JP2021195436A - Polyethylene-based resin composition and container for high purity chemical solution - Google Patents

Polyethylene-based resin composition and container for high purity chemical solution Download PDF

Info

Publication number
JP2021195436A
JP2021195436A JP2020102149A JP2020102149A JP2021195436A JP 2021195436 A JP2021195436 A JP 2021195436A JP 2020102149 A JP2020102149 A JP 2020102149A JP 2020102149 A JP2020102149 A JP 2020102149A JP 2021195436 A JP2021195436 A JP 2021195436A
Authority
JP
Japan
Prior art keywords
container
polyethylene
weight
less
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020102149A
Other languages
Japanese (ja)
Inventor
広崇 石原
Hirotaka Ishihara
弘昌 西川
Hiromasa Nishikawa
義幸 茂呂
Yoshiyuki Moro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2020102149A priority Critical patent/JP2021195436A/en
Publication of JP2021195436A publication Critical patent/JP2021195436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Wrappers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a polyethylene-based resin composition which reduces deterioration in a molding surface of a container obtained by blow molding, suppresses elution of fine particles and metal, and is suitable for a container for high purity chemical solution.SOLUTION: A polyethylene-based resin composition contains 99.90-99.99 wt.% of a polyethylene resin satisfying the following requirements (1) to (5) and 0.01-0.10 wt.% of a vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer. (1) Density of 940-960 kg/m3, (2) melt flow rate at 190°C and 21.6 kg load of 2.0-12 g/10 min, (3) ratio (Mw/Mn) of weight average molecular weight (Mw) to number average molecular weight (Mn) of 8.0-15, (4) component having a molecular weight of 1,000 or less of 0.50 wt.% or less, and (5) metal content of 20 ppm or less.SELECTED DRAWING: None

Description

本発明は、半導体装置産業分野、精密工業部品分野及び医薬品等に使用される高純度薬品用容器の製造に好適で、特に製品の肌が良好で高純度薬品を充填した場合に、薬品中への微粒子の発生および金属溶出が少ない高純度薬品用ポリエチレン系樹脂組成物に関するものである。 INDUSTRIAL APPLICABILITY The present invention is suitable for manufacturing containers for high-purity chemicals used in the fields of semiconductor equipment industry, precision industrial parts, pharmaceuticals, etc., and particularly when the product has a good skin and is filled with high-purity chemicals. The present invention relates to a polyethylene-based resin composition for high-purity chemicals in which the generation of fine particles and the elution of metals are small.

近年、電子工業分野の著しい発達に伴って、高純度薬品の需要が高まっている。高純度薬品は、例えば、大規模化、集積化されたLSI等の電子回路の製造に不可欠の薬品として使用されている。具体的には、ウエハー洗浄・エッチング用、配線・絶縁膜エッチング用、治具洗浄用、現像液、レジスト希釈液、レジスト剥離液、乾燥用等の用途として、硫酸、塩酸、硝酸、フッ化水素酸、フッ化アンモニウム、過酸化水素水、イソプロピルアルコール、キシレン、TMAH(テトラメチルアンモニウムハイドロオキサイド)、メタノール、酢酸、リン酸、アンモニア水、PGMEA(酢酸プロピレングリコールメチルエーテル)、DMSO(ジメチルスルホキシド)、NMP(N−メチル−2−ピロリドン)等が用いられている。従来、これらの高純度薬品用容器材料として、耐薬品性、耐衝撃性、価格等の点から、ポリエチレン樹脂が使用されている。ブロー成形により高純度薬品用容器を成形する場合には、パリソンが自重で垂れ下がる現象(ドローダウン)が発生する傾向がある。このドローダウンを小さくするためには、溶融粘度、溶融張力が十分に高い樹脂を使用する必要がある。ポリエチレンの耐ドローダウン性を改良するために分子量を大きくする方法が取られるが、溶融粘度が高くなり、押出特性(押出量、パリソン表面状態)が悪化する問題点があった。この問題点を解決するための方法として、多段重合法(特許文献1)、2成分のポリエチレンを特定の割合で混合する方法(特許文献2)、ポリエチレン樹脂にフッ素系ポリマー及びハイドロタルサイト等を添加する方法(特許文献3)等が知られている。しかし、上記方法により改良したポリエチレンでは含有金属が多く高純度薬品用容器には不向きである。 In recent years, with the remarkable development of the electronics industry, the demand for high-purity chemicals has increased. High-purity chemicals are used, for example, as indispensable chemicals for manufacturing electronic circuits such as large-scale and integrated LSIs. Specifically, for wafer cleaning / etching, wiring / insulating film etching, jig cleaning, developing solution, resist diluent, resist stripping solution, drying, etc., sulfuric acid, hydrochloric acid, nitric acid, hydrogen fluoride, etc. Acid, ammonium fluoride, aqueous hydrogen peroxide, isopropyl alcohol, xylene, TMAH (tetramethylammonium hydroxide), methanol, acetic acid, phosphoric acid, aqueous ammonia, PGMEA (propylene glycol methyl ether acetate), DMSO (dimethylsulfoxide), NMP (N-methyl-2-pyrrolidone) and the like are used. Conventionally, polyethylene resin has been used as a container material for these high-purity chemicals in terms of chemical resistance, impact resistance, price and the like. When a container for high-purity chemicals is molded by blow molding, a phenomenon (drawdown) in which the parison hangs down due to its own weight tends to occur. In order to reduce this drawdown, it is necessary to use a resin having a sufficiently high melt viscosity and melt tension. A method of increasing the molecular weight is adopted in order to improve the drawdown resistance of polyethylene, but there is a problem that the melt viscosity becomes high and the extrusion characteristics (extrusion amount, parison surface state) deteriorate. As a method for solving this problem, a multi-stage polymerization method (Patent Document 1), a method of mixing two-component polyethylene in a specific ratio (Patent Document 2), a fluoropolymer, hydrotalcite, etc. in a polyethylene resin are used. A method of adding (Patent Document 3) and the like are known. However, the polyethylene improved by the above method contains a large amount of metal and is not suitable for a container for high-purity chemicals.

特開昭55−152735号公報Japanese Unexamined Patent Publication No. 55-152735 特開平6−299009号公報Japanese Unexamined Patent Publication No. 6-29909 特開2009−138122号公報Japanese Unexamined Patent Publication No. 2009-138122

本発明は、ブロー成形により得られる容器の成形肌悪化を低減し、微粒子及び金属溶出を抑えた高純度薬品用容器に適したポリエチレン系樹脂組成物を提供することにある。 The present invention is to provide a polyethylene-based resin composition suitable for a container for high-purity chemicals, which reduces deterioration of the molded surface of the container obtained by blow molding and suppresses elution of fine particles and metals.

本発明者らは、上記課題を解決するため鋭意検討した結果、高密度ポリエチレンにフッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体を添加することにより、ブロー成形において容器の成形肌を低減し、微粒子および金属溶出を抑えられること見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors reduced the molding surface of the container in blow molding by adding vinylidene fluoride, tetrafluoroethylene, and hexafluoropropylene copolymer to high-density polyethylene. However, it has been found that the elution of fine particles and metals can be suppressed, and the present invention has been completed.

即ち、本発明の各態様は以下に示す[1]〜[7]である。
[1]下記(1)〜(5)の要件を満たすポリエチレン樹脂99.90〜99.99重量%、及びフッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体0.01〜0.10重量%を含むポリエチレン系樹脂組成物。
(1)密度(JIS K6922−1)が940〜970kg/m
(2)190℃、21.6kg荷重のメルトフローレート(JIS K6922−1)が2.0〜12g/10分
(3)ゲルパーミエーション・クロマトグラフィー(GPC)より求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が8.0〜15
(4)ゲルパーミエーション・クロマトグラフィー(GPC)を用いて得られる分子量分布曲線において、分子量1000以下の成分が0.50重量%以下
(5)含有金属量が20ppm以下
[2][1]記載のポリエチレン系樹脂組成物よりなることを特徴とする高純度薬品用容器。
[3]容器から溶出する0.1μm以上の微粒子数が25個/mL以下であることを特徴とする[2]に記載の高純度薬品用容器。
[4]含有金属量が20ppm以下であることを特徴とする[2]又は[3]に記載の高純度薬品用容器。
[5]容器内表面の最大粗さが10μm以下であることを特徴とする[2]〜[4]のいずれかに記載の高純度薬品用容器
That is, each aspect of the present invention is [1] to [7] shown below.
[1] Polyethylene resin 99.90 to 99.99% by weight satisfying the following requirements (1) to (5), and 0.01 to 0.10 weight by weight of vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer. % Is a polyethylene resin composition.
(1) Density (JIS K6922-1) is 940-970 kg / m 3
(2) Melt flow rate (JIS K6922-1) at 190 ° C. and 21.6 kg load is 2.0 to 12 g / 10 minutes (3) Weight average molecular weight (Mw) determined by gel permeation chromatography (GPC). And the ratio (Mw / Mn) of the number average molecular weight (Mn) is 8.0 to 15.
(4) In the molecular weight distribution curve obtained by gel permeation chromatography (GPC), 0.50% by weight or less of the components having a molecular weight of 1000 or less (5) 20 ppm or less of the contained metal content [2] [1]. A container for high-purity chemicals, which is characterized by being made of a polyethylene-based resin composition of.
[3] The container for high-purity chemicals according to [2], wherein the number of fine particles of 0.1 μm or more eluted from the container is 25 / mL or less.
[4] The container for high-purity chemicals according to [2] or [3], wherein the content of metal is 20 ppm or less.
[5] The container for high-purity chemicals according to any one of [2] to [4], wherein the maximum roughness of the inner surface of the container is 10 μm or less.

本発明の一態様であるポリエチレン系樹脂組成物は成形時の圧力負荷を軽減でき、それにより加工温度も下げられ、成形中のポリエチレンの分解を低減できる。当該ポリエチレン系樹脂組成物よりなる容器は、従来のポリエチレン容器に比べ、成形品の肌が良好であり、かつクリーン性に優れ、半導体分野や精密工業部品分野等における部品の洗浄、エッチング工程等で要求される高純度薬品用容器として提供できる。 The polyethylene-based resin composition according to one aspect of the present invention can reduce the pressure load during molding, thereby lowering the processing temperature and reducing the decomposition of polyethylene during molding. The container made of the polyethylene-based resin composition has better skin and cleanliness of the molded product than the conventional polyethylene container, and is used in parts cleaning, etching processes, etc. in the semiconductor field, precision industrial parts field, etc. It can be provided as a container for high-purity chemicals required.

本発明の一態様であるポリエチレン系樹脂組成物は、上記(1)〜(5)の要件を満たすポリエチレン樹脂及びフッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体を含み、成形加工した際、成形肌が優れ、微粒子および金属溶出を抑えた容器となり、特に微粒子等の異物混入を課題視する高純度薬品の容器用として適したものになる。 The polyethylene-based resin composition according to one aspect of the present invention contains a polyethylene resin satisfying the above requirements (1) to (5) and a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer, and when molded. The container has excellent molded skin and suppresses the elution of fine particles and metals, and is particularly suitable for containers of high-purity chemicals, which have a problem of contamination with foreign substances such as fine particles.

ポリエチレン系樹脂組成物を構成するポリエチレン樹脂としては、上記(1)〜(5)の要件を満たすポリエチレン系樹脂であればいかなる制限を受けることなく用いることが可能である。 As the polyethylene resin constituting the polyethylene-based resin composition, any polyethylene-based resin satisfying the above requirements (1) to (5) can be used without any limitation.

ここで、該ポリエチレン樹脂がエチレン−α−オレフィン共重合体である場合、その際のα−オレフィンとしては、例えばプロピレン、1−ブテン、4−メチル−1−ペンテン、1−ペンテン、1−ヘキセン、1−オクテン、1−ノネン、1−デセン、1−ヘキサデセン、1−オクタデセン等挙げることができ、その際の高活性重合触媒としては、チーグラー系触媒が適している。具体例として、チーグラー系触媒としてはチタン、マグネシウム、ハロゲンを必須とする固体触媒成分と有機アルミニウム化合物からなる触媒が挙げられる。チーグラー系重合触媒を用い、ポリエチレンを製造することで含有金属が少ないポリエチレン系樹脂組成物とすることが可能となる。また、該ポリエチレン樹脂は、添加物を含まないものである。 Here, when the polyethylene resin is an ethylene-α-olefin copolymer, the α-olefin at that time may be, for example, propylene, 1-butene, 4-methyl-1-pentene, 1-pentene, 1-hexene. , 1-octene, 1-nonene, 1-decene, 1-hexadecene, 1-octadecene and the like, and a Cheegler-based catalyst is suitable as the highly active polymerization catalyst at that time. As a specific example, examples of the Ziegler-based catalyst include a catalyst composed of a solid catalyst component that requires titanium, magnesium, and halogen, and an organoaluminum compound. By producing polyethylene using a Ziegler-based polymerization catalyst, it becomes possible to obtain a polyethylene-based resin composition containing a small amount of metal. Further, the polyethylene resin does not contain additives.

例えば、ポリエチレン樹脂は、以下の2段重合法で製造することができる。 For example, the polyethylene resin can be produced by the following two-stage polymerization method.

特開平7−41513号公報に従い調製したAl,Ti、Mg及びClを主成分とする
チーグラー系触媒と溶媒(ヘキサン)、エチレン(濃度8〜12g/kg−溶媒)、水素(濃度0.15〜0.30g/kg−溶媒)、トリイソブチルアルミニウム(濃度0.10〜0.20g/kg−溶媒)を1段目重合器に連続供給し、温度80〜85℃、全圧3,000kPa、平均滞留時間2時間の条件下でエチレン重合(低分子量成分)を行う。第1段目の重合体を含むヘキサンスラリーは、フラッシュタンクにて未反応の水素およびエチレンを除去した後、別の第2段目重合器に連続供給される。第2段目重合器でさらにエチレン(濃度10〜15g/kg−溶媒)、水素(濃度0.008〜0.02g/kg−溶媒)、1−ブテン(濃度1.0〜2.5g/kg−溶媒)を供給し、温度75〜85℃、全圧2,000kPa、平均滞留時間2時間の条件下でエチレン重合(高分子量成分)を行う。第2段目重合器のヘキサンスラリーをフラッシュタンクに送り、未反応の水素、エチレン、1−ブテンを除去した後、乾燥工程を除去してエチレン系共重合体の混合物パウダーを得ることができる。低分子量成分の割合は47〜49重量%、高分子量成分の割合は51〜53重量%である。上記の製造プロセスで2段重合したパウダーを添加剤無添加にてペレット化し、ポリエチレン樹脂を得ることができる。
Ziegler-based catalyst containing Al, Ti, Mg and Cl as main components, solvent (hexane), ethylene (concentration 8-12 g / kg-solvent), hydrogen (concentration 0.15-) prepared in accordance with JP-A-7-41513. 0.30 g / kg-solvent) and triisobutylaluminum (concentration 0.10 to 0.20 g / kg-solvent) were continuously supplied to the first-stage polymerizer, and the temperature was 80 to 85 ° C., the total pressure was 3,000 kPa, and the average. Ethylene polymerization (low molecular weight component) is performed under the condition of residence time of 2 hours. The hexane slurry containing the first-stage polymer is continuously supplied to another second-stage polymer after removing unreacted hydrogen and ethylene in a flash tank. In the second stage polymerizer, ethylene (concentration 10 to 15 g / kg-solvent), hydrogen (concentration 0.008 to 0.02 g / kg-solvent), 1-butene (concentration 1.0 to 2.5 g / kg). -Solvent) is supplied, and ethylene polymerization (high molecular weight component) is performed under the conditions of a temperature of 75 to 85 ° C., a total pressure of 2,000 kPa, and an average residence time of 2 hours. The hexane slurry of the second-stage polymer is sent to a flash tank to remove unreacted hydrogen, ethylene, and 1-butene, and then the drying step is removed to obtain a mixture powder of an ethylene-based copolymer. The proportion of the low molecular weight component is 47 to 49% by weight, and the proportion of the high molecular weight component is 51 to 53% by weight. A polyethylene resin can be obtained by pelletizing the two-stage polymerized powder in the above production process without adding additives.

ポリエチレン系樹脂組成物を構成するフッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体は、フッ化ビニリデン、フッ化ビニル、テトラフルオロエチレン、ヘキサフルオロプロピレンに代表されるフッ素化オレフィン共重合の1種であり、これらの中でも特に成形加工した際、成形肌が優れ、微粒子および金属等の異物発生を抑えた高純度薬品に使用する容器用のポリエチレン系樹脂組成物となる。フッ素系ポリマー成分に無機系の粘着防止剤を配合したものが市販されているが、粘着防止剤が配合されていると金属分が増加し、容器から溶出する微粒子数が増加することから、粘着防止剤は配合していないものが好ましい。該フッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体としては、例えば(商品名)ダイナマーFX5911(スリーエムジャパン(株)製)等を市販品として入手することができる。また、本発明のポリエチレン系樹脂組成物は、その他の成分を含まないことが好ましい。 The vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer constituting the polyethylene resin composition is one of the fluorinated olefin copolymers typified by vinylidene fluoride, vinyl fluoride, tetrafluoroethylene and hexafluoropropylene. It is a seed, and among these, it is a polyethylene-based resin composition for containers used for high-purity chemicals, which has an excellent molded surface and suppresses the generation of foreign substances such as fine particles and metals. A fluorine-based polymer component containing an inorganic anti-adhesive agent is commercially available. However, if an anti-adhesive agent is added, the metal content increases and the number of fine particles eluted from the container increases, resulting in adhesiveness. It is preferable that the inhibitor is not blended. As the vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer, for example (trade name) Dynamer FX5911 (manufactured by 3M Japan Ltd.) can be obtained as a commercially available product. Moreover, it is preferable that the polyethylene-based resin composition of the present invention does not contain other components.

ポリエチレン樹脂に配合するフッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体の配合割合は、該ポリエチレン樹脂に対して0.01〜0.1重量%、好ましくは0.01〜0.05重量%である。添加量が0.01重量%未満では得られたポリエチレン系樹脂組成物をブロー成形した際の成形品は肌が荒れたものとなる。一方、0.1重量%を超えると成形品に大きな効果をもたらさないばかりか、添加するフッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体が多くなり、クリーン性等に悪影響が出る。 The blending ratio of the vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer to be blended with the polyethylene resin is 0.01 to 0.1% by weight, preferably 0.01 to 0.05% by weight with respect to the polyethylene resin. %. If the addition amount is less than 0.01% by weight, the molded product obtained by blow molding the obtained polyethylene-based resin composition will have rough skin. On the other hand, if it exceeds 0.1% by weight, not only does it not have a great effect on the molded product, but also the amount of vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer to be added increases, which adversely affects cleanliness and the like.

ポリエチレン樹脂の密度(JIS K6922−1)は940〜960kg/mである。密度が940〜960kg/mの範囲であれば、940kg/m未満では微粒子の原因となる低分子量成分の量が増加し、容器のクリーン性が低下する。また、密度が960kg/mを超えるとより容器の強度が低下する。 The density of the polyethylene resin (JIS K6922-1) is 940 to 960 kg / m 3 . If the range density of 940~960kg / m 3, is less than 940 kg / m 3 and increased amount of low molecular weight components that cause particulates, clean of the container is reduced. Further, when the density exceeds 960 kg / m 3 , the strength of the container is further lowered.

ポリエチレン樹脂の190℃、21.6kg荷重のメルトフローレート(JIS K6922−1、以下、HLMFRと記す。)は、2.0〜12g/10分であり、好ましくは5.0〜10g/10分である。HLMFRが2.0g/10分未満の場合、溶融粘度が高くなりすぎるため、成形加工時の押出負荷が高くなるばかりか、成形品の肌荒れを誘発する。一方、12g/分を超える場合、溶融張力が小さくなり、200L以上の大型容器を成形する際、成形加工時のドローダウンが激しく成形加工性に劣るものとなる。 The melt flow rate of the polyethylene resin at 190 ° C. and a load of 21.6 kg (JIS K6922-1, hereinafter referred to as HLMFR) is 2.0 to 12 g / 10 minutes, preferably 5.0 to 10 g / 10 minutes. Is. When the HLMFR is less than 2.0 g / 10 minutes, the melt viscosity becomes too high, so that not only the extrusion load during the molding process becomes high, but also the rough skin of the molded product is induced. On the other hand, when it exceeds 12 g / min, the melt tension becomes small, and when molding a large container of 200 L or more, the drawdown during the molding process is severe and the molding processability is inferior.

ポリエチレン樹脂のゲルパーミエーション・クロマトグラフィー(GPC)より求められる重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnは8.0〜15である。Mw/Mnが8.0未満である場合、溶融粘度が高くなりすぎるため、成形加工時の押出負荷が高くなるばかりか、成形品の肌荒れを誘発する。一方、Mw/Mnが15を超える場合、分子量分布が拡大して低分子量成分が増加し、容器から溶出する微粒子数が増加する。また、パリソン結合部であるピンチオフ部の形状が悪くなり、容器の落下強度が低下する。 The ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) obtained by gel permeation chromatography (GPC) of the polyethylene resin is 8.0 to 15. When Mw / Mn is less than 8.0, the melt viscosity becomes too high, so that not only the extrusion load during the molding process becomes high, but also the rough skin of the molded product is induced. On the other hand, when Mw / Mn exceeds 15, the molecular weight distribution is expanded, the low molecular weight component is increased, and the number of fine particles eluted from the container is increased. In addition, the shape of the pinch-off portion, which is the parison joint portion, deteriorates, and the drop strength of the container decreases.

ポリエチレン樹脂のゲルパーミエーション・クロマトグラフィー(GPC)を用いて得られる分子量分布曲線において、分子量1000以下の成分が0.50重量%以下である。分子量1000以下の成分が0.50重量%を超えると、低分子量成分が増加し、容器から溶出する微粒子数が増加する。 In the molecular weight distribution curve obtained by using gel permeation chromatography (GPC) of a polyethylene resin, the component having a molecular weight of 1000 or less is 0.50% by weight or less. When the component having a molecular weight of 1000 or less exceeds 0.50% by weight, the low molecular weight component increases and the number of fine particles eluted from the container increases.

ポリエチレン樹脂の含有金属量は20ppm以下であり、好ましくは15ppm以下である。含有金属量が20ppm以下であれば、高純度薬品への金属溶出量が少ないため、薬品中の金属不純物濃度を抑制することができる。含有金属量は、全樹脂に対する金属分の割合を重量ppmで示すものである。含有金属量は樹脂を灰化したのちにアルカリ溶融して得られるもので、Mg、Al、Ti等の残存物である。 The amount of metal contained in the polyethylene resin is 20 ppm or less, preferably 15 ppm or less. When the amount of metal contained is 20 ppm or less, the amount of metal eluted into high-purity chemicals is small, so that the concentration of metal impurities in the chemicals can be suppressed. The amount of metal contained is the ratio of the metal content to the total resin in ppm by weight. The amount of metal contained is obtained by alkali melting after ashing the resin, and is a residue of Mg, Al, Ti and the like.

本発明の一態様である高純度薬品容器は、上記ポリエチレン系樹脂組成物よりなるものである。ポリエチレン系樹脂組成物をブロー成形により容器状に成形することにより高純度薬品容器となる。特に、クリーンルーム内に設置したブロー成形機を使用し、フィルターで不純物を取り除いた圧縮空気をブローエアーに用いたブロー成形方法はクリーンな容器を製造するのに好ましい。 The high-purity chemical container according to one aspect of the present invention is made of the above-mentioned polyethylene-based resin composition. A high-purity chemical container is obtained by molding the polyethylene-based resin composition into a container shape by blow molding. In particular, a blow molding method using a blow molding machine installed in a clean room and using compressed air from which impurities have been removed by a filter as blow air is preferable for producing a clean container.

高純度薬品容器から溶出する0.1μm以上の微粒子数は25個/mL以下であることが好ましく、さらに好ましくは20個/mL以下である。0.1μm以上の微粒子数が25個/mL以下であれば、高純度薬品への微粒子溶出量が少ないため、薬品中の不純物濃度を抑制することができる。微粒子数は、高純度薬品容器に超純水を充填し、充填水中の0.1μm以上の微粒子数を微粒子カウンターで測定することにより、計測される。 The number of fine particles of 0.1 μm or more eluted from the high-purity chemical container is preferably 25 / mL or less, and more preferably 20 / mL or less. When the number of fine particles of 0.1 μm or more is 25 / mL or less, the amount of fine particles eluted into the high-purity chemical is small, so that the concentration of impurities in the chemical can be suppressed. The number of fine particles is measured by filling a high-purity chemical container with ultrapure water and measuring the number of fine particles of 0.1 μm or more in the filled water with a fine particle counter.

高純度薬品用容器の内表面の最大粗さ(以下、Rzと記す。)は10μm以下であることが好ましい。Rzが10μmを超える場合、成形品とした際に外観の劣るものとなる。さらには薬品中の気泡が肌荒れ箇所に留まり、微粒子として検出されるため、微粒子数増加の原因となる。Rzは、基準長さにおける粗さ曲線の中で、最も高い山の高さと最も深い谷の深さの和を求め、表わしたものである。 The maximum roughness of the inner surface of the container for high-purity chemicals (hereinafter referred to as Rz) is preferably 10 μm or less. When Rz exceeds 10 μm, the appearance of the molded product is inferior. Furthermore, air bubbles in the chemicals stay in the rough skin and are detected as fine particles, which causes an increase in the number of fine particles. Rz is the sum of the height of the highest mountain and the depth of the deepest valley in the roughness curve at the reference length.

高純度薬品容器の含有金属量は20ppmであることが好ましい。含有金属量が20ppm以下であれば、薬品中の金属不純物濃度を抑制することができる。 The amount of metal contained in the high-purity chemical container is preferably 20 ppm. When the amount of metal contained is 20 ppm or less, the concentration of metal impurities in the chemical can be suppressed.

以下、本発明について実施例および比較例により説明する。なお、実施例および比較例で使用するポリエチレン樹脂、フッ素系ポリマー、ブロー成形機および試験方法は次に示すとおりである。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples. The polyethylene resin, fluoropolymer, blow molding machine and test method used in Examples and Comparative Examples are as follows.

(1)ポリエチレン樹脂
ポリエチレンA:密度=946kg/m、HLMFR=6.3g/10分、Mw/Mn=14、分子量1000以下の成分=0.40重量%、含有金属量=14ppm
ポリエチレンB:密度=957kg/m、HLMFR=8.0g/10分、Mw/Mn=13、分子量1000以下の成分=0.26重量%、含有金属量=13ppm
(商品名:ニポロンハード8D01A、東ソー(株)製)
ポリエチレンC:密度=954kg/m、HLMFR=35g/10分、Mw/Mn=12、分子量1000以下の成分=1.08重量%、含有金属量=85ppm
(商品名:ニポロンハード8300A、東ソー(株)製)
ポリエチレンD:密度=950kg/m、HLMFR=9.4g/10分、Mw/Mn=13、分子量1000以下の成分=0.53重量%、含有金属量=17ppm
(1) Polyethylene resin Polyethylene A: Density = 946 kg / m 3 , HLMFR = 6.3 g / 10 minutes, Mw / Mn = 14, component with molecular weight of 1000 or less = 0.40% by weight, metal content = 14 ppm
Polyethylene B: Density = 957 kg / m 3 , HLMFR = 8.0 g / 10 minutes, Mw / Mn = 13, component with molecular weight 1000 or less = 0.26% by weight, metal content = 13 ppm
(Product name: Niporon Hard 8D01A, manufactured by Tosoh Corporation)
Polyethylene C: Density = 954 kg / m 3 , HLMFR = 35 g / 10 minutes, Mw / Mn = 12, component with molecular weight 1000 or less = 1.08% by weight, metal content = 85 ppm
(Product name: Niporon Hard 8300A, manufactured by Tosoh Corporation)
Polyethylene D: Density = 950 kg / m 3 , HLMFR = 9.4 g / 10 minutes, Mw / Mn = 13, component with molecular weight 1000 or less = 0.53% by weight, metal content = 17 ppm

Figure 2021195436
Figure 2021195436

ポリエチレンAおよびポリエチレンDは、以下の2段重合法で製造した。 Polyethylene A and polyethylene D were produced by the following two-stage polymerization method.

〔ポリエチレンAの製造〕
特開平7−41513号公報に従い調製したMg、Al、TiおよびClを主成分とするチーグラー系触媒と溶媒(ヘキサン)、エチレン(濃度8〜10g/kg−溶媒)、水素(濃度0.15〜0.25g/kg−溶媒)、トリイソブチルアルミニウム(濃度0.10〜0.20g/kg−溶媒)を第1段目重合器に連続供給し、温度80〜85℃、全圧3,000kPa、平均滞留時間2時間の条件下でエチレン重合(低分子量成分)を行った。第1段目の重合体を含むヘキサンスラリーは、フラッシュタンクにて未反応の水素およびエチレンを除去した後、別の第2段目重合器に連続供給した。第2段目重合器でさらにエチレン(濃度10〜15g/kg−溶媒)、水素(0.008〜0.010g/kg−溶媒)、1−ブテン(2.0〜2.5g/kg−溶媒)を供給し、温度75〜85℃、全圧2,000kPa、平均滞留時間2時間の条件下でエチレン重合(高分子量成分)を行った。第2段目重合器のヘキサンスラリーをフラッシュタンクに送り、未反応の水素、エチレン、1−ブテンを除去した後、乾燥工程を経てエチレン系共重合体の混合物パウダーを得た。低分子量成分の割合は49重量%、高分子量成分の割合は51重量%とした。上記の製造プロセスで2段重合したパウダーを添加剤無添加によりペレット化し、ポリエチレンAを得た。
[Manufacturing of polyethylene A]
Ziegler-based catalyst containing Mg, Al, Ti and Cl as main components, solvent (hexane), ethylene (concentration 8-10 g / kg-solvent), hydrogen (concentration 0.15-) prepared in accordance with JP-A-7-41513. 0.25 g / kg-solvent) and triisobutylaluminum (concentration 0.10 to 0.20 g / kg-solvent) were continuously supplied to the first-stage polymerizer at a temperature of 80 to 85 ° C. and a total pressure of 3,000 kPa. Ethylene polymerization (low molecular weight component) was carried out under the condition of an average residence time of 2 hours. The hexane slurry containing the first-stage polymer was continuously supplied to another second-stage polymer after removing unreacted hydrogen and ethylene in a flash tank. In the second stage polymerizer, ethylene (concentration 10 to 15 g / kg-solvent), hydrogen (0.008 to 0.010 g / kg-solvent), 1-butene (2.0 to 2.5 g / kg-solvent). ), And ethylene polymerization (high molecular weight component) was carried out under the conditions of a temperature of 75 to 85 ° C., a total pressure of 2,000 kPa, and an average residence time of 2 hours. The hexane slurry of the second-stage polymer was sent to a flash tank to remove unreacted hydrogen, ethylene, and 1-butene, and then a drying step was performed to obtain a mixture powder of an ethylene-based copolymer. The proportion of the low molecular weight component was 49% by weight, and the proportion of the high molecular weight component was 51% by weight. The two-stage polymerized powder in the above production process was pelletized without additives to obtain polyethylene A.

〔ポリエチレンDの製造〕
特開平7−41513号公報に従い調製したMg、Al、TiおよびClを主成分とするチーグラー系触媒と溶媒(ヘキサン)、エチレン(濃度9〜11g/kg−溶媒)、水素(濃度0.30〜0.50g/kg−溶媒)、トリイソブチルアルミニウム(濃度0.10〜0.20g/kg−溶媒)を第1段目重合器に連続供給し、温度80〜85℃、全圧3,000kPa、平均滞留時間2時間の条件下でエチレン重合(低分子量成分)を行った。第1段目の重合体を含むヘキサンスラリーは、フラッシュタンクにて未反応の水素およびエチレンを除去した後、別の第2段目重合器に連続供給した。第2段目重合器でさらにエチレン(濃度10〜13g/kg−溶媒)、水素(0.010〜0.015g/kg−溶媒)、1−ブテン(8.5〜10g/kg−溶媒)を供給し、温度75〜85℃、全圧2,000kPa、平均滞留時間2時間の条件下でエチレン重合(高分子量成分)を行った。第2段目重合器のヘキサンスラリーをフラッシュタンクに送り、未反応の水素、エチレン、1−ブテンを除去した後、乾燥工程を経てエチレン系共重合体の混合物パウダーを得た。低分子量成分の割合は50重量%、高分子量成分の割合は50重量%とした。上記の製造プロセスで2段重合したパウダーを添加剤無添加によりペレット化し、ポリエチレンDを得た。
[Manufacturing of polyethylene D]
Ziegler-based catalyst containing Mg, Al, Ti and Cl as main components, solvent (hexane), ethylene (concentration 9-11 g / kg-solvent), hydrogen (concentration 0.30 to 0.30) prepared in accordance with JP-A-7-41513. 0.50 g / kg-solvent) and triisobutylaluminum (concentration 0.10 to 0.20 g / kg-solvent) were continuously supplied to the first-stage polymerizer at a temperature of 80 to 85 ° C. and a total pressure of 3,000 kPa. Ethylene polymerization (low molecular weight component) was carried out under the condition of an average residence time of 2 hours. The hexane slurry containing the first-stage polymer was continuously supplied to another second-stage polymer after removing unreacted hydrogen and ethylene in a flash tank. In the second stage polymerizer, ethylene (concentration 10 to 13 g / kg-solvent), hydrogen (0.010 to 0.015 g / kg-solvent), 1-butene (8.5-10 g / kg-solvent) were further added. It was supplied and subjected to ethylene polymerization (high molecular weight component) under the conditions of a temperature of 75 to 85 ° C., a total pressure of 2,000 kPa, and an average residence time of 2 hours. The hexane slurry of the second-stage polymer was sent to a flash tank to remove unreacted hydrogen, ethylene, and 1-butene, and then a drying step was performed to obtain a mixture powder of an ethylene-based copolymer. The proportion of the low molecular weight component was 50% by weight, and the proportion of the high molecular weight component was 50% by weight. The two-stage polymerized powder in the above production process was pelletized without additives to obtain polyethylene D.

(2)フッ素系ポリマー
フッ素系ポリマーA:フッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(商品名:ダイナマーFX5911、スリーエムジャパン(株)製)
フッ素系ポリマーB:フッ化ビニリデン・ヘキサフルオロプロピレン共重合体(商品名:ダイナマーFX9613、スリーエムジャパン(株)製)
(2) Fluorine-based polymer Fluorine-based polymer A: Vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer (trade name: Dynamar FX5911, manufactured by 3M Japan Co., Ltd.)
Fluorine-based polymer B: Vinylidene fluoride / hexafluoropropylene copolymer (trade name: Dynamar FX9613, manufactured by 3M Japan Ltd.)

Figure 2021195436
Figure 2021195436

(3)ブロー成形機
電動式ブロー成形機、MSE−50E/54M−A((株)タハラ製)
(3) Blow molding machine Electric blow molding machine, MSE-50E / 54M-A (manufactured by Tahara Co., Ltd.)

(4)800mL容器のブロー成形
50mmΦの押出スクリューを有するブロー成形機((株)タハラ製)を用いて、シリンダー温度190〜200℃、スクリュー回転数16〜18回転でダイス先端よりパリソンを連続押出し、平均肉厚1mm、内容積800mLの容器を成形した。
(4) Blow molding of 800 mL container Using a blow molding machine (manufactured by Tahara Co., Ltd.) having a 50 mmΦ extrusion screw, the parison is continuously extruded from the tip of the die at a cylinder temperature of 190 to 200 ° C. and a screw rotation speed of 16 to 18 rotations. A container having an average wall thickness of 1 mm and an internal volume of 800 mL was molded.

(5)微粒子数
ポリエチレン系樹脂組成物をブロー成形することで得られた内容積800mL容器を使用した。クリーンルーム内で容器に600mLの超純水を充填し、蓋をして設定温度40℃のクリーンオーブン(ヤマト科学(株)製、DE411)内にて35日間保管後、充填水中の0.1μm以上の微粒子数を微粒子カウンター(リオン(株)製、コントローラー:KE−40B1、パーティクルセンサー:KS−42A)で測定した。水中の微粒子数は個/mLで示す。
(5) Number of fine particles An internal volume 800 mL container obtained by blow molding a polyethylene-based resin composition was used. Fill the container with 600 mL of ultrapure water in a clean room, cover it, store it in a clean oven with a set temperature of 40 ° C (DE411 manufactured by Yamato Kagaku Co., Ltd.) for 35 days, and then store it at 0.1 μm or more in the filled water. The number of fine particles was measured with a fine particle counter (manufactured by Rion Co., Ltd., controller: KE-40B1, particle sensor: KS-42A). The number of fine particles in water is shown in pieces / mL.

(6)表面粗さ
ポリエチレン系樹脂組成物をブロー成形することで得られた内容積800mL容器を使用した。
(6) Surface Roughness A container having an internal volume of 800 mL obtained by blow molding a polyethylene-based resin composition was used.

容器胴部の内表面の最大粗さRz値を形状測定レーザマイクロスコープ((株)キーエンス製、VK−X200)を使用して測定した。 The maximum roughness Rz value of the inner surface of the container body was measured using a shape measuring laser microscope (VK-X200, manufactured by KEYENCE CORPORATION).

(7)含有金属量
試料を灰化したのちにアルカリ溶融を行い、溶液化したものを測定溶液とし、ICP−AES測定により、試料中の含有金属量を測定した。
(7) Amount of metal contained The sample was incinerated and then alkaline-melted, and the solution was used as a measurement solution, and the amount of metal contained in the sample was measured by ICP-AES measurement.

実施例1
ポリエチレンA99.99重量%、フッ素系ポリマーA0.01重量%を溶融混練後、カッティングして組成物を得た。得られた組成物を使用し、ブロー成形にて内容積800mLの容器を作製した。成形時の樹脂圧力は、ポリエチレンAのみで成形した場合と比較して、2.7MPa低下していた。得られた容器から溶出する微粒子数、容器内表面のRzおよび容器の含有金属量を測定した。その結果を表2に示すが、0.1μm以上の微粒子数は20個/mL、Rzは9.9μm、含有金属量は14ppmであった。
Example 1
A 99.99% by weight polyethylene A and 0.01% by weight a fluoropolymer A were melt-kneaded and then cut to obtain a composition. Using the obtained composition, a container having an internal volume of 800 mL was prepared by blow molding. The resin pressure at the time of molding was 2.7 MPa lower than that in the case of molding only with polyethylene A. The number of fine particles eluted from the obtained container, Rz on the inner surface of the container, and the amount of metal contained in the container were measured. The results are shown in Table 2. The number of fine particles of 0.1 μm or more was 20 / mL, the Rz was 9.9 μm, and the amount of metal contained was 14 ppm.

実施例2
ポリエチレンA99.97重量%、フッ素系ポリマーA0.03重量%を溶融混練後、カッティングして組成物を得た。得られた組成物を使用し、ブロー成形にて内容積800mLの容器を作製した。成形時の樹脂圧力は、ポリエチレンAのみで成形した場合と比較して、3.6MPa低下していた。得られた容器から溶出する微粒子数、容器内表面のRzおよび容器の含有金属量を測定した。その結果を表3に示すが、0.1μm以上の微粒子数は17個/mL、Rzは8.7μm、含有金属量は14ppmであった。
Example 2
Polyethylene A 99.97% by weight and fluorinated polymer A 0.03% by weight were melt-kneaded and then cut to obtain a composition. Using the obtained composition, a container having an internal volume of 800 mL was prepared by blow molding. The resin pressure at the time of molding was 3.6 MPa lower than that in the case of molding only with polyethylene A. The number of fine particles eluted from the obtained container, Rz on the inner surface of the container, and the amount of metal contained in the container were measured. The results are shown in Table 3. The number of fine particles of 0.1 μm or more was 17 / mL, the Rz was 8.7 μm, and the amount of metal contained was 14 ppm.

実施例3
ポリエチレンA99.95重量%、フッ素系ポリマーA0.05重量%を溶融混練後、カッティングして組成物を得た。得られた組成物を使用し、ブロー成形にて内容積800mLの容器を作製した。成形時の樹脂圧力は、ポリエチレンAのみで成形した場合と比較して、3.6MPa低下していた。得られた容器から溶出する微粒子数、容器内表面のRzおよび容器の含有金属量を測定した。その結果を表3に示すが、0.1μm以上の微粒子数は22個/mL、Rzは8.5μm、含有金属量は14ppmであった。
Example 3
Polyethylene A 99.95% by weight and fluorinated polymer A 0.05% by weight were melt-kneaded and then cut to obtain a composition. Using the obtained composition, a container having an internal volume of 800 mL was prepared by blow molding. The resin pressure at the time of molding was 3.6 MPa lower than that in the case of molding only with polyethylene A. The number of fine particles eluted from the obtained container, Rz on the inner surface of the container, and the amount of metal contained in the container were measured. The results are shown in Table 3. The number of fine particles of 0.1 μm or more was 22 / mL, the Rz was 8.5 μm, and the amount of metal contained was 14 ppm.

実施例4
ポリエチレンB99.95重量%、フッ素ポリマーA0.05重量%を溶融混練後、カッティングして組成物を得た。得られた組成物を使用し、ブロー成形にて内容積800mLの容器を作製した。成形時の樹脂圧力は、ポリエチレンBのみで成形した場合と比較して、3.1MPa低下していた。得られた容器から溶出する微粒子数、容器内表面のRzおよび容器の含有金属量を測定した。その結果を表3に示すが、0.1μm以上の微粒子数は19個/mL、Rzは7.8μm、含有金属は13ppmであった。
Example 4
Polyethylene B 99.95% by weight and fluoropolymer A 0.05% by weight were melt-kneaded and then cut to obtain a composition. Using the obtained composition, a container having an internal volume of 800 mL was prepared by blow molding. The resin pressure at the time of molding was 3.1 MPa lower than that in the case of molding only with polyethylene B. The number of fine particles eluted from the obtained container, Rz on the inner surface of the container, and the amount of metal contained in the container were measured. The results are shown in Table 3. The number of fine particles of 0.1 μm or more was 19 / mL, the Rz was 7.8 μm, and the contained metal was 13 ppm.

比較例1
ポリエチレンA99.99重量%、フッ素系ポリマーB0.01重量%を溶融混練後、カッティングして組成物を得た。得られた組成物を使用し、ブロー成形にて内容積800mLの容器を作製した。成形時の樹脂圧力は、ポリエチレンAのみで成形した場合と比較して、1.3MPa低下していた。得られた容器から溶出する微粒子数、容器内表面のRzおよび容器の含有金属量を測定した。その結果を表3に示すが、0.1μm以上の微粒子数は40個/mL、Rzは10.1μm、含有金属量は22ppmであった。
Comparative Example 1
99.99% by weight of polyethylene A and 0.01% by weight of the fluoropolymer B were melt-kneaded and then cut to obtain a composition. Using the obtained composition, a container having an internal volume of 800 mL was prepared by blow molding. The resin pressure at the time of molding was 1.3 MPa lower than that in the case of molding only with polyethylene A. The number of fine particles eluted from the obtained container, Rz on the inner surface of the container, and the amount of metal contained in the container were measured. The results are shown in Table 3. The number of fine particles of 0.1 μm or more was 40 / mL, the Rz was 10.1 μm, and the amount of metal contained was 22 ppm.

比較例2
ポリエチレンA99.97重量%、フッ素系ポリマーB0.03重量%を溶融混練後、カッティングして組成物を得た。得られた組成物を使用し、ブロー成形にて内容積800mLの容器を作製した。成形時の樹脂圧力は、ポリエチレンAのみで成形した場合と比較して、1.9MPa低下していた。得られた容器から溶出する微粒子数、容器内表面のRzおよび容器の含有金属量を測定した。その結果を表3に示すが、0.1μm以上の微粒子数は58個/mL、Rzは9.1μm、含有金属量は35ppmであった。
Comparative Example 2
Polyethylene A 99.97% by weight and fluorinated polymer B 0.03% by weight were melt-kneaded and then cut to obtain a composition. Using the obtained composition, a container having an internal volume of 800 mL was prepared by blow molding. The resin pressure at the time of molding was 1.9 MPa lower than that in the case of molding only with polyethylene A. The number of fine particles eluted from the obtained container, Rz on the inner surface of the container, and the amount of metal contained in the container were measured. The results are shown in Table 3. The number of fine particles of 0.1 μm or more was 58 / mL, the Rz was 9.1 μm, and the amount of metal contained was 35 ppm.

比較例3
ポリエチレンA99.95重量%、フッ素系ポリマーB0.05重量%を溶融混練後、カッティングして組成物を得た。得られた組成物を使用し、ブロー成形にて内容積800mLの容器を作製した。成形時の樹脂圧力は、ポリエチレンAのみで成形した場合と比較して、2.3MPa低下していた。得られた容器から溶出する微粒子数、容器内表面のRzおよび容器の含有金属量を測定した。その結果を表3に示すが、0.1μm以上の微粒子数は76個/mL、Rzは8.1μm、含有金属量は45ppmであった。
Comparative Example 3
Polyethylene A 99.95% by weight and fluorinated polymer B 0.05% by weight were melt-kneaded and then cut to obtain a composition. Using the obtained composition, a container having an internal volume of 800 mL was prepared by blow molding. The resin pressure at the time of molding was 2.3 MPa lower than that in the case of molding only with polyethylene A. The number of fine particles eluted from the obtained container, Rz on the inner surface of the container, and the amount of metal contained in the container were measured. The results are shown in Table 3. The number of fine particles of 0.1 μm or more was 76 / mL, the Rz was 8.1 μm, and the amount of metal contained was 45 ppm.

比較例4
ポリエチレンB99.99重量%、フッ素ポリマーB0.01重量%を溶融混練後、カッティングして組成物を得た。得られた組成物を使用し、ブロー成形にて内容積800mLの容器を作製した。成形時の樹脂圧力は、ポリエチレンBのみで成形した場合と比較して、2.1MPa低下していた。得られた容器から溶出する微粒子数、容器内表面のRzおよび容器の含有金属量を測定した。その結果を表3に示すが、0.1μm以上の微粒子数は38個/mL、Rzは8.0μm、含有金属量は22ppmであった。
Comparative Example 4
Polyethylene B 99.99% by weight and fluoropolymer B 0.01% by weight were melt-kneaded and then cut to obtain a composition. Using the obtained composition, a container having an internal volume of 800 mL was prepared by blow molding. The resin pressure at the time of molding was 2.1 MPa lower than that in the case of molding only with polyethylene B. The number of fine particles eluted from the obtained container, Rz on the inner surface of the container, and the amount of metal contained in the container were measured. The results are shown in Table 3. The number of fine particles of 0.1 μm or more was 38 / mL, the Rz was 8.0 μm, and the amount of metal contained was 22 ppm.

比較例5
ポリエチレンC99.99重量%、フッ素ポリマーA0.01重量%を溶融混練後、カッティングして組成物を得た。得られた組成物を使用し、ブロー成形にて内容積800mLの容器を作製した。成形時の樹脂圧力は、ポリエチレンCのみで成形した場合と比較して、1.6MPa低下していた。得られた容器から溶出する微粒子数、容器内表面のRzおよび容器の含有金属量を測定した。その結果を表3に示すが、0.1μm以上の微粒子数は280個/mL、Rzは7.9μm、含有金属量は85ppmであった。
Comparative Example 5
Polyethylene C 99.99% by weight and fluoropolymer A 0.01% by weight were melt-kneaded and then cut to obtain a composition. Using the obtained composition, a container having an internal volume of 800 mL was prepared by blow molding. The resin pressure at the time of molding was 1.6 MPa lower than that in the case of molding only with polyethylene C. The number of fine particles eluted from the obtained container, Rz on the inner surface of the container, and the amount of metal contained in the container were measured. The results are shown in Table 3. The number of fine particles of 0.1 μm or more was 280 / mL, the Rz was 7.9 μm, and the amount of metal contained was 85 ppm.

比較例6
ポリエチレンD99.99重量%、フッ素ポリマーA0.01重量%を溶融混練後、カッティングして組成物を得た。得られた組成物を使用し、ブロー成形にて内容積800mLの容器を作製した。成形時の樹脂温度は、ポリエチレンDのみで成形した場合と比較して、1.8MPa低下していた。得られた容器から溶出する微粒子数、容器内表面のRzおよび容器の含有金属量を測定した。その結果を表3に示すが、0.1μm以上の微粒子数は28個/mL、Rzは8.1μm、含有金属量は17ppmであった。
Comparative Example 6
Polyethylene D99.99% by weight and fluoropolymer A 0.01% by weight were melt-kneaded and then cut to obtain a composition. Using the obtained composition, a container having an internal volume of 800 mL was prepared by blow molding. The resin temperature at the time of molding was 1.8 MPa lower than that in the case of molding only with polyethylene D. The number of fine particles eluted from the obtained container, Rz on the inner surface of the container, and the amount of metal contained in the container were measured. The results are shown in Table 3. The number of fine particles of 0.1 μm or more was 28 / mL, the Rz was 8.1 μm, and the amount of metal contained was 17 ppm.

Figure 2021195436
Figure 2021195436

Claims (5)

下記(1)〜(5)の要件を満たすポリエチレン樹脂99.90〜99.99重量%、及びフッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体0.01〜0.10重量%を含むポリエチレン系樹脂組成物。
(1)密度(JIS K6922−1)が940〜960kg/m
(2)190℃、21.6kg荷重のメルトフローレート(JIS K6922−1)が2.0〜12g/10分
(3)ゲルパーミエーション・クロマトグラフィー(GPC)より求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が8.0〜15
(4)ゲルパーミエーション・クロマトグラフィー(GPC)を用いて得られる分子量分布曲線において、分子量1000以下の成分が0.50重量%以下
(5)含有金属量が20ppm以下
Contains 99.90 to 99.99% by weight of polyethylene resin satisfying the following requirements (1) to (5), and 0.01 to 0.10% by weight of vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer. Polyethylene resin composition.
(1) Density (JIS K6922-1) is 940-960 kg / m 3
(2) Melt flow rate (JIS K6922-1) at 190 ° C. and 21.6 kg load is 2.0 to 12 g / 10 minutes (3) Weight average molecular weight (Mw) determined by gel permeation chromatography (GPC). And the ratio (Mw / Mn) of the number average molecular weight (Mn) is 8.0 to 15.
(4) In the molecular weight distribution curve obtained by gel permeation chromatography (GPC), 0.50% by weight or less of the components having a molecular weight of 1000 or less (5) 20 ppm or less of the contained metal content.
請求項1に記載のポリエチレン系樹脂組成物よりなることを特徴とする高純度薬品用容器。 A container for high-purity chemicals, which comprises the polyethylene-based resin composition according to claim 1. 容器から溶出する0.1μm以上の微粒子数が25個/mL以下であることを特徴とする請求項2に記載の高純度薬品用容器。 The container for high-purity chemicals according to claim 2, wherein the number of fine particles of 0.1 μm or more eluted from the container is 25 / mL or less. 含有金属量が20ppm以下であることを特徴とする請求項2又は3に記載の高純度薬品用容器。 The container for high-purity chemicals according to claim 2 or 3, wherein the content of metal is 20 ppm or less. 容器内表面の最大粗さが10μm以下であることを特徴とする請求項2〜4のいずれかに記載の高純度薬品用容器。 The container for high-purity chemicals according to any one of claims 2 to 4, wherein the maximum roughness of the inner surface of the container is 10 μm or less.
JP2020102149A 2020-06-12 2020-06-12 Polyethylene-based resin composition and container for high purity chemical solution Pending JP2021195436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020102149A JP2021195436A (en) 2020-06-12 2020-06-12 Polyethylene-based resin composition and container for high purity chemical solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020102149A JP2021195436A (en) 2020-06-12 2020-06-12 Polyethylene-based resin composition and container for high purity chemical solution

Publications (1)

Publication Number Publication Date
JP2021195436A true JP2021195436A (en) 2021-12-27

Family

ID=79197220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020102149A Pending JP2021195436A (en) 2020-06-12 2020-06-12 Polyethylene-based resin composition and container for high purity chemical solution

Country Status (1)

Country Link
JP (1) JP2021195436A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190919A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer
WO2023190901A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer
WO2023190918A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer
WO2023190900A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer
WO2023190899A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer
WO2023190917A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer
WO2023190898A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer
JP7381981B1 (en) 2022-07-15 2023-11-16 ダイキン工業株式会社 Fluorine-containing copolymer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190919A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer
WO2023190901A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer
WO2023190918A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer
WO2023190900A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer
WO2023190899A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer
WO2023190917A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer
WO2023190898A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer
JP7364974B1 (en) 2022-03-30 2023-10-19 ダイキン工業株式会社 Fluorine-containing copolymer
JP7364975B1 (en) 2022-03-30 2023-10-19 ダイキン工業株式会社 Fluorine-containing copolymer
JP7364980B1 (en) 2022-03-30 2023-10-19 ダイキン工業株式会社 Fluorine-containing copolymer
JP7364978B1 (en) 2022-03-30 2023-10-19 ダイキン工業株式会社 Fluorine-containing copolymer
JP7364979B1 (en) 2022-03-30 2023-10-19 ダイキン工業株式会社 Fluorine-containing copolymer
JP7364977B1 (en) 2022-03-30 2023-10-19 ダイキン工業株式会社 Fluorine-containing copolymer
JP7364976B1 (en) 2022-03-30 2023-10-19 ダイキン工業株式会社 Fluorine-containing copolymer
JP7381981B1 (en) 2022-07-15 2023-11-16 ダイキン工業株式会社 Fluorine-containing copolymer
WO2024014518A1 (en) * 2022-07-15 2024-01-18 ダイキン工業株式会社 Fluorine-containing copolymer

Similar Documents

Publication Publication Date Title
JP2021195436A (en) Polyethylene-based resin composition and container for high purity chemical solution
EP1462458B1 (en) Molding material for ozone-resistant articles and ozone-resistant injection-molded articles
JP4181042B2 (en) Processing aids for melt processable polymers
JP6330914B2 (en) Processing aid
RU2483082C1 (en) Process additive, moulding composition, mother batch of process additive and moulded article
JP2013071341A (en) Fluororesin molded article
JP3743787B2 (en) Polyethylene resin for high-purity chemical containers and high-purity chemical containers comprising the same
WO2014203727A1 (en) Processing aid, and composition
JP5145911B2 (en) Polyethylene resin composition and blow container comprising the same
JP3743788B2 (en) Polyethylene resin for high-purity chemical containers, composition and high-purity chemical container comprising the same
WO2015133315A1 (en) Method for melt molding of vinylidene fluoride resin, and melt molded product of vinylidene fluoride resin
JP6571237B2 (en) Fluoropolymer molded product
JP6206286B2 (en) Polyethylene for large high-purity chemical containers
JP6546143B2 (en) Method of manufacturing injection molded articles
JP6705157B2 (en) Polyethylene resin for ultra high purity chemical containers and high purity chemical containers made of the same
JP7056304B2 (en) Polyethylene for high-purity chemical containers and high-purity chemical containers
TW202206509A (en) Resin pellet and molded product thereof
JP7243223B2 (en) Method for manufacturing high-purity chemical container
JP5283891B2 (en) Polyethylene resin composition for clean container packaging
JP2006299067A (en) Blow molded container
JP7397390B1 (en) Compositions, injection molded objects, powder coatings and coated wires
JP3750200B2 (en) Container for high-purity chemicals
JP2023149524A (en) Polyethylene resin for high purity chemical and container made of the same
WO2021168181A1 (en) Pvdf extrusion agent containing interfacial agent
JP2002069205A (en) Method for manufacturing modified polyethylene suitable for optical fiber spacer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312