JP2023154805A - 工具摩耗検出装置、工具摩耗検出方法および工作機械 - Google Patents

工具摩耗検出装置、工具摩耗検出方法および工作機械 Download PDF

Info

Publication number
JP2023154805A
JP2023154805A JP2022064377A JP2022064377A JP2023154805A JP 2023154805 A JP2023154805 A JP 2023154805A JP 2022064377 A JP2022064377 A JP 2022064377A JP 2022064377 A JP2022064377 A JP 2022064377A JP 2023154805 A JP2023154805 A JP 2023154805A
Authority
JP
Japan
Prior art keywords
tool
wear detection
function
frequency spectrum
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022064377A
Other languages
English (en)
Inventor
ボイコ ストイメノフ
Boyko Stoimenov
尊広 水野
Takahiro Mizuno
祐貴 石榑
Yuki Ishigure
章 栗栖
Akira Kurisu
眞 野々山
Makoto Nonoyama
寿宏 米津
Hisahiro Yonezu
タチアナ クンドゼーロブァ
Kundozerova Tatiana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2022064377A priority Critical patent/JP2023154805A/ja
Publication of JP2023154805A publication Critical patent/JP2023154805A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

【課題】工具の摩耗や損傷を精度良く検出するための技術を提供する。【解決手段】工具摩耗検出装置は、複数の刃を有する工具の回転により切削加工を施される工作物に複数の刃のそれぞれが接触することで生じる物理量を検出するセンサから出力される、物理量に応じた信号を取得する信号取得部と、信号に対してフーリエ変換を施すことによって信号の周波数スペクトルを生成し、周波数スペクトルの絶対値の冪乗に対して逆フーリエ変換を施すことによって関数を生成する関数生成部と、上記関数を解析することによって、工具が摩耗したか否かを判定する判定部と、を備える。関数生成部は、周波数スペクトルの絶対値を冪乗するときの冪指数を、0よりも大きく且つ2以下の範囲内で設定可能に構成されている。【選択図】図4

Description

本開示は、工具摩耗検出装置、工具摩耗検出方法および工作機械に関する。
特許文献1には、複数の刃を備える工具によって切削加工を実行したときの切削力の波形を取得し、当該波形x(t)と、当該波形を一刃分の周期τだけずらした波形x(t+τ)との自己相関関数が小さくなることで、工具の異常を検出する技術が開示されている。
特開昭61-192449号公報
上述した技術では、波形x(t)と当該波形を一刃分の周期τだけずらした波形x(t+τ)の両方を用いるので、CPUやメモリの負担が大きい。また、上述した技術では、工具の異常時には自己相関関数が小さくなるので、ノイズとの区別がつきにくい。
本開示は、以下の形態として実現することが可能である。
(1)本開示の第1の形態によれば、工具摩耗検出装置が提供される。この工具摩耗検出装置は、複数の刃を有する工具の回転により切削加工を施される工作物に前記複数の刃のそれぞれが接触することで生じる物理量を検出するセンサから出力される、前記物理量に応じた信号を取得する信号取得部と、前記信号に対して高速フーリエ変換を施すことによって前記信号の周波数スペクトルを生成し、前記周波数スペクトルの絶対値の冪乗に対して逆高速フーリエ変換を施すことによって関数を生成する関数生成部と、前記関数を解析することによって、前記工具が摩耗したか否かを判定する判定部と、を備える。前記関数生成部は、前記周波数スペクトルの絶対値を冪乗するときの冪指数を、0よりも大きく且つ2以下の範囲内で設定可能に構成されている。
この形態の工具摩耗検出装置によれば、判定部は、関数生成部によって生成された関数を用いて、工具の各刃の摩耗や損傷の差異を検出できる。さらに、関数生成部は、周波数スペクトルの絶対値を冪乗するときの冪指数を0よりも大きく且つ2以下の範囲内で設定可能に構成されているので、冪指数を調整することによってノイズの影響を小さくできるので、判定部による工具の各刃の摩耗や損傷の差異の検出精度を高めることができる。
(2)上記形態の工具摩耗検出装置は、前記冪指数を設定するための操作を受け付ける入力装置を備え、前記関数生成部は、前記入力装置に対する操作に応じて前記冪指数を設定してもよい。
この形態の工具摩耗検出装置によれば、ユーザは、入力装置を介して、所望の冪指数を設定できる。
(3)上記形態の工具摩耗検出装置において、前記関数生成部は、前記工具の回転周期に対応する位置を含む複数の位置にピークを有する前記関数を生成し、前記判定部は、前記複数の刃のピークの近傍を通る近似直線を生成し、摩耗が進んだ刃のピーク値と前記近似直線との差異の大きさが、前記冪指数ごとに予め定められた閾値を超えた場合に、前記工具が摩耗したと判定してもよい。
この形態の工具摩耗検出装置によれば、工具回転周期に対応する位置でのピーク値と近似直線とを比較することによって、工具の各刃の摩耗や損傷の差異を精度良く検出できる。
(4)上記形態の工具摩耗検出装置において、前記関数生成部は、前記差異の大きさが前記閾値よりも小さい予め定められた基準値以下である場合には、前記冪指数を小さくして前記関数を再生成してもよい。
この形態の工具摩耗検出装置によれば、工具の各刃の摩耗や損傷の差異の検出精度を自動で調整できる。
(5)上記形態の工具摩耗検出装置は、前記判定部によって前記工具が摩耗したと判定された場合に、警報を発する警報装置を備えてもよい。
この形態の工具摩耗検出装置によれば、工具に摩耗や損傷が生じたことをユーザに報知できる。
(6)本開示の第2の形態によれば、工具摩耗検出方法が提供される。この工具摩耗検出方法は、複数の刃を有する工具の回転により切削加工を施される工作物に前記複数の刃のそれぞれが接触することで生じる物理量を検出するセンサから出力される、前記物理量に応じた信号を取得する信号取得工程と、前記信号に対して高速フーリエ変換を施すことによって前記信号の周波数スペクトルを生成し、前記周波数スペクトルの絶対値の冪乗に対して逆高速フーリエ変換を施すことによって関数を生成する関数生成工程と、前記関数を解析することによって、前記工具が摩耗したか否かを判定する判定工程と、を有する。前記関数生成工程では、前記周波数スペクトルの絶対値を冪乗するときの冪指数を、0よりも大きく且つ2以下の範囲内で設定する。
この形態の工具摩耗検出方法によれば、関数生成工程において生成された関数を用いて、工具の各刃の摩耗や損傷の差異を検出できる。さらに、関数生成工程において、周波数スペクトルの絶対値を冪乗するときの冪指数を0よりも大きく且つ2以下の範囲内で設定できるので、冪指数を調整することによってノイズの影響を小さくできるので、工具の各刃の摩耗や損傷の差異の検出精度を高めることができる。
(7)本開示の第3の形態によれば、工作機械が提供される。この工作機械は、複数の刃を有する工具が装着される主軸を有し、前記主軸に装着された前記工具を回転させる主軸装置と、前記工具の回転により切削加工を施される工作物が固定されるテーブルを有し、前記主軸に装着された前記工具に対して、前記テーブルに固定された前記工作物を相対移動させる移動装置と、前記主軸装置と前記移動装置とを制御する制御装置と、前記工作物に前記複数の刃のそれぞれが接触することで生じる物理量を検出するセンサと、を備える。前記制御装置は、前記センサから出力される、前記物理量に応じた信号を取得する信号取得部と、前記信号に対して高速フーリエ変換を施すことによって前記信号の周波数スペクトルを生成し、前記周波数スペクトルの絶対値の冪乗に対して逆高速フーリエ変換を施すことによって関数を生成する関数生成部と、前記関数を解析することによって、前記工具が摩耗したか否かを判定する判定部と、を有し、前記関数生成部は、前記周波数スペクトルの絶対値を冪乗するときの冪指数を、0よりも大きく且つ2以下の範囲内で設定可能に構成されている。
この形態の工作機械によれば、判定部は、関数生成部によって生成された関数を用いて、工具の各刃の摩耗や損傷の差異を検出できる。さらに、関数生成部は、周波数スペクトルの絶対値を冪乗するときの冪指数を0よりも大きく且つ2以下の範囲内で設定可能に構成されているので、冪指数を調整することによってノイズの影響を小さくできるので、判定部による工具の各刃の摩耗や損傷の差異の検出精度を高めることができる。
本開示は、工具摩耗検出装置や、工具摩耗検出方法や、工作機械以外の種々の形態で実現することも可能である。例えば、工具摩耗検出システムや、工作機械の制御装置等の形態で実現することができる。
第1実施形態の工作機械の概略構成を示す斜視図。 第1実施形態の制御装置の機能構成を示す説明図。 工具の先端部に設けられた複数の刃を示す断面図。 工具摩耗検出処理の内容を示すフローチャート。 センサから出力される信号の波形を示す説明図。 周波数スペクトルを示す説明図。 周波数スペクトルの絶対値の2.0乗を示す説明図。 冪指数が2.0のときの摩耗検出用関数を示す説明図。 周波数スペクトルの絶対値の1.0乗を示す説明図。 冪指数が1.0のときの摩耗検出用関数を示す説明図。 周波数スペクトルの絶対値の0.5乗を示す説明図。 冪指数が0.5のときの摩耗検出用関数を示す説明図。
A.第1実施形態:
図1は、第1実施形態における工作機械11の概略構成を示す斜視図である。本実施形態では、工作機械11は、立型マシニングセンタである。工作機械11は、互いに直交する3つの座標軸であるX,Y,Z軸を有している。本実施形態では、X軸は工作機械11の左右方向に沿った座標軸であり、Z軸は工作機械11の前後方向に沿った座標軸であり、Y軸は工作機械11の上下方向に沿った座標軸である。
工作機械11は、主軸装置100と、移動装置200と、センサ300と、制御装置400とを備えている。主軸装置100は、主軸110と、主軸モータ115と、回転角検出器120とを備えている。主軸110には、工具TLが装着される。後述するように、工具TLは、先端部に複数の刃を有している。本実施形態では、工具TLは、エンドミルである。主軸モータ115には、例えば、サーボモータや、ビルトインモータを用いることができる。回転角検出器120には、例えば、ロータリエンコーダを用いることができる。
主軸装置100は、主軸モータ115によって、Y軸に平行な回転軸RXを中心にして、主軸110を回転させる。主軸110の回転に伴って、主軸110に装着された工具TLが回転軸RXを中心にして回転する。回転角検出器120は、主軸110の回転角度、換言すれば、工具TLの回転角度を検出する。回転角検出器120によって検出された回転角度を表す信号は、制御装置400に送信される。
移動装置200は、サドル220と、テーブル230とを備えている。テーブル230には、工作物WKが固定される。移動装置200は、主軸110に装着された工具TLに対して、テーブル230に固定された工作物WKを相対移動させる。後述するように、工作物WKは、工具TLによって切削加工を施される。
本実施形態では、ベッド210の上面には、Z軸に沿って第1レール215が設けられている。第1レール215の上には、サドル220が配置されている。サドル220の上面には、X軸に沿って第2レール225が設けられている。第2レール225の上には、テーブル230が配置されている。ベッド210およびサドル220には、それぞれ、図示されていないサーボモータおよびボールネジが設けられている。ベッド210は、第1レール215によってサドル220をガイドしつつ、サーボモータおよびボールネジによってサドル220をZ軸に沿って移動させる。サドル220の移動に伴って、テーブル230および工作物WKが移動する。サドル220は、第2レール225によってテーブル230をガイドしつつ、サーボモータおよびボールネジによってテーブル230をX軸に沿って移動させる。テーブル230の移動に伴って、工作物WKが移動する。
本実施形態では、コラム240は、ベッド210の上面に固定されている。コラム240の側面には、Y軸に沿って第3レール245が設けられている。第3レール245には、主軸装置100が接続されている。コラム240には、図示されていないサーボモータおよびボールネジが設けられている。コラム240は、第3レール245によって主軸装置100をガイドしつつ、サーボモータおよびボールネジによって主軸装置100をY軸に沿って移動させる。
センサ300は、工具TLの各刃が工作物WKに切り込むことで生じる物理量を検出する。工具TLの各刃が工作物WKに切り込むことで生じる物理量とは、例えば、工具TLあるいは工作物WKの振動の加速度や、切削音や、工具TLを回転させる主軸モータ115の負荷電流のことを意味する。切削音には、可聴音だけではなく、超音波が含まれる。センサ300には、切削音を検出するマイクロフォンや超音波マイクが用いられることが好ましい。超音波マイクは環境音の影響を受けにくいので、超音波マイクがセンサ300として用いられることが特に好ましい。センサ300には、工具TLあるいは工作物WKの振動の加速度を検出する加速度センサや、AE波を検出するAEセンサが用いられてもよい。工具TLが大型で且つ低速で回転する場合には、センサ300には、工具TLを回転させる主軸モータ115の負荷電流を検出する電流センサが用いられてもよい。本実施形態では、センサ300として、マイクロフォンが用いられる。センサ300によって検出された物理量の大きさを表す信号は、制御装置400に送信される。
制御装置400は、CPU401と、メモリ402と、入出力インターフェース403とを備えたコンピュータとして構成されている。さらに、本実施形態では、制御装置400は、入力装置404と、表示装置405と、警報装置406とを備えている。入力装置404は、例えば、複数のボタンやダイヤルを備えた操作パネルで構成される。入力装置404は、後述する冪指数を設定するための操作を受け付ける。表示装置405は、例えば、液晶ディスプレイで構成される。入力装置404および表示装置405は、タッチパネルとして一体化されてもよい。警報装置406は、工作機械11の異常をユーザに報知する。警報装置406には、例えば、光を発することにより工作機械11の異常をユーザに報知する警報ランプ、あるいは、音を発することにより工作機械11の異常をユーザに報知する警報ブザーを用いることができる。
図2は、本実施形態における制御装置400の機能構成を示す説明図である。本実施形態では、制御装置400は、NC制御部410と、工具摩耗検出部420とを有している。NC制御部410および工具摩耗検出部420は、それぞれ、メモリ402に格納されたコンピュータプログラムをCPU401が実行することによってソフトウェア的に実現される。
NC制御部410は、主軸装置100と移動装置200とを制御することによって、工作物WKに対して工具TLによる切削加工を施す。本実施形態では、NC制御部410は、主軸装置100に設けられた主軸モータ115を駆動させることにより、主軸110に装着されている工具TLを回転させるとともに、移動装置200に設けられた各サーボモータを駆動させることにより、テーブル230に固定されている工作物WKを工具TLに対して、工具TLの回転軸RXに直交する方向に相対移動させることで、工作物WKの側面に工具TLによる切削加工を施す。
工具摩耗検出部420は、工具TLの摩耗を検出する。本実施形態では、工具摩耗検出部420は、信号取得部421と、関数生成部422と、判定部423とを有している。信号取得部421は、切削加工時にセンサ300から出力される信号を取得する。関数生成部422は、信号取得部421によって取得されたセンサ300からの信号を用いて、後述する摩耗検出用関数を生成する。判定部423は、関数生成部422によって生成された摩耗検出用関数を解析することにより、工具TLの摩耗の有無を判定する。なお、工具摩耗検出部420を有する制御装置400のことを、工具摩耗検出装置と呼ぶことがある。
図3は、工具TLの先端部に設けられた4つの刃B1~B4を示す断面図である。上述したとおり、本実施形態では、工具TLは、エンドミルである。本実施形態では、工具TLの先端部には、4つの刃B1~B4が設けられている。各刃B1~B4は、工具TLの側面に、工具TLの中心軸CLを中心とする円周方向CDに沿って等間隔で設けられている。なお、工具TLの刃B1~B4の数は、4つに限られず、2つ以上であればよい。
本実施形態では、工具TLは、その中心軸CLを中心として、図3における時計回りに回転する。以下の説明では、工具TLが1回転する時間のことを工具回転周期と呼ぶ。工具回転周期の逆数のことを工具回転周波数と呼ぶ。工具TLの複数の刃B1~B4のいずれか1つが工作物WKに切り込んでから、当該刃に対して工具TLの回転方向の後方に隣り合う刃が工作物WKに切り込むまでの時間間隔のことを切れ刃通過周期と呼ぶ。切れ刃通過周期の逆数のことを切れ刃通過周波数と呼ぶ。工具TLが定速で回転しているときの切れ刃通過周期は、工具回転周期を工具TLの刃の数で割ることによって算出できる。工具回転周期は、回転角検出器120を用いて取得できる。
工具TLは、工作物WKの切削を繰り返すことによって摩耗あるいは損傷する。ここでいう、摩耗とは、工具TLの刃先が擦り減って切れ味が低下することを意味する。そのため、工具TLの摩耗や損傷を検出して、所望の切れ味を確保できなくなる前に、工具TLを交換することが好ましい。但し、工具TLの交換タイミングが早すぎると、工具TLの交換頻度が多くなって、工作物WKを加工することで生産される製品の生産効率が低下する。さらに、工具TLの交換タイミングが早すぎると、製品の生産に用いられる工具TLの数が多くなって、製品の生産コストが高くなる。また、製品の生産を一時停止して工具TLを検査すると、製品の生産効率が低下する。したがって、工具TLを適切なタイミングで交換するためには、切削加工中にリアルタイムで、工具TLの摩耗や損傷を検出することが好ましい。
工具TLの摩耗や損傷が進行するほど、切削抵抗が大きくなって、各刃B1~B4が工作物WKに切り込んだときに発生する切削音や振動が大きくなる。そのため、例えば、工具TLが新品のときの切削音等の大きさと現在の切削音等の大きさとを比較することによって、工具TLの摩耗や損傷を検出することができる。しかしながら、加工条件が異なれば、切削音等の大きさも異なるので、例えば、多品種少量生産ラインのように品種に応じて加工条件が頻繁に変更される環境下では、新品時と現在とで切削音等の大きさ比較して、工具TLの摩耗や損傷を検出することは難しい。
本実施形態では、主軸装置100が工具TLを回転させ、移動装置200が、回転している工具TLに対して、工具TLの回転軸RXに直交する方向に沿って工作物WKを相対移動させることにより、工作物WKの側面に対して工具TLによる切削加工が施される。切削加工時には、工具TLの各刃B1~B4が次々に工作物WKの側面に切り込む。最初に工作物WKに刃が切り込むタイミングには、その後に工作物WKに刃が切り込むタイミングに比べて大きな力が刃に加えられるので、最初に工作物WKに切り込む刃は、その他の刃に比べて摩耗あるいは損傷する。最初に工作物WKに切り込む刃は毎回同じではないため、工具TLの各刃B1~B4の摩耗や損傷が均等に進行せずに、各刃B1~B4の摩耗や損傷に差異が生じる。各刃B1~B4の摩耗や損傷に差異が生じると、各刃B1~B4が工作物WKに切り込んだときに生じる切削音の大きさや振動の大きさにも差異が生じる。そこで、本実施形態では、各刃B1~B4が工作物WKに切り込んだときに生じる切削音の大きさの差異の度合いに基づいて、工具TLの摩耗や損傷を検出する。
図4は、工具摩耗検出処理の内容を示すフローチャートである。図5は、センサ300から出力される信号の波形を示す説明図である。図5において、横軸は時間を表しており、縦軸は振幅を表している。図6は、上記信号の周波数スペクトルを示す説明図であり、図7は、上記信号の周波数スペクトルの絶対値の2.0乗を示す説明図である。図6および図7において、横軸は周波数を表しており、縦軸は周波数成分の強さを表している。図8は、冪指数が2.0のときの摩耗検出用関数を示す説明図である。図8において、横軸は時間を表しており、縦軸は摩耗検出用関数の値の大きさを表している。図5から図8には、各刃B1~B4の摩耗や損傷に差異がある場合の波形が実線で表されており、各刃B1~B4の摩耗や損傷に差異がない場合の波形が破線で表されている。
図4に示す工具摩耗検出処理は、NC制御部410による切削加工の実行中に、工具摩耗検出部420によって繰り返し実行される。まず、ステップS110にて、工具摩耗検出部420の信号取得部421は、切削加工時にセンサ300から出力される信号を取得する。図5には、信号取得部421によって取得される信号の波形が表されている。信号取得部421は、物理量を工具回転周期に比べて十分に長い期間計測することで得られる出力信号SGを取得する。
ステップS120にて、関数生成部422は、0.0よりも大きく且つ2.0以下の範囲内で、冪指数を設定する。本実施形態では、関数生成部422は、入力装置404を介して入力された値を冪指数として設定する。関数生成部422は、例えば、冪指数を2.0に設定する。
ステップS130にて、関数生成部422は、ステップS110で取得された信号に対して高速フーリエ変換を施すことによって、信号の周波数スペクトルを生成する。図6には、信号の周波数スペクトルが表されている。図6では、工具回転周波数frにおいて小さなピークが現れており、切れ刃通過周波数fpにおいて大きなピークが現れている。なお、工具回転周波数frよりも低い周波数には、環境音などのノイズによるピークが現れている。
ステップS140にて、関数生成部422は、ステップS120で設定した冪指数で、周波数スペクトルの絶対値を冪乗する。図7には、冪指数が2.0のときの周波数スペクトルの絶対値の冪乗、換言すれば、周波数スペクトルの絶対値の2.0乗が表されている。周波数スペクトルの絶対値の2.0乗は、一般に、パワースペクトル密度と呼ばれる。図7に示すように、冪指数が1.0よりも大きい場合には、周波数スペクトルの絶対値の冪乗を表す線は、図6に示した周波数スペクトルを表す線を非線形に引き伸ばした形状になる。後述するように、冪指数が1.0である場合には、周波数スペクトルの絶対値の冪乗を表す線は、周波数スペクトルを表す線の形状と同じになる。冪指数が0.0よりも大きく且つ1.0よりも小さい場合には、周波数スペクトルの絶対値の冪乗を表す線は、周波数スペクトルを表す線を非線形に平坦化した形状になる。
ステップS150にて、関数生成部422は、ステップS120で設定した冪指数で冪乗した周波数スペクトルの絶対値に対して逆高速フーリエ変換を施すことによって、摩耗検出用関数を生成する。図8には、冪指数が2.0のときの周波数スペクトルの絶対値の冪乗の逆高速フーリエ変換、換言すれば、周波数スペクトルの絶対値の2.0乗の逆高速フーリエ変換が表されている。
ステップS130からステップS150の処理によって生成される摩耗検出用関数は、下式(1)で表される。ψ(τ)は、自己相関関数に似せた関数である。
ψ(τ)=IFFT(|FFT(x(t))|γ) ・・・(1)
ここで、ψ(τ)は、摩耗検出用関数であり、時間τの関数として表されている。x(t)は、信号であり、時間tの関数として表されている。FFT()は、括弧内の高速フーリエ変換である。γは、ステップS120で設定される冪指数であり、0.0よりも大きく2.0以下の範囲内の値である。IFFT()は、括弧内の逆高速フーリエ変換である。
ステップS160にて、判定部423は、ステップS150で生成された摩耗検出用関数を用いて、工具TLの摩耗や損傷の有無を判定する。本実施形態では、図8に示すように、判定部423は、摩耗検出用関数の波形から、摩耗が進んでいない刃のピーク(例えば、図8においてTpや2Tpや3Tpと表されている位置でのピーク)を検出して、検出した各ピークの近傍を通る近似直線を生成する。判定部423は、例えば、最小二乗法によって、各ピークの近似直線を生成する。判定部423は、摩耗が進んでいる刃のピーク値(図8において4Tpと表されている位置でのピーク値)と近似直線との差Dを算出する。判定部423は、上記ピーク値と近似直線との差Dが予め定められた閾値を超える場合に、工具TLに摩耗や損傷が生じたと判定し、上記ピーク値と近似直線との差Dが予め定められた閾値以下である場合には、工具TLに摩耗や損傷が生じていないと判定する。例えば、予め行われる試験によって工具TLの刃の切れ味が許容範囲外になったときの上記ピーク値と近似直線との差を調べ、このときの上記ピーク値と近似直線との差を上記閾値として用いることができる。上記閾値は、冪指数の値ごとに予め定められる。なお、上述した差異の大きさとは、差の大きさだけではなく、比率の大きさをも含む意味である。他の実施形態では、判定部423は、上記近似直線に対する上記ピーク値の比率を算出し、上記比率が予め定められた閾値を超える場合には、工具TLに摩耗や損傷が生じたと判定し、上記比率が予め定められた閾値以下である場合には、工具TLに摩耗や損傷が生じていないと判定してもよい。また、判定部423は、上記ピーク値と上記近似直線との差と閾値との比較や、上記近似直線に対する上記ピーク値の比率と閾値との比較ではなく、上記ピーク値と摩耗検出関数の実効値との差と閾値との比較や、摩耗検出関数の実効値に対する上記ピーク値の比率と閾値との比較によって、工具TLの摩耗や損傷の有無を判定してもよい。
ステップS170にて、判定部423は、工具TLの摩耗や損傷の有無を判定した判定結果を出力する。本実施形態では、判定部423は、表示装置405に、判定結果を表示させる。判定結果には、工具TLの摩耗や損傷の有無の他に、図8に示すような、摩耗検出用関数の波形が表されてもよい。さらに、本実施形態では、判定部423は、工具TLに摩耗や損傷が生じたと判定した場合には、警報装置406を作動させて、工具TLに摩耗や損傷が生じたことをユーザに報知する。
その後、工具摩耗検出部420は、この処理を終了する。工具摩耗検出部420は、切削加工が終了するまで、この処理を繰り返し実行する。なお、工具摩耗検出処理のことを工具摩耗検出方法と呼ぶことがある。ステップS110のことを信号取得工程と呼ぶことがある。ステップS120からステップS150のことを関数生成工程と呼ぶことがある。ステップS160からステップS170のことを判定工程と呼ぶことがある。
図9は、センサ300から出力される信号の周波数スペクトルの絶対値の1.0乗を示す説明図である。図9において、横軸は周波数を表しており、縦軸は周波数成分の強さを表している。図10は、冪指数が1.0のときの摩耗検出用関数を示す説明図である。図10において、横軸は時間を表しており、縦軸は摩耗検出用関数の値の大きさを表している。図9および図10には、各刃B1~B4の摩耗や損傷に差異がある場合の波形が実線で表されており、各刃B1~B4の摩耗や損傷に差異がない場合の波形が破線で表されている。図9に示すように、冪指数が1.0である場合には、周波数スペクトルの絶対値の冪乗を表す線は、周波数スペクトルを表す線の形状と同じになる。図9に示すように、周波数スペクトルの絶対値の1.0乗は、図7に示した周波数スペクトルの絶対値の2.0乗に比べて、工具回転周波数frに対応する位置でのピークが強調されている。図10に示すように、冪指数が1.0のときの摩耗検出用関数は、図8に示した冪指数が2.0のときの摩耗検出用関数に比べて、摩耗が進んでいる刃のピーク値と、摩耗が進んでいない刃のピーク値との差異が拡大されている。冪指数が1.0のときの摩耗検出用関数では、冪指数が2.0のときの摩耗検出用関数に比べて、ノイズが大きくなっている。周波数スペクトルにおける信号のピーク値をAとし、周波数スペクトルにおけるノイズのピーク値をaとすると、周波数スペクトルにおける信号のピーク値とノイズのピーク値との差はd1=A-aで表される。周波数スペクトルの絶対値の2.0乗においては、信号のピーク値はAで表され、ノイズのピーク値はaで表されるので、周波数スペクトルの絶対値の2.0乗における信号のピーク値とノイズのピーク値との差はd2=A-a=d1×(A+a)で表される。このように、冪指数が大きいほど、周波数スペクトルの絶対値の冪乗における信号のピーク値とノイズのピーク値との差が大きくなり、冪指数が小さいほど、周波数スペクトルの絶対値の冪乗における信号のピーク値とノイズのピーク値との差が小さくなる。この結果、冪指数を小さくすると、摩耗検出用関数におけるノイズが大きくなる。
図11は、センサ300から出力される信号の周波数スペクトルの絶対値の0.5乗を示す説明図である。図11において、横軸は周波数を表しており、縦軸は周波数成分の強さを表している。図12は、冪指数が0.5のときの摩耗検出用関数を示す説明図である。図12において、横軸は時間を表しており、縦軸は摩耗検出用関数の値の大きさを表している。図11および図12には、各刃B1~B4の摩耗や損傷に差異がある場合の波形が実線で表されており、各刃B1~B4の摩耗や損傷に差異がない場合の波形が破線で表されている。図11に示すように、周波数スペクトルの絶対値の0.5乗は、図9に示した周波数スペクトルの絶対値の1.0乗に比べて、工具回転周波数frに対応する位置でのピークが強調されている。図12に示すように、冪指数が0.5のときの摩耗検出用関数は、図10に示した冪指数が1.0のときの摩耗検出用関数に比べて、摩耗が進んでいる刃のピーク値と、摩耗が進んでいない刃のピーク値との差異が拡大されている。冪指数が0.5のときの摩耗検出用関数では、冪指数が1.0のときの摩耗検出用関数に比べて、ノイズが大きくなっている。ノイズが大きくなる理由は、上述したとおりである。
図8、図10、および、図12に示すように、冪指数を小さくするほど、摩耗検出用関数において、摩耗が進んでいる刃のピーク値と、摩耗が進んでいない刃のピーク値との差異が大きくなる。そのため、上記差異が小さい場合には、冪指数を小さくすることによって、上記差異を大きくできる。また、図8、図10、および、図12に示すように、冪指数を大きくするほど、摩耗検出用関数においてノイズが小さくなる。そのため、上記ノイズが大きい場合には、冪指数を大きくすることによって、上記ノイズを小さくできる。
以上で説明した本実施形態の工作機械11によれば、工具摩耗検出部420によって実行される工具摩耗検出処理により、工具TLの各刃B1~B4の摩耗や損傷の差異を検出できる。工具摩耗検出処理において、関数生成部422は、切削加工時にセンサ300から出力される信号に対して高速フーリエ変換を施して上記信号の周波数スペクトルを生成し、冪指数で冪乗した周波数スペクトルの絶対値に対して逆高速フーリエ変換を施すことによって、摩耗検出用関数を生成する。判定部423は、摩耗生成用関数を用いて、工具TLに摩耗や損傷が生じたか否かを判定する。関数生成部422は、0.0より大きく且つ2.0以下の範囲内で冪指数を設定可能に構成されているので、摩耗検出用関数において、摩耗が進んでいる刃のピーク値と、摩耗が進んでいない刃のピーク値との差異が小さい場合には、冪指数を小さくすることによって上記ピーク値の差異を大きくできる。そのため、上記ピーク値の差異を大きくすることによって、各刃B1~B4の摩耗や損傷の差異の検出精度を高めることができる。また、摩耗検出用関数においてノイズが大きい場合には、冪指数を大きくすることによってノイズを小さくできるので、上記差異の大きさとノイズの大きさとのバランスを調整できる。特に、本実施形態では、工具摩耗検出処理を実行するためのプログラムのソースコードを変更しなくても、冪指数を簡単に変更できる。
また、本実施形態では、入力装置404を介して、冪指数を入力できる。そのため、ユーザは、冪指数を調整することによって、上記差異大きさとノイズの大きさとのバランスを調整できる。
また、本実施形態では、判定部423は、摩耗検出用関数の波形から、摩耗が進んでいない刃のピークの近傍を通る近似直線を生成し、工具回転周期Trに対応する位置でのピーク値と近似線との差Dが閾値を超えた場合に、工具TLに摩耗や損傷が生じたと判定する。そのため、工具TLの摩耗や損傷の有無を精度良く判定できる。
また、本実施形態では、判定部423は、工具TLに摩耗や損傷が生じたと判定した場合には、警報装置406を作動させる。そのため、工具TLの摩耗や損傷の発生をユーザに報知して、適切なタイミングでユーザに工具TLの交換を促すことができる。そのため、工具TLの交換頻度が多くなって生産効率が低下することや、生産に用いられる工具TLの数が多くなって生産コストの増加を抑制できる。
B.他の実施形態:
(B1)上述した第1実施形態では、工作機械11は、立型マシニングセンタである。これに対して、工作機械11は、立型マシニングセンタではなく、例えば、横型マシニングセンタや、NCフライス盤であってもよい。工具TLは、エンドミルではなく、例えば、平フライスなどのエンドミル以外のフライス工具でもよい。
(B2)上述した第1実施形態では、工具摩耗検出部420は、制御装置400に設けられている。これに対して、工具摩耗検出部420は、制御装置400に接続されたコンピュータに設けられてもよい。この場合、制御装置400ではなく、当該コンピュータのことを工具摩耗検出装置と呼ぶ。
(B3)上述した第1実施形態において、工具摩耗検出部420の判定部423は、工具摩耗検出処理において、上述したピーク値と近似直線との差異の大きさが、上述した閾値よりも小さい予め定められた基準値以下であるか否かを判定し、上記ピーク値と近似直線との差異の大きさが基準値以下であると判定した場合に、工具TLの摩耗や損傷の有無を判定してもよい。判定部423によって上記ピーク値と近似直線との差異の大きさが基準値以下であると判定された場合、関数生成部422は、冪指数を小さくして、摩耗検出用関数を再生成してもよい。冪指数を小さくする量は、例えば、0.1でもよいし、0.5でもよい。その後、判定部423は、再生成された摩耗検出用関数を用いて、上述したピーク値と近似直線との差異の大きさが基準値以下であるか否かを判定してもよい。この場合、上述したピーク値と近似直線との差異の大きさを自動で調整できる。なお、この場合には、冪指数を設定するための操作を受け付ける入力装置404が工作機械11に設けられていなくてもよい。
(B4)上述した第1実施形態では、工作機械11は、警報装置406を備えている。これに対して、工作機械11は、警報装置406を備えていなくてもよい。
本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
11…工作機械、100…主軸装置、110…主軸、115…主軸モータ、120…回転角検出器、200…移動装置、210…ベッド、215…第1レール、220…サドル、225…第2レール、230…テーブル、240…コラム、245…第3レール、300…センサ、400…制御装置、401…CPU、402…メモリ、403…入出力インターフェース、404…入力装置、405…表示装置、406…警報装置、410…NC制御部、420…工具摩耗検出部、421…信号取得部、422…関数生成部、423…判定部

Claims (7)

  1. 工具摩耗検出装置であって、
    複数の刃を有する工具の回転により切削加工を施される工作物に前記複数の刃のそれぞれが接触することで生じる物理量を検出するセンサから出力される、前記物理量に応じた信号を取得する信号取得部と、
    前記信号に対して高速フーリエ変換を施すことによって前記信号の周波数スペクトルを生成し、前記周波数スペクトルの絶対値の冪乗に対して逆高速フーリエ変換を施すことによって関数を生成する関数生成部と、
    前記関数を解析することによって、前記工具が摩耗したか否かを判定する判定部と、
    を備え、
    前記関数生成部は、前記周波数スペクトルの絶対値を冪乗するときの冪指数を、0よりも大きく且つ2以下の範囲内で設定可能に構成されている、
    工具摩耗検出装置。
  2. 請求項1に記載の工具摩耗検出装置であって、
    前記冪指数を設定するための操作を受け付ける入力装置を備え、
    前記関数生成部は、前記入力装置に対する操作に応じて前記冪指数を設定する、工具摩耗検出装置。
  3. 請求項1または請求項2に記載の工具摩耗検出装置であって、
    前記関数生成部は、前記工具の回転周期に対応する位置を含む複数の位置にピークを有する前記関数を生成し、
    前記判定部は、
    前記複数の刃のピークの近傍を通る近似直線を生成し、
    摩耗が進んだ刃のピーク値と前記近似直線との差異の大きさが、前記冪指数ごとに予め定められた閾値を超えた場合に、前記工具が摩耗したと判定する、工具摩耗検出装置。
  4. 請求項3に記載の工具摩耗検出装置であって、
    前記関数生成部は、前記差異の大きさが前記閾値よりも小さい予め定められた基準値以下である場合には、前記冪指数を小さくして前記関数を再生成する、工具摩耗検出装置。
  5. 請求項1に記載の工具摩耗検出装置であって、
    前記判定部によって前記工具が摩耗したと判定された場合に、警報を発する警報装置を備える、工具摩耗検出装置。
  6. 工具摩耗検出方法であって、
    複数の刃を有する工具の回転により切削加工を施される工作物に前記複数の刃のそれぞれが接触することで生じる物理量を検出するセンサから出力される、前記物理量に応じた信号を取得する信号取得工程と、
    前記信号に対して高速フーリエ変換を施すことによって前記信号の周波数スペクトルを生成し、前記周波数スペクトルの絶対値の冪乗に対して逆高速フーリエ変換を施すことによって関数を生成する関数生成工程と、
    前記関数を解析することによって、前記工具が摩耗したか否かを判定する判定工程と、
    を有し、
    前記関数生成工程では、前記周波数スペクトルの絶対値を冪乗するときの冪指数を、0よりも大きく且つ2以下の範囲内で設定する、
    工具摩耗検出方法。
  7. 工作機械であって、
    複数の刃を有する工具が装着される主軸を有し、前記主軸に装着された前記工具を回転させる主軸装置と、
    前記工具の回転により切削加工を施される工作物が固定されるテーブルを有し、前記主軸に装着された前記工具に対して、前記テーブルに固定された前記工作物を相対移動させる移動装置と、
    前記主軸装置と前記移動装置とを制御する制御装置と、
    前記工作物に前記複数の刃のそれぞれが接触することで生じる物理量を検出するセンサと、
    を備え、
    前記制御装置は、
    前記センサから出力される、前記物理量に応じた信号を取得する信号取得部と、
    前記信号に対して高速フーリエ変換を施すことによって前記信号の周波数スペクトルを生成し、前記周波数スペクトルの絶対値の冪乗に対して逆高速フーリエ変換を施すことによって関数を生成する関数生成部と、
    前記関数を解析することによって、前記工具が摩耗したか否かを判定する判定部と、
    を有し、
    前記関数生成部は、前記周波数スペクトルの絶対値を冪乗するときの冪指数を、0よりも大きく且つ2以下の範囲内で設定可能に構成されている、
    工作機械。
JP2022064377A 2022-04-08 2022-04-08 工具摩耗検出装置、工具摩耗検出方法および工作機械 Pending JP2023154805A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022064377A JP2023154805A (ja) 2022-04-08 2022-04-08 工具摩耗検出装置、工具摩耗検出方法および工作機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022064377A JP2023154805A (ja) 2022-04-08 2022-04-08 工具摩耗検出装置、工具摩耗検出方法および工作機械

Publications (1)

Publication Number Publication Date
JP2023154805A true JP2023154805A (ja) 2023-10-20

Family

ID=88373150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022064377A Pending JP2023154805A (ja) 2022-04-08 2022-04-08 工具摩耗検出装置、工具摩耗検出方法および工作機械

Country Status (1)

Country Link
JP (1) JP2023154805A (ja)

Similar Documents

Publication Publication Date Title
EP2947528B1 (en) Method of calculating stable spindle rotation number capable of suppressing chatter vibration, method of informing the same, method of controlling spindle rotation number, and method of editing nc program, and apparatus therefor
JP5793200B2 (ja) 工作機械の切削力検出装置、切削力検出方法、加工異常検出方法、および加工条件制御システム
US8256590B2 (en) Vibration suppressing device and vibration suppressing method for machine tool
CN103009187B (zh) 机床中的转轴转速的监控方法和监控装置、机床
JP5507409B2 (ja) 工作機械のモニタ方法及びモニタ装置、工作機械
JP3699458B2 (ja) 切削抵抗検出方法及び切削抵抗による加工制御方法並びに制御装置
WO2013150905A1 (ja) 切削加工システム及び方法
CN114473870B (zh) 磨床监测系统及监测方法
KR20190013344A (ko) 가공좌표계상 가공시간에 따라 가공위치와 물리적 가공절삭 특성값을 매핑하는 절삭특성맵을 활용하여 절삭상태를 지능적으로 감시 및 진단하고, 절삭조건을 제어할 수 있는 지능형 cnc공작기계 제어시스템
KR20200115106A (ko) 주축 진동 측정 시스템, 주축 진동 측정 방법 및 프로그램
CN102699764A (zh) 振动辨别方法以及振动辨别装置
US11486696B2 (en) On-machine measurement device, machine tool, and on-machine measurement method
JP4891150B2 (ja) 工作機械の振動抑制装置
KR102128553B1 (ko) 공작기계의 진동 제어 방법
CN110091214A (zh) 用于监控数控机床工作主轴的工具夹紧系统的方法和装置
JP5631792B2 (ja) 工作機械のモニタ装置
JPH09174383A (ja) 回転工具の異常検出方法および装置
JP2023154805A (ja) 工具摩耗検出装置、工具摩耗検出方法および工作機械
JP4517677B2 (ja) 研削装置
JP5637840B2 (ja) 振動検出方法
JP7424759B2 (ja) 主軸異常検出装置
WO2018163390A1 (ja) 研削方法及び研削装置
JP2006153897A (ja) 真円度測定機能を有する自動寸法計測装置
JP2023154804A (ja) 工具寿命予測装置、工具寿命予測方法および工作機械
JP7218702B2 (ja) 工作機械、計測方法及びコンピュータプログラム