JP2023165582A - High performance 2-stroke engine having auxiliary combustion chamber - Google Patents

High performance 2-stroke engine having auxiliary combustion chamber Download PDF

Info

Publication number
JP2023165582A
JP2023165582A JP2022096117A JP2022096117A JP2023165582A JP 2023165582 A JP2023165582 A JP 2023165582A JP 2022096117 A JP2022096117 A JP 2022096117A JP 2022096117 A JP2022096117 A JP 2022096117A JP 2023165582 A JP2023165582 A JP 2023165582A
Authority
JP
Japan
Prior art keywords
combustion chamber
valve
ignition
auxiliary
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022096117A
Other languages
Japanese (ja)
Inventor
修一 北村
Shuichi Kitamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022096117A priority Critical patent/JP2023165582A/en
Publication of JP2023165582A publication Critical patent/JP2023165582A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a technology of controlling premixed compression ignition combustion.SOLUTION: A cylinder head is provided with an air supply valve variable valve device 10 varying a valve close timing of an air supply valve 4, and an auxiliary combustion chamber 7 having an ignition plug 8 and an auxiliary fuel injection valve 9. The air supply valve variable valve device 10 receiving a control signal from an electronic control unit 19 controls a close timing of the air supply valve, and therefore, a compression ratio is controlled so that mixture in a main chamber is on the verge of self-ignition near a top dead center, and then the mixture in the main combustion chamber is self-ignited by flame ejected from an injection port of the auxiliary combustion chamber 7. The electronic control unit 19 feedback-controls an ignition timing according to a signal from a knock detection device, thereby feedback-controlling an ignition timing of the mixture in the main combustion chamber, and furthermore, controls so as to inject fuel from the auxiliary fuel injection valve 9 by selecting a timing when the mixture in the auxiliary combustion chamber 7 does not self-ignite until an ignition plug sparks due to the ignition delay of fuel itself.SELECTED DRAWING: Figure 1

Description

本発明は、副燃焼室を有する2ストロークエンジンに係わり、副燃焼室から噴出する強い火炎によっって予混合圧縮着火燃焼を引き起し、以ってその急速燃焼によってエンジンを高効率化しようとしたものに関する。 The present invention relates to a two-stroke engine having a sub-combustion chamber, and uses strong flame ejected from the sub-combustion chamber to cause homogeneous compression ignition combustion, thereby increasing the efficiency of the engine through rapid combustion. related to something.

エンジンの熱効率を高める手段として予混合圧縮着火燃焼が注目されているが、そのコントロールが極めて難かしい事が知られている。先ず試みられたのは固定圧縮比と内部EGRの加減による方法であるが、低負荷域では失火、中・高負荷域ではノックに悩まされて限界があり、着火時期が不安定で、燃焼がいつ起るのか不明であった(バラツキが大きい)。
次に試みられたのは点火プラグ付近に可燃混合気を配する成層燃焼で、この部分の燃焼をトリガーとして囲りの混合気を燃焼(自着火)させるものである。しかしながらこの方法は成層燃焼部でのNOxの発生があり、対策にコストがかかる。高負荷域でノックを防ぐには膨張過程で自着火させる事が望ましく、こうすれば膨張しつつ自着火するので、圧力上昇率が抑えられるからで、他方、膨張過程であるから急速火炎伝播燃焼でなければ続いて起るべき自着火を引き起す事ができない。一般には前記成層燃焼によってはこの様な急速火炎伝播燃焼は期待できない。
Homogeneous compression ignition combustion is attracting attention as a means of increasing the thermal efficiency of engines, but it is known that it is extremely difficult to control. The first method tried was to use a fixed compression ratio and adjust internal EGR, but this was limited by misfires in low load ranges and knocking in medium to high load ranges, unstable ignition timing, and poor combustion. It was unclear when it would occur (with large variations).
The next attempt was stratified charge combustion, in which the flammable air-fuel mixture was placed near the spark plug, and the combustion in this area was used as a trigger to cause the surrounding air-fuel mixture to burn (auto-ignition). However, in this method, NOx is generated in the stratified combustion section, and the countermeasure is costly. In order to prevent knocking in a high load range, it is desirable to self-ignite during the expansion process.In this way, self-ignition occurs while expanding, which suppresses the rate of pressure rise.On the other hand, since it is an expansion process, rapid flame propagation combustion Otherwise, the subsequent self-ignition cannot occur. In general, such rapid flame propagation combustion cannot be expected from the stratified combustion.

本発明の目的は、エンジンの熱効率を高める手段としてはこれ以外にはないと言われる予混合圧縮着火燃焼をコントロールする技術を提供する事である。即ち、低負荷域においては失火を防いで完全燃焼を促がすこと、中・高負荷域においてはノッキングを防ぐこと、更には全域にわたって点火プラグの点火時期によって前記燃焼の着火時期をコントロールすることである。
以上を実行する為、2ストロークエンジンを採用した。
An object of the present invention is to provide a technique for controlling homogeneous charge compression ignition combustion, which is said to be the only means for increasing the thermal efficiency of an engine. That is, to prevent misfire and promote complete combustion in the low load range, to prevent knocking in the medium and high load range, and to control the ignition timing of the combustion by the ignition timing of the spark plug throughout the entire range. It is.
In order to accomplish the above, a 2-stroke engine was adopted.

課題を解決する為の手段Means to solve problems

本発明は上記目的を達成する為、シリンダーヘッドに給気弁及び排気弁を備えた2ストロークエンジンにおいて、給気弁の閉弁時期及び開弁時期の内の少なくとも閉弁時期を可変とする給気弁可変動弁装置と点火栓及び副燃料噴射弁を有する副燃焼室とをシリンダーヘッドに備え、電子制御ユニットからの制御信号を受けた給気弁可変動弁装置によって給気弁の閉弁時期を制御し、以って有効圧縮比を制御して主燃焼室内の混合気が上死点の近傍で自着火寸前の状態である様にした上で、副燃焼室の複数の噴口から噴出する火炎によって主燃焼室内の混合気が自着火する様にした(この時の自着火は上死点又は上死点以降に起す様にする)。更に、燃料自体の着火遅れの為に点火栓がスパークするまでは自着火しない時期を選んで副燃料噴射弁から燃料を噴射する様に制御している。
かつ、電子制御ユニットは、ノック検出装置からの信号により点火時期をフィードバック制御する様にしている。
In order to achieve the above object, the present invention provides a two-stroke engine equipped with an intake valve and an exhaust valve in the cylinder head, in which at least the closing timing of the intake valve is variable. The cylinder head is equipped with an air valve variable valve device, an auxiliary combustion chamber having an ignition plug, and an auxiliary fuel injection valve, and the air intake valve is closed by the air intake valve variable valve device that receives a control signal from an electronic control unit. The air-fuel mixture in the main combustion chamber is on the verge of self-ignition near top dead center by controlling the timing and therefore the effective compression ratio, and then the air-fuel mixture is ejected from multiple nozzles in the auxiliary combustion chamber. The air-fuel mixture in the main combustion chamber is caused to self-ignite by the flame generated by the engine (self-ignition occurs at or after top dead center). Furthermore, due to the ignition delay of the fuel itself, the fuel is controlled to be injected from the auxiliary fuel injection valve at a time when it will not self-ignite until the ignition plug sparks.
Further, the electronic control unit performs feedback control of the ignition timing based on the signal from the knock detection device.

発明の効果Effect of the invention

本発明によれば給気弁可変動弁装置により有効圧縮比を自由自在に変え、排気絞り弁により内部EGRをコントロールし、副燃焼室内の点火栓により着火時期を適切に変えているので、三要素によりコントロールでき(従来は固定圧縮比下での内部EGRのコントロールであった)、予混合圧縮着火燃焼をコントロールする事ができる。加えてノック検出装置の信号により点火栓の点火時期をフィードバック制御して、予混合圧縮着火燃焼の着火を上死点後5°~10°、又は10°~15°の最も適切な時期に起る様にしているので、静かな運転が可能となる。
λ=1(理論混合気)での予混合圧縮着火燃焼は激しいノックが予想されるが、副燃焼室の噴口から噴出する強烈な火炎によって急速火災伝播燃焼が可能なので、予混合圧縮着火燃焼を上死点後の10°~15°と云う膨張過程で引き起す事ができ、静かな運転が可能となる(副燃焼室を使わず、成層燃焼では急速火炎伝播燃焼は無理である)。
予混合圧縮着火焼(以下PCCIと称する)は低温燃焼である為、冷却損失が少なく、比熱比Kが大きいので、高い熱効率が得られる。更には圧縮比よりも膨張比の方が大きいミラーサイクルを採用している為、熱効率は高くなる。上死点を少し過ぎた膨張行程での燃焼であるが、トルクの腕が十分大きく、理想的なタイミングでの急速燃焼なので、(上死点前の燃焼は熱効率を悪化させる)、高効率である。上死点をかなり過ぎて燃焼させてもミラーサイクルを採用しているから、効率は依然として高い。本発明によればPCCI燃焼の範囲を低負荷側の方へも高負荷側の方へも広範囲に拡大する事ができる。次に本エンジンは2ストロークエンジンであるから、4ストロークエンジンの様な吸・排気行程がない為、機械効率が高く、低負荷時のポンプ損失が少ないから、本質的に高効率である。又、点火プラグ、吸・排気弁、ピストン、燃料噴射弁などの部品が4ストロークエンジンの半分で済むので、低コストである。
更に給気の吹き抜けの為に従来使えなかった三元触媒が使え、排気浄化対策上、極めて有利である。
According to the present invention, the effective compression ratio is freely changed by the intake valve variable valve device, the internal EGR is controlled by the exhaust throttle valve, and the ignition timing is appropriately changed by the ignition plug in the auxiliary combustion chamber. (Previously, internal EGR was controlled under a fixed compression ratio), and homogeneous compression ignition combustion can be controlled. In addition, the ignition timing of the ignition plug is feedback-controlled using the signal from the knock detection device, so that the ignition of homogeneous compression ignition combustion can be started at the most appropriate timing of 5° to 10° or 10° to 15° after top dead center. This allows for quiet operation.
Severe knocking is expected in homogeneous compression ignition combustion with λ = 1 (theoretical mixture), but rapid fire propagation combustion is possible due to the intense flame ejected from the nozzle of the auxiliary combustion chamber, so homogeneous compression ignition combustion is possible. It can be triggered during the expansion process at 10° to 15° after top dead center, allowing for quiet operation (rapid flame propagation combustion is impossible with stratified combustion without the use of an auxiliary combustion chamber).
Since premixed compression ignition ignition (hereinafter referred to as PCCI) is low-temperature combustion, cooling loss is small and the specific heat ratio K is large, so high thermal efficiency can be obtained. Furthermore, since it uses a Miller cycle with a larger expansion ratio than compression ratio, thermal efficiency is high. Although combustion occurs during the expansion stroke a little after top dead center, the torque arm is sufficiently large and the combustion is rapid at ideal timing (combustion before top dead center deteriorates thermal efficiency), resulting in high efficiency. be. Even if the engine burns well past top dead center, efficiency is still high because it uses the Miller cycle. According to the present invention, the range of PCCI combustion can be widened to both the low load side and the high load side. Next, since this engine is a two-stroke engine, it has no intake and exhaust strokes like a four-stroke engine, so it has high mechanical efficiency and has low pump loss at low loads, so it is inherently highly efficient. In addition, the cost is low because parts such as spark plugs, intake/exhaust valves, pistons, and fuel injection valves are half as many as in a 4-stroke engine.
Furthermore, a three-way catalyst, which could not be used in the past, can be used because of the blow-through of the supply air, which is extremely advantageous in terms of exhaust purification measures.

発明を実施する為の形態Form for carrying out the invention

図1(イ)は本発明による高効率2ストロークエンジンを示し、シリンダーヘッドには新気(空気)を導入する給気弁4、排気通路5には排気弁6が備えられ、各々はクランク軸15と回転比1/1で駆動されるカムで開閉される4弁式である。主燃焼室はピストン凹部2とスキッシュ部Sとにより成り、ピストン凹部2に燃料を噴射する主燃料噴射弁11が備えられている。
ピストン凹部2の直上には副燃焼室7が備えられ、その内部には点火プラグ8と副燃料噴射弁9が臨んでいる(副燃焼室7には火炎が噴出する複数の噴口がある)。副燃焼室7及び副燃料噴射弁9は2個の排気弁6の間隔を大にして、その間に備えられている。
次に主燃焼室内の高圧燃焼ガスによりピストン1が押されると、ピストンが下降して膨張仕事を為し、排気弁6が開くと排気ブローダウンが開始され、続いて給気弁4が開かれると空気がシリンダー内に流入して既燃ガスを掃気する。この掃気ポンプとしては例えばクランク軸15で駆動

Figure 2023165582000002
料噴射弁11から燃料が噴射され、シリンダー内の圧縮が開始される(給気弁4が閉じるまでは一旦シリンダー内に供給された空気は給気ポート3内に押し戻される)。圧縮上死点の所定クランク角手前で副燃料噴射弁9から副燃焼室7内へ微量の燃料が噴射される(後述する)。ピストン1が上死点に近ずくと適当な時期に点火栓8がスパークし(詳しくは後述する)、副燃焼室7の噴口から主燃焼室内へ火炎が噴出し主燃焼室の燃焼が開始される。図1(ロ)に掃気の様子を示す。電子制御ユニット(以下、ECU)19はROM、RAM、CPU、入・出力ポート等から成るマイクロコンピュータを中心として構成され、これらは双方性バスによって相互に接続されている。ECU19にはエンジンの運転状態の把握に必要なパラメーター用の各種センサー、例えば所定のクランク角毎にクランク角を出力するクランク角センサー、所定のカム角毎にカム角信号を出力するカム角センサー、アクセル開度を検出するアクセルセンサー、エンジン冷却水温を検出する水温センサー、大気圧センサー、大気温度センサー、エンジンに吸入される空気流量を検出するエァフローメータ17、排ガス中の酸素濃度を検出するOセンサー、エンジンのノックを検出するノック検出センサー、排気絞り弁12の開度を検出する排気絞り弁開度センサー等からの各信号が対応するA/Dコンバーターを介して入力ポートに送信される。尚、エンジン回転速度は前記クランク角センサーからの出力信号により知る事ができる。又、出力ポートは主燃料噴射弁11、副燃料噴射弁9、点火栓8、油圧制御弁18、アクチュエーター13等と各々対応する駆動回路を介して接続され、各々の制御信号を送信する。ROMには主燃料噴射弁11や副燃料噴射弁9の噴射量や噴射時期を決定する為の制御ルーチン、点火栓8への通電を制御する為の制御ルーチン、排気絞り弁12の開度を決定する為の制御ルーチン、給気弁可変動弁装置10の給気弁を駆動するカムの位相角を決定する為の制御ルーチン等のエンジンを制御する為の制御ルーチンやそれらに用いられる制御値を含むマップが記憶されている。RAMに記憶されている各種データーはエンジン回転速度センサーが信号を出力する度に最新のデーターに書き換えられる。CPUはROMに記憶されていいるアプリケーションプログラムに従って動作し、燃料の噴射制御、点火時期制御、給気弁の閉弁時期制御、排気絞り弁の開度制御等を実行する。
10はカム軸の位相を変えて給気弁4の閉弁時期を変える給気弁可変動弁装置で(公知)、内部には図示しない進角室と遅角室とがあり、油圧制御弁18からの作動油が供給される。
油圧制御弁18は図示しない油圧ポンプからの油圧が供給され、ECU19からの出力信号により軸方向への移動量が電磁ソレノイドにより駆動制御されるプランジャーとスプール弁とバネを有しており(共に図示は省略)、バネの反発力とプランジャーの押圧力とが均衡する位置でスプール弁が位置決めされる様になっている。ECU19にはクランク角センサーからの信号、カム角センサーからの信号が入力され、ECU19はカム角センサーから出力される回転角パルスとクランク角センサーから出力される回転角パルスとの間の出力位相差に基づきカム位相角を検出する事ができる。
ECU19はカム軸のクランク軸に対する位相角が目標値となる様に油圧制御弁18に制御信号を出力する。そして、ECU19は検出したカム位相角をフィードバック信号として取り込み、その制御上の目標位相角との間の偏差に応じて油圧制御弁18の駆動デューティ比率をフィードバック制御する。油圧制御弁18はECU19から指示されるデューティ比率に応じて電磁ソレノイドを駆動し、進角室、遅角室に対する油圧の給排を調整してカム軸を目標位相角まで進角又は遅角、或いは中立に保持する。以上の給気弁可変動弁装置10は油圧式であったが、公知の電動式であっても良い。又、給気弁可変動弁装置10は位相を変えて閉弁時期を変えるものであったが、2個のカムを備えて、閉弁時期を変える為に使用するカムを切り換える構成としても良い(カム切換え式)、いずれにしても、給気弁4の閉弁時期を変えて圧縮比を変える構造とするのである。本発明によるとPCCI燃焼をかなり低負荷まで拡げる事ができるが、アイドルを含む極低負荷域まで拡げる事はかなり困難を伴なう。
本発明の望ましい実施例はシリーズ型ハイブリッド車用の発電専用のエンジンとしての使い方であるので、これについて次に説明する(2~3点の定点運転)。FIG. 1(A) shows a high-efficiency two-stroke engine according to the present invention, in which the cylinder head is equipped with an intake valve 4 for introducing fresh air (air), and the exhaust passage 5 is equipped with an exhaust valve 6, each of which is connected to the crankshaft. It is a 4-valve type that is opened and closed by a cam driven at a rotation ratio of 1/1. The main combustion chamber includes a piston recess 2 and a squish portion S, and is provided with a main fuel injection valve 11 that injects fuel into the piston recess 2.
An auxiliary combustion chamber 7 is provided directly above the piston recess 2, and a spark plug 8 and an auxiliary fuel injection valve 9 face inside the auxiliary combustion chamber 7 (the auxiliary combustion chamber 7 has a plurality of nozzles through which flames are ejected). The auxiliary combustion chamber 7 and the auxiliary fuel injection valve 9 are provided between the two exhaust valves 6 with a large interval between them.
Next, when the piston 1 is pushed by the high-pressure combustion gas in the main combustion chamber, the piston descends and performs expansion work, and when the exhaust valve 6 opens, exhaust blowdown begins, followed by the intake valve 4. Air flows into the cylinder and scavenges the burnt gas. This scavenging pump is driven by the crankshaft 15, for example.
Figure 2023165582000002
Fuel is injected from the fuel injection valve 11, and compression within the cylinder is started (until the air intake valve 4 is closed, the air once supplied into the cylinder is pushed back into the air intake port 3). A small amount of fuel is injected into the auxiliary combustion chamber 7 from the auxiliary fuel injection valve 9 at a predetermined crank angle before the compression top dead center (described later). When the piston 1 approaches top dead center, the ignition plug 8 sparks at an appropriate time (details will be described later), and flame is ejected from the nozzle of the auxiliary combustion chamber 7 into the main combustion chamber, starting combustion in the main combustion chamber. Ru. Figure 1 (b) shows the scavenging process. The electronic control unit (hereinafter referred to as ECU) 19 is mainly composed of a microcomputer consisting of ROM, RAM, CPU, input/output ports, etc., and these are interconnected by a bidirectional bus. The ECU 19 includes various sensors for parameters necessary to grasp the operating state of the engine, such as a crank angle sensor that outputs a crank angle at each predetermined crank angle, a cam angle sensor that outputs a cam angle signal at each predetermined cam angle, An accelerator sensor that detects the accelerator opening degree, a water temperature sensor that detects the engine cooling water temperature, an atmospheric pressure sensor, an atmospheric temperature sensor, an air flow meter 17 that detects the flow rate of air taken into the engine, and an O sensor that detects the oxygen concentration in exhaust gas. 2 sensors, a knock detection sensor that detects engine knock, an exhaust throttle valve opening sensor that detects the opening of the exhaust throttle valve 12, and other signals are sent to the input port via the corresponding A/D converter. . Incidentally, the engine rotation speed can be known from the output signal from the crank angle sensor. Further, the output port is connected to the main fuel injection valve 11, the auxiliary fuel injection valve 9, the spark plug 8, the hydraulic control valve 18, the actuator 13, etc. via corresponding drive circuits, and transmits respective control signals. The ROM contains a control routine for determining the injection amount and injection timing of the main fuel injection valve 11 and the auxiliary fuel injection valve 9, a control routine for controlling the energization of the spark plug 8, and the opening degree of the exhaust throttle valve 12. Control routines for controlling the engine, such as control routines for determining the phase angle of the cam that drives the intake valve of the variable intake valve device 10, and control values used therefor. A map containing is stored. The various data stored in the RAM are rewritten to the latest data each time the engine speed sensor outputs a signal. The CPU operates according to application programs stored in the ROM, and performs fuel injection control, ignition timing control, intake valve closing timing control, exhaust throttle valve opening control, and the like.
Reference numeral 10 denotes a variable intake valve device (known in the art) that changes the closing timing of the intake valve 4 by changing the phase of the camshaft, and has an advance chamber and a retard chamber (not shown) inside. Hydraulic oil from 18 is supplied.
The hydraulic control valve 18 is supplied with hydraulic pressure from a hydraulic pump (not shown), and has a plunger, a spool valve, and a spring whose movement in the axial direction is driven and controlled by an electromagnetic solenoid based on an output signal from the ECU 19. (not shown), the spool valve is positioned at a position where the repulsive force of the spring and the pressing force of the plunger are balanced. A signal from the crank angle sensor and a signal from the cam angle sensor are input to the ECU 19, and the ECU 19 calculates the output phase difference between the rotation angle pulse output from the cam angle sensor and the rotation angle pulse output from the crank angle sensor. The cam phase angle can be detected based on
The ECU 19 outputs a control signal to the hydraulic control valve 18 so that the phase angle of the camshaft with respect to the crankshaft becomes a target value. Then, the ECU 19 takes in the detected cam phase angle as a feedback signal, and feedback-controls the drive duty ratio of the hydraulic control valve 18 according to the deviation between the detected cam phase angle and the target phase angle for control. The hydraulic control valve 18 drives an electromagnetic solenoid according to the duty ratio instructed by the ECU 19, and adjusts the supply and discharge of hydraulic pressure to the advance and retard chambers to advance or retard the camshaft to the target phase angle. Or keep it neutral. Although the air supply valve variable valve device 10 described above is of a hydraulic type, it may be of a known electric type. Further, although the intake valve variable valve device 10 changes the valve closing timing by changing the phase, it may also be configured to include two cams and switch the cam used to change the valve closing timing. (Cam switching type) In either case, the structure is such that the compression ratio is changed by changing the closing timing of the intake valve 4. According to the present invention, PCCI combustion can be extended to a considerably low load range, but it is quite difficult to extend it to an extremely low load range including idle.
Since a preferred embodiment of the present invention is used as an engine exclusively for power generation in a series hybrid vehicle, this will be explained next (fixed point operation at 2 to 3 points).

シリーズ型ハイブリッド車用エンジンは2~3点に絞った高効率の定点を使う(1500r.p.m.、2500r.p.m.、4000r.p.mの3点とする)。 Series hybrid vehicle engines use two to three highly efficient fixed points (1500r.p.m., 2500r.p.m., and 4000r.p.m.).

2500r.p.m.定点運転。
空気過剰率λ=2、1とし、図1(イ)の様に給気弁可変動弁装置10により図2(イ)の如く給気弁4の開弁をBBDC40°CA、同閉弁をABDC80°CAにし(この時、圧縮比16)、排気弁6の開弁をBBDC70°(固定)、同閉弁をABDC40°CA(固定)とし、これにより膨張比19(固定)とする。高圧縮比、高膨張比のミラーサイクルである。空気の吹き抜けを防止する為、排気弁6をABDC40°CAで早閉じにして、更に排気絞り弁12で排気絞りを行なう(λ=2、1なので三元触媒によらなくてもNOxは0であり、少々の空気の吹き抜けはOK、HC、COは触媒14により浄化する)。PCCI燃焼は圧縮比(給気弁閉時期)と排気絞り弁12の開度と点火栓8の点火時期の三要素でコントロールする。副燃焼室7は火炎噴出用の複数の噴口があり、点火栓8と副燃料噴射弁9が臨んでおり、先ず、圧縮比を16と高くして排気絞り弁12により排気絞りを行ない(内部EGR)、圧縮端付近で自着火寸前の状態となる様にしておく(このままでは自着火しない)。
図2(イ)の弁タイミング図に従って掃気を行ない、ピストンが上昇すると給気弁4が閉じ(排気弁6は既に閉じている)、ここで主燃料噴射弁11から高圧で燃料が噴射され、λ=2、1の混合気を作る(これは副燃焼室7内にも流入する)、ピストン1が上死点にかなり近ずくと副燃料噴射弁9から微量の燃料が噴射され、その直後に点火栓8がスパークする。この微量の燃料は既に流入したものと合わせてλ=1、7位の混合気(点火・燃焼可能な)を副燃焼室7内に作り出すが、これは燃料の着火遅れの為、点火栓8がスパークするまでは自着火しない(点火時期と副燃料噴射弁9の噴射時期とは一方が進めば他方も進み、遅れれば遅れる様になっている)。PCCI燃焼はトルクの腕が十分に大きく、膨張の度合が大きくなる上死点後5°~10°CA位で発生させた時に最も効率が高く、振動(圧力上昇率)が小さいとされているが、ノック検出装置(振動検出タイプと燃焼圧力検出タイプとがある)からの信号により点火栓8の点火時期をフィードバック制御により制御すれば適当な時期に副燃焼室7の噴口から火炎が噴出し、それがトリガーとなってその様なタイミングで起す事ができる。例えばノック検出装置からの信号がノックと判定したものならばPCCI燃焼は上死点又はそれ以前に起っている訳ですので、点火時期を遅らせてPCCI燃焼をATDC5°~10°CAで起る様にコントロールする。点火時期を早めるとPCCI燃焼は早く起る様になる。この場合、副燃焼室7からの火炎が噴出しても火炎伝播による燃焼は起らないが、噴出した火炎の熱と圧力とで混合気が加熱・昇圧され(1000K+αとなる)、PCCI燃焼が起るのである(噴出した火炎が上死点前である場合は、ピストンの上昇により更に圧縮を受けるので、PCCI燃焼は必らず起る)。その為に圧縮比などをPCCI燃焼が上死点近傍で起る寸前となる様に設定しておくのである。副燃焼室7からの火炎は壁面に当らない様にし、ピストン凹部2に集める様にし、こうする事によりPCCI燃焼は先ずピストン凹部2で起り、次にこの熱と圧力とによりスキッシュ部Sで起る様になって二段PCCI燃焼が可能となる(すき間Sの大きさにより燃焼をコントロールできる)。(尚、副燃焼室7内では微量のNOxが発生するが、点火エネルギーの強化、マルチスパークなどの手法によりλ=1、9位としたり、図3の様に冷却板21により燃焼ガスを冷却すると良い)。PCCI燃焼は低温燃焼の為、冷却損失が小さく、比熱比が大であり、その上、ミラーサイクルを採用しており、4ストロークエンジンに比し機械効率が高く、ポンプ損失が少ないので、高い熱効率が得られる。
2500r. p. m. Fixed point operation.
With the excess air ratio λ=2.1, the intake valve 4 is opened at BBDC40°CA and closed at BBDC40°CA as shown in FIG. 2(A) using the air intake valve variable valve device 10 as shown in FIG. ABDC is set to 80° CA (at this time, the compression ratio is 16), the exhaust valve 6 is opened at BBDC70° (fixed), and closed at ABDC 40° CA (fixed), thereby making the expansion ratio 19 (fixed). It is a Miller cycle with high compression ratio and high expansion ratio. To prevent air from blowing through, the exhaust valve 6 is closed early at ABDC40°CA, and the exhaust throttle valve 12 is used to throttle the exhaust (λ=2,1, so NOx is 0 even without a three-way catalyst. Yes, a small amount of air blow-through is OK, and HC and CO are purified by the catalyst 14). PCCI combustion is controlled by three elements: the compression ratio (intake valve closing timing), the opening degree of the exhaust throttle valve 12, and the ignition timing of the spark plug 8. The auxiliary combustion chamber 7 has a plurality of nozzles for ejecting flame, and faces the ignition plug 8 and the auxiliary fuel injection valve 9. First, the compression ratio is set to 16, and the exhaust is throttled by the exhaust throttle valve 12. (EGR), so that it is on the verge of self-ignition near the compression end (it will not self-ignite if it continues like this).
Scavenging is performed according to the valve timing diagram in FIG. 2(a), and when the piston rises, the intake valve 4 closes (the exhaust valve 6 is already closed), and fuel is injected at high pressure from the main fuel injection valve 11. A mixture of λ = 2.1 is created (this also flows into the auxiliary combustion chamber 7). When the piston 1 approaches the top dead center, a small amount of fuel is injected from the auxiliary fuel injection valve 9, and immediately after that The spark plug 8 sparks. This small amount of fuel, together with the fuel that has already flowed in, creates a mixture of λ = 1, 7th place (can be ignited and combusted) in the sub-combustion chamber 7, but this is due to the ignition delay of the fuel, so the ignition plug 8 Self-ignition does not occur until spark occurs (the ignition timing and the injection timing of the auxiliary fuel injection valve 9 are such that if one advances, the other advances, and if one lags, the other lags). PCCI combustion is said to be most efficient and produce the least vibration (pressure rise rate) when the torque arm is sufficiently large and the degree of expansion is large, occurring at around 5° to 10° CA after top dead center. However, if the ignition timing of the ignition plug 8 is controlled by feedback control based on the signal from the knock detection device (there are vibration detection type and combustion pressure detection type), the flame will be ejected from the nozzle of the auxiliary combustion chamber 7 at an appropriate time. , that can serve as a trigger and wake up at such timing. For example, if the signal from the knock detection device determines that there is a knock, then PCCI combustion is occurring at or before top dead center, so the ignition timing is delayed and PCCI combustion occurs at 5° to 10° CA ATDC. control it as you like. If the ignition timing is advanced, PCCI combustion will occur earlier. In this case, even if the flame ejects from the auxiliary combustion chamber 7, combustion due to flame propagation does not occur, but the air-fuel mixture is heated and pressurized by the heat and pressure of the ejected flame (to 1000K+α), and PCCI combustion occurs. (If the ejected flame is before top dead center, it will be further compressed by the rise of the piston, so PCCI combustion will definitely occur). For this reason, the compression ratio etc. are set so that PCCI combustion is about to occur near top dead center. The flame from the auxiliary combustion chamber 7 is prevented from hitting the wall surface and is collected in the piston recess 2, so that PCCI combustion occurs first in the piston recess 2 and then in the squish part S due to the heat and pressure. As a result, two-stage PCCI combustion becomes possible (combustion can be controlled by the size of the gap S). (Although a small amount of NOx is generated in the auxiliary combustion chamber 7, it is possible to set λ to 1 or 9 by increasing the ignition energy or using multiple sparks, or by cooling the combustion gas with a cooling plate 21 as shown in Figure 3.) That's good). Because PCCI combustion is low-temperature combustion, cooling loss is small and the specific heat ratio is large.Furthermore, it uses a Miller cycle, which has higher mechanical efficiency and less pump loss than a 4-stroke engine, resulting in high thermal efficiency. is obtained.

4000r.p.m.定点運転
三元触媒を使う為、λ=1、0とする(エァフローメーター17により吸入空気流量を計測してストイキにする)。
これは副燃焼室7内にも噴口から流入し、λ=1、0なので点火可能であり、副燃料噴射弁9からの噴射は不要。但し、点火は同様にあり、多数の噴口から火炎が噴出する。給気弁可変動弁装置10により図2(ロ)の様に給気弁4の閉弁をABDC90°CAにし(これにより圧縮比は14)、排気弁6はタイミング固定(膨張比は19のまま)、空気の吹き抜けを防止する為、排気弁6の閉弁をABDC40°CAと早閉じとする。排気弁6が開いてもしばらくは筒内圧力が未だ高い為、給気弁4が開くとその周囲から既燃ガスが均一に図1(ハ)の様に逆流してほぼ既燃ガスだけの柱状塊20を作り出す(ピストンバルブ式の掃気ポートでは混合して、こうはならない)。従って柱状塊20の先端が図1(ロ)の様に排気弁6に到達した直後に排気弁を閉じれば、空気の吹き抜けを防止できる(その様にタイミングを設定する)。こうすると三元触媒は完全に仂らき、熱効率が高まる(少々の空気の吹き抜けがあってもエァフローメーター17で理論混合気を供給している限り、三元触媒の仂らきは完全である但し、吹き抜けによって燃焼室内の混合気はリッチになるので、吹き抜けは極力0にして燃費悪化を防ぐ)。λ=1、0でも圧縮端で自着火しない程度に圧縮比を14とし、給気弁4が閉弁となるABDC90°から燃料の噴射が開始され、λ=1、0でのPCCI燃焼は強いノックが予想されるので、膨張過程には入ったATDC10°~15°CAでPCCI燃焼を二段で起す様にする。その為、副燃焼室7内の混合気が点火されると多数の噴口から強烈な火炎が噴出し、急速火炎伝播燃焼が始まる。この時、噴口からの火炎は壁面に当らない様にピストン凹部2に集める様にして超と云う字が付く位の急速火炎伝播燃焼を促がす事が大切で(副燃焼室7により可能)、これによりピストン凹部2に先ずPCCI燃焼が起り(前記急速火炎伝播燃焼が一定の段階まで進んだところで起る)、続いてこの熱と圧力とによりスキッシュ部SにPCCI燃焼が起る。膨張過程であり、二段PCCI燃焼なので、静かな運転が可能である。スキッシュ部Sのすき間によってこのPCCI燃焼をコントロールできる。
ATDC10°~15°CA位の膨張過程には入った燃焼であるが、この方がトルクの腕が十分に大きい上、圧縮比14よりも膨張比19と大きいミラーサイクルなので、高効率に十分余裕がある。
点火時期はノック検出装置によりノックの大きさを見ながらATDC10°~15°CA位でPCCIが起る様にギリギリまで進めるが、点火時期は上死点前のこともある。以上でもノックが解消しない時は2サイクル(2ストローク)エンジンはミラーサイクルを採用しても4ストロークエンジンに比し1、3倍位の出力余裕があるので、この余裕を削って(出力を同一として)クールドEGRを採用してノックを解消する手段が残っている。尚、4000r.p.m.と高速の為、燃料の着火遅れにより着火が間に合わない事も考えられ、その場合は16と高圧縮比とします。
4000r. p. m. Fixed point operation Since a three-way catalyst is used, set λ = 1, 0 (measure the intake air flow rate with the air flow meter 17 and make it stoichiometric).
This also flows into the auxiliary combustion chamber 7 from the nozzle, and since λ=1, 0, it can be ignited, and injection from the auxiliary fuel injection valve 9 is unnecessary. However, ignition is the same, and flames eject from multiple nozzles. The intake valve variable valve device 10 closes the intake valve 4 at ABDC90°CA as shown in FIG. In order to prevent air from blowing through, the exhaust valve 6 is closed early at ABDC40°CA. Even after the exhaust valve 6 opens, the cylinder pressure is still high for a while, so when the intake valve 4 opens, the burnt gas flows back uniformly from around it as shown in Figure 1 (C), and almost only the burnt gas flows out. A columnar mass 20 is created (this does not happen with a piston valve type scavenging port due to mixing). Therefore, if the exhaust valve is closed immediately after the tip of the columnar mass 20 reaches the exhaust valve 6 as shown in FIG. 1(b), air can be prevented from blowing through (the timing is set accordingly). In this way, the three-way catalyst will be completely damaged and the thermal efficiency will be increased (even if there is a slight air blow-through, as long as the air flow meter 17 is supplying the stoichiometric mixture, the three-way catalyst will be completely fine). Since the air-fuel mixture in the combustion chamber becomes rich due to blow-through, the blow-through should be kept to zero to prevent deterioration of fuel efficiency.) The compression ratio is set to 14 to the extent that self-ignition does not occur at the compression end even when λ = 1, 0, and fuel injection is started from ABDC 90° when the intake valve 4 is closed, and PCCI combustion is strong at λ = 1, 0. Since knocking is expected, PCCI combustion is caused in two stages at ATDC 10° to 15° CA during the expansion process. Therefore, when the air-fuel mixture in the sub-combustion chamber 7 is ignited, intense flames are ejected from a large number of nozzles, and rapid flame propagation combustion begins. At this time, it is important to collect the flame from the nozzle into the piston recess 2 without hitting the wall to promote rapid flame propagation and combustion (possible with the auxiliary combustion chamber 7). As a result, PCCI combustion first occurs in the piston recess 2 (this occurs when the rapid flame propagation combustion has progressed to a certain stage), and then PCCI combustion occurs in the squish portion S due to this heat and pressure. Since it is an expansion process and a two-stage PCCI combustion, quiet operation is possible. This PCCI combustion can be controlled by the gap in the squish portion S.
Although combustion has entered the expansion process at ATDC of 10° to 15° CA, this has a sufficiently large torque arm and is a Miller cycle with a larger expansion ratio of 19 than compression ratio of 14, so there is sufficient margin for high efficiency. be.
The ignition timing is advanced as far as possible so that PCCI occurs at about 10° to 15° CA ATDC while monitoring the magnitude of knock using a knock detection device, but the ignition timing may be before top dead center. If the above does not resolve the knock, a 2-stroke (2-stroke) engine has an output margin of 1 to 3 times that of a 4-stroke engine even if a Miller cycle is used, so reduce this margin (to keep the output the same). There is still a way to eliminate the knock by adopting cooled EGR. In addition, 4000r. p. m. Because of the high speed, there may be a delay in ignition of the fuel and ignition may not occur in time, in which case a high compression ratio of 16 will be used.

1500r.p.m.定点運転
暖機運転、市街地走行、早朝・深夜運転など必要ならばλ=3、1500r.p.m.定点運転を組み込む。バッテリーを小容量化する事ができる。図2(ハ)の弁タイミングとし、給気弁可変動弁装置10により給気弁4の閉弁をABDC70°CAとし、圧縮比=膨張比=19と高くする。PCCIを実現するには圧縮端温度が1000K+α必要であるが、ε=19と高圧縮比化し、排気絞り弁12により排気絞りを行なう(内部EGRを強化)。PCCI燃焼を可変圧縮比、排気絞り弁開度、点火栓の点火時期の三要素でコントロールする強みがある(従来は固定圧縮比下での内部EGR量のみでした)。つまり、PCCI燃焼が起る寸前の状態になる様に圧縮比、内部EGR率にしておき、最後はトリガーとして点火時期を定めてPCCIを引き起すと云う具合である。エンジン暖機時は副燃焼室7内をストイキにして点火し、強力な火炎が噴出する様にする(NOxは0)。触媒を早期に活性化、暖機を早める為、従来は点火時期を遅くしていたが、本発明では排気弁6にも排気弁可変動弁装置を装着して開弁時期を早め、1500r.p.m.暖機時に圧縮比19に対して膨張比を12と小さくすれば排気温度を大幅に高める事ができる。同時に排気絞りによって内部EGRを増せば触媒の早期活性化も早期暖機も可能となる。
1500r. p. m. Fixed point operation If necessary, such as warm-up operation, city driving, early morning/late night driving, etc., λ = 3, 1500r. p. m. Incorporate fixed point operation. Battery capacity can be reduced. The valve timing is as shown in FIG. 2C, the intake valve variable valve device 10 closes the intake valve 4 at ABDC70°CA, and the compression ratio=expansion ratio=19. To realize PCCI, the compression end temperature needs to be 1000K+α, but the compression ratio is set to a high value of ε=19, and the exhaust throttle valve 12 performs exhaust throttle (strengthens internal EGR). It has the advantage of controlling PCCI combustion using three elements: variable compression ratio, exhaust throttle valve opening, and spark plug ignition timing (previously, only the amount of internal EGR was controlled under a fixed compression ratio). In other words, the compression ratio and internal EGR rate are set so that they are on the verge of PCCI combustion, and finally the ignition timing is set as a trigger to cause PCCI. When the engine is warmed up, the sub-combustion chamber 7 is ignited with stoichiometry so that a strong flame is ejected (NOx is 0). Conventionally, the ignition timing was delayed in order to activate the catalyst early and warm up the catalyst, but in the present invention, the exhaust valve 6 is also equipped with an exhaust valve variable valve device to advance the valve opening timing, and the ignition timing is increased to 1500 rpm. p. m. If the expansion ratio is reduced to 12 compared to the compression ratio of 19 during warm-up, the exhaust temperature can be significantly increased. At the same time, if internal EGR is increased by exhaust throttling, early activation and early warm-up of the catalyst becomes possible.

次に図1(イ)において、本発明では副燃焼室7から噴出する火炎は高エネルギーほど着火性が強力で、エンジンの熱効率を高くするから、図4の様に使用する点火栓も電極が長く突出した超突出型とすのが良い。こうすると副燃焼室7の中心でスパークが発生するから燃焼完了が早くなり、噴口から強力な火炎が噴出する様になる。同様に図5の様に副燃焼室7の先端部もピストン凹部2へ所定長さだけ侵入する様にすれば(正確には噴口が侵入する様にすれば)ピストン凹部2の中心付近で火炎が噴出するから、急速燃焼を促がす事になる。この場合、副燃焼室7の先端部が高温になりプレイグニッションの原因となるので、ベリリウム銅などで作って、良好な熱伝導性により冷却を強化するのが良い。又、副燃焼室7の周囲のシリンダーヘッド部も図示の如く副燃焼室7の先端部に向かって接触部を延長する事が望ましい。尚、図4と同じ目的を達成する為に電極突出型を使わない方法は、図6の様に副燃焼室7の側方から点火プラグ8を差し込むことである。 Next, in FIG. 1(A), in the present invention, the higher the energy of the flame ejected from the auxiliary combustion chamber 7, the stronger the ignitability, and the higher the thermal efficiency of the engine, so the ignition plug used as shown in FIG. It is best to use a long, super-protruding type. In this way, a spark is generated at the center of the sub-combustion chamber 7, so that combustion is completed more quickly and a powerful flame is ejected from the nozzle. Similarly, as shown in Fig. 5, if the tip of the auxiliary combustion chamber 7 also enters the piston recess 2 by a predetermined length (more precisely, if the nozzle enters), the flame will ignite near the center of the piston recess 2. is ejected, promoting rapid combustion. In this case, the tip of the auxiliary combustion chamber 7 becomes hot and causes pre-ignition, so it is preferable to make it of beryllium copper or the like to enhance cooling with good thermal conductivity. Further, it is desirable that the contact portion of the cylinder head around the auxiliary combustion chamber 7 extends toward the tip of the auxiliary combustion chamber 7 as shown in the figure. Incidentally, a method for achieving the same purpose as shown in FIG. 4 without using the protruding electrode type is to insert the spark plug 8 from the side of the auxiliary combustion chamber 7 as shown in FIG.

本発明による高効率2ストロークエンジンの模式図である。FIG. 1 is a schematic diagram of a high-efficiency two-stroke engine according to the present invention. 弁タイミング図である。FIG. 3 is a valve timing diagram. 副燃焼室を上から見た断面図である。FIG. 3 is a cross-sectional view of the auxiliary combustion chamber viewed from above. 電極突出型点火栓の図。Diagram of a protruding electrode type ignition plug. 副燃焼室の先端部がピストン凹部へ侵入した図である。FIG. 3 is a diagram in which the tip of the sub-combustion chamber has entered the piston recess. 副燃焼室を示す図である。It is a figure showing a sub-combustion chamber.

1はピストン、2はピストン凹部、3は給気ポート、4は給気弁、5は排気ポート、6は排気弁、7は副燃焼室、8は点火栓、9は副燃料噴射弁、10は給気弁可変動弁装置、11は主燃料噴射弁、12は排気絞り弁、13はアクチュエーター、14は触媒、15はクランク軸、16は掃気ポンプ、17はエァフローメーター、18は油圧制御弁、19は電子制御ユニット、20は柱状塊、21は冷却板、である。
図4、5、6は本発明以外にも用いられる。
1 is a piston, 2 is a piston recess, 3 is an air intake port, 4 is an air intake valve, 5 is an exhaust port, 6 is an exhaust valve, 7 is an auxiliary combustion chamber, 8 is a spark plug, 9 is an auxiliary fuel injection valve, 10 11 is the main fuel injection valve, 12 is the exhaust throttle valve, 13 is the actuator, 14 is the catalyst, 15 is the crankshaft, 16 is the scavenging pump, 17 is the air flow meter, and 18 is the hydraulic control. 19 is an electronic control unit, 20 is a columnar block, and 21 is a cooling plate.
4, 5, and 6 may be used for purposes other than the present invention.

Claims (2)

給気弁及び排気弁をシリンダーヘッドに備えた2ストロークエンジンにおいて、給気弁の閉弁時期及び開弁時期の内の少なくとも閉弁時期を可変にする給気弁可変動弁装置と、点火栓及び副燃料噴射弁を有する副燃焼室とをシリンダーヘッドに備え、電子制御ユニットからの制御信号を受けた給気弁可変動弁装置によって給気弁の閉弁時期を制御し、以って圧縮比を制御して主燃焼室内の混合気が上死点近傍で自着火寸前の状態である様にした上で副燃焼室の複数の噴口から噴出する火炎によって主燃焼室内の混合気が自着火する様にし、かつ電子制御ユニットはノック検出装置からの信号により点火時期をフィードバック制御して主燃焼室内の混合気の自着火の開始時期をフィードバック制御する様にし、更に燃料自体の着火遅れの為に点火栓がスパークするまでは副燃焼室内の混合気が自着火しない時期を選んで副燃料噴射弁から燃料を噴射する様に制御した高効率2ストロークエンジン。In a two-stroke engine equipped with an intake valve and an exhaust valve in a cylinder head, an intake valve variable valve device that changes at least the closing timing of the closing timing and the opening timing of the intake valve; and a spark plug. The cylinder head is equipped with an auxiliary combustion chamber having an auxiliary fuel injection valve, and the closing timing of the intake valve is controlled by an intake valve variable valve device that receives control signals from an electronic control unit, thereby reducing compression. After controlling the ratio so that the air-fuel mixture in the main combustion chamber is on the verge of self-ignition near top dead center, the air-fuel mixture in the main combustion chamber is self-ignited by the flames ejected from multiple nozzles in the auxiliary combustion chamber. In addition, the electronic control unit performs feedback control of the ignition timing based on the signal from the knock detection device, and performs feedback control of the start timing of self-ignition of the air-fuel mixture in the main combustion chamber. A high-efficiency two-stroke engine that controls fuel injection from the auxiliary fuel injection valve at a time when the air-fuel mixture in the auxiliary combustion chamber does not self-ignite until the ignition plug sparks. 電子制御ユニットにより開度が制御される排気絞り弁を備えた請求項1記載の2ストロークエンジン。The two-stroke engine according to claim 1, further comprising an exhaust throttle valve whose opening degree is controlled by an electronic control unit.
JP2022096117A 2022-05-06 2022-05-06 High performance 2-stroke engine having auxiliary combustion chamber Pending JP2023165582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022096117A JP2023165582A (en) 2022-05-06 2022-05-06 High performance 2-stroke engine having auxiliary combustion chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022096117A JP2023165582A (en) 2022-05-06 2022-05-06 High performance 2-stroke engine having auxiliary combustion chamber

Publications (1)

Publication Number Publication Date
JP2023165582A true JP2023165582A (en) 2023-11-16

Family

ID=88748768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022096117A Pending JP2023165582A (en) 2022-05-06 2022-05-06 High performance 2-stroke engine having auxiliary combustion chamber

Country Status (1)

Country Link
JP (1) JP2023165582A (en)

Similar Documents

Publication Publication Date Title
EP1186759B1 (en) Self-igniting engine
US8459021B2 (en) Method and apparatus for controlling supercharged engine
EP1234960B1 (en) Combustion control apparatus for engine
US9702316B2 (en) Spark-ignition direct injection engine
JP4172340B2 (en) Control device for spark ignition engine
US7810463B2 (en) Quick restart HCCI internal combustion engine
JP2007113485A (en) Method and device for controlling internal combustion engine
US20110180038A1 (en) Engine control method and apparatus
WO1998010179A2 (en) Homogeneous charge compression ignition engine with optimal combustion control
KR20080103071A (en) Fuel injection control apparatus and fuel injection control method of internal combustion engine
WO2012087421A1 (en) Stratified charge port injection engine and method
US7263982B2 (en) Method for operating and internal combustion engine
JP5907013B2 (en) Spark ignition direct injection engine
JPH10196424A (en) Compression ignition type combustion method for air-fuel mixture, and compression ignition type piston internal combustion engine for air-fuel mixture
JP3257430B2 (en) Exhaust heating device
JP2002227680A (en) Compression ignition type engine
JP2004510910A (en) Internal combustion engine operating method, internal combustion engine operating computer program, and internal combustion engine
JP2016109111A (en) Opposite mating piston internal combustion engine of rapid combustion
JP5593827B2 (en) Control device for spark ignition engine
JP2023165582A (en) High performance 2-stroke engine having auxiliary combustion chamber
JP2006257999A (en) Internal combustion engine
JP4583626B2 (en) Engine combustion control device
JP2002322928A (en) Combustion control device for compression ignition type engine
JP2013194730A (en) Super-high efficiency four-cycle internal combustion engine
JP2002242715A (en) Compression ignition type engine