JP2023149524A - Polyethylene resin for high purity chemical and container made of the same - Google Patents

Polyethylene resin for high purity chemical and container made of the same Download PDF

Info

Publication number
JP2023149524A
JP2023149524A JP2022058139A JP2022058139A JP2023149524A JP 2023149524 A JP2023149524 A JP 2023149524A JP 2022058139 A JP2022058139 A JP 2022058139A JP 2022058139 A JP2022058139 A JP 2022058139A JP 2023149524 A JP2023149524 A JP 2023149524A
Authority
JP
Japan
Prior art keywords
molecular weight
polyethylene resin
container
density
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022058139A
Other languages
Japanese (ja)
Inventor
広崇 石原
Hirotaka Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2022058139A priority Critical patent/JP2023149524A/en
Publication of JP2023149524A publication Critical patent/JP2023149524A/en
Pending legal-status Critical Current

Links

Abstract

To provide a polyethylene resin for a high purity chemical container which suppresses elusion of a contaminant such as an eluted matter and a deteriorating matter of a polyethylene resin as much as possible, when the resin is used as a high purity chemical container, and is excellent in chemical resistance, and a container made of the same.SOLUTION: A polyethylene resin for a high purity chemical container contains two components of an ethylene-based polymer having an MFR of 10-40 g/10 min and density of 0.960-0.970 g/cm3 and an ethylene-based polymer having an HLMFR of 0.01-3 g/10 min and density of 0.920-0.940 g/cm3, has a weight ratio of the two components of 40:60 to 60:40, and has specific properties.SELECTED DRAWING: None

Description

本発明は、高純度薬品用容器ポリエチレン樹脂及びそれよりなる容器に関するものである。 TECHNICAL FIELD The present invention relates to a polyethylene resin container for high-purity chemicals and a container made of the same.

近年、電子工業分野の著しい発達に伴って、高純度薬品の需要が高まっている。高純度薬品は、例えば、大規模化、集積化されたLSI等の電子回路の製造に不可欠の薬品として使用されている。具体的には、ウエハー洗浄・エッチング用、配線・絶縁膜エッチング用、治具洗浄用、現像液、レジスト希釈液、レジスト剥離液、乾燥用等の用途として、硫酸、塩酸、硝酸、フッ化水素酸、フッ化アンモニウム、過酸化水素水、イソプロピルアルコール、キシレン、TMAH(テトラメチルアンモニウムハイドロオキサイド)、メタノール、酢酸、リン酸、アンモニア水、PGMEA(酢酸プロピレングリコールメチルエーテル)、DMSO(ジメチルスルホキシド)、NMP(N-メチル-2-ピロリドン)等が用いられている。これらの高純度薬品容器材料として、ポリエチレン樹脂が用いられている。半導体回路の集積度の向上とともに、これらの薬品中の不純物や微粒子に対する低減化の要求が一層厳しくなっており、この厳しい要求を満足させるために、これらの薬品を充填する容器に対するクリーン性の要求も年々高まっている。また、上記の要求とともに、これら薬品を充填する容器の大型化、耐薬品性等の要求も高まっている。 In recent years, with the remarkable development of the electronics industry, the demand for high-purity chemicals has increased. High-purity chemicals are used, for example, as essential chemicals in the manufacture of large-scale, integrated electronic circuits such as LSIs. Specifically, sulfuric acid, hydrochloric acid, nitric acid, and hydrogen fluoride are used for wafer cleaning/etching, wiring/insulating film etching, jig cleaning, developing solution, resist diluting solution, resist stripping solution, drying, etc. Acid, ammonium fluoride, hydrogen peroxide, isopropyl alcohol, xylene, TMAH (tetramethylammonium hydroxide), methanol, acetic acid, phosphoric acid, ammonia water, PGMEA (propylene glycol methyl ether acetate), DMSO (dimethyl sulfoxide), NMP (N-methyl-2-pyrrolidone) and the like are used. Polyethylene resin is used as the material for these high-purity chemical containers. As the degree of integration of semiconductor circuits increases, the requirements for reducing impurities and particulates in these chemicals have become even more stringent. is also increasing year by year. In addition to the above requirements, there are also increasing demands for larger containers for filling these chemicals, chemical resistance, and the like.

この問題を解決するための方法として、ポリエチレン樹脂の炭化水素系溶媒抽出量や低分子成分の含有量を抑え、酸化防止剤、中和剤並びに耐光剤の添加量を極力制限した容器の提案があるが、ポリエチレン樹脂に残存する触媒成分による灰分の影響に対する改良が不十分であり、薬品に溶出する金属不純物濃度に対する対策が未完成である。また、微粒子のレベルが0.2μm以上と十分でない(特許文献1、2参照)。 As a way to solve this problem, we have proposed a container that suppresses the amount of hydrocarbon solvent extraction from polyethylene resin and the content of low-molecular components, and limits the amount of antioxidants, neutralizers, and light stabilizers added as much as possible. However, there is insufficient improvement in the effects of ash content caused by catalyst components remaining in polyethylene resin, and countermeasures against the concentration of metal impurities eluted into chemicals have not yet been completed. Further, the level of fine particles is 0.2 μm or more, which is not sufficient (see Patent Documents 1 and 2).

また、密度が0.950~0.965g/cm、温度190℃、21.6kg荷重のメルトフローレートが5~20g/10分、定ひずみESCRが40時間以上、灰分量が20質量PPM以下である性状を有する成形性、ESCRに優れる高純度薬品容器用ポリエチレン及び高純度薬品容器が提案されているが、耐薬品性の指標となるESCRは、大型な1000Lの容器(Intermediate Bulk Containers:IBC)に対しては不十分であり、微粒子のレベルも0.2μm以上と十分でない(特許文献3参照)。 In addition, the density is 0.950 to 0.965 g/cm 3 , the temperature is 190°C, the melt flow rate is 5 to 20 g/10 minutes at a load of 21.6 kg, the constant strain ESCR is 40 hours or more, and the ash content is 20 mass PPM or less. Polyethylene for high-purity chemical containers and high-purity chemical containers have been proposed that have excellent moldability and ESCR properties, but ESCR, which is an indicator of chemical resistance, has been proposed for large 1000L containers (Intermediate Bulk Containers: IBC). ), and the level of fine particles is also insufficient at 0.2 μm or more (see Patent Document 3).

さらには、密度が0.940~0.970g/cm、温度190℃、21.6kg荷重のメルトフローレートが2~8.5g/10分、ゲルパーミエーション・クロマトグラフィー(GPC)より求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が8~15、GPCを用いて得られる分子量分布曲線において、分子量1000以下の成分が0.30重量%以下、ESCRが130時間以上である性状を有する超高純度薬品容器用ポリエチレン樹脂及び高純度薬品容器が提案されているが、ESCRがIBC容器に対しては不十分であった(特許文献4参照)。 Furthermore, the density is 0.940 to 0.970 g/cm 3 , the temperature is 190°C, and the melt flow rate is 2 to 8.5 g/10 minutes at a load of 21.6 kg, which is determined by gel permeation chromatography (GPC). The ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) (Mw/Mn) is 8 to 15, in the molecular weight distribution curve obtained using GPC, the component with a molecular weight of 1000 or less is 0.30% by weight or less, ESCR Although polyethylene resins for ultra-high purity chemical containers and high-purity chemical containers having a property of 130 hours or more have been proposed, the ESCR was insufficient for IBC containers (see Patent Document 4).

特開平7-62161号公報Japanese Patent Application Publication No. 7-62161 特開平7-257540号公報Japanese Patent Application Publication No. 7-257540 特開2018-172177号公報Japanese Patent Application Publication No. 2018-172177 特許第6705157号公報Patent No. 6705157

本発明は、高純度薬品容器用ポリエチレン樹脂であって、該ポリエチレン樹脂を高純度薬品容器として使用した場合に、該樹脂の溶出物や劣化物等の汚染物質の溶出を極力抑え、耐薬品性に優れた高純度薬品容器用ポリエチレン樹脂及びそれよりなる容器の提供を目的とするものである。 The present invention is a polyethylene resin for high-purity chemical containers, and when the polyethylene resin is used as a high-purity chemical container, the elution of contaminants such as eluted substances and degraded substances from the resin is minimized, and chemical resistance is achieved. The object of the present invention is to provide a high-purity polyethylene resin for chemical containers with excellent properties, and a container made of the same.

本発明者らは、上記課題を解決するため鋭意検討した結果、密度、メルトフローレート、ゲル・パーミエーション・クロマトグラフィー(GPC)により求められる分子量等の特性、ESCR、金属の含有量等が特定の性状を有するポリエチレンを使用することにより、ポリエチレン由来の微粒子や重合触媒成分由来の金属不純物が少なく、耐薬品性に優れた高純度薬品容器が得られることを見出し、本発明を開発するに至った。 As a result of intensive studies to solve the above problems, the present inventors have identified properties such as density, melt flow rate, molecular weight determined by gel permeation chromatography (GPC), ESCR, metal content, etc. We have discovered that by using polyethylene having the following properties, it is possible to obtain a high-purity chemical container with less polyethylene-derived fine particles and metal impurities derived from polymerization catalyst components and excellent chemical resistance, and have developed the present invention. Ta.

即ち、本発明の各態様は以下に示す[1]~[4]である。
[1] 190℃、2.16kg荷重のメルトフローレート(MFR)が10~40g/10分、密度(JIS K6922―1)が0.960~0.970g/cmであるエチレン系重合体と、190℃、21.6kg荷重のメルトフローレート(HLMFR)が0.01~3g/10分、密度が0.920~0.940g/cmであるエチレン系重合体の2成分を含み、該2成分の重量比が40:60~60:40であり、以下の(1)~(9)の性状を有する高純度薬品容器用ポリエチレン樹脂。
(1)密度が0.940~0.955g/cm
(2)HLMFRが1~15g/10分
(3)ゲル・パーミエーション・クロマトグラフィ(GPC)により求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が8~15
(4)GPCを用いて得られる分子量分布曲線において、分子量1000以下の成分が0.30重量%以下
(5)GPCを用いて得られる分子量分布曲線において、分子量100000以上の成分が35重量%以上
(6)耐環境応力亀裂(ESCR)が1000時間以上
(7)13C-NMRの測定から求められる炭素原子1000Cあたりの炭素原子数4以下の短鎖分岐数が3個以上
(8)含有金属量がポリエチレン樹脂に対して20PPM以下
(9)70%硝酸に40℃×35日間浸漬後のシャルピー衝撃強度保持率が50%以上
[2] 添加剤を含まない、上記[1]に記載の高純度薬品容器用ポリエチレン樹脂。
[3] 上記[1]又は[2]に記載のポリエチレン樹脂からなる高純度薬品容器。
[4] 未洗浄容器に超純水を充填し、40℃×35日間静置保管後の内容液から溶出する0.1μm以上の微粒子数が20個/mL以下である、上記[3]に記載の高純度薬品用容器。
That is, each aspect of the present invention is [1] to [4] shown below.
[1] An ethylene polymer having a melt flow rate (MFR) of 10 to 40 g/10 minutes at 190°C and a load of 2.16 kg and a density (JIS K6922-1) of 0.960 to 0.970 g/cm 3 , contains two components of an ethylene polymer having a melt flow rate (HLMFR) of 0.01 to 3 g/10 min at 190°C and a load of 21.6 kg, and a density of 0.920 to 0.940 g/cm 3 . A high-purity polyethylene resin for chemical containers having a weight ratio of two components of 40:60 to 60:40 and having the following properties (1) to (9).
(1) Density is 0.940-0.955g/ cm3
(2) HLMFR is 1 to 15 g/10 minutes (3) Ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) (Mw/Mn) determined by gel permeation chromatography (GPC) is 8 to 15
(4) In the molecular weight distribution curve obtained using GPC, the component with a molecular weight of 1,000 or less is 0.30% by weight or less. (5) In the molecular weight distribution curve obtained using GPC, the component with a molecular weight of 100,000 or more is 35% by weight or more (6) Environmental stress cracking resistance (ESCR) of 1000 hours or more (7) The number of short chain branches with 4 or less carbon atoms per 1000 C of carbon atoms determined by 13 C-NMR measurement is 3 or more (8) Containing metal The amount is 20 PPM or less based on the polyethylene resin (9) The Charpy impact strength retention rate after immersion in 70% nitric acid at 40°C for 35 days is 50% or more [2] Polyethylene resin for purity chemical containers.
[3] A high-purity chemical container made of the polyethylene resin described in [1] or [2] above.
[4] In [3] above, the number of fine particles of 0.1 μm or more eluted from the content after filling an unwashed container with ultrapure water and storing it at 40°C for 35 days is 20 particles/mL or less. Containers for high-purity chemicals as described.

本発明の一態様である高純度薬品容器用ポリエチレン樹脂を使用した場合、該ポリエチレン樹脂由来の微粒子や重合触媒成分由来の金属不純物が少なく、耐薬品性に優れた高純度薬品容器を成形することができる。また、特に200L以上の大型容器に適し、充填された薬品に対して微粒子成分の溶出量が少なく、長期保管後も微粒子の溶出量が少ない高純度薬品容器を提供することができる。 When using the polyethylene resin for high-purity chemical containers that is one aspect of the present invention, it is possible to mold high-purity chemical containers that have less fine particles derived from the polyethylene resin and metal impurities derived from the polymerization catalyst component and have excellent chemical resistance. I can do it. In addition, it is possible to provide a high-purity drug container that is particularly suitable for large containers of 200 L or more, in which the amount of particulate components eluted is small relative to the filled drug, and in which the amount of eluted particulates is small even after long-term storage.

本発明の一態様である高純度薬品用ポリエチレン樹脂は、190℃、2.16kg荷重のメルトフローレート(MFR)が10~40g/10分、密度(JIS K6922―1)が0.960~0.970g/cmであるエチレン系重合体と、190℃、21.6kg荷重のメルトフローレート(HLMFR)が0.01~3g/10分、密度が0.920~0.940g/cmであるエチレン系重合体の2成分を含み、該2成分の重量比が40:60~60:40であり、以下の(1)~(9)の性状を有する。
(1)密度が0.940~0.955g/cm
(2)HLMFRが1~15g/10分
(3)ゲル・パーミエーション・クロマトグラフィ(GPC)により求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が8~15
(4)GPCを用いて得られる分子量分布曲線において、分子量1000以下の成分が0.30重量%以下
(5)GPCを用いて得られる分子量分布曲線において、分子量100000以上の成分が35重量%以上
(6)耐環境応力亀裂(ESCR)が1000時間以上
(7)13C-NMRの測定から求められる炭素原子1000Cあたりの炭素原子数4以下の短鎖分岐数が3個以上
(8)含有金属量がポリエチレン樹脂に対して20PPM以下
(9)70%硝酸に40℃×35日間浸漬後のシャルピー衝撃強度保持率が50%以上
高純度薬品用ポリエチレン樹脂は、チーグラー系触媒又はメタロセン系触媒等の高活性触媒により製造できる。例えばチタン、ジルコニウム等の遷移金属化合物、マグネシウム化合物及び有機アルミニウム化合物からなる高活性チーグラー系触媒を重合用触媒として用い、エチレンもしくは、エチレンと炭素数3~20のα-オレフィンを所望の密度となる割合にして共重合することにより、好適に製造することができる。
触媒は、特許第3319051号に記載の触媒を上げることができる。
The high-purity polyethylene resin for pharmaceutical use, which is one aspect of the present invention, has a melt flow rate (MFR) of 10 to 40 g/10 minutes at 190°C and a load of 2.16 kg, and a density (JIS K6922-1) of 0.960 to 0. An ethylene polymer with a melt flow rate (HLMFR) of 0.01 to 3 g/10 min at 190°C and a load of 21.6 kg and a density of 0.920 to 0.940 g/cm 3 . It contains two components of a certain ethylene polymer, the weight ratio of the two components is 40:60 to 60:40, and has the following properties (1) to (9).
(1) Density is 0.940-0.955g/ cm3
(2) HLMFR is 1 to 15 g/10 minutes (3) Ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) (Mw/Mn) determined by gel permeation chromatography (GPC) is 8 to 15
(4) In the molecular weight distribution curve obtained using GPC, the component with a molecular weight of 1,000 or less is 0.30% by weight or less. (5) In the molecular weight distribution curve obtained using GPC, the component with a molecular weight of 100,000 or more is 35% by weight or more (6) Environmental stress cracking resistance (ESCR) of 1000 hours or more (7) The number of short chain branches with 4 or less carbon atoms per 1000 C of carbon atoms determined by 13 C-NMR measurement is 3 or more (8) Containing metal (9) Charpy impact strength retention rate after immersion in 70% nitric acid at 40°C for 35 days is 50% or more High-purity polyethylene resin for pharmaceutical use is made of Ziegler-based catalysts or metallocene-based catalysts, etc. It can be produced using a highly active catalyst. For example, a highly active Ziegler catalyst consisting of a transition metal compound such as titanium or zirconium, a magnesium compound, and an organoaluminum compound is used as a polymerization catalyst, and ethylene or ethylene and an α-olefin having 3 to 20 carbon atoms are mixed to a desired density. It can be suitably produced by copolymerizing in proportions.
As the catalyst, the catalyst described in Japanese Patent No. 3319051 can be used.

炭素数3~20のα-オレフィンとしては、プロプレン、1-ブテン、4-メチル-1ペンテン、3-メチル-1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセンなどを挙げることができる。 Examples of α-olefins having 3 to 20 carbon atoms include proprene, 1-butene, 4-methyl-1-pentene, 3-methyl-1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1 -Nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, etc. I can do it.

該ポリエチレン樹脂の製造における重合方法は、薬品に溶出する金属不純物濃度を低く抑え、また、微粒子の発生の原因となる低分子重合体の樹脂への取り込みを制限するため、炭素数が6以上かつ10以下の重合溶媒、例えば、ノルマルヘキサン、ノルマルヘプタン等を用いるスラリー重合であり、MFRが10~40g/10分、密度が0.960~0.970g/cmである低分子量エチレン系重合体と、HLMFRが0.01~3g/10分、密度が0.920~0.940g/cmである高分子量エチレン系重合体の2成分からなり、該2成分の重量比が40:60~60:40である。低分子量成分および高分子量成分の2成分は、例えば二段重合法で製造できる。 The polymerization method used to produce this polyethylene resin is to suppress the concentration of metal impurities eluted into chemicals and to limit the incorporation of low-molecular polymers, which cause the generation of fine particles, into the resin. Slurry polymerization using a polymerization solvent of 10 or less, for example, normal hexane, normal heptane, etc., and a low molecular weight ethylene polymer having an MFR of 10 to 40 g/10 minutes and a density of 0.960 to 0.970 g/ cm3 . and a high molecular weight ethylene polymer having an HLMFR of 0.01 to 3 g/10 min and a density of 0.920 to 0.940 g/ cm3 , and the weight ratio of the two components is 40:60 to 40:60. It is 60:40. The two components, the low molecular weight component and the high molecular weight component, can be produced, for example, by a two-stage polymerization method.

また、該ポリエチレン樹脂は以下に示すように密度、HLMFR、分子量分布(Mw/Mn)、分子量1000以下の成分、炭素数1000あたりの短鎖分岐数、ESCRおよび含有金属量を特定するものである。 In addition, the polyethylene resin is specified for density, HLMFR, molecular weight distribution (Mw/Mn), components with a molecular weight of 1000 or less, number of short chain branches per 1000 carbon atoms, ESCR, and metal content as shown below. .

すなわち、該ポリエチレン樹脂の密度(JIS K6922-1)は0.940~0.955g/cmであり、好ましくは0.945~0.949g/cmである。0.940g/cm未満では容器内の薬品への溶出ポリマー成分が増加し、微粒子の発生原因となる。また、密度が0.955g/cmを超えると容器のESCRが低下する。 That is, the density (JIS K6922-1) of the polyethylene resin is 0.940 to 0.955 g/cm 3 , preferably 0.945 to 0.949 g/cm 3 . If it is less than 0.940 g/cm 3 , the amount of polymer components eluted into the medicine in the container increases, causing the generation of fine particles. Furthermore, when the density exceeds 0.955 g/cm 3 , the ESCR of the container decreases.

該ポリエチレン樹脂のHLMFR(JIS K6922-1)は1~15g/10分であり、好ましくは5~10g/10分である。1g/10分未満では容器の表面肌が悪化する。また、15g/10分を超えると容器のESCRが低下する。 The HLMFR (JIS K6922-1) of the polyethylene resin is 1 to 15 g/10 minutes, preferably 5 to 10 g/10 minutes. If it is less than 1 g/10 minutes, the surface texture of the container will deteriorate. Moreover, when it exceeds 15 g/10 minutes, the ESCR of the container decreases.

該ポリエチレン樹脂のGPCにより求められるMwとMnの比Mw/Mnは8~15である。該Mw/Mnが8未満では分子量分布が狭く容器の表面肌が悪化し、また、容器のESCRも低下する。該Mw/Mnが15を超えると、分子量分布が拡大して低分子量成分が増加し、容器の微粒子が増加する。また、パリソン結合部であるピンチオフ部の形状が悪くなり、容器の落下強度が低下する。 The ratio Mw/Mn of Mw and Mn determined by GPC of the polyethylene resin is 8 to 15. If the Mw/Mn is less than 8, the molecular weight distribution will be narrow, the surface texture of the container will deteriorate, and the ESCR of the container will also decrease. When the Mw/Mn exceeds 15, the molecular weight distribution expands, low molecular weight components increase, and the number of fine particles in the container increases. In addition, the shape of the pinch-off portion, which is the parison joining portion, becomes poor, and the drop strength of the container decreases.

該ポリエチレン樹脂のGPCを用いて得られる分子量分布曲線において、分子量1000以下の成分は0.30重量%以下である。分子量1000以下の成分が0.30重量%を超えると、低分子量成分が増加し、容器から溶出する微粒子数が増加する。 In the molecular weight distribution curve obtained using GPC of the polyethylene resin, the component having a molecular weight of 1000 or less is 0.30% by weight or less. When the content of components with a molecular weight of 1000 or less exceeds 0.30% by weight, the content of low molecular weight components increases and the number of fine particles eluted from the container increases.

該ポリエチレン樹脂のGPCを用いて得られる分子量分布曲線において、分子量100000以上の成分が35重量%以上である。分子量100000以上の成分が35重量%以上であると、耐薬品性に優れる。分子量100000以上の成分が35重量%未満であると、容器の落下強度は低下し、該ポリエチレン樹脂の2つ以上の結晶にまたがる分子鎖(タイ分子)の生成確率も低下するため、ESCRが低下する。 In the molecular weight distribution curve obtained using GPC of the polyethylene resin, the component having a molecular weight of 100,000 or more is 35% by weight or more. When the component having a molecular weight of 100,000 or more is 35% by weight or more, chemical resistance is excellent. If the content of components with a molecular weight of 100,000 or more is less than 35% by weight, the drop strength of the container will decrease, and the probability of forming a molecular chain (tie molecule) spanning two or more crystals of the polyethylene resin will also decrease, resulting in a decrease in ESCR. do.

該ポリエチレン樹脂のESCRは1000時間以上である。ESCRが1000時間未満では、200Lよりも容量の大きい容器に薬品、例えば界面活性剤等を充填し、6か月以上放置した場合、容器が環境応力亀裂により破損する場合がある。 The ESCR of the polyethylene resin is 1000 hours or more. When the ESCR is less than 1000 hours, if a container with a capacity larger than 200 L is filled with a chemical, such as a surfactant, and left for six months or more, the container may be damaged due to environmental stress cracking.

該ポリエチレンの炭素数1000あたりの炭素原子数4以下の単鎖分岐の数は3個以上である。単鎖分岐の数が3個以上であると、耐薬品性に優れる。短鎖分岐数が3個よりも少ない場合、タイ分子の生成確率およびESCRが低下する。また、短鎖分岐は分子量100000以上の高分子量エチレン系重合体に含まれることが好ましい。低分子量エチレン系重合体に短鎖分岐が含まれると薬品中に溶出し、容器から溶出する微粒子数が増加する。 The number of single chain branches having 4 or less carbon atoms per 1000 carbon atoms of the polyethylene is 3 or more. When the number of single chain branches is 3 or more, chemical resistance is excellent. When the number of short chain branches is less than three, the probability of forming tie molecules and the ESCR decrease. Moreover, it is preferable that the short chain branch is contained in a high molecular weight ethylene polymer having a molecular weight of 100,000 or more. If the low molecular weight ethylene polymer contains short chain branches, it will elute into the drug and the number of fine particles eluted from the container will increase.

該ポリエチレン樹脂の含有金属量はポリエチレン樹脂に対して20PPM以下である。含有金属量が20PPM以下であれば、高純度薬品への金属溶出量が少ないため、薬品中の金属不純物濃度を抑制することができる。含有金属量は、全樹脂に対する金属分の割合を重量PPMで示すものである。含有金属量は樹脂を灰化したのちにアルカリ溶融して得られるもので、Mg、Al、Ti等の残存物である。 The amount of metal contained in the polyethylene resin is 20 PPM or less relative to the polyethylene resin. If the amount of metal contained is 20 PPM or less, the amount of metal eluted into the high-purity drug is small, so the concentration of metal impurities in the drug can be suppressed. The amount of metal content indicates the ratio of the metal content to the total resin in weight PPM. The amount of metals contained is obtained by incinerating the resin and then melting it with an alkali, and it is residual materials such as Mg, Al, and Ti.

該ポリエチレンを温度40℃の70%硝酸に35日浸漬した後のシャルピー衝撃強度保持率は浸漬前と比較して、50%以上である。一般的にポリエチレン樹脂は硝酸に弱いため劣化の進行が早く、強度が低下しやすい。40℃×35日浸漬後のシャルピー衝撃強度保持率が50%以上であれば、容器にして輸送等で衝撃が加わっても破損なく使用できる。 After immersing the polyethylene in 70% nitric acid at a temperature of 40° C. for 35 days, the Charpy impact strength retention rate is 50% or more compared to before immersion. In general, polyethylene resin is sensitive to nitric acid, so it deteriorates quickly and its strength tends to decrease. If the Charpy impact strength retention rate after immersion at 40° C. for 35 days is 50% or more, it can be used as a container without being damaged even if it is subjected to impact during transportation or the like.

さらに、該ポリエチレン樹脂は、酸化防止剤、耐光安定剤、及び中和剤等の全ての添加剤が無添加であることが好ましい。ここで、中和剤とはステアリン酸カルシウムやステアリン酸亜鉛に代表される脂肪酸金属塩とハイドロタルサイト類であって、何れも薬品中に溶出して金属汚染物質となるものであり、無添加であることが好ましい。 Furthermore, it is preferable that all additives such as antioxidants, light stabilizers, and neutralizing agents are not added to the polyethylene resin. Here, the neutralizing agents are fatty acid metal salts such as calcium stearate and zinc stearate, and hydrotalcites, which dissolve into chemicals and become metal contaminants. It is preferable that there be.

該ポリエチレン樹脂はブロー成形により容器状に成形することにより高純度薬品容器となる。特に、クリーンルーム内に設置したブロー成形機を使用し、フィルターで微粒子を取り除いたエアーをブローエアーに用いたブロー成形方法はクリーンな容器を製造するのに好ましい。容器形状および容器の容量は特定しないが、内容物のバリア性や容器の強度を補強するために、該樹脂を内層に使用し、エチレン-ビニルアルコール共重合体、ポリビニルアルコール樹脂、およびポリアミド樹脂等を中間層に使用したり、FRP等を外層にして補強してもかまわない。 The polyethylene resin is molded into a container shape by blow molding, resulting in a high-purity drug container. In particular, a blow molding method using a blow molding machine installed in a clean room and using air from which fine particles have been removed with a filter as the blow air is preferable for manufacturing clean containers. The shape and capacity of the container are not specified, but in order to strengthen the barrier properties of the contents and the strength of the container, the resin is used for the inner layer, and the resin is made of ethylene-vinyl alcohol copolymer, polyvinyl alcohol resin, polyamide resin, etc. may be used as an intermediate layer, or FRP or the like may be used as an outer layer for reinforcement.

該ポリエチレン樹脂を用いて成形した未洗浄容器に超純水を充填し、内容液溶出する0.1μm以上の微粒子数は、40℃×35日保管後にて20個/mL以下であることが好ましい。0.1μm以上の微粒子数が20個/mL以下であれば、LSIの微細化に対応できる。 An unwashed container molded using the polyethylene resin is filled with ultrapure water, and the number of fine particles of 0.1 μm or more eluted from the content is preferably 20 particles/mL or less after storage at 40 ° C. for 35 days. . If the number of fine particles of 0.1 μm or more is 20 particles/mL or less, it can support miniaturization of LSI.

該ポリエチレン樹脂を用いて成形する容器は、例えば1000Lの容器(Intermediate Bulk Containers:IBC)が挙げられる。それより小型の容器として、例えば200Lドラム、20L工業薬品缶が挙げられる。 Examples of containers molded using the polyethylene resin include 1000 L containers (Intermediate Bulk Containers: IBC). Smaller containers include, for example, 200L drums and 20L industrial chemical cans.

以下、本発明について実施例により説明するが、これら実施例に限定されるものではない。なお、実施例、比較例で使用する試験方法は、以下の通りである。 The present invention will be explained below with reference to examples, but it is not limited to these examples. The test methods used in Examples and Comparative Examples are as follows.

(1)密度
JIS K6922-1に準拠して密度勾配管法で測定した。
(1) Density Measured by density gradient tube method in accordance with JIS K6922-1.

(2)HLMFR
JIS K6922-1に準拠して、190℃、荷重21,6kgで測定した。
(2) HLMFR
Measurement was performed at 190°C and a load of 21.6 kg in accordance with JIS K6922-1.

(3)Mw/Mn
東ソー製HLC-8321GPC/HT(カラム:東ソー製TSKgel guardcolumnHHRおよびTSKgelGMHHR-H)を使用し、溶離液として1,2,4-トリクロロベンゼンを用いてGPCによって測定した。分子量の検量線は、分子量既知のポリスチレン試料を用いて校正した。
(3) Mw/Mn
It was measured by GPC using Tosoh HLC-8321GPC/HT (columns: Tosoh TSKgel guardcolumnH HR and TSKgelGMH HR -H) and 1,2,4-trichlorobenzene as the eluent. The molecular weight calibration curve was calibrated using polystyrene samples with known molecular weights.

(4)分子量1000以下および100000以上の成分
GPC測定により得られた分子量分布曲線から1000以下の成分および100000以上の成分の積分量の割合を算出した。
(4) Components with molecular weights of 1,000 or less and 100,000 or more The ratio of the integrated amounts of components with molecular weights of 1,000 or less and components with molecular weights of 100,000 or more was calculated from the molecular weight distribution curve obtained by GPC measurement.

(5)耐環境応力亀裂(ESCR)
JIS K6922-2に準拠し、試験片を温度50℃のノニオン系海面活性剤(10wt%水溶液)に浸漬させ、試験片が50%の確率で割れる時間(F50値)を測定した。
(5) Environmental stress cracking resistance (ESCR)
In accordance with JIS K6922-2, a test piece was immersed in a nonionic sea surfactant (10 wt% aqueous solution) at a temperature of 50°C, and the time at which the test piece would break with a 50% probability (F50 value) was measured.

(6)炭素原子1000Cあたりの短鎖分岐数
Bruker製 AVANCE600を使用して、13C NMR測定により得られたNMRスペクトルにおいて、5~50ppmにピークトップを有するすべてのピーク面積の総和を1000としたときの、炭素原子数が2の分岐が結合したメチン炭素に由来するピーク面積と、炭素原子数が4の分岐が結合したメチン炭素に由来するピーク面積から短鎖分岐の数を算出した。
(6) Number of short chain branches per 1000 C of carbon atoms In the NMR spectrum obtained by 13 C NMR measurement using Bruker's AVANCE 600, the sum of all peak areas having peak tops at 5 to 50 ppm was set to 1000. The number of short chain branches was calculated from the peak area derived from the methine carbon to which a branch with 2 carbon atoms was bonded and the peak area derived from the methine carbon to which a branch with 4 carbon atoms was bonded.

(7)含有金属量
試料を灰化したのちにアルカリ溶融を行い、溶液化したものを測定溶液とし、Optima 8300を使用して、ICP-AES測定により、試料中の含有金属量を測定した。
(7) Amount of metal content After the sample was incinerated, it was melted with alkali, and the resulting solution was used as a measurement solution, and the amount of metal content in the sample was measured by ICP-AES measurement using Optima 8300.

(8)シャルピー衝撃強度
JIS K7111に準拠して試験片を作製し、試験片を温度40℃の70%硝酸に35日間浸漬させた。
浸漬後の試験片を雰囲気温度23℃にて衝撃強度を測定し、浸漬前の衝撃強度値との比較より強度保持率を求めた。強度保持率が50%以上であったものを「○」、50%以下となったものを「×」とした。
(8) Charpy impact strength A test piece was prepared according to JIS K7111, and the test piece was immersed in 70% nitric acid at a temperature of 40°C for 35 days.
The impact strength of the test piece after immersion was measured at an ambient temperature of 23° C., and the strength retention rate was determined by comparison with the impact strength value before immersion. Those whose strength retention was 50% or more were rated "○", and those whose strength retention was 50% or less were rated "x".

(9)ブロー成形
50mmΦの押出スクリューを有するブロー成形機MSE-50E/54M-A((株)タハラ製)を用いて、シリンダー温度180~190℃、スクリュー回転数16~18回転でダイス先端よりパリソンを連続押出し、平均肉厚1mm、内容積800mLの容器を成形した。
(9) Blow molding Using a blow molding machine MSE-50E/54M-A (manufactured by Tahara Co., Ltd.) with an extrusion screw of 50 mmΦ, from the tip of the die at a cylinder temperature of 180 to 190°C and a screw rotation speed of 16 to 18 revolutions. The parison was continuously extruded to form a container with an average wall thickness of 1 mm and an internal volume of 800 mL.

(10)微粒子数
ポリエチレン系樹脂組成物をブロー成形することで得られた内容積800mL容器を使用した。23℃のクリーンルーム内にて未洗浄容器に600mLの超純水を充填し、蓋をして15回振とうし、設定温度40℃のクリーンオーブン(ヤマト科学(株)製、DE411)内にて35日間静置保管後、充填水中の0.1μm以上の微粒子数を微粒子カウンター(リオン(株)製、コントローラー:KE-40B1、パーティクルセンサー:KS-42A)で測定した。水中の微粒子数は個/mLで示す。
(10) Number of fine particles A container with an internal volume of 800 mL obtained by blow molding a polyethylene resin composition was used. Fill an unwashed container with 600 mL of ultrapure water in a clean room at 23 °C, shake it 15 times with a lid on, and place it in a clean oven (manufactured by Yamato Scientific Co., Ltd., DE411) with a set temperature of 40 °C. After being stored for 35 days, the number of particles of 0.1 μm or more in the filled water was measured using a particle counter (manufactured by Rion Co., Ltd., controller: KE-40B1, particle sensor: KS-42A). The number of fine particles in water is expressed in particles/mL.

実施例1
〈ポリエチレンAの製造〉
内容積370Lの連続式重合器の第1段目に脱水精製したヘキサンを110L/時間、有機アルミニウム化合物としてトリイソブチルアルミニウムを110mmoL/時間、特開平7-41513号公報に従い調製したMg、Al、TiおよびClを主成分とするチーグラー系固体触媒成分を0.70g/時間、エチレンを24.0kg/時間、水素を対エチレン濃度比0.50moL/moLとなるようにそれぞれを供給しながら、温度85℃、全圧30kg/cm、平均滞留時間3.4時間の条件下で連続的に第1段目のエチレン重合(低分子量成分)を行った。低分子量成分のMFRは20g/10分、密度は0.970g/cmであった。
Example 1
<Manufacture of polyethylene A>
In the first stage of a continuous polymerization vessel with an internal volume of 370 L, dehydrated and purified hexane was used at 110 L/hour, triisobutylaluminum was used as an organoaluminum compound at 110 mmoL/hour, and Mg, Al, and Ti prepared according to JP-A-7-41513 were used. While supplying 0.70 g/hour of Ziegler solid catalyst component mainly composed of Cl, 24.0 kg/hour of ethylene, and 0.50 moL/moL of hydrogen at a concentration ratio of ethylene to ethylene, the temperature was 85%. The first stage of ethylene polymerization (low molecular weight component) was carried out continuously under the following conditions: °C, total pressure of 30 kg/cm 2 and average residence time of 3.4 hours. The MFR of the low molecular weight component was 20 g/10 min, and the density was 0.970 g/cm 3 .

第1段目の重合体を含むヘキサンスラリーは、フラッシュタンクにて未反応の水素およびエチレンを除去した後、内容積545Lの第2段目重合器に導入した。この重合器に追加のヘキサンを45L/時間供給しながら、エチレンを24.0kg/時間、1-ブテンを8.1kg/時間、水素を対エチレン濃度比0.020moL/moLとなるようにそれぞれを供給しながら、温度80℃、全圧20kPa/cm、平均滞留時間3.3時間の条件下でエチレン重合(高分子量成分)を行った。高分子量成分のHLMFRは0.10g/10分、密度は0.925g/cmであった。第2段目重合器から排出物はフラッシュタンクにて、未反応の水素、エチレン、1-ブテンを除去し、50L/時間のヘキサンにて洗浄した後、乾燥工程を経てエチレン系共重合体の混合物パウダーを得た。低分子量成分の割合は49重量%、高分子量成分の割合は51重量%とした。上記の製造プロセスで2段重合したパウダーを添加剤無添加によりペレット化し、ポリエチレンAを得た。物性測定結果を表1に示す。 The hexane slurry containing the first-stage polymer was introduced into a second-stage polymerization vessel having an internal volume of 545 L after removing unreacted hydrogen and ethylene in a flash tank. While supplying an additional 45 L/hour of hexane to this polymerization reactor, ethylene was added at a rate of 24.0 kg/hour, 1-butene was added at a rate of 8.1 kg/hour, and hydrogen was added at a concentration ratio of 0.020 moL/moL to ethylene. Ethylene polymerization (high molecular weight component) was carried out under the conditions of a temperature of 80° C., a total pressure of 20 kPa/cm 2 and an average residence time of 3.3 hours while supplying the solution. The HLMFR of the high molecular weight component was 0.10 g/10 min, and the density was 0.925 g/cm 3 . The discharged material from the second stage polymerization vessel is sent to a flash tank to remove unreacted hydrogen, ethylene, and 1-butene, washed with 50 L/hour of hexane, and then subjected to a drying process to form an ethylene copolymer. A mixture powder was obtained. The proportion of low molecular weight components was 49% by weight, and the proportion of high molecular weight components was 51% by weight. The powder subjected to two-stage polymerization in the above production process was pelletized without the addition of any additives to obtain polyethylene A. Table 1 shows the physical property measurement results.

ポリエチレンAをブロー成形し、得られた容器を用いて上記した微粒子測定を行った。結果を表1に示す。 Polyethylene A was blow-molded and the resulting container was used to perform the above-described particle measurement. The results are shown in Table 1.

実施例2
〈ポリエチレンBの製造〉
第2段目重合器の1-ブテンを8.5kg/時間、水素を対エチレン濃度比0.025moL/moLとして供給した以外は、実施例1と同様に、ヘキサン中でエチレンとブテン-1を共重合して、二段重合法により重合パウダーを得た。第2段目重合器の高分子量成分のHLMFRは0.05g/10分、密度は0.922g/cmであった。2段重合したパウダーを添加剤無添加によりペレット化し、ポリエチレンBを得た。物性測定結果を表1に示す。
Example 2
<Manufacture of polyethylene B>
Ethylene and butene-1 were prepared in hexane in the same manner as in Example 1, except that 1-butene was supplied to the second stage polymerizer at a rate of 8.5 kg/hour and hydrogen was supplied at a concentration ratio of 0.025 moL/moL to ethylene. Copolymerization was performed to obtain a polymer powder by a two-stage polymerization method. The HLMFR of the high molecular weight component in the second stage polymerization vessel was 0.05 g/10 min, and the density was 0.922 g/cm 3 . The two-stage polymerized powder was pelletized without adding any additives to obtain polyethylene B. Table 1 shows the physical property measurement results.

ポリエチレンBをブロー成形し、得られた容器を用いて上記した微粒子測定を行った。結果を表1に示す。 Polyethylene B was blow-molded, and the above-described fine particle measurement was performed using the resulting container. The results are shown in Table 1.

比較例1
ポリエチレンCとして、下記市販の高密度ポリエチレンを使用した。
Comparative example 1
As polyethylene C, the following commercially available high-density polyethylene was used.

東ソー(株)製、(商品名)ニポロンハード 8900(HLMFR=2.5g/10分、密度=0.954g/cm
実施例と同様にして、ポリエチレンCをブロー成形し、微粒子数を測定した。樹脂の物性と容器の評価結果を表1に示す。
Manufactured by Tosoh Corporation, (product name) Nipolon Hard 8900 (HLMFR = 2.5 g/10 min, density = 0.954 g/cm 3 )
Polyethylene C was blow molded in the same manner as in the example, and the number of fine particles was measured. Table 1 shows the physical properties of the resin and the evaluation results of the container.

比較例2
ポリエチレンDとして、下記市販の高密度ポリエチレンを使用した。
Comparative example 2
As polyethylene D, the following commercially available high-density polyethylene was used.

東ソー(株)製、(商品名)ニポロンハード 8D01A(HLMFR=8.0g/10分、密度=0.957g/cm
ポリエチレンDをブロー成形し、微粒子数を測定した。樹脂の物性と容器の評価結果を表1に示す。
Manufactured by Tosoh Corporation, (trade name) Nipolon Hard 8D01A (HLMFR = 8.0 g/10 min, density = 0.957 g/cm 3 )
Polyethylene D was blow molded and the number of fine particles was measured. Table 1 shows the physical properties of the resin and the evaluation results of the container.

比較例3
ポリエチレンEとして、下記市販の高密度ポリエチレンを使用した。
Comparative example 3
As polyethylene E, the following commercially available high-density polyethylene was used.

東ソー(株)製、(商品名)ニポロンハード 8022(HLMFR=25g/10分、密度=0.958g/cm
ポリエチレンEをブロー成形し、微粒子数を測定した。樹脂の物性と容器の評価結果を表1に示す。
Manufactured by Tosoh Corporation, (trade name) Nipolon Hard 8022 (HLMFR = 25 g/10 min, density = 0.958 g/cm 3 )
Polyethylene E was blow molded and the number of fine particles was measured. Table 1 shows the physical properties of the resin and the evaluation results of the container.

比較例4
〈固体触媒成分の調製〉 撹拌装置を備えた3リットルガラスフラスコに、金属マグネシウム粉末30.0g(1.23モル)およびチタンテトラブトキシド168.0g(0.494モル)を入れ、ヨウ素1.5gを溶解したn-ブタノール192g(2.59モル)を90℃で2時間かけて加え、さらに発生する水素ガスを排除しながら窒素シール下で140℃で2時間撹拌した。これを110℃とした後に、テトラエトキシシラン26g(0.125モル)とテトラメトキシシラン19g(0.125モル)を加え、さらに140℃で2時間撹拌した。次いで、ヘキサン2.1リットルを加えて、均一溶液を得た。 この均一溶液を撹拌装置を備えた10リットルのステンレス製オートクレーブに入れ、オートクレーブの内温を45℃に保ちジエチルアルミニウムクロライド1.0モルとi-ブチルアルミニウムジクロライド0.5モルを含むヘキサン溶液800mlを1時間かけて加え、さらに60℃で1時間撹拌し粒子を生成させた。再び45℃とした後、50%ヘキサン溶液1.04kg(3.35モル)を2時間かけて加えた。すべてを加えた後、60℃で1時間撹拌を行い固体触媒成分を得た。得られた固体触媒成分はヘキサンを用いて残存する未反応物および副生成物を除去した後、ヘキサンスラリーとしてポリエチレンFの製造に用いた。
Comparative example 4
<Preparation of solid catalyst component> 30.0 g (1.23 mol) of metallic magnesium powder and 168.0 g (0.494 mol) of titanium tetrabutoxide were placed in a 3-liter glass flask equipped with a stirring device, and 1.5 g of iodine was added. 192 g (2.59 mol) of n-butanol dissolved therein was added at 90° C. over 2 hours, and the mixture was further stirred at 140° C. for 2 hours under a nitrogen blanket while excluding generated hydrogen gas. After bringing the temperature to 110°C, 26 g (0.125 mol) of tetraethoxysilane and 19 g (0.125 mol) of tetramethoxysilane were added, and the mixture was further stirred at 140°C for 2 hours. Then, 2.1 liters of hexane was added to obtain a homogeneous solution. This homogeneous solution was placed in a 10 liter stainless steel autoclave equipped with a stirring device, and while the internal temperature of the autoclave was maintained at 45°C, 800 ml of a hexane solution containing 1.0 mol of diethyl aluminum chloride and 0.5 mol of i-butyl aluminum dichloride was added. The mixture was added over 1 hour and further stirred at 60°C for 1 hour to generate particles. After raising the temperature to 45° C. again, 1.04 kg (3.35 mol) of 50% hexane solution was added over 2 hours. After everything was added, stirring was performed at 60° C. for 1 hour to obtain a solid catalyst component. The obtained solid catalyst component was used in the production of polyethylene F as a hexane slurry after removing remaining unreacted substances and by-products using hexane.

〈ポリエチレンFの製造〉 内容積370Lの連続式重合器の第1段目に脱水精製したヘキサンを110L/時間、有機アルミニウム化合物としてトリイソブチルアルミニウムを110mmoL/時間、上記固体触媒成分を0.4g/時間、エチレンを25.4kg/時間、水素を対エチレン濃度比0.28moL/moLなるようにそれぞれを供給しながら、温度85℃、全圧30kg/cm、平均滞留時間を3.4時間の条件下で連続的に第1段目(低分子量成分)の重合を行った。低分子量成分のMFRは16g/10分、密度は0.974g/cmであった。 <Manufacture of polyethylene F> In the first stage of a continuous polymerization vessel with an internal volume of 370 L, dehydrated and purified hexane was fed at 110 L/hour, triisobutylaluminum was fed as an organic aluminum compound at 110 mmol/hour, and the above solid catalyst component was fed at 0.4 g/hour. While supplying ethylene at 25.4 kg/hour and hydrogen at a concentration ratio of 0.28 moL/moL to ethylene, the temperature was 85°C, the total pressure was 30 kg/cm 2 , and the average residence time was 3.4 hours. The first stage (low molecular weight component) was continuously polymerized under the following conditions. The MFR of the low molecular weight component was 16 g/10 min, and the density was 0.974 g/cm 3 .

第1段目の重合体を含むヘキサンスラリーは、フラッシュタンクにて未反応の水素およびエチレンを除去した後、内容積545リットルの別の連続式重合器に導入した。この重合器に追加のヘキサンを45L/時間供給しながら、エチレンを21.5kg/時間、1-ブテンを0.8kg/時間、水素を対エチレン濃度比0.12moL/moL、温度80℃、全圧20kg/cm、平均滞留時間を3.3時間の条件下に第2段目(高分子量成分)の重合を行った。高分子量成分の密度は0.940g/cmであった。第2段重合器からの排出物はフラッシュタンクにて未反応の水素、エチレン、1-ブテンを除去した後、50L/時間のヘキサンにて洗浄した後、乾燥工程を経てエチレン系共重合体を得た。低分子量成分の割合は50重量%、高分子量成分の割合は50重量%とした。上記の製造プロセスで2段重合したパウダーを添加剤無添加によりペレット化し、ポリエチレンFを得た。物性測定結果を表1に示す。 After removing unreacted hydrogen and ethylene from the hexane slurry containing the first-stage polymer in a flash tank, it was introduced into another continuous polymerization vessel having an internal volume of 545 liters. While supplying an additional 45 L/hour of hexane to this polymerization vessel, ethylene was fed at 21.5 kg/hour, 1-butene at 0.8 kg/hour, hydrogen at a concentration ratio of 0.12 moL/moL to ethylene, temperature 80°C, total The second stage (high molecular weight component) was polymerized under the conditions of a pressure of 20 kg/cm 2 and an average residence time of 3.3 hours. The density of the high molecular weight component was 0.940 g/cm 3 . After removing unreacted hydrogen, ethylene, and 1-butene from the discharge from the second-stage polymerization vessel in a flash tank, it was washed with 50 L/hour of hexane, and then subjected to a drying process to produce an ethylene copolymer. Obtained. The proportion of low molecular weight components was 50% by weight, and the proportion of high molecular weight components was 50% by weight. The powder subjected to two-stage polymerization in the above production process was pelletized without the addition of any additives to obtain polyethylene F. Table 1 shows the physical property measurement results.

ポリエチレンFをブロー成形し、微粒子数を測定した。樹脂の物性と容器の評価結果を表1に示す。 Polyethylene F was blow molded and the number of fine particles was measured. Table 1 shows the physical properties of the resin and the evaluation results of the container.

Claims (4)

190℃、2.16kg荷重のメルトフローレート(MFR)が10~40g/10分、密度(JIS K6922―1)が0.960~0.970g/cmであるエチレン系重合体と、190℃、21.6kg荷重のメルトフローレート(HLMFR)が0.01~3g/10分、密度が0.920~0.940g/cmであるエチレン系重合体の2成分を含み、該2成分の重量比が40:60~60:40であり、以下の(1)~(9)の性状を有する高純度薬品容器用ポリエチレン樹脂。
(1)密度が0.940~0.955g/cm
(2)HLMFRが1~15g/10分
(3)ゲル・パーミエーション・クロマトグラフィ(GPC)により求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が8~15
(4)GPCを用いて得られる分子量分布曲線において、分子量1000以下の成分が0.30重量%以下
(5)GPCを用いて得られる分子量分布曲線において、分子量100000以上の成分が35重量%以上
(6)耐環境応力亀裂(ESCR)が1000時間以上
(7)13C-NMRの測定から求められる炭素原子1000Cあたりの炭素原子数4以下の短鎖分岐数が3個以上
(8)含有金属量がポリエチレン樹脂に対して20PPM以下
(9)70%硝酸に40℃×35日間浸漬後のシャルピー衝撃強度保持率が50%以上
An ethylene polymer having a melt flow rate (MFR) of 10 to 40 g/10 min at 190°C and a load of 2.16 kg and a density (JIS K6922-1) of 0.960 to 0.970 g/cm 3 and 190°C. , contains two components of an ethylene polymer having a melt flow rate (HLMFR) of 0.01 to 3 g/10 min at a load of 21.6 kg and a density of 0.920 to 0.940 g/ cm3 , and of the two components. A high-purity polyethylene resin for chemical containers having a weight ratio of 40:60 to 60:40 and having the following properties (1) to (9).
(1) Density is 0.940-0.955g/ cm3
(2) HLMFR is 1 to 15 g/10 minutes (3) Ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) (Mw/Mn) determined by gel permeation chromatography (GPC) is 8 to 15
(4) In the molecular weight distribution curve obtained using GPC, the component with a molecular weight of 1,000 or less is 0.30% by weight or less. (5) In the molecular weight distribution curve obtained using GPC, the component with a molecular weight of 100,000 or more is 35% by weight or more (6) Environmental stress cracking resistance (ESCR) of 1000 hours or more (7) The number of short chain branches with 4 or less carbon atoms per 1000 C of carbon atoms determined by 13 C-NMR measurement is 3 or more (8) Containing metal (9) Charpy impact strength retention rate after immersion in 70% nitric acid at 40°C for 35 days is 50% or more
添加剤を含まない、請求項1に記載の高純度薬品容器用ポリエチレン樹脂。 The polyethylene resin for high purity chemical containers according to claim 1, which does not contain additives. 請求項1又は2に記載のポリエチレン樹脂からなる高純度薬品容器。 A high purity chemical container made of the polyethylene resin according to claim 1 or 2. 未洗浄容器に超純水を充填し、40℃×35日間静置保管後の内容液から溶出する0.1μm以上の微粒子数が20個/mL以下である、請求項3に記載の高純度薬品用容器。 The high purity according to claim 3, wherein the number of fine particles of 0.1 μm or more eluted from the content after filling an unwashed container with ultrapure water and storing it at 40° C. for 35 days is 20 particles/mL or less. Container for medicine.
JP2022058139A 2022-03-31 2022-03-31 Polyethylene resin for high purity chemical and container made of the same Pending JP2023149524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022058139A JP2023149524A (en) 2022-03-31 2022-03-31 Polyethylene resin for high purity chemical and container made of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022058139A JP2023149524A (en) 2022-03-31 2022-03-31 Polyethylene resin for high purity chemical and container made of the same

Publications (1)

Publication Number Publication Date
JP2023149524A true JP2023149524A (en) 2023-10-13

Family

ID=88288947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022058139A Pending JP2023149524A (en) 2022-03-31 2022-03-31 Polyethylene resin for high purity chemical and container made of the same

Country Status (1)

Country Link
JP (1) JP2023149524A (en)

Similar Documents

Publication Publication Date Title
JP3743787B2 (en) Polyethylene resin for high-purity chemical containers and high-purity chemical containers comprising the same
JP4844091B2 (en) Propylene resin composition and film thereof
JP5231808B2 (en) Polyolefin composition and breathable film thereof
KR19980081868A (en) Resin composition for sealing retort film and sealant film
JPH1112558A (en) Resin composition for sealant of retort film and sealant film
JP2021195436A (en) Polyethylene-based resin composition and container for high purity chemical solution
JP3743788B2 (en) Polyethylene resin for high-purity chemical containers, composition and high-purity chemical container comprising the same
EP1849826A1 (en) A transparent polyolefin article which is subjected to a heat treatment
EP1957547B1 (en) Polymer
JP4211895B2 (en) High barrier polypropylene compositions and their use in packaging applications
JP2006241451A (en) Polyethylene composition
JP5145911B2 (en) Polyethylene resin composition and blow container comprising the same
KR100269845B1 (en) Ethylene polymer
JP2023149524A (en) Polyethylene resin for high purity chemical and container made of the same
EP1992649A1 (en) Ethylene resin and blow-molded article comprising the same
EP1740651A1 (en) Use
JPH10195135A (en) Ethylenic polymer and its production
WO2016153037A1 (en) Polyethylene for injection molding and molded article using same
JP2000129044A (en) Vessel made of polyethylene for high-purity chemicals
JP6705157B2 (en) Polyethylene resin for ultra high purity chemical containers and high purity chemical containers made of the same
JPH1180449A (en) Polyethylene resin for large-sized vessel for highly pure chemical and vessel
JP4023897B2 (en) A clean polyethylene container
JP4212348B2 (en) Polyethylene resin composition and film comprising the composition
CA2188086A1 (en) Polyethylene resin inner container for bag in box, a package using said inner container, and method for transporting fluent material
JP2000129045A (en) Clean vessel made of polyethylene