JP2023165499A - トンネルの覆工コンクリートの打設方法 - Google Patents

トンネルの覆工コンクリートの打設方法 Download PDF

Info

Publication number
JP2023165499A
JP2023165499A JP2022076576A JP2022076576A JP2023165499A JP 2023165499 A JP2023165499 A JP 2023165499A JP 2022076576 A JP2022076576 A JP 2022076576A JP 2022076576 A JP2022076576 A JP 2022076576A JP 2023165499 A JP2023165499 A JP 2023165499A
Authority
JP
Japan
Prior art keywords
concrete
formwork
tunnel
shell
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022076576A
Other languages
English (en)
Inventor
薫和 半澤
Shigekazu Hanzawa
和夫 半澤
Kazuo Hanzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smrc Inc
Original Assignee
Smrc Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smrc Inc filed Critical Smrc Inc
Priority to JP2022076576A priority Critical patent/JP2023165499A/ja
Publication of JP2023165499A publication Critical patent/JP2023165499A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Abstract

【課題】複雑な機構とすることなく、型枠の設置作業も簡単でありながら、コンクリート打設時の余剰水を排出して、高品質の覆工コンクリートを打設することのできるトンネルの覆工コンクリートの打設方法を提供する。【解決手段】複数の孔31が並んで形成されるメッシュ状の殻体30が型枠20の外面に固定された状態で型枠20を設置し、充填されたフレッシュコンクリートから余剰水が殻体30の各孔31を通じて型枠20と殻体30の間の通水路40へ排出されるようにし、余剰水の排出によりコンクリートの流動化を止めて仮固化させ、仮固化したコンクリートを殻体30と一体に硬化させた後、硬化したコンクリートの内面から型枠20を撤去する。【選択図】図2

Description

本発明は、トンネルの覆工コンクリートの打設方法に関する。
トンネルの施工工法として、シールド工法、TBM工法、NATM工法、開削工法等が知られている。シールド工法は、都市部で多く用いられ、沖積層、シルト層等のように地山圧力の高い地層を掘削するのに適している。シールド工法では、シールドマシンにより土砂を泥酔として排除した後、覆工コンクリートとしてプレキャストのセグメントを敷設し、そのセグメントを反力としてシールドマシンのジャッキを延伸させてトンネルを形成していく。TBM工法は、いわゆる山岳トンネルに用いられ、岩盤を巨大なカッターヘッドで削り、削った岩を後方へ排出しながら掘り進んでいく。また、NATM工法は、いわゆる山岳トンネルに用いられ、ロックボルトで地山を補強しながら掘削し、セントル(型枠)を利用して、トンネルの軸方向に沿って連続的にコンクリートを打設していく。シールド工法及びTBM工法でも、セグメントを使用せずに、機械化された型枠を利用し、覆工コンクリートの連続打設を行う工法が開発されている。また、シールド工法における地山補強にNATM工法を利用した複合工法も開発されている。
型枠を用いてトンネルの覆工コンクリートを打設する方法として、型枠を上部フォームと、中部フォームと、下部フォームとにより構成し、下部フォームの外面に透水型枠を設置する方法が提案されている(特許文献1参照)。特許文献1に記載の技術では、透水型枠は、せき板、保水層及び透水シートを積層して構成され、外面(地山側の面)が中部フォームの外面と面一になっている。透水型枠の保水層は、芯材及び芯材の両面に積層された面材を備え、芯材に内部空間が形成されるとともに、芯材及び面材に複数の貫通孔が形成されている。
透水シートは、コンクリートとの当接面に配設されており、コンクリートの打設後に発生する余剰水(ブリージング水を含む)を吸収するとともに、コンクリートの養生時にコンクリートの表面に水分(養生水)を供給する、とされている。具体的には、コンクリートに所定の強度が発現したら、透水型枠をコンクリートの表面に残置させた状態で、型枠を脱型するとともに移動させている。コンクリートの養生終了後、透水型枠は、コンクリートの表面から撤去される。
特開2019-85784号公報
しかしながら、特許文献1に記載の打設方法では、透水型枠を中部フォームの外面と面一となるよう配置する必要があり、下部フォーム、透水型枠及びこれらを支持する装置の機構が複雑となり、透水型枠の設置作業も極めて煩雑となる。
本発明は、上記問題に鑑みてなされたものであり、複雑な機構とすることなく、型枠の設置作業も簡単でありながら、コンクリート打設時の余剰水を排出して、高品質の覆工コンクリートを打設することのできるトンネルの覆工コンクリートの打設方法を提供することを目的とする。
上記目的を達成するため、本発明では、
外面がトンネルの内壁側と対面する型枠を利用した覆工コンクリートの打設方法であって、
複数の孔が並んで形成されるメッシュ状の殻体が、前記型枠の外面及び前記殻体の内面の少なくとも一方に形成された凹凸形状により前記型枠と前記殻体の間にコンクリートの余剰水を排出するための通水路が形成されるように、前記型枠の外面に固定された状態で、前記型枠を設置する型枠設置工程と、
設置された前記型枠にフレッシュコンクリートを充填するコンクリート充填工程と、
前記殻体の前記各孔を通じて前記コンクリートから前記通水路へ余剰水を排出して流動化を止め、前記コンクリートを仮固化させる余剰水排出工程と、
前記余剰水が排出され仮固化された前記コンクリートを前記殻体と一体的に硬化させるコンクリート硬化工程と、
前記殻体を前記コンクリートと一体化させた状態で、硬化したコンクリートの内面から前記型枠を撤去する型枠撤去工程と、含むトンネルの覆工コンクリートの打設方法が提供される。
上記トンネルの覆工コンクリートの打設方法において、前記通水路は、前記殻体の前記内面に形成され前記トンネルの断面方向へ延びる前記凹凸形状により形成されてもよい。
上記トンネルの覆工コンクリートの打設方法において、
前記通水路は、前記型枠の前記外面に形成され前記トンネルの断面方向へ延びる前記凹凸形状により形成され、
前記凹凸形状をなす前記凸部分の断面は、前記トンネルの断面の外側へ向かって小さくなるテーパ状に形成されてもよい。
上記トンネルの覆工コンクリートの打設方法において、
前記型枠は、前記トンネルの底部側に形成され上方が開放され前記余剰水が集められる集水溝を有してもよい。
上記トンネルの覆工コンクリートの打設方法において、
前記型枠は、前記トンネルの底部側に歩行用の平坦部を有し、
前記集水溝は、前記平坦部に形成されてもよい。
上記トンネルの覆工コンクリートの打設方法において、前記型枠設置工程で、前記殻体は、前記型枠の前記集水溝の部分に所定の張力となるよう固定されてもよい。
本発明のトンネルの覆工コンクリートの打設方法によれば、複雑な機構とすることなく、型枠の設置作業も簡単でありながら、コンクリート打設時の余剰水を排出して、高品質の覆工コンクリートを打設することができる。
本発明の一実施形態を示すトンネルの覆工コンクリートの打設方法のフローチャートである。 トンネルの縦断面説明図である。 コンクリート充填前のトンネルの横断面説明図である。 殻体の一部展開図である。 型枠及び殻体の一部断面図である。 変形例を示すコンクリート充填前のトンネルの横断面説明図である。 変形例を示す型枠及び殻体の一部断面図である。
図1から図6は本発明の一実施形態を示し、図1はトンネルの覆工コンクリートの打設方法のフローチャート、図2はトンネルの縦断面説明図、図3はコンクリート充填前のトンネルの横断面説明図、図4は殻体の一部展開図、図5は型枠及び殻体の一部断面図である。
図1に示すように、このトンネルの覆工コンクリートの打設方法は、掘削工程S1と、型枠設置工程S2と、コンクリート充填工程S3と、余剰水排出工程S4と、コンクリート硬化工程S5と、型枠撤去工程S6と、を有する。本実施形態においては、図2に示すように、シールドマシン10を使用して、トンネル80の覆工コンクリート90を打設する。覆工コンクリート90は、外面がトンネル80の内壁側と対面する型枠20を利用して打設される。
シールドマシン10は、筒状のマシン本体11と、マシン本体11の前端に配置されるカッターヘッド12と、カッターヘッド12の後方に設けられるバルクヘッド13と、マシン本体11の後端に設けられ前後に伸縮自在のジャッキ14と、ジャッキ14の後端に設けられるトンネル80の断面方向へ延びる仕切り板15と、マシン本体11の外縁から後方へ延び地山からの圧力を受ける耐圧板16と、を有している。仕切り板15は、覆工コンクリート90の断面形状に対応して形成される。
図3に示すように、仕切り板15の上部には、コンクリート充填用の打設孔17が形成される。尚、図3は、コンクリートが充填される前の状態を示している。本実施形態においては、打設孔17は、仕切り板15の上部に左右一対に設けられる。また、図2に示すように、仕切り板15の下部には、後述する余剰水を排出するための排水口18が形成される。仕切り板15のコンクリートとの接触面には凹凸が形成され、コンクリートとの接触面積の増大が図られている。
以上のように構成されたシールドマシン1を用いた覆工コンクリート90の打設方法について、図1のフローチャートを参照しながら説明する。
まず、ジャッキ14を伸長させつつ、カッターヘッド12を回転させて、地山を所定距離だけ掘削する(掘削工程S1)。このとき、後方に隣接する工区ではコンクリート硬化工程S5が完了し、仕切り板15の後方に隣接する覆工コンクリート90は、すでに硬化している。
次に、複数の孔31が並んで形成されるメッシュ状の殻体30が、型枠20の外面及び殻体30の内面の少なくとも一方に形成された凹凸形状により型枠20と殻体30の間にコンクリートの余剰水を排出するための通水路40が形成されるように、型枠20の外面に固定された状態で、型枠20を設置する(型枠設置工程S2)。型枠20の外面は、トンネル80の内壁側と対面している。型枠20の材質は任意であるが、本実施形態においては鋼板により構成される。型枠20は、トンネル80の底部側に歩行用の平坦部21を有し、平坦部21には上方が開放され後述する余剰水が集められる集水溝22が掘削方向へ延びて形成されている。集水溝22の寸法は任意であるが、例えば、幅450mm以上750mm以下、深さ100mm以上300mm以下とすることができる。本実施形態においては、仕切り板15の後方に隣接する覆工コンクリート90には型枠20が残置されているので、新たに設置される型枠20の集水溝22は、後方に隣接する型枠20の集水溝22と接続される。
また、本実施形態においては、型枠設置工程S2にて、平坦部21の下方のトンネル底部に、掘削方向へ延び後述する余剰水が集められる集水管50が配置される。集水管50の寸法及び断面形状は任意であるが、例えば、断面形状を200mm以上400mm以下の直径の円とすることができる。仕切り板15の後方に隣接する覆工コンクリート90には集水管50が埋設されており、新たな集水管50を、埋設されている集水管50の前端と仕切り板15の排水口18と接続するよう配置する。型枠20は、分割して構成されており、型枠設置工程S2で組み立てられる。型枠20の分割の仕方は任意であり、比較的小規模であれば、例えば、掘削方向に2m、断面方向に1mの大きさとすることができる。また、大型機械を利用して運搬、組立等が可能な場合は、型枠20は、例えば、掘削方向に2m、断面方向に3個に分割することができる。
図4に示すように、殻体30は、後述するコンクリートの余剰水を流出させるための複数の孔31を有している。殻体30の材質は任意であるが、例えば、プラスチック、金属等とすることができる。本実施形態においては、殻体30は、エンジニアリングプラスチックで構成されている。本実施形態においては、殻体30は、メッシュ状に形成され、四角形状に形成された各孔31が縦方向及び横方向に整列して形成される。各孔31の形状及び大きさは、任意であり、例えば、菱形、円形、四角形以外の多角形等とすることができる。また、各孔31の大きさも任意であり、例えば、各孔31の内接円を直径5mm以上50mm以下とすることができる。各孔の形状や大きさは、要求性能等に応じて適宜設定される。
また、殻体30の内面には、トンネル80の断面方向へ延びる複数のリブ32が形成されている。これにより、殻体30の内面に前述の凹凸形状が形成される。各リブ32は、トンネル80の掘削方向に所定の間隔をおいて形成される。殻体30は、各リブ32により補強されている。図5に示すように、型枠20の外面が平坦であることから、殻体30が外面に重ねられると、各リブ32間にトンネル断面方向へ延びる通水路40が形成される。通水路40の寸法は任意であるが、例えば、幅10mm以上50mm以下、深さ5mm以上20mm以下とすることができる。殻体30は、複数のパネルに分割して構成され、外縁部に形成された図示しない連結用の凹部及び凸部を有しており、凹部及び凸部の嵌合により、隣接するパネル同士が連結されている。各パネルは、型枠20の外面形状に対応して工場等で加工されたものを、掘削現場へ搬入して使用される。尚、殻体30をメッシュ状に加工して長尺に形成しておき、掘削現場へロール状で搬入してもよい。
殻体30は、型枠20に巻きつけられ、集水溝22の部分に所定の張力となるよう固定される。尚、型枠20の集水溝22以外の部分に、別途、殻体30の固定部を設けてもよい。型枠20と殻体30の固定方法は任意であり、本実施形態においてはボルトを用いた螺合により固定されているが、溶接、接着等により固定することもできる。
型枠20及び殻体30が設置されると、仕切り板15の各打設孔17を利用してフレッシュコンクリートを充填する(コンクリート充填工程S3)。本実施形態においては、各打設孔17からフレキシブル管をトンネル80の底部に降ろし、センサー又は目視で充填状態を確認しながらフレキシブル管を引き上げる。コンクリートの充填が完了した後、各打設孔17に蓋をする。尚、フレッシュコンクリートの供給方法は任意であり、例えば、レディーミクスコンクリートを生コン車でトンネル内に搬送して供給してもよいし、トンネル内移動式の小型のバッチャープラントから圧送ポンプにより供給してもよい。本実施形態においては、軟弱な地山が想定され、地山の円筒保護材をなす覆工コンクリート90を高速で硬化させるために、各種早強セメントが使用される。本実施形態では、コンクリート充填空間に、鉄筋等のような炭酸化で腐食するものが配置されていないので、鉄筋等を腐食させるおそれのある早強剤を使用してもよい。
型枠20にフレッシュコンクリートが充填されると、コンクリートの自重の圧密により、殻体30の各孔31を通じてコンクリートから通水路40へ余剰水を排出する(余剰水排出工程S4)。このとき、余剰水とともにコンクリートから空気も排出される。このように、コンクリートから余剰水が排出されるため、コンクリートから型枠20に加わる圧力が低減される。また、コンクリートから余剰水が排出されると、コンクリートの硬化が始まる前に流動化が止まり、コンクリートが仮固化される。これにより、支保工、吹き付けコンクリート、ロックボルト、薬液注入等を用いた各種の地山補強作業を省略することができる。型枠20から染み出た余剰水は、通水路40から集水溝22及び集水管50へ排出される。
この後、余剰水及び空気が排出されたコンクリートを殻体30と一体的に硬化させる(コンクリート硬化工程S5)。余剰水及び空気が排出されることにより、硬化されるコンクリートの緻密性が向上する。この結果、コンクリートのクラックの発生が抑制され、防水効果が向上する。また、余剰水及び空気が排出されることにより、コンクリートの強度発現が促進される。本実施形態においては、早強セメントの使用により、強度発現がさらに促進されている。型枠20、殻体30及び硬化した覆工コンクリート90は、地山の筒状保護材として機能し、地山の応力バランスの安定に寄与する。すなわち、コンクリートの仮固化及び早強セメントの使用により、速やかに地山の応力バランスが安定する。
コンクリート硬化後、ジャッキ14を伸長させつつ、カッターヘッド12を回転させて、再び、地山を所定距離だけ掘削する(掘削工程S1)。覆工コンクリート90の強度発現後、殻体30が座屈することはなく、型枠20及び耐圧板16と一体となった状態で硬化した覆工コンクリート200側から仕切り板15を介してシールドマシン1の推進に必要な反力を得ることができる。このように、トンネル100の掘削方向について、掘削工程S1、型枠設置工程S2、コンクリート充填工程S3、余剰水排出工程S4及びコンクリート硬化工程S5を繰り返して、覆工コンクリート90の打設を進めていく。
応力センサー、ひずみ計等により、地山の応力の安定を確認した後、殻体30をコンクリートと一体化させた状態で、硬化したコンクリートの内面から型枠20を撤去する(型枠撤去工程S6)。その後、殻体30を覆工コンクリート200側に存置させた状態で、覆工コンクリート200の養生が行われる。すなわち、コンクリートの養生期間は、殻体30が型枠の役目を果たす。そして、殻体30が覆工コンクリート200側に存置されたまま、トンネル80は使用に供される。
解体された型枠20は、前方の工区へ移送されて再利用される。殻体30の内面には、各補強リブ32により凹凸が形成されていることから、型枠20を覆工コンクリート90側から比較的容易に剥離することができる。尚、型枠20の覆工コンクリート90側の剥離性を考慮するならば、型枠20の表面を剥離性の高い素材、仕上げ等としておくことが好ましい。ここで、型枠20を取り外した後、覆工コンクリート90に空洞が見つかった場合は、各孔31を通じて無収縮モルタルを圧入する等により、コンクリートの補修をすることが可能である。尚、型枠20の集水溝22により覆工コンクリート90に形成された溝は、排水溝としてそのまま利用される。
以上の本実施形態の覆工コンクリート90の打設方法によれば、複雑な機構とすることなく、型枠の設置作業も簡単でありながら、コンクリート打設時の余剰水を排出して、高品質の覆工コンクリート90を打設することができる。また、コンクリートの強度を早期に発現させることができるので、トンネル80の覆工コンクリート90の打設に要する工期を短縮することができる。さらに、支保工、吹き付けコンクリート、ロックボルト、薬液注入等を用いた各種の地山補強作業を省略することによって。高速施工が可能となる。また、従来のシールド工法で必要とされていたセグメントは不要であり、セグメント工場等の膨大なバックヤードを必要としない。また、補強鋼材及びジョイント鋼材も不要となるため、これらの耐久性や防水性能を考慮する必要もない。
覆工コンクリート90は、殻体30の各孔31を通じて外気中の二酸化炭素が供給されることにより、表面側から炭酸化が内部へ進行し、コンクリートは粗骨材及び細骨材を礫とする石材へ変性していく。これにより、覆工コンクリート90は、強度及び耐久性が向上していく。全部分が石化部へ変性した覆工コンクリート90は、遺跡等の石造建築物と同様の、1000年以上の耐久性が付与される。
尚、前記実施形態においては、コンクリートに早強セメントを使用したものを示したが、地山の状態が良好な場合は、早強セメントを用いずに、普通セメントを用いたコンクリートとしても問題はない。すなわち、余剰水排出工程S4で、コンクリートが仮固化されるため、地山の状態が良好な場合は、コンクリートの仮固化の効果のみで、地山の応力バランスを安定させ、支保工、吹き付けコンクリート、ロックボルト、薬液注入等の地山補強作業を省略した高速施工が可能となる。
また、前記実施形態においては、シールドマシン1を用いた例を示したが、掘削工程S1、型枠設置工程S2、コンクリート充填工程S3、余剰水排出工程S4、コンクリート硬化工程S5及び型枠撤去工程S6を有していれば、図6に示すような、TBM工法、NATM工法等による山岳トンネルの覆工コンクリートの打設にも、本発明を適用可能である。前記実施形態では仕切り板15がシールドマシン1に設けられていたが、図6の変形例では、仕切り板115が単独で設けられる。この変形例では、図6に示すように、トンネル180の断面下部が水平となっており、型枠120の平坦部121は幅方向に比較的大きく形成されている。型枠120の集水溝122は、トンネル180の幅方向外側に一対に設けられている。さらに、排水口118及びこれと接続される集水管も、トンネル180の幅方向について一対に設けられている。この変形例においても、メッシュ状の殻体130が、型枠120の外面に巻きつけられている。
また、前記実施形態においては、通水路40が殻体30の内面に形成された凹凸形状により形成されるものを示したが、例えば図7に示すように、型枠220の外面に形成された凹凸形状により通水路240を形成することも可能である。図7においても、殻体230は複数の孔231が並べられたメッシュ状に形成されている。図7の型枠220は、凹凸形状をなす凸部分221の断面は、トンネルの断面の外側へ向かって小さくなるテーパ状に形成される。これにより、型枠撤去工程S6における型枠20のコンクリート側からの脱型を、比較的容易に行うことができる。
以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
20 型枠
22 集水溝
30 殻体
31 孔
32 補強リブ
40 通水路
50 集水管
80 トンネル
90 覆工コンクリート
120 型枠
122 集水溝
130 殻体
180 トンネル
190 覆工コンクリート
220 型枠
221 凸部分
230 殻体
231 孔
240 通水路
S2 型枠設置工程
S3 コンクリート充填工程
S4 余剰水排出工程
S5 コンクリート硬化工程
S6 型枠撤去工程

Claims (6)

  1. 外面がトンネルの内壁側と対面する型枠を利用した覆工コンクリートの打設方法であって、
    複数の孔が並んで形成されるメッシュ状の殻体が、前記型枠の外面及び前記殻体の内面の少なくとも一方に形成された凹凸形状により前記型枠と前記殻体の間にコンクリートの余剰水を排出するための通水路が形成されるように、前記型枠の外面に固定された状態で、前記型枠を設置する型枠設置工程と、
    設置された前記型枠にフレッシュコンクリートを充填するコンクリート充填工程と、
    前記殻体の前記各孔を通じて前記コンクリートから前記通水路へ余剰水を排出して流動化を止め、前記コンクリートを仮固化させる余剰水排出工程と、
    前記余剰水が排出され仮固化された前記コンクリートを前記殻体と一体的に硬化させるコンクリート硬化工程と、
    前記殻体を前記コンクリートと一体化させた状態で、硬化したコンクリートの内面から前記型枠を撤去する型枠撤去工程と、含むトンネルの覆工コンクリートの打設方法。
  2. 前記通水路は、前記殻体の前記内面に形成され前記トンネルの断面方向へ延びる前記凹凸形状により形成される請求項2に記載のトンネルの覆工コンクリートの打設方法。
  3. 前記通水路は、前記型枠の前記外面に形成され前記トンネルの断面方向へ延びる前記凹凸形状により形成され、
    前記凹凸形状をなす前記凸部分の断面は、前記トンネルの断面の外側へ向かって小さくなるテーパ状に形成される請求項1に記載のトンネルの覆工コンクリートの打設方法。
  4. 前記型枠は、前記トンネルの底部側に形成され上方が開放され前記余剰水が集められる集水溝を有する請求項2または3に記載のトンネルの覆工コンクリートの打設方法。
  5. 前記型枠は、前記トンネルの底部側に歩行用の平坦部を有し、
    前記集水溝は、前記平坦部に形成される請求項4に記載のトンネルの覆工コンクリートの打設方法。
  6. 前記型枠設置工程で、前記殻体は、前記型枠の前記集水溝の部分に所定の張力となるよう固定される請求項5に記載のトンネルの覆工コンクリートの打設方法。
JP2022076576A 2022-05-06 2022-05-06 トンネルの覆工コンクリートの打設方法 Pending JP2023165499A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022076576A JP2023165499A (ja) 2022-05-06 2022-05-06 トンネルの覆工コンクリートの打設方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022076576A JP2023165499A (ja) 2022-05-06 2022-05-06 トンネルの覆工コンクリートの打設方法

Publications (1)

Publication Number Publication Date
JP2023165499A true JP2023165499A (ja) 2023-11-16

Family

ID=88748823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022076576A Pending JP2023165499A (ja) 2022-05-06 2022-05-06 トンネルの覆工コンクリートの打設方法

Country Status (1)

Country Link
JP (1) JP2023165499A (ja)

Similar Documents

Publication Publication Date Title
US4697955A (en) Method of constructing reinforced concrete works such as underground galleries, road tunnels, et cetera; pre-fabricated contrete elements for constructing such works
KR100701633B1 (ko) 투아치 터널의 중앙부를 지지하는 하중분배판 및 이를 이용한 투아치 터널의 시공방법
KR20040027252A (ko) 쓰리아치 굴착터널의 공법
KR101388521B1 (ko) 지지말뚝이 설치된 교량의 교각기초 하부에 지하구조물을 구축하는 방법
CN109838240B (zh) 过河隧道拱盖盖挖施工方法
CN108867690B (zh) 大基坑的桩板挡墙逆向施工工法
CN110593890A (zh) 一种隧道波纹钢双层初衬支护方法及结构
KR100890697B1 (ko) 개착터널의 굴착터널식 시공방법
CN110762286B (zh) 排水管网人工顶管施工工艺
US4150910A (en) Construction of underground galleries
JP7288301B2 (ja) 地中構造物の構築方法、および地中構造物
JP2023165499A (ja) トンネルの覆工コンクリートの打設方法
CN113174995B (zh) 临近河道trd复合式围护综合管廊的施工方法
CN113957887B (zh) 核心筒的桩墙一体化施工方法
CN115030731A (zh) 一种横渡隧道工程中导洞施工方法
CN113957886A (zh) 整体式地下连续墙的现浇连接施工方法
CN206768879U (zh) 一种地下室外墙后浇带结构
CN112228076A (zh) 一种硬岩大跨度隧道快速开挖施工工法
CN215977367U (zh) 一种上跨既有运营地铁隧道的地下空间底板结构
JP2693028B2 (ja) 管路中間部人孔の施工法
JPH084033A (ja) 建物地下外周耐圧壁の構築方法
KR200308699Y1 (ko) 수중 구조물의 신설 및 기초보수 보강을 위한 cfrp복합형틀의 슈(shoe)
CN217999598U (zh) 节理化岩层大跨度隧道导洞先行分部台阶开挖支护结构
CN113700004B (zh) 深基坑组合支护施工装置及其方法
JPH09151470A (ja) 地中構造物の施工方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220517