基板101は、合成石英ガラス、ソーダガラスなどを含んでもよいが、合成石英ガラスが好ましい。透光性基板101の厚さは、通常の厚さまたはより薄くてもよく、一例として、前記透光性基板101の厚さは2mm~8mmの間でもよく、例えば、前記透光性基板101の厚さは6mmでもよい。 In one embodiment, the light transmittance of the light transmitting substrate 101 exceeds 80%, and the light transmitting substrate 101 may include synthetic quartz glass, soda glass, etc., but synthetic quartz glass is preferable. The thickness of the light-transmitting substrate 101 may be a normal thickness or thinner. For example, the thickness of the light-transmitting substrate 101 may be between 2 mm and 8 mm. The thickness may be 6 mm.

一実施形態において、前記露光光は、例えば、365nmのi-line光線、248nmの紫外線UV、193nmの深紫外線DUVなどを含む。 In one embodiment, the exposure light includes, for example, 365 nm i-line light, 248 nm ultraviolet UV, 193 nm deep ultraviolet DUV, or the like.

一実施形態において、露光光が前記表面プラズモン層102を照射するときに表面プラズモンが生成され、この実施形態における表面プラズモンは、導体(例えば、金属)と媒体の界面で伝播される電磁界表面波モードとして、露光光の電磁場の励起下で導体中の高密度自由電子ガスが集団で振動して形成されたものであり、近接場増強効果および超回折限界の光場局在化が高いので、前記マスクブランク表面の露光光の場強度を効果的に高めることができる。 In one embodiment, surface plasmons are generated when exposure light irradiates the surface plasmon layer 102, and surface plasmons in this embodiment are electromagnetic surface waves propagated at an interface between a conductor (e.g., metal) and a medium. The mode is formed by the collective vibration of high-density free electron gas in a conductor under the excitation of the electromagnetic field of exposure light, and has a high near-field enhancement effect and super-diffraction-limited optical field localization. The field strength of the exposure light on the surface of the mask blank can be effectively increased.

一実施形態において、前記表面プラズモン層102の材料は、金属および透明導電性酸化物の1つを含み、前記金属は、Al、Au、AgおよびPdの1つを含み、前記透明導電性酸化物は、酸化インジウム、酸化スズ、酸化インジウムスズおよび酸化亜鉛の1つを含む。本実施形態において、前記表面プラズモン層102の材料は金(Au)である。 In one embodiment, the material of the surface plasmon layer 102 includes one of a metal and a transparent conductive oxide, the metal includes one of Al, Au, Ag and Pd, and the material of the transparent conductive oxide includes one of indium oxide, tin oxide, indium tin oxide and zinc oxide. In this embodiment, the material of the surface plasmon layer 102 is gold (Au).

一実施形態において、前記表面プラズモン層102をパターン化する必要があるため、表面プラズモン層102の厚さが厚すぎると、パターン化工程の時間および難度が増加するとともに、粒子が残りやすくなり、表面プラズモン層102の厚さが小さすぎると、生成された表面プラズモン効果が減少し、前記マスクブランクの表面の露光光の増強に不利となる。そのため、前記表面プラズモン層102には好適な厚さ範囲があり、本実施形態では、前記表面プラズモン層102の厚さは前記露光光の波長の1/2~3倍の間であり、後続する工程においてパターン化工程に必要な時間および難度を確保する一方、表面プラズモン効果の強度を確保して、前記マスクブランクの表面における露光光の場強度が効果的、且つ比較的大きく増強されるように確保することができる。より好ましくは、前記表面プラズモン層102の厚さが前記露光光の波長の1/2倍~1倍の間であるときに、上記効果がさらに向上される。 In one embodiment, since the surface plasmon layer 102 needs to be patterned, if the thickness of the surface plasmon layer 102 is too thick, the time and difficulty of the patterning process will increase, and particles will easily remain on the surface. If the thickness of the plasmon layer 102 is too small, the generated surface plasmon effect will be reduced, which will be disadvantageous for enhancing the exposure light on the surface of the mask blank. Therefore, the surface plasmon layer 102 has a suitable thickness range, and in this embodiment, the thickness of the surface plasmon layer 102 is between 1/2 and 3 times the wavelength of the exposure light, and In the process, while ensuring the time and difficulty necessary for the patterning process, the intensity of the surface plasmon effect is ensured so that the field intensity of the exposure light on the surface of the mask blank is effectively and relatively greatly enhanced. can be secured. More preferably, the above effect is further improved when the thickness of the surface plasmon layer 102 is between 1/2 and 1 times the wavelength of the exposure light.

一実施形態において、前記第1方向は前記第2方向に垂直であり、且つ、透光性基板の表面に平行である。 In one embodiment, the first direction is perpendicular to the second direction and parallel to the surface of the transparent substrate.

一実施形態において、前記表面プラズモン層を透過する第1方向における共振周波数は、前記第1光波の波長と、第1方向に配列された前記ナノ単位構造の周期寸法と正の相関にあり、前記表面プラズモン層を透過する第2方向における共振周波数は、前記第2光波の波長と、第2方向に配列された前記ナノ単位構造の構造周期寸法と正の相関にある。第1方向に配列された前記ナノ単位構造の周期寸法および第2方向に配列された前記ナノ単位構造の周期寸法を設計および制御することにより、第1方向および第2方向におけるプラズモンの共振周波数と前記第1光波と第2光波の周波数が同一または整数の倍数になるようにすると、和周波数効果が発生され、表面に垂直な第3光波が生成され、第3光波の周波数は第1方向の共振周波数と第2方向の共振周波数との和である。 In one embodiment, a resonant frequency in a first direction transmitted through the surface plasmon layer has a positive correlation with a wavelength of the first light wave and a periodic dimension of the nano unit structures arranged in the first direction, and The resonance frequency in the second direction transmitted through the surface plasmon layer has a positive correlation with the wavelength of the second light wave and the structural periodic dimension of the nano unit structures arranged in the second direction. By designing and controlling the periodic dimension of the nano unit structures arranged in the first direction and the periodic dimension of the nano unit structures arranged in the second direction, the resonance frequency of the plasmon in the first direction and the second direction can be adjusted. When the frequencies of the first light wave and the second light wave are the same or a multiple of an integer, a sum frequency effect is generated, and a third light wave perpendicular to the surface is generated, and the frequency of the third light wave is equal to the frequency of the first light wave. This is the sum of the resonant frequency and the resonant frequency in the second direction.

一実施形態において、前記第1方向の共振周波数f1および波長λ1、前記第2方向の共振周波数f2および波長λ2、前記第3光波の周波数f3および波長λ3は、以下の式を満たす。
f3=f1+f2、λ3=λ1*λ2/(λ1+λ2)
In one embodiment, the resonant frequency f1 and wavelength λ1 in the first direction, the resonant frequency f2 and wavelength λ2 in the second direction, and the frequency f3 and wavelength λ3 of the third light wave satisfy the following formula.
f3=f1+f2, λ3=λ1*λ2/(λ1+λ2)

一実施形態において、第1方向に配列された前記ナノ単位構造の周期寸法は、前記露光光の波長の1倍~5倍であり、第1方向の共振周波数は第1光波の周波数の1倍~0.2倍になるようにし、第2方向に配列された前記ナノ単位構造の周期寸法は、前記露光光の波長の1倍~5倍であり、第2方向の共振周波数は第2光波の周波数の1倍~0.2倍になるようにする。 In one embodiment, the periodic dimension of the nano unit structures arranged in the first direction is 1 to 5 times the wavelength of the exposure light, and the resonance frequency in the first direction is 1 times the frequency of the first light wave. The periodic dimension of the nano unit structures arranged in the second direction is 1 to 5 times the wavelength of the exposure light, and the resonant frequency in the second direction is the same as that of the second light wave. The frequency should be between 1 and 0.2 times that of .

例えば、前記露光光が同じ光線であるときに、第1方向に配列された前記ナノ単位構造の周期寸法が前記露光光の波長と同一であり、第2方向に配列された前記ナノ単位構造の周期寸法が前記露光光の波長と同一であるときに、第1光波と第2光波の周波数をf、波長をλとすると、第3光波の周波数は2f、波長はλ/2となる。しかしながら、波長λが比較的短い露光光(例えば、193nmの深紫外線DUV)に対して、第1方向に配列された前記ナノ単位構造の周期寸法を前記露光光の波長と同一にし、偏光して得られた第1光波の波長は露光光の波長と同一で、いずれもλであり、第2方向に配列された前記ナノ単位構造の周期寸法が前記露光光の波長の3倍であると、偏光された第2波長を3λと大きくして、第3光波の波長が3/4λとなる。このようにして、波長が短くなった第3光波が得られ、且つ第3光波の波長が透光性基板101によって容易に吸収されるほど短くないので、第3光波が一定の強度を有するように確保することができる。 For example, when the exposure light is the same beam, the periodic dimension of the nano unit structures arranged in the first direction is the same as the wavelength of the exposure light, and the periodic dimension of the nano unit structures arranged in the second direction is the same. When the periodic dimension is the same as the wavelength of the exposure light, if the frequency of the first light wave and the second light wave is f and the wavelength is λ, then the frequency of the third light wave is 2f and the wavelength is λ/2. However, for exposure light having a relatively short wavelength λ (for example, deep ultraviolet DUV of 193 nm), the periodic dimension of the nano unit structures arranged in the first direction is made the same as the wavelength of the exposure light, and the polarization is performed. The wavelength of the obtained first light wave is the same as the wavelength of the exposure light, both of which are λ, and the periodic dimension of the nano unit structures arranged in the second direction is three times the wavelength of the exposure light, By increasing the polarized second wavelength to 3λ, the wavelength of the third light wave becomes 3/4λ. In this way, a third light wave with a shortened wavelength is obtained, and the wavelength of the third light wave is not so short that it is easily absorbed by the transparent substrate 101, so that the third light wave has a constant intensity. can be secured.

第3光波の波長が比較的短いため、透光性基板101を透過する能力が既存の波長の露光光よりも弱くなるので、リソグラフィ露光を行う際に、露光強度を保証するとともに、リソグラフィ工程の解像度とコントラストを向上させるように、一定量の既存の波長の露光光および一部波長が比較的短い第3光波を確保することが好ましい。これに基づいて、一実施形態において、前記第3光波の出力が前記表面プラズモン層102を透過した露光光の総出力に占める比率は50%~90%であり、好ましくは60%~80%である。表面プラズモン層の厚さを変更し(厚ければ厚いほど、和周波効果が顕著になるが、透過光量は減少することがある)、適切な材料を選択するか、または適切なナノ構造を設定するなどにより、透過光の総出力において第3光波が占める比率を実現することができる。 Since the wavelength of the third light wave is relatively short, its ability to transmit through the transparent substrate 101 is weaker than that of the exposure light of the existing wavelength. In order to improve resolution and contrast, it is preferable to reserve a certain amount of exposure light of the existing wavelength and a portion of the third light wave with a relatively short wavelength. Based on this, in one embodiment, the ratio of the output of the third light wave to the total output of the exposure light transmitted through the surface plasmon layer 102 is 50% to 90%, preferably 60% to 80%. be. Change the thickness of the surface plasmon layer (the thicker it is, the more pronounced the sum frequency effect, but the amount of transmitted light may be reduced), choose the appropriate material, or set the appropriate nanostructure. By doing so, it is possible to realize the ratio that the third light wave occupies in the total output of transmitted light.

一実施形態において、前記ナノ単位構造のサイズおよび隣接する2つの前記ナノ単位構造の間の間隔は同一である。 In one embodiment, the size of the nanounit structures and the spacing between two adjacent nanounit structures are the same.

一実施形態において、前記ナノ単位構造の形状は、正方形、長方形、円形、および楕円形の1つを含む。 In one embodiment, the shape of the nanounit structure includes one of a square, a rectangle, a circle, and an ellipse.

図1~4に示されるように、本実施形態は、
1)図1に示されるように、透光性基板101を提供するステップ
2)図2および図3に示されるように、スパッタリング工程およびフォトリソグラフィ―エッチング工程により、前記透光性基板101に表面プラズモン層102を形成するステップ
を含む、上記何れか解決手段に記載の投影リソグラフィ用の露光光周波数増強装置の製造方法をさらに提供する。
As shown in FIGS. 1 to 4, this embodiment:
1) As shown in FIG. 1, providing a transparent substrate 101. 2) As shown in FIGS. 2 and 3, the surface of the transparent substrate 101 is The present invention further provides a method for manufacturing an exposure light frequency intensifier for projection lithography as described in any of the above solutions, which method includes the step of forming a plasmon layer 102.

図8および図9に示されるように、本実施形態は、投影リソグラフィ用のフォトマスクを提供し、前記フォトマスクは、
投影リソグラフィ用の露光光周波数増強装置、透明基板201および遮光層202を含み、前記露光光周波数増強装置の構造は、実施例1で説明した通りであるので、ここでは繰り返さない。
As shown in FIGS. 8 and 9, the present embodiment provides a photomask for projection lithography, the photomask comprising:
The structure of the exposure light frequency intensifier for projection lithography, including the transparent substrate 201 and the light shielding layer 202, is the same as described in Example 1, so it will not be repeated here.

前記透明基板201は、互いに対向する第1面および第2面を有し、前記第2面は前記増強装置の透光性基板101の第2面に結合される。 The transparent substrate 201 has a first surface and a second surface facing each other, and the second surface is coupled to the second surface of the transparent substrate 101 of the enhancement device.

前記遮光層202は、前記透明基板201の第1面を覆い、前記遮光層202は、前記遮光層202を透過する露光窓を有する。 The light shielding layer 202 covers the first surface of the transparent substrate 201, and the light shielding layer 202 has an exposure window that transmits light through the light shielding layer 202.

一実施形態において、前記透明基板201の材料は、合成石英ガラスを含み、前記遮光層202の材料は、クロム、酸化クロム、および窒化クロムの1つを含む。 In one embodiment, the material of the transparent substrate 201 includes synthetic quartz glass, and the material of the light shielding layer 202 includes one of chromium, chromium oxide, and chromium nitride.

一実施形態において、図9に示されるように、前記フォトマスクは、位相シフト材料層203をさらに含み、前記位相シフト材料層203は、前記透明基板201と前記遮光層202との間に位置し、前記露光窓は、前記位相シフト材料層203の上面に停止される。前記位相シフト材料層203の材料は、酸化モリブデンシリコン、酸窒化モリブデンシリコン、酸化炭化窒化モリブデンシリコン、酸化クロムシリコン、酸窒化クロムシリコンおよび酸化炭化窒化クロムシリコンの1つを含む。 In one embodiment, as shown in FIG. 9, the photomask further includes a phase shift material layer 203, and the phase shift material layer 203 is located between the transparent substrate 201 and the light blocking layer 202. , the exposure window is stopped on the top surface of the phase shift material layer 203. The material of the phase shift material layer 203 includes one of molybdenum silicon oxide, molybdenum silicon oxynitride, molybdenum silicon oxycarbonitride, chromium silicon oxide, chromium silicon oxynitride, and chromium silicon oxycarbonitride.

図1~9に示されるように、本実施形態は、
1)図1に示されるように、互いに対向する第1面および第2面を有する透光性基板10を提供するステップ
2)図2および図3に示されるように、前記透光性基板101の第1面に、スパッタリング工程およびフォトリソグラフィ―エッチング工程によって表面プラズモン層102を形成するステップ
3)図5~図7に示されるように、互いに対向する第1面および第2面を有し、前記透明基板201の第1面に遮光層202が形成され、前記遮光層202に露光窓が形成される透明基板201を提供するステップ
4)図8に示されるように、前記透光性基板101の第2面と前記透明基板201の第2面を結合するステップ
を含む投影リソグラフィ用のフォトマスクの製造方法をさらに提供する。
As shown in FIGS. 1 to 9, this embodiment
1) As shown in FIG. 1, providing a light-transmitting substrate 10 having a first surface and a second surface facing each other; 2) As shown in FIGS. 2 and 3, providing the light-transmitting substrate 101 Step 3) forming a surface plasmon layer 102 on the first surface of the substrate by a sputtering process and a photolithography-etching process; Step 4) Providing a transparent substrate 201 in which a light blocking layer 202 is formed on a first surface of the transparent substrate 201 and an exposure window is formed in the light blocking layer 202. As shown in FIG. There is further provided a method for manufacturing a photomask for projection lithography, comprising the step of bonding a second surface of the transparent substrate 201 to a second surface of the transparent substrate 201 .

本実施形態では、露光光周波数増強装置と一体となった投影リソグラフィ用のフォトマスクを形成し、表面プラズモン層102と遮光層202とをそれぞれ異なる基板に作製することにより、表面プラズモン層102と遮光層202が互いに影響しないようにする。最後に、結合工程を通じて、2つの基板を結合すればよいので、フォトマスクの製造の安定性および歩留まりを効果的に確保することができる。 In this embodiment, a photomask for projection lithography that is integrated with an exposure light frequency intensifier is formed, and the surface plasmon layer 102 and the light shielding layer 202 are manufactured on different substrates. Prevent layers 202 from influencing each other. Finally, since the two substrates only need to be bonded through a bonding process, the stability and yield of photomask manufacturing can be effectively ensured.

図10および図11に示されるように、本実施形態は、投影リソグラフィ用の露光光周波数増光装置および遮光層202を含む投影リソグラフィ用のフォトマスクをさらに提供するが、前記露光光周波数増光装置の構造は、実施形態1で説明したので、ここでは繰り返さない。 As shown in FIGS. 10 and 11, the present embodiment further provides a photomask for projection lithography including an exposure light frequency intensifier for projection lithography and a light shielding layer 202, wherein the exposure light frequency intensifier is The structure was explained in Embodiment 1, so it will not be repeated here.

前記遮光層202は前記透光性基板101の第2面を覆い、前記遮光層202は、前記遮光層202を貫通する露光窓を有する。前記遮光層202の材料は、クロム、酸化クロム、窒化クロムの一つを含む。 The light-blocking layer 202 covers the second surface of the light-transmitting substrate 101, and the light-blocking layer 202 has an exposure window passing through the light-blocking layer 202. The material of the light shielding layer 202 includes one of chromium, chromium oxide, and chromium nitride.

一実施形態において、図11に示されるように、前記フォトマスクは、位相シフト材料層203をさらに含み、前記位相シフト材料層203は、前記透光性基板101と前記遮光層202との間に位置され、前記露光窓は前記位相シフト材料層203の上面に停止される。前記位相シフト材料層203の材料は、酸化モリブデンシリコン、酸窒化モリブデンシリコン、酸化炭化窒化モリブデンシリコン、酸化クロムシリコン、酸窒化クロムシリコンおよび酸化炭化窒化クロムシリコンの1つを含む。 In one embodiment, as shown in FIG. 11, the photomask further includes a phase shift material layer 203, and the phase shift material layer 203 is between the light-transmitting substrate 101 and the light-blocking layer 202. and the exposure window is stopped on the top surface of the phase shift material layer 203. The material of the phase shift material layer 203 includes one of molybdenum silicon oxide, molybdenum silicon oxynitride, molybdenum silicon oxycarbonitride, chromium silicon oxide, chromium silicon oxynitride, and chromium silicon oxycarbonitride.

図1~3および図10、図11に示されるように、本実施形態は、
1)図1に示されるように、互いに対向する第1面および第2面を有する透光性基板10を提供するステップ
2)図2および図3に示されるように、前記透光性基板101の第1面にスパッタリング工程およびフォトリソグラフィ―エッチング工程によって表面プラズモン層102を形成するステップ
3)図10に示されるように、前記透光性基板101の第2面に露光窓が形成されている遮光層202を形成するステップ
を含む投影リソグラフィ用のフォトマスクの製造方法をさらに提供する。
As shown in FIGS. 1 to 3 and FIGS. 10 and 11, this embodiment
1) As shown in FIG. 1, providing a light-transmitting substrate 10 having a first surface and a second surface facing each other; 2) As shown in FIGS. 2 and 3, providing the light-transmitting substrate 101 Step 3) Forming a surface plasmon layer 102 on the first surface of the transparent substrate 101 by a sputtering process and a photolithography-etching process. As shown in FIG. 10, an exposure window is formed on the second surface of the transparent substrate 101. A method of manufacturing a photomask for projection lithography is further provided, including the step of forming a light blocking layer 202.

本実施形態の表面プラズモン層102および遮光層202は、同一基板上に製造されるので、1枚の基板および1回の結合工程を省くことができ、それによって、製造工程のコストを効果的に低減することができる。また、2つの基板を結合することに比べて、同じ基板を用いるので、フォトマスクの全体厚さを効果的に減少することができるとともに、露光光の透過率を向上させることができる。 Since the surface plasmon layer 102 and the light shielding layer 202 of this embodiment are manufactured on the same substrate, one substrate and one bonding process can be omitted, thereby effectively reducing the cost of the manufacturing process. can be reduced. Furthermore, since the same substrate is used compared to combining two substrates, the overall thickness of the photomask can be effectively reduced and the transmittance of exposure light can be improved.

上述したように、本発明の露光光周波数増強装置、フォトマスクおよびその製造方法は、以下の有益な効果を奏する。
本発明による露光光周波数増強装置は、透光性基板の表面に一層の表面プラズモン層を設け、表面プラズモン層は、複数のナノ単位構造を含み、複数の前記ナノ単位構造は、それぞれ前記表面プラズモン層の平面の第1方向および第2方向で、前記露光光の波長と整合して和周波効果を発生することができる周期的間隔配列に設けられ、前記和周波効果により前記透明基板を透過する和周波光を形成することができ、前記和周波光の出力が前記表面プラズモン層を透過する露光光の総出力に占める比率が30%を超える。表面プラズモン層を透過した露光光が、波長が変わらずに保持される第1部分と波長が短くなる第2部分を有するようにすることにより(波長がより短い和周波光)、フォトリソグラフィ工程の解像度とコントラストが大幅に向上させる。
As described above, the exposure light frequency intensifier, photomask, and method for manufacturing the same according to the present invention have the following beneficial effects.
In the exposure light frequency intensifier according to the present invention, a surface plasmon layer is provided on the surface of a transparent substrate, the surface plasmon layer includes a plurality of nano unit structures, and each of the plurality of nano unit structures has a surface plasmon layer. arranged in a periodically spaced array in a first direction and in a second direction of the plane of the layer to be able to match the wavelength of the exposure light to generate a sum frequency effect, and to be transmitted through the transparent substrate by the sum frequency effect; Sum frequency light can be formed, and the output of the sum frequency light accounts for more than 30% of the total output of exposure light transmitted through the surface plasmon layer. By making the exposure light transmitted through the surface plasmon layer have a first part where the wavelength remains unchanged and a second part where the wavelength becomes shorter (sum frequency light with a shorter wavelength), the photolithography process can be improved. Resolution and contrast are greatly improved.

したがって、本発明は、従来技術における様々な欠点を効果的に克服し、産業上の利用価値が高い。 Therefore, the present invention effectively overcomes various drawbacks in the prior art and has high industrial utility value.

上記の実施例は、本発明の原理および効果を例示的に記載するために使用されるに過ぎず、本発明を限定するのではない。当業者であれば本発明の精神および範囲から逸脱することなく上記の実施例に対して修正または変更を行うことができる。したがって、当業者が本発明において開示される精神および技術的思想の範囲内施した全ての等価な修正または変更は、依然として本発明の特許請求の範囲に含まれるべきである。 The above examples are only used to illustratively describe the principles and advantages of the invention, and do not limit the invention. Those skilled in the art may make modifications or changes to the embodiments described above without departing from the spirit and scope of the invention. Therefore, all equivalent modifications or changes made by those skilled in the art within the spirit and technical idea disclosed in the present invention should still be included within the scope of the claims of the present invention.

101 透光性基板
102 表面プラズモン層
201 透明基板
202 遮光層
203 位相シフト材料層
101 Transparent substrate 102 Surface plasmon layer 201 Transparent substrate 202 Light shielding layer 203 Phase shift material layer

選択的に、第1方向および第2方向における前記表面プラズモンの近接場光波の共振周波数は、それぞれ同じ方向に偏光された第1光波および第2光波の光周波数と同一または整数倍である。 Optionally, the resonant frequencies of the near-field light waves of the surface plasmons in the first direction and the second direction are the same as or an integral multiple of the light frequencies of the first light wave and the second light wave polarized in the same direction, respectively. .

上述したように、本発明による露光光周波数増強装置、フォトマスクおよびその製造方法は、以下の有益な効果を奏する。
本発明による露光光周波数増強装置は、透光性基板の表面に表面プラズモン層を設け、表面プラズモン層は、複数のナノ単位構造を含み、複数のナノ単位構造は、表面プラズモン層の平面の第1方向および第2方向で、露光光(365nmのi-line光線、248nmの紫外線UV、193nmの深紫外線DUVなど)の波長と整合して和周波効果を発生することができる周期的間隔配列に設けられ、和周波効果により前記透光性基板を透過する和周波光を形成することができ、和周波光の出力が前記表面プラズモン層を透過する露光光の総出力に占める比率が30%を超える。本案は、和周波効果により、一部表面プラズモンの近接場が、表面に平行な第1方向に偏光された第1光波と第2方向に偏光された第2光波と相互作用することにより、第1方向および第2方向における表面プラズモンの近接場光波の共振周波数がそれぞれ同じ方向に偏光された第1光波および第2光波の光周波数と同一であるか整数倍になると、和周波効果を発生し、且つ表面に垂直な第3光波(和周波光)を形成し、第3光波の周波数は、第1方向および第2方向の共振周波数の和であり、第3光波の波長は第1光波の波長よりも小さく、且つ第2光波の波長よりも小さく、表面プラズモン層を透過した露光光は波長が変わらずに保持される第1部分と波長が短くなった第2部分を有するようにし、それにより、フォトリソグラフィ工程の解像度およびコントラストを大幅に向上させる。さらに、本案は、表面プラズモン層を設けることにより、和周波光の出力が前記表面プラズモン層を透過する露光光の総出力に占める比率が30%を超えるようにして、解像度のさらなる向上が確保される。
As described above, the exposure light frequency intensifier, photomask, and method for manufacturing the same according to the present invention have the following beneficial effects.
In the exposure light frequency intensifier according to the present invention, a surface plasmon layer is provided on the surface of a transparent substrate, the surface plasmon layer includes a plurality of nano unit structures, and the plurality of nano unit structures are arranged at the top of the plane of the surface plasmon layer. in one direction and in a second direction, in a periodically spaced array that can be matched to the wavelength of the exposure light (365 nm i-line light, 248 nm ultraviolet UV, 193 nm deep ultraviolet DUV, etc.) to generate a sum frequency effect. is provided, and can form a sum frequency light that passes through the light-transmitting substrate due to a sum frequency effect, and the output of the sum frequency light accounts for 30% of the total output of the exposure light that passes through the surface plasmon layer. exceed. In this case, due to the sum frequency effect, the near field of surface plasmons partially interacts with a first light wave polarized in a first direction parallel to the surface and a second light wave polarized in a second direction. When the resonant frequencies of the near-field light waves of surface plasmons in one direction and the second direction are the same as or an integral multiple of the optical frequencies of the first light wave and the second light wave polarized in the same direction, the sum frequency effect is generated. generated and forms a third light wave (sum frequency light) perpendicular to the surface, the frequency of the third light wave is the sum of the resonant frequencies in the first direction and the second direction, and the wavelength of the third light wave is the same as that of the first direction. The exposure light that is smaller than the wavelength of the light wave and smaller than the wavelength of the second light wave and that has passed through the surface plasmon layer has a first part whose wavelength is kept unchanged and a second part whose wavelength is shortened. , thereby significantly improving the resolution and contrast of the photolithography process. Furthermore, the present invention provides a surface plasmon layer so that the ratio of the sum frequency light output to the total output of exposure light transmitted through the surface plasmon layer exceeds 30%, thereby ensuring further improvement in resolution. Ru.

一実施形態において、第1方向および第2方向における前記表面プラズモンの近接場光波の共振周波数は、それぞれ同じ方向に偏光された第1光波および第2光波の光周波数と同一であるか整数倍である。 In one embodiment, the resonant frequencies of the near-field light waves of the surface plasmons in the first direction and the second direction are the same as or an integer fraction of the light frequencies of the first light waves and the second light waves polarized in the same direction, respectively. It's double.

Claims (18)

対向する第1面および第2面を備える透光性基板と、
表面プラズモン層であって、前記透光性基板の第1面に位置し、前記露光光の作用により表面プラズモンを生成し、複数のナノ単位構造を含み、複数の前記ナノ単位構造は、それぞれ前記表面プラズモン層の平面の第1方向および第2方向で前記露光光の波長と整合して和周波効果を発生することができる周期的間隔配列に設けられ、第1方向および第2方向に配列されたナノ単位構造の周期寸法は、それぞれ前記露光光の波長の1倍~5倍になるように設定され、第1方向および第2方向における前記表面プラズモンの近接場光波の共振周波数は、それぞれ同じ方向に偏光された第1光波および第2光波の光周波数と同一であるか整数倍になり、前記和周波数効果を形成することにより前記透光性基板を透過する和周波光を生成し、前記和周波光の出力が前記表面プラズモン層を透過する露光光の総出力に占める比率が30%を超える、表面プラズモン層と、
を含むことを特徴とする投影リソグラフィ用の露光光周波数増強装置。
a transparent substrate having a first surface and a second surface facing each other;
a surface plasmon layer, located on the first surface of the light-transmitting substrate, generates surface plasmon by the action of the exposure light, and includes a plurality of nano unit structures, each of the plurality of nano unit structures provided in a periodically spaced array capable of generating a sum frequency effect by matching the wavelength of the exposure light in the first direction and the second direction of the plane of the surface plasmon layer; The periodic dimensions of the nano unit structures are set to be 1 to 5 times the wavelength of the exposure light, and the resonance frequencies of the near-field light waves of the surface plasmon in the first direction and the second direction are respectively set to be the same. generating a sum frequency light that is the same as or an integral multiple of the optical frequency of the first light wave and the second light wave polarized in the direction and that transmits through the transparent substrate by forming the sum frequency effect; a surface plasmon layer in which the output of the sum frequency light accounts for more than 30% of the total output of the exposure light transmitted through the surface plasmon layer;
An exposure light frequency intensifier for projection lithography, comprising:
前記露光光は、前記第1方向に平行に偏光され、且つ前記第2方向に平行に偏光される2つの偏光を含む、ことを特徴とする請求項1に記載の投影リソグラフィ用の露光光周波数増強装置。 The exposure light frequency for projection lithography according to claim 1, wherein the exposure light includes two polarized lights, one polarized in parallel to the first direction and one polarized in parallel to the second direction. Augmentation device. 前記表面プラズモンの一部は前記表面プラズモン層を透過して、近接場光の場強度を増強し、前記表面プラズモンの他の一部の近接場は、前記周期的間隔配列に基づいて、表面に平行な第1方向に偏光された第1光波と、第2方向に偏光された第2光波と共振整合して和周波効果を発生して前記表面プラズモン層に垂直な第3光波を形成し、前記第3光波は前記和周波光である、ことを特徴とする請求項1に記載の投影リソグラフィ用の露光光周波数増強装置。 A part of the surface plasmon is transmitted through the surface plasmon layer to enhance the field intensity of near-field light, and another part of the near-field of the surface plasmon is transmitted to the surface based on the periodically spaced arrangement. resonantly matching a first light wave polarized in a parallel first direction and a second light wave polarized in a second direction to generate a sum frequency effect to form a third light wave perpendicular to the surface plasmon layer; 2. The exposure light frequency intensifier for projection lithography according to claim 1, wherein the third light wave is the sum frequency light. 第1方向に配列された前記ナノ単位構造の周期寸法は、前記露光光の波長の1倍~5倍の整数倍であり、第1方向の共振周波数が第1光波の周波数の1倍~0.2倍になるようにし、第2方向に配列された前記ナノ単位構造の周期寸法は、前記露光光の波長の1倍~5倍の整数倍であり、第2方向の共振周波数が第2光波の周波数の1倍~0.2倍になるようにする、ことを特徴とする請求項3に記載の投影リソグラフィ用の露光光周波数増強装置。 The periodic dimension of the nano unit structures arranged in the first direction is an integral multiple of 1 to 5 times the wavelength of the exposure light, and the resonance frequency in the first direction is 1 to 0 times the frequency of the first light wave. .2 times, and the periodic dimension of the nano unit structures arranged in the second direction is an integral multiple of 1 to 5 times the wavelength of the exposure light, and the resonance frequency in the second direction is the second 4. The exposure light frequency intensifier for projection lithography according to claim 3, wherein the exposure light frequency is set to be 1 to 0.2 times the frequency of the light wave. 前記第1方向の共振周波数(f1)および波長(λ1)、前記第2方向の共振周波数(f2)および波長(λ2)、前記第3光波の周波数(f3)および波長(λ3)は、以下の式を満たす、
f3=f1+f2、λ3=λ1*λ2/(λ1+λ2)
ことを特徴とする請求項3に記載の投影リソグラフィ用の露光光周波数増強装置。
The resonant frequency (f1) and wavelength (λ1) in the first direction, the resonant frequency (f2) and wavelength (λ2) in the second direction, and the frequency (f3) and wavelength (λ3) of the third light wave are as follows. satisfies the formula,
f3=f1+f2, λ3=λ1*λ2/(λ1+λ2)
4. The exposure light frequency intensifier for projection lithography according to claim 3.
前記表面プラズモン層の厚さは前記露光光の波長の1/2~3倍の間である、ことを特徴とする請求項1に記載の投影リソグラフィ用の露光光周波数増強装置。 The exposure light frequency intensifier for projection lithography according to claim 1, wherein the thickness of the surface plasmon layer is between 1/2 and 3 times the wavelength of the exposure light. 前記第1方向と前記第2方向が垂直である、ことを特徴とする請求項1に記載の投影リソグラフィ用の露光光周波数増強装置。 The exposure light frequency intensifier for projection lithography according to claim 1, wherein the first direction and the second direction are perpendicular. 前記和周波光の出力が前記表面プラズモン層を透過する露光光の総出力に占める比率が60%~80%である、ことを特徴とする請求項1に記載の投影リソグラフィ用の露光光周波数増強装置。 2. The exposure light frequency enhancement for projection lithography according to claim 1, wherein the output of the sum frequency light accounts for 60% to 80% of the total output of the exposure light transmitted through the surface plasmon layer. Device. 前記表面プラズモン層の材料は、金属および紫外線に対する透明導電酸化物の一つを含み、前記金属は、Al、Au、AgおよびPdの1つ以上を含み、前記透明導電酸化物は、酸化インジウム、酸化スズ、酸化インジウムスズおよび酸化亜鉛の1つまたは複数の組み合せを含む、ことを特徴とする請求項1に記載の投影リソグラフィ用の露光光周波数増強装置。 The material of the surface plasmon layer includes a metal and one of ultraviolet-transparent conductive oxides, the metal includes one or more of Al, Au, Ag, and Pd, and the transparent conductive oxide includes indium oxide, 2. Exposure light frequency intensifier for projection lithography according to claim 1, characterized in that it comprises one or more combinations of tin oxide, indium tin oxide and zinc oxide. 透光性基板を提供するステップと、
前記透光性基板上に表面プラズモン層を形成するステップと、
を含む、ことを特徴とする請求項1~9のいずれか一項に記載の投影リソグラフィ用の露光光周波数増強装置の製造方法。
providing a translucent substrate;
forming a surface plasmon layer on the transparent substrate;
A method for manufacturing an exposure light frequency intensifier for projection lithography according to any one of claims 1 to 9, comprising:
請求項1~9のいずれか一項に記載の投影リソグラフィ用の露光光周波数増強装置と、
互いに対向する第1面および第2面を有し、前記第2面が前記増強装置の透光性基板の第2面と結合される透明基板と、
前記透明基板の第1面を覆う遮光層であって、この遮光層を貫通する露光窓を有する遮光層と、を含む、ことを特徴とする投影リソグラフィ用のフォトマスク。
An exposure light frequency intensifier for projection lithography according to any one of claims 1 to 9;
a transparent substrate having a first surface and a second surface facing each other, the second surface being combined with the second surface of the light-transmitting substrate of the enhancement device;
A photomask for projection lithography, comprising: a light-shielding layer covering a first surface of the transparent substrate, the light-shielding layer having an exposure window penetrating the light-shielding layer.
前記フォトマスクは位相シフト材料層をさらに含み、前記位相シフト材料層は前記透明基板と前記遮光層との間に位置され、前記露光窓は前記位相シフト材料層の上部に停止される、ことを特徴とする請求項11に記載の投影リソグラフィ用のフォトマスク。 The photomask further includes a phase shift material layer, the phase shift material layer is located between the transparent substrate and the light blocking layer, and the exposure window is stopped above the phase shift material layer. A photomask for projection lithography according to claim 11. (請求項13を請求項13,14に分ける)
互いに対向する第1面および第2面を有する透光性基板を提供するステップと、
前記透光性基板の第1面に表面プラズモン層を形成するステップと、
互いに対向する第1面および第2面を有し、この第1面に露光窓を有する遮光層が形成されている透明基板を提供するステップと、
前記透光性基板の第2面と前記透明基板の第2面とを結合するステップと、
を含む、ことを特徴とする請求項11に記載の投影リソグラフィ用のフォトマスクの製造方法。
(Claim 13 is divided into claims 13 and 14)
providing a translucent substrate having a first surface and a second surface facing each other;
forming a surface plasmon layer on the first surface of the transparent substrate;
providing a transparent substrate having a first surface and a second surface facing each other, on which a light shielding layer having an exposure window is formed;
combining a second surface of the light-transmitting substrate and a second surface of the transparent substrate;
12. The method of manufacturing a photomask for projection lithography according to claim 11, comprising:
互いに対向する第1面および第2面を有する透光性基板を提供するステップと、
前記透光性基板の第1面に表面プラズモン層を形成するステップと、
互いに対向する第1面および第2面を有し、この第1面に露光窓を有する遮光層が形成されている透明基板を提供するステップと、
前記透光性基板の第2面と前記透明基板の第2面とを結合するステップと、
を含む、ことを特徴とする請求項12に記載の投影リソグラフィ用のフォトマスクの製造方法。
providing a translucent substrate having a first surface and a second surface facing each other;
forming a surface plasmon layer on the first surface of the transparent substrate;
providing a transparent substrate having a first surface and a second surface facing each other, on which a light shielding layer having an exposure window is formed;
combining a second surface of the light-transmitting substrate and a second surface of the transparent substrate;
13. The method of manufacturing a photomask for projection lithography according to claim 12, comprising:
請求項1~9のいずれか一項に記載の投影リソグラフィ用の露光光周波数増強装置と、
前記透明基板の第2面を覆う遮光層であって、この遮光層を貫通する露光窓を有する遮光層と、を含む、ことを特徴とする投影リソグラフィ用のフォトマスク。
An exposure light frequency intensifier for projection lithography according to any one of claims 1 to 9;
A photomask for projection lithography, comprising: a light-shielding layer covering the second surface of the transparent substrate, the light-shielding layer having an exposure window penetrating the light-shielding layer.
前記フォトマスクは位相シフト材料層をさらに含み、前記位相シフト材料層は前記透明基板と前記遮光層との間に位置され、前記露光窓は前記位相シフト材料層の上部に停止される、ことを特徴とする請求項15に記載の投影リソグラフィ用のフォトマスク。 The photomask further includes a phase shift material layer, the phase shift material layer is located between the transparent substrate and the light blocking layer, and the exposure window is stopped above the phase shift material layer. A photomask for projection lithography according to claim 15. 現16がマルチマルチ
互いに対向する第1面および第2面を有する透光性基板を提供するステップと、
前記透光性基板の第1面に表面プラズモン層を形成するステップと、
前記透光性基板の第2面に露光窓が形成されている遮光層を形成するステップと、
を含む、ことを特徴とする請求項15に記載の投影リソグラフィ用のフォトマスクの製造方法。
providing a translucent substrate having a first surface and a second surface facing each other;
forming a surface plasmon layer on the first surface of the transparent substrate;
forming a light shielding layer in which an exposure window is formed on the second surface of the light-transmitting substrate;
16. The method of manufacturing a photomask for projection lithography according to claim 15, comprising:
互いに対向する第1面および第2面を有する透光性基板を提供するステップと、
前記透光性基板の第1面に表面プラズモン層を形成するステップと、
前記透光性基板の第2面に露光窓が形成されている遮光層を形成するステップと、
を含む、ことを特徴とする請求項16に記載の投影リソグラフィ用のフォトマスクの製造方法。
providing a translucent substrate having a first surface and a second surface facing each other;
forming a surface plasmon layer on the first surface of the transparent substrate;
forming a light shielding layer in which an exposure window is formed on the second surface of the light-transmitting substrate;
17. The method of manufacturing a photomask for projection lithography according to claim 16, comprising:
JP2023078840A 2022-06-09 2023-05-11 Exposure light frequency intensifier, photomask and method for manufacturing the same Active JP7382113B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210644423.1A CN114740687B (en) 2022-06-09 2022-06-09 Exposure light frequency enhancement device, photomask and preparation method thereof
CN202210644423.1 2022-06-09

Publications (2)

Publication Number Publication Date
JP7382113B1 JP7382113B1 (en) 2023-11-16
JP2023181096A true JP2023181096A (en) 2023-12-21

Family

ID=82288036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023078840A Active JP7382113B1 (en) 2022-06-09 2023-05-11 Exposure light frequency intensifier, photomask and method for manufacturing the same

Country Status (4)

Country Link
JP (1) JP7382113B1 (en)
KR (1) KR102634369B1 (en)
CN (1) CN114740687B (en)
TW (1) TWI849968B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303197A (en) * 2004-04-15 2005-10-27 Ricoh Co Ltd Microstructure formation method
JP2005328020A (en) * 2004-04-16 2005-11-24 Institute Of Physical & Chemical Research Lithography mask and optical lithography method using surface plasmon
WO2011108259A1 (en) * 2010-03-02 2011-09-09 国立大学法人北海道大学 Process for production of photoresist pattern
JP2012190915A (en) * 2011-03-09 2012-10-04 Toshiba Corp Near-field exposure mask, resist pattern formation method, device manufacturing method, near-field exposure method, pattern formation method, near-field light lithography member, and near-field nanoimprint method

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148863A (en) * 1992-11-02 1994-05-27 Sharp Corp Phase shift pattern
JP3080023B2 (en) * 1997-02-20 2000-08-21 日本電気株式会社 Photomask for exposure
JP2000250200A (en) * 1999-03-04 2000-09-14 Hitachi Ltd Lithography mask
EP1398656A1 (en) * 2002-09-12 2004-03-17 Olimatech Ltd. Surface-plasmon-generated light source and its use
JP4522068B2 (en) * 2003-09-12 2010-08-11 キヤノン株式会社 Structure for generating near-field light, method for generating near-field light, and near-field exposure apparatus
US7682755B2 (en) * 2004-04-16 2010-03-23 Riken Lithography mask and optical lithography method using surface plasmon
CN102053491B (en) * 2010-12-13 2013-04-10 苏州大学 Ultra-deep subwavelength tunable nano photoetching structure and method based on surface plasma resonant cavity
JP6248345B2 (en) * 2011-03-22 2017-12-20 株式会社ニコン Optical element, illumination apparatus, measurement apparatus, photomask, exposure apparatus, exposure method, and device manufacturing method
KR20120111900A (en) * 2011-04-01 2012-10-11 한국전자통신연구원 Apparatus for enhancing the intensity of light source
CN102636967B (en) * 2012-04-19 2014-02-26 苏州大学 Surface plasma nanometer photo-etching structure and method
CN102880010A (en) * 2012-09-05 2013-01-16 中国科学院光电技术研究所 Surface plasma super-diffraction photoetching method based on metal-medium-probe structure
CN102866580A (en) * 2012-09-26 2013-01-09 清华大学 Nanolithography method and nanolithography device
KR102009347B1 (en) * 2012-11-06 2019-10-24 삼성디스플레이 주식회사 Photomask for exposure and method of manufacturing pattern using the same
CN105637422A (en) * 2013-08-16 2016-06-01 Asml荷兰有限公司 Lithographic apparatus, programmable patterning device and lithographic method
CN103499913A (en) * 2013-10-20 2014-01-08 安徽师范大学 Surface plasmon imaging photoetching structure
CN105549336A (en) * 2016-01-29 2016-05-04 清华大学 Nano photoetching device and method for preparing super diffraction limit pattern
CN206584063U (en) * 2016-11-25 2017-10-24 湖南宏动光电有限公司 A kind of light spectrum image-forming micro optical filter based on surface phasmon
EP3574351B1 (en) * 2017-01-30 2023-08-09 Xfold Imaging Oy A plasmonic device
WO2019126543A1 (en) * 2017-12-20 2019-06-27 The Regents Of The University Of Michigan Plasmonic lithography for patterning high aspect-ratio nanostructures
CN109541893A (en) * 2018-12-25 2019-03-29 广西大学 A kind of adjustable immersion surface plasmon interference photolithography method of resolution ratio
CN111381435B (en) * 2018-12-28 2022-11-04 国家纳米科学中心 Surface plasmon mask plate
CN110308616A (en) * 2019-01-29 2019-10-08 中国科学技术大学 A kind of phasmon nano-photoetching method of long reach
CN109765749A (en) * 2019-03-11 2019-05-17 京东方科技集团股份有限公司 A kind of mask plate, grating and production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303197A (en) * 2004-04-15 2005-10-27 Ricoh Co Ltd Microstructure formation method
JP2005328020A (en) * 2004-04-16 2005-11-24 Institute Of Physical & Chemical Research Lithography mask and optical lithography method using surface plasmon
WO2011108259A1 (en) * 2010-03-02 2011-09-09 国立大学法人北海道大学 Process for production of photoresist pattern
JP2012190915A (en) * 2011-03-09 2012-10-04 Toshiba Corp Near-field exposure mask, resist pattern formation method, device manufacturing method, near-field exposure method, pattern formation method, near-field light lithography member, and near-field nanoimprint method

Also Published As

Publication number Publication date
TWI849968B (en) 2024-07-21
KR102634369B1 (en) 2024-02-07
KR20230169842A (en) 2023-12-18
CN114740687A (en) 2022-07-12
CN114740687B (en) 2022-11-01
JP7382113B1 (en) 2023-11-16
TW202347012A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
KR101999412B1 (en) Photomask, method for manufacturing the photomask and pattern transfer method
CN101441411B (en) Surface plasma resonance exposure photolithography method
EP3051351B1 (en) Super-resolution image photoetching
TW526538B (en) Attenuating extreme ultraviolet (EUV) phase-shifting mask fabrication method
JP2006119651A (en) Method for fabricating phase shift mask, and phase shift mask
KR100845173B1 (en) Extreme ultraviolet mask with molybdenum phase shifter
US10685950B2 (en) Photomask design for generating plasmonic effect
JP7382113B1 (en) Exposure light frequency intensifier, photomask and method for manufacturing the same
CN110780544A (en) Light generating device for long-focus deep super-resolution direct writing photoetching
JPH09120154A (en) Polarizing mask and its production as well as pattern exposure method and pattern projection aligner using the same
JP3727319B2 (en) Photomask and method for producing the same
US5962174A (en) Multilayer reflective mask
CN114995068A (en) Exposure light frequency enhancing device, photomask and preparation method thereof
US6524751B1 (en) Reticle design for alternating phase shift mask
CN114839834A (en) Mask base plate for projection type photoetching, photomask and preparation method thereof
CN114911129B (en) Mask base plate, photomask plate and preparation method thereof
JP7535662B2 (en) Phase-shifting reticle for use in photolithography
JP2009237339A (en) Photomask and method for manufacturing semiconductor device using the photomask
WO2022237295A1 (en) Phase shift mask and manufacturing method therefor
CN117192915A (en) Super-resolution photoetching device and method based on dielectric waveguide
CN117492330A (en) Surface plasma photoetching imaging structure
JP3727330B2 (en) Pattern formation method
CN114995051A (en) Mask base plate, photomask plate and preparation method thereof
TWI269936B (en) Mask at frequency domain and method for preparing the same and exposing system using the same
TW201019043A (en) Mask and fabrication method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230515

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231101

R150 Certificate of patent or registration of utility model

Ref document number: 7382113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150