JP2023170587A - Spar type floating body and assembly method for ocean wind power generation facility - Google Patents

Spar type floating body and assembly method for ocean wind power generation facility Download PDF

Info

Publication number
JP2023170587A
JP2023170587A JP2022082443A JP2022082443A JP2023170587A JP 2023170587 A JP2023170587 A JP 2023170587A JP 2022082443 A JP2022082443 A JP 2022082443A JP 2022082443 A JP2022082443 A JP 2022082443A JP 2023170587 A JP2023170587 A JP 2023170587A
Authority
JP
Japan
Prior art keywords
compartment
floating body
type floating
weight material
spar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022082443A
Other languages
Japanese (ja)
Inventor
靖弘 十川
Yasuhiro Togawa
智彦 高橋
Tomohiko Takahashi
哲哉 石川
Tetsuya Ishikawa
一雅 西郡
Kazumasa Nishigori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Holdings Inc filed Critical Tokyo Electric Power Co Holdings Inc
Priority to JP2022082443A priority Critical patent/JP2023170587A/en
Publication of JP2023170587A publication Critical patent/JP2023170587A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Wind Motors (AREA)

Abstract

To solve a problem in prior art, that is, to provide a spar type floating body capable of suppressing rolling and pitching when utilized as well as at assembly and an assembly method for an ocean wind power generation facility using the same.SOLUTION: The spar type floating body of an ocean wind power generation facility in which a wind mill power unit is installed on ocean includes a hollow pillar state body, a cell for storing weight material, and ejection means. In addition, the cell is provided inside the pillar state body and the ejection means is means to eject the weight material stored in the cell. Then, the weight material is ejected from the cell by operating the ejection means.SELECTED DRAWING: Figure 1

Description

本願発明は、洋上風力発電施設に関するものであり、より具体的には、稼働時はもちろん施設を完成させる途中の施工段階においても洋上風力発電施設の動揺を抑制することができるスパー型浮体と、これを用いて洋上風力発電施設を組み立てる方法に関するものである。 The present invention relates to an offshore wind power generation facility, and more specifically, a spar-type floating body that can suppress the oscillation of the offshore wind power generation facility not only during operation but also during the construction stage during the completion of the facility; The present invention relates to a method of assembling an offshore wind power generation facility using this.

我が国における電力消費量は、2008年の世界的金融危機の影響により一旦は減少に転じたものの、オイルショックがあった1973年以降継続的に増加しており、1973年度から2007年度の間には2.6倍にまで拡大している。その背景には、生活水準の向上に伴うエアコンや電気カーペットといったいわゆる家電製品の普及、あるいはオフィスビルの増加に伴うOA(Office Automation)機器や通信機器の普及などが挙げられる。 Although electricity consumption in Japan temporarily began to decline due to the effects of the global financial crisis in 2008, it has continued to increase since the oil crisis in 1973, and between 1973 and 2007, It has expanded to 2.6 times. The reasons behind this include the spread of so-called home appliances such as air conditioners and electric carpets as living standards improve, and the spread of office automation (OA) equipment and communication equipment as the number of office buildings increases.

これまで、莫大な量の電力需要を主に支えてきたのは、石油、石炭等いわゆる化石燃料による発電であった。ところが近年、化石燃料の枯渇化問題や、地球温暖化に伴う環境問題が注目されるようになり、これに応じて発電方式も次第に変化してきた。その結果、先に説明した1973年頃には、石油、石炭による発電が全体の約90%を占めていたのに対し、2010年にその割合は66%まで減少している。代わりに増加したのが全体の約10%強(2010年)を占めている原子力発電である。原子力発電は、従来の発電方式に比べ温室効果ガスの削減効果が顕著であるうえ、低コストで電力を提供できることから、我が国の電力需要にも大きく貢献してきた。 Up until now, the huge demand for electricity has been mainly supported by power generation using so-called fossil fuels such as oil and coal. However, in recent years, the depletion of fossil fuels and environmental problems associated with global warming have attracted attention, and power generation methods have gradually changed in response. As a result, while around 1973, as mentioned earlier, oil and coal-based power generation accounted for approximately 90% of the total power generation, by 2010 that proportion had decreased to 66%. Instead, nuclear power generation, which accounted for just over 10% of the total (in 2010), has increased. Nuclear power generation has a significant effect on reducing greenhouse gas emissions compared to conventional power generation methods, and because it can provide electricity at low cost, it has greatly contributed to Japan's electricity demand.

また、温室効果ガスの排出を抑制することができるという点において、再生可能エネルギーによる発電方式も採用されるようになっている。この再生可能エネルギーは、太陽光や風力、地熱、中小水力、木質バイオマスなど文字どおり再生することができるエネルギーであり、温室効果ガスの排出を抑え、また国内で生産できることから、有望な低炭素エネルギーとして期待されている。 Furthermore, power generation methods using renewable energy are increasingly being adopted because they can reduce greenhouse gas emissions. This renewable energy is energy that can literally be regenerated, such as sunlight, wind, geothermal, small and medium-sized hydropower, and woody biomass.It is a promising low-carbon energy source because it reduces greenhouse gas emissions and can be produced domestically. It is expected.

再生可能エネルギーのうち特に風力を利用した発電方式は、電気エネルギーの変換効率が高いという特長を備えている。一般に、太陽光発電の変換効率は約20%、木質バイオマス発電は約20%、地熱発電は10~20%とされているのに対して、風力発電は20~40%とされているように、他の発電方法よりも高効率でエネルギーを電気に変換できる。また、太陽光発電とは異なり昼夜問わず発電することができることも風力発電の特長である。このような特長を備えていることもあって、風力発電は既にヨーロッパで主要な発電方法として多用されており、我が国でも「エネルギーミックス」の取り組みにおいて2030年には電源構成のうち1.7%を担うことを目指している。 Among renewable energies, power generation methods that use wind power in particular have the advantage of high conversion efficiency of electrical energy. In general, the conversion efficiency of solar power generation is said to be about 20%, woody biomass power generation is about 20%, geothermal power generation is 10-20%, while wind power generation is said to be 20-40%. , can convert energy into electricity with higher efficiency than other power generation methods. Another feature of wind power generation is that, unlike solar power generation, it can generate electricity day and night. Due to these features, wind power generation is already widely used as a major power generation method in Europe, and in Japan, it is expected to account for 1.7% of the power source mix in 2030 in efforts to improve the energy mix. We aim to take on the role of

風力発電はその設置場所によって陸上風力発電と洋上風力発電に大別され、このうち陸上風力発電は洋上風力発電に比べ設置が容易であり、したがってそのコストも抑えることができるといった特長を備えている。一方、洋上風力発電は、陸上風力発電が抱える騒音問題が生ずることがなく、また転倒等による被害リスクも回避でき、なにより陸上に比して大きな風力を安定的に得ることができるという特長を備えている。世界第6位の排他的経済水域を持つ我が国は、洋上風力発電にとって適地であり、将来的には再生可能エネルギーの有望な産出地となり得ると考えられる。 Wind power generation is broadly divided into onshore wind power generation and offshore wind power generation, depending on the installation location.Of these, onshore wind power generation has the advantage of being easier to install than offshore wind power generation, and therefore can reduce costs. . On the other hand, offshore wind power generation does not suffer from the noise problems that land-based wind power generation has, it also avoids the risk of damage from falls, etc., and above all, it has the advantage of being able to stably obtain a large amount of wind power compared to land-based wind power generation. We are prepared. Japan, which has the world's sixth largest exclusive economic zone, is a suitable location for offshore wind power generation, and is thought to have the potential to become a promising source of renewable energy in the future.

また洋上風力発電は、その設置場所によって異なる形式が採用され、50m以浅の海域では着床式洋上風力発電が適しており、50m以深の海域では浮体式洋上風力発電が適しているとされている。このうち浮体式洋上風力発電は、海水に浮かべる浮体を利用するものであり、係留索で繋がれた浮体上に発電機構を設置し、この発電機構によって発電する方式である。なお浮体形式には、バージ型、セミサブ型、スパー型、緊張係留型(TLP:Tension Leg Platform)などが挙げられる。このうちスパー型の洋上風力発電施設は、その浮体(以下、「スパー型浮体」という。)の構造がそれほど複雑でないため製造に係る手間を軽減することができるうえ、スパー型浮体が軽量であるためその材料費も抑えることができ、浮体製造コストの面では有利と考えられている。 In addition, different types of offshore wind power generation are adopted depending on the installation location, with fixed offshore wind power generation being suitable for waters shallower than 50 meters, and floating offshore wind power generation being suitable for waters deeper than 50 meters. . Among these, floating offshore wind power generation uses floating bodies floating in seawater, and is a method in which a power generation mechanism is installed on the floating body connected with mooring ropes, and the power generation mechanism generates electricity. Examples of floating body types include barge type, semi-sub type, spar type, and tension leg platform (TLP) type. Among these, spar-type offshore wind power generation facilities can reduce the labor involved in manufacturing because the structure of the floating body (hereinafter referred to as "spar-type floating body") is not so complicated, and the spar-type floating body is lightweight. Therefore, the material cost can be reduced, and it is considered advantageous in terms of floating body manufacturing costs.

図8は、スパー型の洋上風力発電施設を模式的に示す側面図である。この図に示すようにスパー型の洋上風力発電施設は、海中に浮かべるスパー型浮体と、その上に設置されるタワーやローター、ナセルなど(以下、これらを総称して「風車部」という。)を含んで構成される。タワーはローターやナセルを支持する構造体であり、さらにスパー型浮体がタワーの基礎として機能している。そしてブレード(羽根)とハブからなるローターによって風を動力に変換し、増速機や発電機、変圧器などを含むナセルによって動力を電気に変換して、電力ケーブル(ダイナミックケーブルと海底ケーブル)を通じて陸域まで送電するわけである。なおスパー型浮体は、カテナリー(懸垂線)形状とされた係留索の自重によって係留されるのが一般的である。 FIG. 8 is a side view schematically showing a spar type offshore wind power generation facility. As shown in this figure, a spar-type offshore wind power generation facility consists of a spar-type floating body floating in the sea, and a tower, rotor, nacelle, etc. installed on top of it (hereinafter collectively referred to as the "wind turbine section"). It consists of: The tower is a structure that supports the rotor and nacelle, and a spar-type floating body serves as the foundation of the tower. The rotor, which consists of blades and a hub, converts the wind into power, and the nacelle, which includes a speed increaser, generator, and transformer, converts the power into electricity, which is then transmitted through power cables (dynamic cables and submarine cables). This means that electricity is transmitted to land areas. Note that spar-type floating bodies are generally moored by the weight of catenary-shaped mooring lines.

スパー型浮体を構成する本体部分は、断面寸法に比して軸(以下、「柱軸」という。)方向の寸法が卓越したいわゆる長尺体であって、内部が中空の管状を呈している。そして図8にも示すように、稼働時におけるスパー型浮体はその柱軸方向が略鉛直(鉛直含む)となる状態(以下、「直立状態」という。)とされる。このように直立状態とされたスパー型浮体は縦揺れや横揺れなどの動揺が生じやすいため、これまでにもその動揺を抑制するための種々の技術が提案されてきた。例えば特許文献1では、いわば「浮き輪」として機能する環状部材を利用し、すなわち浮体部を取り囲むように配置した環状部材をロープ等で接続する構成とすることによって、動揺を抑制する技術について提案している。 The main body part of the spar-type floating body is a so-called elongated body whose dimension in the axis (hereinafter referred to as "column axis") direction is superior to its cross-sectional dimension, and it has a tubular shape with a hollow interior. . As shown in FIG. 8, during operation, the spar type floating body is in a state in which its column axis direction is approximately vertical (including vertical) (hereinafter referred to as "upright state"). Since a spar-type floating body in an upright state is likely to suffer from fluctuations such as pitching or rolling, various techniques have been proposed to suppress such fluctuations. For example, Patent Document 1 proposes a technique for suppressing oscillation by using an annular member that functions as a so-called "floating ring", that is, by connecting the annular members arranged so as to surround the floating body part with ropes, etc. are doing.

特開2013-141857号公報Japanese Patent Application Publication No. 2013-141857

通常、スパー型浮体はドライドックなど陸域で製造されることから、稼働場所(ウィンドファーム:WF)まで海上輸送する必要がある。このとき、図9(a)に示すように柱軸方向が略水平となる状態でスパー型浮体を輸送することとなる。したがって稼働状態とするためには、図9(b)に示すようにスパー型浮体を略水平な状態から直立状態に回転させる(以下、「立起こす」という。)必要がある。なお、ウィンドファームでは相当の風力を受けることが予想されることからスパー型浮体を立起こす場所としては適切ではなく、あらかじめ選定された静穏域の海上で立起こされる。また、風車部(タワーやローター、ナセルなど)はスパー型浮体とは別に製造されて静穏域まで輸送され、図9(c)に示すように起重機船などを用いて立起こしたスパー型浮体に設置される。そして洋上風力発電施設として概ね完成した構造体は、稼働状態(つまり、スパー型浮体が直立状態)のままウィンドファームまで輸送される。 Normally, spar-type floating bodies are manufactured on land, such as in a dry dock, so they need to be transported by sea to the operation site (wind farm: WF). At this time, the spar type floating body is transported in a state where the column axis direction is approximately horizontal as shown in FIG. 9(a). Therefore, in order to bring it into operation, it is necessary to rotate the spar type floating body from a substantially horizontal state to an upright state (hereinafter referred to as "standing up") as shown in FIG. 9(b). However, since wind farms are expected to receive considerable wind force, it is not an appropriate place to erect a spar-type floating structure, so it will be erected in a pre-selected calm area at sea. In addition, the wind turbine part (tower, rotor, nacelle, etc.) is manufactured separately from the spar-type floating body and transported to a calm area, and is then erected using a hoist boat or the like as shown in Figure 9 (c). will be installed. The nearly completed structure of the offshore wind power generation facility is then transported to the wind farm in an operational state (that is, with the spar-shaped floating structure in an upright position).

スパー型の洋上風力発電施設は上記した手順で組み立てられることから、図10(a)に示すように風車部が取り付けられた完成型となる前に、一時的ではあるものの図10(b)に示すように風車部が取り付けられない状態のスパー型浮体が洋上に配置されることとなる。換言すれば、図10(b)に示す状態のスパー型浮体に風車部を設置するわけである。なお便宜上ここでは、図10(b)に示す状態のスパー型浮体を「組立時のスパー型浮体」ということとする。 Since a spar-type offshore wind power generation facility is assembled using the above-mentioned procedure, the structure shown in Fig. 10(b), albeit temporarily, is required before the completed structure with the wind turbine section attached as shown in Fig. 10(a) is completed. As shown, a spar-type floating body without a wind turbine attached will be placed on the ocean. In other words, the wind turbine section is installed on the spar type floating body in the state shown in FIG. 10(b). For convenience, the spar-type floating body in the state shown in FIG. 10(b) will be referred to as "the spar-type floating body at the time of assembly."

上記したとおり、直立状態とされたスパー型浮体は動揺しやすいことから、その動揺を抑制するための種々の技術が取り入れられてきた。ただし従来技術は、いずれも稼働時におけるスパー型浮体の動揺を抑制するものであり、つまり風車部が取り付けられたスパー型浮体の動揺を抑制する技術であって、組立時のスパー型浮体(図10(b))の動揺を抑制するものではなかった。稼働時のスパー型浮体には上部に風車部が設けられているため組立時のスパー型浮体よりも重心位置が高く、浮体の動揺の固有周期が長い。一方で、組立時のスパー型浮体は風車部が設けられていないため、重心位置が低く、固有周期が短い。図11(a)は「通常海象と暴風時における波スペクトル」を示すグラフ図であり、図11(b)は従来技術を採用したときの「組立時(風車部の設置時)と稼働時におけるスパー型浮体の動揺特性を表す周波数応答関数(RAO:Response Amplitude Operator)」を示すグラフ図である。なお波スペクトルとは、不規則波を無数の正弦波の重ね合わせと表現した時に、周波数毎の正弦波のエネルギーの量を示したものである。この図に示すように、稼働時におけるスパー型浮体の動揺特性は固有周期が長いことから応答のピークは長周期の位置にあり、通常海象と暴風時の波スペクトルにそれほど干渉していないため動揺が抑制されていることが分かる。これに対して、組立時におけるスパー型浮体の動揺特性は固有周期が短いことから応答のピークは短周期の位置にあり、通常海象の波スペクトルに大きく干渉しているため動揺しやすい、すなわち波と同調揺れを起こしやすいことが分かる。 As mentioned above, since a spar type floating body in an upright state tends to sway, various techniques have been adopted to suppress the sway. However, all of the conventional technologies suppress the movement of the spar type floating body during operation, that is, the technology suppresses the movement of the spar type floating body to which the wind turbine section is attached. 10(b)). Since the spar-type floating body in operation has a wind turbine section on the top, the center of gravity is higher than the spar-type floating body when assembled, and the natural period of the floating body's oscillation is longer. On the other hand, since the spar type floating body does not have a wind turbine section when assembled, its center of gravity is low and its natural period is short. Figure 11(a) is a graph showing the wave spectra during normal sea conditions and storm winds, and Figure 11(b) is a graph showing wave spectra during normal sea conditions and storm winds. FIG. 2 is a graph diagram showing a frequency response function (RAO: Response Amplitude Operator) representing the oscillation characteristics of a spar type floating body. Note that the wave spectrum indicates the amount of energy of a sine wave for each frequency when an irregular wave is expressed as a superposition of countless sine waves. As shown in this figure, the oscillation characteristics of a spar type floating body during operation have a long natural period, so the response peak is at a long period position, and the oscillation does not interfere much with the wave spectrum during normal sea conditions and storms. It can be seen that this is suppressed. On the other hand, the oscillation characteristics of a spar type floating body during assembly are such that the natural period is short, so the response peak is at a short period position, and it is likely to oscillate because it interferes greatly with the wave spectrum of the normal sea state. It can be seen that synchronized swings are likely to occur.

スパー型浮体に風車部を設置するには、当然ながら暴風時を避けて通常海象の状態が選ばれる。しかしながら、図11に示すように組立時のスパー型浮体は、通常海象の状態であっても動揺しやすい。そのため風車部の設置作業は、通常海象の状態であってより静穏な状態で行う必要がある。その結果、海洋条件によって設置作業の稼働率が著しく制限されることとなり、すなわち組立時のスパー型浮体の動揺性が施工コストを押し上げていたわけである。 Naturally, to install a wind turbine on a spar-type floating structure, normal sea conditions are chosen to avoid stormy winds. However, as shown in FIG. 11, the spar type floating body when assembled is likely to sway even under normal sea conditions. Therefore, installation of the wind turbine must be carried out under normal sea conditions and in calm conditions. As a result, the operational efficiency of installation work was severely limited by ocean conditions, and the sway of the spar-type floating body during assembly increased construction costs.

本願発明の課題は、従来技術が抱える問題を解決することであり、すなわち、稼働時に加え組立時にも動揺を抑制することができるスパー型浮体と、これを用いた洋上風力発電施設組立方法を提供することである。 An object of the present invention is to solve the problems faced by the prior art, namely, to provide a spar-type floating body that can suppress vibrations not only during operation but also during assembly, and a method for assembling an offshore wind power generation facility using the same. It is to be.

本願発明は、中空の柱状本体内に錘材(バラスト等)を収容する隔室を設けることとし、組立時には隔室に錘材を収容するが稼働時には隔室から錘材を排出する、という点に着目してなされたものであり、これまでにない発想に基づいて行われたものである。 The present invention is characterized in that a compartment for storing a weight material (ballast, etc.) is provided in a hollow columnar main body, and the weight material is stored in the compartment during assembly, but the weight material is discharged from the compartment during operation. This was done with a focus on this, and was based on an idea that had never been seen before.

本願発明のスパー型浮体は、洋上で風車部が設置される洋上風力発電施設のスパー型浮体であって、中空の柱状本体と、錘材を収容する隔室、排出手段を備えたものである。なお隔室は、柱状本体の内部に設けられ、排出手段を操作することによって隔室に収容された錘材を排出する手段である。そして、排出手段を操作することによって錘材が隔室から排出される。 The spar-type floating body of the present invention is a spar-type floating body for an offshore wind power generation facility in which a wind turbine section is installed offshore, and is equipped with a hollow columnar body, a compartment for accommodating a weight material, and a discharge means. . Note that the compartment is provided inside the columnar main body, and is a means for discharging the weight material housed in the compartment by operating the discharging means. Then, the weight material is discharged from the compartment by operating the discharge means.

本願発明のスパー型浮体は、隔室が柱状本体の内周面に沿って配置される2以上の水平分割隔室によって構成されたものとすることもできる。この場合の排出手段は、水平分割隔室ごとに独立して錘材を排出することができる。 The spar type floating body of the present invention can also be configured with two or more horizontally divided compartments arranged along the inner circumferential surface of the columnar main body. In this case, the discharge means can discharge the weight material independently for each horizontally divided compartment.

本願発明のスパー型浮体は、隔室が柱状本体の軸方向に沿って配置される2以上の鉛直分割隔室によって構成されたものとすることもできる。この場合の排出手段は、鉛直分割隔室ごとに独立して錘材を排出することができる。 The spar type floating body of the present invention can also be configured with two or more vertically divided compartments arranged along the axial direction of the columnar body. In this case, the discharge means can discharge the weight material independently for each vertically divided compartment.

本願発明のスパー型浮体は、柱状本体が略直立(直立を含む)の姿勢とされ、さらに風車部が設置されたときに、隔室が柱状本体のうち計画吃水線位置に設けられたものとすることもできる。 In the spar type floating body of the present invention, the columnar body is in a substantially upright (including upright) posture, and when the wind turbine section is installed, the compartment is provided at the planned water line position of the columnar body. You can also.

本願発明の洋上風力発電施設組立方法は、洋上で本願発明のスパー型浮体に風車部を設置して洋上風力発電施設を組み立てる方法であって、本体立起工程と錘材投入工程、風車部設置工程、錘材排出工程を備えた方法である。このうち本体立起工程では、柱状本体の底部に底部用錘材を投入して柱状本体を略直立(直立を含む)の姿勢とし、錘材投入工程では、隔室の内部に錘材を投入する。また風車部設置工程では、洋上で略直立(直立を含む)とされたスパー型浮体に風車部を設置し、錘材排出工程では、排出手段を操作することによって錘材を隔室から排出する。 The method for assembling an offshore wind power generation facility of the present invention is a method for assembling an offshore wind power generation facility by installing a wind turbine section on the spar type floating body of the present invention on the ocean, which includes a main body erection step, a weight material insertion step, and a wind turbine section installation step. This method includes a process and a weight material discharge process. In the main body raising process, a weight material for the bottom is placed at the bottom of the columnar body to make the columnar body approximately upright (including upright), and in the weight material injection process, the weight material is placed inside the compartment. do. In addition, in the wind turbine part installation process, the wind turbine part is installed on a spar type floating body that is approximately upright (including upright) on the ocean, and in the weight material discharge process, the weight material is discharged from the compartment by operating a discharge means. .

本願発明の洋上風力発電施設組立方法は、姿勢調整工程をさらに備えた方法とすることもできる。この場合、隔室が2以上の水平分割隔室によって構成されたスパー型浮体を用いるとよい。この姿勢調整工程では、錘材投入工程の後に柱状本体が傾いているときに、所定の分割隔室に対して錘材を追加投入する(あるいは、所定の分割隔室の錘材を排出する)ことによって、柱状本体を略直立(直立を含む)の姿勢とする。 The method for assembling an offshore wind power generation facility according to the present invention may further include an attitude adjustment step. In this case, it is preferable to use a spar type floating body in which the compartment is composed of two or more horizontally divided compartments. In this attitude adjustment step, when the columnar body is tilted after the weight material input step, weight material is additionally introduced into a predetermined divided compartment (or the weight material in a predetermined divided compartment is discharged) By doing so, the columnar body is placed in a substantially upright (including upright) posture.

本願発明のスパー型浮体、及び洋上風力発電施設組立方法には、次のような効果がある。
(1)稼働時はもちろん、組立時(風車部を設置するとき)においても、スパー型浮体の動揺が抑制されている。その結果、従来技術に比べて設置作業の稼働率が向上し、すなわち施工コストを軽減することができる。
(2)隔室を柱状本体のうち計画吃水線位置に設けることによって、この隔室を損傷時復原性用の構造として利用することができ、また水線面付近に生じやすい外力に対する補剛材として期待することもできる。
(3)2以上の水平分割隔室によって隔室を構成することによって、柱状本体が傾いたときに略直立(直立を含む)の姿勢に修正することができる。
The spar type floating body and offshore wind power generation facility assembly method of the present invention have the following effects.
(1) The oscillation of the spar type floating body is suppressed not only during operation but also during assembly (when installing the wind turbine section). As a result, compared to the conventional technology, the operating rate of installation work is improved, that is, construction costs can be reduced.
(2) By providing the compartment at the planned waterline position of the columnar body, this compartment can be used as a structure for stability in the event of damage, and also as a stiffener against external forces that tend to occur near the waterline. It can also be expected as
(3) By configuring a compartment with two or more horizontally divided compartments, when the columnar body is tilted, it can be corrected to a substantially upright (including upright) posture.

本願発明のスパー型浮体を模式的に示す側面図。FIG. 1 is a side view schematically showing a spar type floating body of the present invention. (a)は本願発明のスパー型浮体を模式的に示す透視斜視図、(b)は本願発明のスパー型浮体を模式的に示す鉛直面で切断した断面図。(a) is a perspective view schematically showing a spar type floating body of the present invention, and (b) is a sectional view cut along a vertical plane schematically showing the spar type floating body of the present invention. (a)は「通常海象と暴風時における波スペクトル」を示すグラフ図、(b)は本願発明のスパー型浮体を採用したときの「組立時(風車部の設置時)と稼働時におけるスパー型浮体の動揺特性を表す周波数応答関数」を示すグラフ図。(a) is a graph showing the wave spectrum during normal sea conditions and stormy winds, and (b) is a graph showing the spar type during assembly (installation of the wind turbine section) and during operation when the spar type floating body of the present invention is adopted. A graph diagram showing a frequency response function representing the motion characteristics of a floating body. (a)は揚重手段を具備しないスパー型浮体を模式的に示す透視斜視図、(b)は揚重手段を具備しないスパー型浮体を模式的に示す鉛直面で切断した断面図。(a) is a perspective view schematically showing a spar-type floating body without a lifting means, and (b) is a cross-sectional view cut along a vertical plane, schematically showing a spar-type floating body without a lifting means. (a)は8つの水平分割隔室によって構成される隔室を模式的に示す平面図、(b)は3段の鉛直分割隔室によって構成される隔室を模式的に示す側面図。(a) is a plan view schematically showing a compartment made up of eight horizontally divided compartments, and (b) is a side view schematically showing a compartment made up of three vertically divided compartments. 本願発明の洋上風力発電施設組立方法の主な工程を示すフロー図。FIG. 2 is a flow diagram showing the main steps of the method for assembling an offshore wind power generation facility according to the present invention. 本願発明の洋上風力発電施設組立方法の主な工程を示すステップ図。FIG. 3 is a step diagram showing the main steps of the method for assembling an offshore wind power generation facility of the present invention. スパー型の洋上風力発電施設を模式的に示す側面図。A side view schematically showing a spar-type offshore wind power generation facility. スパー型の洋上風力発電施設を洋上で組み立てる状況を模式的に示すステップ図。A step diagram schematically showing how to assemble a spar-type offshore wind power generation facility offshore. (a)は風車部が取り付けられたスパー型浮体を模式的に示す側面図、(b)は風車部が取り付けられる前のスパー型浮体を模式的に示す側面図。(a) is a side view schematically showing a spar type floating body to which a wind turbine section is attached, and (b) is a side view schematically showing the spar type floating body before the wind turbine section is attached. (a)は「通常海象と暴風時における波スペクトル」を示すグラフ図、(b)は従来技術を採用したときの「組立時(風車部の設置時)と稼働時におけるスパー型浮体の動揺特性を表す周波数応答関数」を示すグラフ図。(a) is a graph showing "wave spectra during normal sea conditions and storms", (b) is a graph showing "sway characteristics of a spar-type floating body during assembly (installation of the wind turbine) and during operation" when conventional technology is adopted. A graph diagram showing the frequency response function representing the frequency response function.

本願発明のスパー型浮体、及び洋上風力発電施設組立方法の実施形態の一例を図に基づいて説明する。 An example of an embodiment of a spar type floating body and a method for assembling an offshore wind power generation facility of the present invention will be described based on the drawings.

1.スパー型浮体
はじめに、本願発明のスパー型浮体について説明する。なお、本願発明の洋上風力発電施設組立方法は、本願発明のスパー型浮体を含む洋上風力発電施設を組み立てる方法であり、したがってまずは本願発明のスパー型浮体について説明し、その後に本願発明の洋上風力発電施設組立方法について詳しく説明することとする。
1. Spar Type Floating Body First, the spar type floating body of the present invention will be explained. The offshore wind power generation facility assembly method of the present invention is a method for assembling an offshore wind power generation facility including the spar-type floating body of the present invention, so the spar-type floating body of the present invention will be explained first, and then the offshore wind power generation facility of the present invention will be explained. The method for assembling the power generation facility will be explained in detail.

図1は本願発明のスパー型浮体100を模式的に示す側面図である。この図に示すように本願発明のスパー型浮体100は、柱状本体110と隔室120、排出手段130を含んで構成され、さらに後述する排出管などを含んで構成することもできる。そして、直立状態とされたスパー型浮体100に風車部(タワーやローター、ナセルなど)を設置すると、スパー型の洋上風力発電施設が完成する。以下、柱状型浮体100を構成する主な要素ごとに説明する。 FIG. 1 is a side view schematically showing a spar type floating body 100 of the present invention. As shown in this figure, the spar type floating body 100 of the present invention includes a columnar main body 110, a compartment 120, and a discharge means 130, and may also include a discharge pipe, etc., which will be described later. Then, when a wind turbine section (tower, rotor, nacelle, etc.) is installed on the spar-type floating body 100 that is in an upright state, a spar-type offshore wind power generation facility is completed. Each of the main elements constituting the columnar floating body 100 will be explained below.

(柱状本体)
柱本体110は、図1に示すように断面寸法に比してその軸方向寸法が卓越した長尺体であって、その内部は中空とされる。また柱本体110は、一端(図では下端)が閉鎖し、他端(図では上端)が開口したいわゆる有底の開口管であり、断面が円形の円柱状とすることもできるし、断面が多角形の角柱状とすることもできる。さらに図1に示すように、柱本体110の上部に縮径部が形成されたものとすることもできる。この縮径部は、タワーを連結される部分であり、柱本体110の太径からタワーの細径に変更するためのいわば調整区間である。なおこの図では、1箇所のみに縮径部が形成されているが、これに限らず2以上の箇所に縮径部を形成することもできる。
(columnar body)
As shown in FIG. 1, the column main body 110 is a long body whose axial dimension is superior to its cross-sectional dimension, and its interior is hollow. The pillar body 110 is a so-called bottomed open tube with one end (the lower end in the figure) closed and the other end (the upper end in the figure) open, and it can also have a cylindrical shape with a circular cross section. It can also be made into a polygonal prism shape. Furthermore, as shown in FIG. 1, a diameter-reduced portion may be formed in the upper part of the column main body 110. This reduced diameter portion is a portion to which the towers are connected, and is a so-called adjustment section for changing from the large diameter of the column main body 110 to the small diameter of the tower. In this figure, the reduced diameter portion is formed at only one location, but the diameter reduction portion is not limited to this, and the reduced diameter portion may be formed at two or more locations.

(隔室)
隔室120は、図2に示すように柱状本体110の内部であって、図1に示すように直立状態とされたスパー型浮体100のうち上方に設けられ、内部に「錘材」を収容することができる空間が形成された函体である。ここで「錘材」とは、海水や砕石といったバラストをはじめ、固体の重錘(いわゆるカウンターウェイト)など種々の重量物である。なお、スパー型浮体100を立起こすときに底部に投入される錘材と区別するため、便宜上ここでは、隔室120に収容される錘材のことを特に「隔室用錘材BLr」、底部に投入される錘材のことを特に「底部用錘材BLb」ということとする。
(Separate room)
The compartment 120 is provided inside the columnar body 110 as shown in FIG. 2, above the spar type floating body 100 that is in an upright state as shown in FIG. 1, and accommodates a "weight material" inside. It is a box with a space where it can be used. Here, the "weight material" refers to various heavy objects such as ballast such as seawater or crushed stone, and solid weights (so-called counterweights). In addition, in order to distinguish it from the weight material that is put into the bottom part when raising the spar type floating body 100, for convenience, the weight material accommodated in the compartment 120 will be particularly referred to as "compartment weight material BLr" and the bottom part. The weight material to be put in is particularly referred to as "bottom weight material BLb."

従来技術の場合、上部に風車部が設けられていない状態(つまり、組立時)のスパー型浮体は、その重心位置が低く、波と同調揺れが起きやすい状態のため動揺が生じやすい。一方、本願発明の場合、直立状態とされたスパー型浮体100のうち上方に隔室120が設けられ、そしてこの隔室120に隔室用錘材BLrを収容することができるため、従来技術に比べその重心を高い位置に置くことができ、波と同調揺れが起きにくい状態のため、動揺を抑制することができる。図3(a)は「通常海象と暴風時における波スペクトル」示すグラフ図であり、図3(b)は本願発明のスパー型浮体を採用したときの「組立時と稼働時におけるスパー型浮体のRAO」を示すグラフ図である。この図に示すように、組立時におけるスパー型浮体の動揺特性は、従来技術に比べ(図11)通常海象の波スペクトルに干渉していないことから、その動揺が抑制されていることが分かる。 In the case of the prior art, a spar type floating body without a wind turbine section on its upper part (that is, when assembled) has a low center of gravity and is prone to sway in synchronization with waves, so it is likely to oscillate. On the other hand, in the case of the present invention, the compartment 120 is provided above the spar type floating body 100 that is in an upright state, and the compartment weight material BLr can be accommodated in the compartment 120. Compared to other buildings, the center of gravity can be placed at a higher position, making it less likely to sway in sync with the waves, thereby suppressing sway. FIG. 3(a) is a graph showing "wave spectra during normal sea conditions and storms", and FIG. 3(b) is a graph showing "the wave spectrum during assembly and operation" when the spar-type floating structure of the present invention is adopted. It is a graph diagram showing "RAO". As shown in this figure, the oscillation characteristics of the spar type floating body during assembly do not interfere with the wave spectrum of normal sea conditions compared to the conventional technology (FIG. 11), so it can be seen that the oscillation is suppressed.

隔室120は、直立状態とされたスパー型浮体100のうち上方に設けると説明したが、望ましくは「計画吃水線位置」の周辺に配置するとよい。ここで「計画吃水線位置」とは、スパー型の洋上風力発電施設として完成したとき(つまり、稼働時)に、海水面と交差するスパー型浮体100の位置(高さ)である。この計画吃水線位置は、スプラッシュゾーン(飛沫帯)とも呼ばれ、波等の外力による部材の疲労が厳しい部分である。そこで、隔室120を計画吃水線位置に設置し、当該部分の剛性(断面2次モーメントなど)を高めることによって、部材の疲労を緩和するわけである。なお、計画吃水線位置を含むように配置することができれば、気中に突出する隔室120の長さ(つまり、計画吃水線位置から隔室120上端までの長さ)と、海中に沈む隔室120の長さ(つまり、計画吃水線位置から隔室120下端までの長さ)は、所望の値で設計することができる。 Although it has been explained that the compartment 120 is provided above the spar type floating body 100 that is in an upright state, it is preferable that the compartment 120 is provided around the "planned waterline position". Here, the "planned waterline position" is the position (height) of the spar-type floating body 100 that intersects with the seawater level when the spar-type offshore wind power generation facility is completed (that is, when in operation). This planned water line position is also called a splash zone, and is an area where members are subject to severe fatigue due to external forces such as waves. Therefore, the fatigue of the member is alleviated by installing the compartment 120 at the planned water line position and increasing the rigidity (secondary moment of area, etc.) of the part. In addition, if it can be arranged to include the planned water line position, the length of the compartment 120 that protrudes into the air (that is, the length from the planned water line position to the upper end of the compartment 120) and the compartment that sinks into the sea. The length of the chamber 120 (that is, the length from the planned water line position to the lower end of the compartment 120) can be designed with a desired value.

また、隔室120を計画吃水線位置に設置すれば、損傷時復原性の要件を満たすこともできる。浮体の一部が損傷すると内部に海水が浸入するため、従来では他船の衝突等によって損傷が生じやすい計画吃水線位置の周辺に防舷材を巻き付けることが考えられていた。後述するように稼働時においては、隔室120から既に隔室用錘材BLrが排出されている。そのため、隔室120が計画吃水線位置に設置されていると、仮にスパー型浮体100の一部が損傷しても海水は隔室120に浸入するに留まり、その結果、スパー型浮体100内部への大量の海水浸入を防ぐことができる。この場合、隔室120に浸入した海水をスパー型浮体100内部に漏らさないように、隔室120は天板を備えた密閉(特に、水密)構造とするとよい。なお、隔室120の設置範囲(特に、上下方向の範囲)は、損傷範囲を考慮して望ましくは計画吃水線から上方5mまでの範囲、及び下方3mまでの範囲を包括するように配置した方がよい。また、隔室120を計画吃水線位置に設置した場合、必ずしも防舷材を設置する必要はないが、もちろん防舷材を設置することもできる。 Moreover, if the compartment 120 is installed at the planned water line position, the requirements for stability in the event of damage can also be satisfied. If a part of the floating body is damaged, seawater will seep into the interior, so conventionally it was considered to wrap fender material around the planned waterline, where damage is likely to occur due to collisions with other ships. As will be described later, during operation, the compartment weight material BLr has already been discharged from the compartment 120. Therefore, if the compartment 120 is installed at the planned water line position, even if a part of the spar type floating body 100 is damaged, seawater will only infiltrate into the compartment 120, and as a result, the seawater will enter the inside of the spar type floating body 100. can prevent large amounts of seawater from entering. In this case, in order to prevent the seawater that has entered the compartment 120 from leaking into the spar type floating body 100, the compartment 120 may have a sealed (particularly watertight) structure with a top plate. In addition, the installation range of the compartment 120 (especially the range in the vertical direction) should preferably be arranged so as to cover the range up to 5 m above the planned water line and the range up to 3 m below, considering the damage range. Good. Further, when the compartment 120 is installed at the planned waterline position, it is not necessarily necessary to install a fender, but of course a fender can be installed.

本願発明のスパー型浮体100は、図2に示すように隔室120内に隔室用錘材BLrを投入する揚重手段を備えたものとすることができる。この揚重手段150は、隔室120よりもやや上方に配置され、隔室用錘材BLrを吊上げるとともに、吊降ろすことができるものである。例えば図2に示す揚重手段150は、天井梁151とフック152、ウィンチなどの牽引装置を含んで構成されている。これにより、ウィンチがワイヤーロープを巻取るとフック152とともに隔室用錘材BLrが吊上げられ、ウィンチがワイヤーロープを巻出すとフック152とともに隔室用錘材BLrが吊降ろされる。また、フック152が天井梁151に沿って水平移動すると、隔室用錘材BLrも同様に水平移動する。なお、揚重手段150を用いて移動する隔室用錘材BLrとしては、固体の重錘(いわゆるカウンターウェイト)や袋詰めの砕石、容器に収容した海水などを利用するとよい。 The spar type floating body 100 of the present invention may be equipped with a lifting means for throwing the compartment weight BLr into the compartment 120, as shown in FIG. This lifting means 150 is arranged slightly above the compartment 120, and is capable of lifting and lowering the compartment weight BLr. For example, the lifting means 150 shown in FIG. 2 includes a ceiling beam 151, a hook 152, and a traction device such as a winch. As a result, when the winch winds up the wire rope, the compartment weight BLr is lifted together with the hook 152, and when the winch unwinds the wire rope, the compartment weight BLr is suspended together with the hook 152. Furthermore, when the hook 152 moves horizontally along the ceiling beam 151, the compartment weight BLr also moves horizontally. Note that as the weight material BLr for the compartment that is moved using the lifting means 150, it is preferable to use a solid weight (so-called counterweight), crushed stone packed in a bag, seawater stored in a container, or the like.

また揚重手段150に加え、仮置デッキ160を設置することもできる。この仮置デッキ160は、隔室120よりもやや上方であって揚重手段150よりもやや下方(つまり、隔室120と揚重手段150の間)に配置され、隔室用錘材BLrを載置するためのいわば収納棚である。この場合、仮置デッキ160に載置された隔室用錘材BLrを揚重手段150が吊上げ、隔室120の上方まで水平移動したうえで、揚重手段150が隔室用錘材BLrを隔室120内に吊降ろすことができる。そして、スパー型浮体100の上部に風車部を設置した後には、隔室120に収容された隔室用錘材BLrを揚重手段150が吊上げるとともに、隔室用錘材BLrをスパー型浮体100の底部に吊降ろす(場合によっては、後述する排出手段130を用いて隔室用錘材BLrを排出することもできる)。なお揚重手段150は、遠隔操作が可能な構成とすることもできるし、現地(つまり、揚重手段150の設置位置)で操作する構成とすることもできる。ただし隔操作可能な構成とする場合は、現地の状況を確認するためのビデオカメラなどを併せて設置することが望ましい。また、仮置デッキ160を設けることなく、揚重手段150が例えば船上などから隔室用錘材BLrを直接吊上げることもできる。 In addition to the lifting means 150, a temporary deck 160 can also be installed. This temporary deck 160 is arranged slightly above the compartment 120 and slightly below the lifting means 150 (that is, between the compartment 120 and the lifting means 150), and has a compartment weight BLr. It is a so-called storage shelf for placing items. In this case, the lifting means 150 lifts the weight material BLr for the compartment placed on the temporary deck 160, moves it horizontally to above the compartment 120, and then the lifting means 150 lifts the weight material BLr for the compartment. It can be suspended within the compartment 120. After the wind turbine section is installed on the upper part of the spar type floating body 100, the lifting means 150 lifts the compartment weight material BLr housed in the compartment 120, and the compartment weight material BLr is transferred to the spar type floating body. 100 (in some cases, the compartment weight material BLr can also be discharged using a discharge means 130, which will be described later). Note that the lifting means 150 can be configured to be remotely operated, or can be configured to be operated on-site (that is, at the installation location of the lifting means 150). However, if the configuration is such that remote operation is possible, it is desirable to also install a video camera to check the on-site situation. Further, without providing the temporary deck 160, the lifting means 150 can directly lift the compartment weight material BLr from, for example, a shipboard.

本願発明のスパー型浮体100は、揚重手段150や仮置デッキ160を備えたものに限らず、図4に示すように揚重手段150や仮置デッキ160を具備しないものとすることもできる。図4は、揚重手段150などを具備しないスパー型浮体100を模式的に示す図であり、(a)はその透視斜視図、(b)はその断面図である。この場合、隔室用錘材BLrとしては流体のバラストや粒状のバラストが好適であり、またこの場合の隔室120は、隔室用錘材BLrを投入しやすいように開口した形状とすることもできるし、収容された隔室用錘材BLrが密閉(特に、水密)されるように天板を備えた構造とすることもできる。隔室120に天板を備える場合、その天板に隔室用錘材BLrを注入するための注入管を設置するか、あるいは天板を開閉式の構造にするとよい。 The spar-type floating body 100 of the present invention is not limited to one that includes the lifting means 150 and the temporary deck 160, but can also be one that does not include the lifting means 150 and the temporary deck 160 as shown in FIG. . FIG. 4 is a diagram schematically showing a spar type floating body 100 that does not include a lifting means 150 or the like, in which (a) is a perspective perspective view thereof, and (b) is a sectional view thereof. In this case, fluid ballast or granular ballast is suitable as the compartment weight BLr, and the compartment 120 in this case should have an open shape so that the compartment weight BLr can be easily inserted. Alternatively, the structure may include a top plate so that the compartment weight BLr contained therein is sealed (particularly watertight). When the compartment 120 is provided with a top plate, an injection pipe for injecting the compartment weight material BLr may be installed on the top plate, or the top plate may be configured to open and close.

(排出手段)
スパー型浮体100の上部に風車部を設置した状態(つまり、稼働時)では、その重心が十分高い位置に置かれるため、隔室120から隔室用錘材BLrを排出しておくことができる。排出手段130は、隔室120に収容された隔室用錘材BLrを排出する手段である。ただし排出手段130は、陸域や船上、あるいはスパー型浮体100内部の別位置やスパー型浮体100外部に設けられるワーキングプラットフォームなど離れた場所にいるオペレータによる操作が可能なものであり、すなわち遠隔操作が可能なものである。図4の例では、排出手段130として遠隔操作による開閉が可能なバルブが利用されており、隔室120に連通する排出管140にその排出手段130が取り付けられている。この場合、隔室用錘材BLrが流体もしくは粒状のバラストであれば、オペレータの遠隔操作によって排出手段130を開くと、隔室120に収容された隔室用錘材BLrが排出管140を通じて排出され、スパー型浮体100が直立状態であれば隔室用錘材BLrは底部に向かって落下していく。
(Discharge means)
When the wind turbine section is installed on the upper part of the spar type floating body 100 (that is, when in operation), its center of gravity is placed at a sufficiently high position, so that the compartment weight material BLr can be discharged from the compartment 120. . The discharge means 130 is a means for discharging the compartment weight material BLr accommodated in the compartment 120. However, the ejection means 130 can be operated by an operator located on land, on a ship, at another location inside the spar type floating body 100, or at a remote location such as a working platform provided outside the spar type floating body 100, that is, by remote control. is possible. In the example of FIG. 4, a valve that can be opened and closed by remote control is used as the discharge means 130, and the discharge means 130 is attached to a discharge pipe 140 communicating with the compartment 120. In this case, if the compartment weight BLr is a fluid or granular ballast, when the operator opens the discharge means 130 by remote control, the compartment weight BLr housed in the compartment 120 is discharged through the discharge pipe 140. If the spar type floating body 100 is in an upright state, the compartment weight BLr falls toward the bottom.

(分割隔室)
隔室120は、柱状本体110の内部に設けられ、空間が形成された函体であると説明したが、1の函体で形成することもできるし、複数の函体で形成することもできる。換言すれば隔室120は、複数の分割体(以下、「分割隔室」という。)で構成することができる。例えば図5(a)に示すように、柱状本体110の内周面に沿って配置される複数の分割隔室(以下、特に「水平分割隔室120H」という。)によって構成することができる。この図では、8つの水平分割隔室120Hによって構成される隔室120を例示しているが、もちろん8つに限らず2以上の水平分割隔室120Hによって隔室120を構成することもできる。なおこの場合、それぞれの水平分割隔室120Hに、例えば図4に示すような排出手段130を設置するとよい。これにより、水平分割隔室120Hごとに隔室用錘材BLrを収容することができるとともに、水平分割隔室120Hごとに独立して隔室用錘材BLrを排出することができる。
(divided compartment)
Although it has been described that the compartment 120 is a box provided inside the columnar main body 110 and has a space formed therein, it can be formed with one box or with a plurality of boxes. . In other words, the compartment 120 can be configured with a plurality of divided bodies (hereinafter referred to as "divided compartments"). For example, as shown in FIG. 5A, it can be configured by a plurality of divided compartments (hereinafter particularly referred to as "horizontal divided compartments 120H") arranged along the inner circumferential surface of the columnar main body 110. In this figure, the compartment 120 is composed of eight horizontally divided compartments 120H, but of course the compartment 120 is not limited to eight, and can also be composed of two or more horizontally divided compartments 120H. In this case, it is preferable to install a discharge means 130 as shown in FIG. 4, for example, in each horizontally divided compartment 120H. Thereby, the compartment weight material BLr can be accommodated in each horizontally divided compartment 120H, and the compartment weight material BLr can be discharged independently for each horizontally divided compartment 120H.

既述したとおり、スパー型浮体100は柱軸方向が略水平となる状態で輸送され、稼働状態とするために略水平な状態から直立状態となるよう立起こす。そして、スパー型浮体100を立起こす際には、スパー型浮体100の底部に底部用錘材BLbが投入されるが、特に底部用錘材BLbとして砕石を利用したケースでは、底部に溜まった底部用錘材BLbの上面が傾斜する(つまり、水平とならない)こともあり、その結果、スパー型浮体100も傾斜する(つまり、鉛直とならない)こともある。このとき、複数の水平分割隔室120Hを利用すれば、比較的容易にスパー型浮体100の姿勢を調整することができる。 As described above, the spar type floating body 100 is transported with the column axis direction substantially horizontal, and is erected from the substantially horizontal state to an upright state in order to be put into operation. When the spar type floating body 100 is erected, the bottom weight material BLb is put into the bottom of the spar type floating body 100, but especially in the case where crushed stone is used as the bottom weight material BLb, the bottom weight material BLb accumulated at the bottom The upper surface of the weight material BLb may be inclined (that is, not horizontal), and as a result, the spar type floating body 100 may also be inclined (that is, not vertical). At this time, by using the plurality of horizontally divided compartments 120H, the attitude of the spar type floating body 100 can be adjusted relatively easily.

具体的には、スパー型浮体100を立起こした後にそれぞれの水平分割隔室120Hには隔室用錘材BLr投入されるが、スパー型浮体100が傾斜しているときは、適当な水平分割隔室120Hを選択したうえで、その水平分割隔室120Hに対して他より多くの隔室用錘材BLrを投入し、スパー型浮体100が略鉛直(鉛直を含む)となるよう調整するわけである。あるいは、適当な水平分割隔室120Hを選択したうえで、その水平分割隔室120Hの隔室用錘材BLrを排出し、スパー型浮体100の姿勢を調整することもできる。さらに、水中ポンプなどの揚水装置を設置し、所定の水平分割隔室120Hに収容された隔室用錘材BLrを他の水平分割隔室120Hに移動させることによってスパー型浮体100の姿勢を調整する構成とすることもできる。 Specifically, after the spar type floating body 100 is erected, the weight material BLr for the compartment is put into each horizontally divided compartment 120H, but when the spar type floating body 100 is tilted, the appropriate horizontally divided After selecting the compartment 120H, more compartment weight BLr is put into the horizontally divided compartment 120H than the other compartments, and adjustment is made so that the spar type floating body 100 is approximately vertical (including the vertical). It is. Alternatively, after selecting an appropriate horizontally divided compartment 120H, the compartment weight BLr of the horizontally divided compartment 120H can be discharged to adjust the attitude of the spar type floating body 100. Furthermore, the attitude of the spar type floating body 100 is adjusted by installing a pumping device such as a submersible pump and moving the compartment weight material BLr housed in a predetermined horizontally divided compartment 120H to another horizontally divided compartment 120H. It is also possible to have a configuration in which:

隔室120は、図5(b)に示すように柱状本体110の軸方向に沿って配置される複数の分割隔室(以下、特に「鉛直分割隔室120V」という。)によって構成することもできる。この図では、3段の鉛直分割隔室120Vによって構成される隔室120を例示しているが、もちろん3段に限らず2段以上の鉛直分割隔室120Vによって隔室120を構成することもできる。また、各段の鉛直分割隔室120Vをさらに複数の水平分割隔室120Hによって構成することもできる。なお、複数段の鉛直分割隔室120Vによって隔室120を構成する場合、それぞれの鉛直分割隔室120Vに、例えば図4に示すような排出手段130を設置するとともに、上段の鉛直分割隔室120Vから排出された隔室用錘材BLrが直下の(隣接する下段の)鉛直分割隔室120Vに流入する構成にするとよい。これにより、鉛直分割隔室120Vごとに隔室用錘材BLrを収容することができるとともに、鉛直分割隔室120Vごとに独立して隔室用錘材BLrを排出することができる。 The compartment 120 may be composed of a plurality of divided compartments (hereinafter particularly referred to as "vertical divided compartments 120V") arranged along the axial direction of the columnar main body 110, as shown in FIG. 5(b). can. In this figure, the compartment 120 is configured with three stages of vertically divided compartments 120V, but of course the compartment 120 is not limited to three stages, but may also be configured with two or more stages of vertically divided compartments 120V. can. Furthermore, each stage of vertically divided compartments 120V can be further configured with a plurality of horizontally divided compartments 120H. In addition, when the compartment 120 is composed of a plurality of vertically divided compartments 120V, a discharge means 130 as shown in FIG. 4 is installed in each vertically divided compartment 120V, and the upper vertically divided compartment 120V is It is preferable to adopt a configuration in which the compartment weight material BLr discharged from the chamber flows into the vertically divided compartment 120V immediately below (adjacent lower stage). Thereby, the compartment weight material BLr can be accommodated in each vertically divided compartment 120V, and the compartment weight material BLr can be discharged independently for each vertically divided compartment 120V.

(移動式隔室)
既述したとおり、隔室120はスパー型浮体100のうち計画吃水線位置の周辺に配置することが望ましい。ところが、直立状態とされ、風車部が設置されても、予定どおり隔室120が計画吃水線位置の周辺に配置されないことも考えられる。そこで、隔室120が上下にスライドする構成にするとよい。柱状本体110の内周にレールやガイド溝を設け、そのレール等に沿って隔室120を上下スライドさせるわけである。なお、この場合も排出手段130と同様、陸域や船上、あるいはスパー型浮体100内部の別位置やスパー型浮体100外部に設けられるワーキングプラットフォームなど離れた場所にいるオペレータが操作することによって隔室120を上下スライドさせる仕様にすることが望ましい。
(mobile compartment)
As mentioned above, it is desirable that the compartment 120 be arranged around the planned waterline position of the spar type floating body 100. However, even if the wind turbine section is placed in an upright position, the compartments 120 may not be placed around the planned water line position as planned. Therefore, it is preferable to configure the compartment 120 to slide up and down. Rails and guide grooves are provided on the inner periphery of the columnar main body 110, and the compartment 120 is slid up and down along the rails. In this case, as well as the discharge means 130, the compartment can be opened by an operator located on land, on a ship, at another location inside the spar type floating body 100, or at a remote location such as a working platform provided outside the spar type floating body 100. It is desirable to have a specification in which 120 can be slid up and down.

2.洋上風力発電施設組立方法
続いて本願発明の洋上風力発電施設組立方法について図を参照しながら詳しく説明する。なお、本願発明の洋上風力発電施設組立方法は、ここまで説明したスパー型浮体100を含む洋上風力発電施設を組み立てる方法であり、したがってスパー型浮体100で説明した内容と重複する説明は避け、本願発明の洋上風力発電施設組立方法に特有の内容のみ説明することとする。すなわち、ここに記載されていない内容は、「1.スパー型浮体」で説明したものと同様である。
2. Offshore Wind Power Generation Facility Assembly Method Next, the offshore wind power generation facility assembly method of the present invention will be described in detail with reference to the drawings. The method for assembling an offshore wind power generation facility according to the present invention is a method for assembling an offshore wind power generation facility including the spar type floating body 100 described so far, and therefore, the explanation that overlaps with the content explained for the spar type floating body 100 is avoided, and the present invention Only the content specific to the offshore wind power generation facility assembly method of the invention will be explained. That is, the contents not described here are the same as those explained in "1. Spar type floating body".

図6は、本願発明の洋上風力発電施設組立方法の主な工程を示すフロー図であり、図7は、本願発明の洋上風力発電施設組立方法の主な工程を示すステップ図である。洋上でスパー型浮体100を含む風力発電施設を組み立てるにあたっては、まず図7(a)に示すように柱軸方向が略水平となる状態でスパー型浮体100を海上輸送する(図6のStep201)。なお輸送中のスパー型浮体100はある程度の喫水を確保するため、その底部に若干の底部用錘材BLbを配置しておくとよい。なお、輸送中における隔室120内には、状況に応じて若干の隔室用錘材BLrを収容しておくこともできるし、隔室用錘材BLrは収容しない状態とすることもできる。 FIG. 6 is a flow diagram showing the main steps of the offshore wind power generation facility assembly method of the present invention, and FIG. 7 is a step diagram showing the main steps of the offshore wind power generation facility assembly method of the present invention. When assembling a wind power generation facility including the spar type floating body 100 on the ocean, first, the spar type floating body 100 is transported by sea in a state where the column axis direction is approximately horizontal as shown in FIG. 7(a) (Step 201 in FIG. 6). . In order to ensure that the spar type floating body 100 has a certain degree of draft during transportation, it is preferable to place some bottom weight material BLb at the bottom of the spar type floating body 100. Note that, depending on the situation, some compartment weights BLr may be accommodated in the compartment 120 during transportation, or no compartment weights BLr may be accommodated.

選定された静穏域までスパー型浮体100を輸送すると、スパー型浮体100の底部に底部用錘材BLbを投入しながら(図6のStep202)、図7(b)に示すようにスパー型浮体100が直立状態となるように立起こす(図6のStep203)。スパー型浮体100が直立状態となると、図7(c)に示すように隔室120内に隔室用錘材BLrを投入し、スパー型浮体100の重心を高い位置に置く(図6のStep204)。このとき、図7(d)に示すようにスパー型浮体100が傾斜している場合は、所定の水平分割隔室120Hに対してさらなる隔室用錘材BLrを投入し、あるいは所定の水平分割隔室120Hの隔室用錘材BLrを排出することによって、スパー型浮体100が略鉛直となるよう調整する(図6のStep205)。 When the spar type floating body 100 is transported to the selected calm area, the spar type floating body 100 is transferred to the bottom part of the spar type floating body 100 as shown in FIG. stand up so that it is in an upright state (Step 203 in FIG. 6). When the spar type floating body 100 is in an upright state, the weight material BLr for the compartment is introduced into the compartment 120 as shown in FIG. 7(c), and the center of gravity of the spar type floating body 100 is placed at a high position (Step 204 in ). At this time, if the spar type floating body 100 is inclined as shown in FIG. By discharging the compartment weight BLr from the compartment 120H, the spar type floating body 100 is adjusted to be approximately vertical (Step 205 in FIG. 6).

スパー型浮体100を直立状態とし、隔室120内に隔室用錘材BLrを投入すると、図7(e)に示すように、別途海上輸送された風車部(タワーやローター、ナセルなど)を、起重機船によってスパー型浮体100の上部に設置する(図6のStep206)。そして、図7(f)に示すように隔室120内に収容された隔室用錘材BLrを排出してスパー型浮体100の底部にまで落下させる(図6のStep207)。 When the spar type floating body 100 is placed in an upright state and the weight material BLr for the compartment is put into the compartment 120, as shown in FIG. , and installed on the upper part of the spar type floating body 100 using a hoist (Step 206 in FIG. 6). Then, as shown in FIG. 7F, the compartment weight BLr accommodated in the compartment 120 is discharged and dropped to the bottom of the spar type floating body 100 (Step 207 in FIG. 6).

本願発明のスパー型浮体、及び洋上風力発電施設組立方法は、50m以深の海域におけるスパー型の洋上風力発電施設に特に好適に利用することができる。本願発明によれば低コストでしかも安全にスパー型の洋上風力発電施設を設置することができることから、洋上風力発電に対するより積極的な動機を期待することができ、ひいては温室効果ガスの排出を抑えたうえで安定的にエネルギーを供給することを考えれば、本願発明は産業上利用できるばかりでなく社会的にも大きな貢献を期待し得る発明といえる。 The spar-type floating body and offshore wind power generation facility assembly method of the present invention can be particularly suitably used for spar-type offshore wind power generation facilities in sea areas at depths of 50 m or deeper. According to the present invention, it is possible to install a spar-type offshore wind power generation facility at low cost and safely, so it is possible to expect more active motivation for offshore wind power generation, and in turn to reduce greenhouse gas emissions. In addition, considering the stable supply of energy, the present invention can be said to be an invention that can not only be used industrially but also can be expected to make a significant contribution to society.

100 本願発明のスパー型浮体
110 (スパー型浮体の)柱状本体
120 (スパー型浮体の)隔室
120H (隔室を構成する)水平分割隔室
120V (隔室を構成する)鉛直分割隔室
130 (スパー型浮体の)排出手段
140 (スパー型浮体の)排出管
150 (スパー型浮体の)揚重手段
151 (揚重手段の)天井梁
152 (揚重手段の)フック
160 (スパー型浮体の)仮置デッキ
BLr 隔室用錘材
BLb 底部用錘材
100 Spar type floating body of the present invention 110 Column body (of the spar type floating body) 120 Compartment (of the spar type floating body) 120H Horizontal divided compartment (constituting the compartment) 120V Vertical divided compartment (constituting the compartment) 130 Discharge means (of the spar type floating body) 140 Discharge pipe (of the spar type floating body) 150 Lifting means (of the spar type floating body) 151 Ceiling beam (of the lifting means) 152 Hook (of the lifting means) 160 (of the spar type floating body) ) Temporary deck BLr Weight material for compartment BLb Weight material for bottom

Claims (6)

洋上で風車部が設置される洋上風力発電施設のスパー型浮体であって、
中空の柱状本体と、
前記柱状本体の内部に設けられ、錘材を収容する隔室と、
前記隔室に収容された前記錘材を排出する排出手段と、を備えた、
ことを特徴とするスパー型浮体。
A spar type floating body for an offshore wind power generation facility in which a wind turbine section is installed offshore,
a hollow columnar body;
a compartment provided inside the columnar body and accommodating a weight material;
a discharge means for discharging the weight material housed in the compartment;
A spar type floating body characterized by:
前記隔室は、前記柱状本体の内周面に沿って配置される2以上の水平分割隔室によって構成され、
前記排出手段は、前記水平分割隔室ごとに独立して前記錘材を排出する、
ことを特徴とする請求項1記載のスパー型浮体。
The compartment is composed of two or more horizontally divided compartments arranged along the inner peripheral surface of the columnar main body,
The discharge means discharges the weight material independently for each of the horizontally divided compartments,
The spar type floating body according to claim 1, characterized in that:
前記隔室は、前記柱状本体の軸方向に沿って配置される2以上の鉛直分割隔室によって構成され、
前記排出手段は、前記鉛直分割隔室ごとに独立して前記錘材を排出する、
ことを特徴とする請求項1又は請求項2記載のスパー型浮体。
The compartment is constituted by two or more vertically divided compartments arranged along the axial direction of the columnar body,
The ejection means independently ejects the weight material for each vertically divided compartment.
The spar type floating body according to claim 1 or claim 2, characterized in that:
前記柱状本体が直立又は略直立の姿勢とされ、さらに前記風車部が設置されたときに、前記隔室が該柱状本体のうち計画吃水線位置に配置される、
ことを特徴とする請求項1又は請求項2記載のスパー型浮体。
When the columnar body is in an upright or substantially upright position, and the wind turbine section is installed, the compartment is located at a planned water line position in the columnar body.
The spar type floating body according to claim 1 or claim 2, characterized in that:
洋上でスパー型浮体に風車部を設置して洋上風力発電施設を組み立てる方法であって、
前記スパー型浮体は、中空の柱状本体と、該柱状本体の内部に設けられる隔室と、排出手段と、を有し、
前記柱状本体の底部に底部用錘材を投入し、該柱状本体を直立又は略直立の姿勢とする本体立起工程と、
前記隔室の内部に錘材を投入する錘材投入工程と、
洋上で前記スパー型浮体に前記風車部を設置する風車部設置工程と、
前記排出手段を操作することによって、前記錘材を前記隔室から排出する錘材排出工程と、を備えた、
ことを特徴とする洋上風力発電施設組立方法。
A method of assembling an offshore wind power generation facility by installing a wind turbine part on a spar type floating body at sea,
The spar type floating body has a hollow columnar body, a compartment provided inside the columnar body, and a discharge means,
a body raising step in which a bottom weight material is put into the bottom of the columnar body and the columnar body is placed in an upright or substantially upright position;
a weight material introduction step of introducing a weight material into the interior of the compartment;
a wind turbine part installation step of installing the wind turbine part on the spar type floating body at sea;
a weight material discharge step of discharging the weight material from the compartment by operating the discharge means;
An offshore wind power generation facility assembly method characterized by:
前記隔室は、前記柱状本体の内周面に沿って配置される2以上の水平分割隔室によって構成され、
前記排出手段は、前記水平分割隔室ごとに独立して前記錘材を排出し、
前記錘材投入工程の後に前記柱状本体が傾いているときに、所定の前記分割隔室に対して前記錘材を追加投入し、又は所定の前記分割隔室の前記錘材を排出することによって、該柱状本体を直立又は略直立の姿勢とする姿勢調整工程を、さらに備えた、
ことを特徴とする請求項5記載の洋上風力発電施設組立方法。
The compartment is composed of two or more horizontally divided compartments arranged along the inner peripheral surface of the columnar main body,
The ejection means independently ejects the weight material for each horizontally divided compartment,
When the columnar main body is tilted after the weight material input step, by additionally introducing the weight material into a predetermined divided compartment, or by discharging the weight material from a predetermined divided compartment. , further comprising a posture adjustment step of setting the columnar body in an upright or substantially upright posture;
6. The method for assembling an offshore wind power generation facility according to claim 5.
JP2022082443A 2022-05-19 2022-05-19 Spar type floating body and assembly method for ocean wind power generation facility Pending JP2023170587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022082443A JP2023170587A (en) 2022-05-19 2022-05-19 Spar type floating body and assembly method for ocean wind power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022082443A JP2023170587A (en) 2022-05-19 2022-05-19 Spar type floating body and assembly method for ocean wind power generation facility

Publications (1)

Publication Number Publication Date
JP2023170587A true JP2023170587A (en) 2023-12-01

Family

ID=88928009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022082443A Pending JP2023170587A (en) 2022-05-19 2022-05-19 Spar type floating body and assembly method for ocean wind power generation facility

Country Status (1)

Country Link
JP (1) JP2023170587A (en)

Similar Documents

Publication Publication Date Title
US10774813B2 (en) Floating structure and method of installing same
CN104401458B (en) Semi-submersible type floating fan base and floating fan
US8737558B2 (en) System and method for storing energy
US7872365B2 (en) Wave powered electrical generator
US8511078B2 (en) Hybrid wave energy plant for electricity generation
EP2604501B1 (en) System of anchoring and mooring of floating wind turbine towers and corresponding methods for towing and erecting thereof
EP2461031A2 (en) Technology for combined offshore floating wind power generation
CN111891308A (en) Floating wind power generation platform
KR102632315B1 (en) Buoys and installation methods for them
JP2017521296A5 (en)
JP5421474B1 (en) Wind power generator
CN110345010B (en) Offshore wind turbine power generation equipment with anti-rolling function
CN209719868U (en) A kind of semi-submersible type offshore wind farm and cultivation fishing ground platform compages
CN110015384A (en) A kind of semi-submersible type offshore wind farm and cultivation fishing ground platform compages
CN106800076A (en) A kind of floating platform formula marinescape combines generating foundation structure
GB2542548A (en) System and method
RU2150021C1 (en) Method and megawatt-capacity power-plant module for recovering energy of reusable sources (options)
JP2023170587A (en) Spar type floating body and assembly method for ocean wind power generation facility
GB2414771A (en) A wave power generator apparatus
CN219344878U (en) Wind energy and solar energy wave energy combined power generation device based on semi-submerged floating platform
CN216601282U (en) Marine culture system
Li et al. Offshore wind turbines and their installation
WO2023156474A1 (en) A method and system of installing a floating foundation, assembly of floating foundation and ballasting frame, and ballasting frame
JP2022014509A (en) Columnar floating body, columnar floating body erecting system, and columnar floating body erecting method
CN114198264A (en) Novel marine floating fan basis