JP6206286B2 - Polyethylene for large high-purity chemical containers - Google Patents
Polyethylene for large high-purity chemical containers Download PDFInfo
- Publication number
- JP6206286B2 JP6206286B2 JP2014062382A JP2014062382A JP6206286B2 JP 6206286 B2 JP6206286 B2 JP 6206286B2 JP 2014062382 A JP2014062382 A JP 2014062382A JP 2014062382 A JP2014062382 A JP 2014062382A JP 6206286 B2 JP6206286 B2 JP 6206286B2
- Authority
- JP
- Japan
- Prior art keywords
- polyethylene
- less
- characteristic
- component
- molecular weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000573 polyethylene Polymers 0.000 title claims description 89
- -1 Polyethylene Polymers 0.000 title claims description 75
- 239000004698 Polyethylene Substances 0.000 title claims description 73
- 239000000126 substance Substances 0.000 title claims description 61
- 238000006116 polymerization reaction Methods 0.000 claims description 51
- 238000005227 gel permeation chromatography Methods 0.000 claims description 49
- 239000003054 catalyst Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 27
- 238000001514 detection method Methods 0.000 claims description 20
- 239000002685 polymerization catalyst Substances 0.000 claims description 19
- 239000011949 solid catalyst Substances 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 11
- 239000000155 melt Substances 0.000 claims description 11
- 238000000465 moulding Methods 0.000 claims description 11
- 238000012360 testing method Methods 0.000 claims description 11
- 125000005843 halogen group Chemical group 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 9
- 125000003118 aryl group Chemical group 0.000 claims description 9
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 25
- 239000005977 Ethylene Substances 0.000 description 25
- 229920013716 polyethylene resin Polymers 0.000 description 25
- 239000010419 fine particle Substances 0.000 description 22
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 239000010936 titanium Substances 0.000 description 17
- 238000010828 elution Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 10
- 239000004711 α-olefin Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 238000000071 blow moulding Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 230000000379 polymerizing effect Effects 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 239000012986 chain transfer agent Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000011208 chromatographic data Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 239000012968 metallocene catalyst Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000001542 size-exclusion chromatography Methods 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- VQOXUMQBYILCKR-UHFFFAOYSA-N 1-Tridecene Chemical compound CCCCCCCCCCCC=C VQOXUMQBYILCKR-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N 1-nonene Chemical compound CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- DCTOHCCUXLBQMS-UHFFFAOYSA-N 1-undecene Chemical compound CCCCCCCCCC=C DCTOHCCUXLBQMS-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000002035 hexane extract Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 150000002681 magnesium compounds Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- CMAOLVNGLTWICC-UHFFFAOYSA-N 2-fluoro-5-methylbenzonitrile Chemical compound CC1=CC=C(F)C(C#N)=C1 CMAOLVNGLTWICC-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 229910021551 Vanadium(III) chloride Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002481 ethanol extraction Methods 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 238000012685 gas phase polymerization Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000011990 phillips catalyst Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000001175 rotational moulding Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- HQYCOEXWFMFWLR-UHFFFAOYSA-K vanadium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[V+3] HQYCOEXWFMFWLR-UHFFFAOYSA-K 0.000 description 1
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
Description
本発明は、高純度薬品容器用ポリエチレン樹脂に関し、特に大型高純度薬品容器に好適で、保存貯蔵している内容物へのポリエチレン樹脂由来の微粒子や重合触媒成分由来の金属溶出成分が少なく、成形性、耐環境応力亀裂性(ESCR)に優れた高純度薬品容器用ポリエチレン樹脂及び高純度薬品容器に関する。 The present invention relates to a polyethylene resin for high-purity chemical containers, and is particularly suitable for large-sized high-purity chemical containers, and has a small amount of polyethylene-derived fine particles and polymerization catalyst component-derived metal elution components in the stored and stored contents. The present invention relates to a polyethylene resin for high-purity chemical containers and a high-purity chemical container that are excellent in heat resistance and environmental stress crack resistance (ESCR).
近年、軽量化、省エネルギー化の目的で、各種容器のプラスチック化が活発に押し進められている。プラスチック材としては、高強度、高耐候性、高耐薬品性及び環境問題等の観点からポリオレフィン樹脂が一般に用いられている。ポリオレフィン樹脂の中でも、特にポリエチレン樹脂は、各種の成形用樹脂として好適な樹脂である。しかしながら、高純度な内容物を充填する容器の用途においては、よりクリーンなポリエチレン樹脂が要求されるようになってきている。特に、医薬品容器用途、試薬容器用途、半導体向け高純度薬品容器用途におけるポリエチレン樹脂においては、その充填される内容物の純度の観点から、よりクリーンなポリエチレン樹脂が要求され、添加剤類の減少ないし無添加であることが要求される上に、重合触媒等に由来する灰分が少ないことが必要になっている。
特に、半導体製造分野においては、ウェハ洗浄やエッチング等の工程において、各種洗浄液やフッ酸、過酸化水素水等の高純度薬品が使用されているが、半導体回路の集積度の向上とともに、これらの薬品中の不純物や微粒子に対する低減化の要求が一層厳しくなっており、この厳しい要求を満足させるために、これらの薬品を充填する容器に対するクリーン化の要求も年々高まっている。また、上記の要求とともに、これら薬品を充填する容器の大型化、高耐久性化等の要求も高まっている。
In recent years, plasticization of various containers has been actively promoted for the purpose of reducing the weight and saving energy. As the plastic material, a polyolefin resin is generally used from the viewpoint of high strength, high weather resistance, high chemical resistance, environmental problems, and the like. Among polyolefin resins, polyethylene resin is particularly suitable as various molding resins. However, a cleaner polyethylene resin has been required for use of containers filled with high-purity contents. In particular, for polyethylene resins in pharmaceutical container applications, reagent container applications, and high-purity chemical container applications for semiconductors, cleaner polyethylene resins are required from the viewpoint of the purity of the contents to be filled. In addition to being required to be additive-free, it is necessary that the amount of ash derived from the polymerization catalyst or the like is small.
In particular, in the field of semiconductor manufacturing, high-purity chemicals such as various cleaning liquids, hydrofluoric acid, and hydrogen peroxide are used in processes such as wafer cleaning and etching. The demand for reduction of impurities and fine particles in chemicals is becoming stricter, and in order to satisfy this strict demand, the demand for cleaning containers filled with these chemicals is increasing year by year. In addition to the above requirements, there are increasing demands for increasing the size and durability of containers filled with these chemicals.
この問題を解決する方法として、特許文献1(特開平11−080257号公報)には、密度が0.94〜0.97g/cm3 、温度190℃、21.6kg荷重のメルトフローレートが2〜50g/10分、ゲルパーミエーション・クロマトグラフィー(GPC)より求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が8〜15、沸騰ノルマルヘキサン抽出量が0.1重量%以下、含有塩素量がポリエチレン樹脂に対して15PPM以下である性状を有する高純度薬品容器用ポリエチレン樹脂が提案されているが、重合触媒成分由来の金属成分の影響に対する改良が十分というわけでなく、必ずしも満足出来る高純度薬品容器を得られるということではない。 As a method for solving this problem, Patent Document 1 (Japanese Patent Laid-Open No. 11-080257) discloses that a melt flow rate with a density of 0.94 to 0.97 g / cm 3 , a temperature of 190 ° C., and a load of 21.6 kg is 2. -50 g / 10 min, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) determined by gel permeation chromatography (GPC) is 8 to 15, and the boiling normal hexane extract is 0 .1% by weight or less, and a polyethylene resin for high-purity chemical containers having a property that the chlorine content is 15 PPM or less with respect to the polyethylene resin has been proposed, but the improvement to the influence of the metal component derived from the polymerization catalyst component is said to be sufficient However, this does not necessarily mean that a satisfactory high-purity chemical container can be obtained.
特許文献2(特開平11−080258号公報)には、密度が0.935〜0.97g/cm3 、温度190℃、21.6Kg荷重のメルトフローレートが2〜100g/10分、GPCより求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.5〜5、灰分量が50PPM以下、含有塩素量が5PPM以下である性状を有する高純度薬品容器用ポリエチレン樹脂が提案されているが、重合触媒成分由来の金属成分の影響に対する改良が十分というわけでなく、Mw/Mnが小さいため成形性が必ずしも良好とは言えず、満足出来る高純度薬品容器を得られるということではない。 In Patent Document 2 (Japanese Patent Laid-Open No. 11-080258), the density is 0.935 to 0.97 g / cm 3 , the temperature is 190 ° C., the melt flow rate at 21.6 kg load is 2 to 100 g / 10 minutes, from GPC. A high-purity chemical container having the properties that the ratio (Mw / Mn) of the required weight average molecular weight (Mw) and number average molecular weight (Mn) is 1.5 to 5, the ash content is 50 PPM or less, and the chlorine content is 5 PPM or less. Polyethylene resin has been proposed, but the improvement to the influence of the metal component derived from the polymerization catalyst component is not sufficient, and because Mw / Mn is small, the moldability is not necessarily good, and a satisfactory high-purity chemical container It does not mean that you can get.
特許文献3(特開平11−080449号公報)には、密度が0.94〜0.97g/cm3 、温度190℃、21.6kg荷重のメルトフローレートが1〜15g/10分、GPCより求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が8〜15、190℃における溶融張力が15〜65g、沸騰ノルマルヘキサン抽出量が0.1重量%以下、灰分量が50PPM以下である性状を有する大型高純度薬品容器用ポリエチレン樹脂が提案されているが、重合触媒成分由来の金属成分の影響に対する改良が十分というわけでなく、二段重合法で製造される成分の特性が具体的でなく、必ずしも満足出来る高純度薬品容器を得られるということではない。 In Patent Document 3 (Japanese Patent Laid-Open No. 11-080449), the density is 0.94 to 0.97 g / cm 3 , the temperature is 190 ° C., the melt flow rate at 21.6 kg load is 1 to 15 g / 10 minutes, from GPC. The required weight average molecular weight (Mw) and number average molecular weight (Mn) ratio (Mw / Mn) is 8 to 15, melt tension at 190 ° C. is 15 to 65 g, boiling normal hexane extract is 0.1% by weight or less, A polyethylene resin for large-sized high-purity chemical containers having a ash content of 50 PPM or less has been proposed, but the improvement to the influence of the metal component derived from the polymerization catalyst component is not sufficient, and it is produced by a two-stage polymerization method. The characteristics of the components to be obtained are not specific, and it does not necessarily mean that a satisfactory high-purity chemical container can be obtained.
特許文献4(特開2000−129044号公報)には、密度が0.945g/cm3 以上0.975g/cm3以下であり、I2 が0.05g/10min以上30g/10min以下である、スラリー重合法によりメタロセン系触媒により製造された特定性状のポリエチレン99〜1wt%と、スラリー重合法によりクロム系触媒により製造された特定性状のポリエチレン1〜99wt%からなるポリエチレン組成物よりなる高純度薬品用容器が提案されているが、重合触媒成分由来の金属成分の影響に対する改良が十分というわけでなく、必ずしも満足出来る高純度薬品容器を得られるということではない。 Patent Document 4 (JP 2000-129044), a density of not more than 0.945 g / cm 3 or more 0.975g / cm 3, I 2 is less than 0.05 g / 10min or more 30 g / 10min, A high-purity chemical comprising a polyethylene composition comprising 99 to 1 wt% of a specific property polyethylene produced by a metallocene catalyst by a slurry polymerization method and 1 to 99 wt% of a specific property polyethylene produced by a chromium catalyst by a slurry polymerization method However, the improvement to the influence of the metal component derived from the polymerization catalyst component is not sufficient, and it is not always possible to obtain a satisfactory high-purity chemical container.
特許文献5(特開2003−096133号公報)には、密度が0.95〜0.97g/cm3、温度190℃、荷重2.16kgで測定されるメルトフローレートが0.1〜1g/10分、灰分量が15ppm以下、動的粘弾性測定(温度190℃、歪み量10%)により求められた貯蔵弾性率G’と損失弾性率G”とが等しくなる時の貯蔵弾性率の値G0が300000〜540000dyn/cm2である性状を有することを特徴とする高純度薬品容器用ポリエチレン樹脂が提案されているが、微粒子成分の長期間に渡る低溶出性について改良の余地がある。 In Patent Document 5 (Japanese Patent Laid-Open No. 2003-096133), a melt flow rate measured at a density of 0.95 to 0.97 g / cm 3 , a temperature of 190 ° C., and a load of 2.16 kg is 0.1 to 1 g / The value of the storage elastic modulus when the storage elastic modulus G ′ and the loss elastic modulus G ″ determined by dynamic viscoelasticity measurement (temperature 190 ° C., strain 10%) are equal for 10 minutes, the ash content is 15 ppm or less, A polyethylene resin for high-purity chemical containers characterized by having a property that G 0 is 300,000 to 540000 dyn / cm 2 has been proposed, but there is room for improvement with respect to low elution properties over a long period of the fine particle component.
特許文献6(特開2008−179799号公報)には、少なくとも低分子量成分と構文子量成分とからなる多段重合法によりチーグラー触媒を用いて製造されたポリエチレン樹脂組成物であって、該低分子量成分が、メルトフローレート(JIS K7210−1999、コードD)が3g/10分以上50g/10分以下、密度(JIS K7112−1999)が960kg/m3以上974kg/m3以下であるエチレンの単独重合体もしくはエチレンと炭素数3以上20以下のα−オレフィンとの共重合体であって、該高分子量成分の該ポリエチレン樹脂組成物に対する質量分率が0.40以上0.46以下であり、該ポリエチレン樹脂組成物が、密度(JIS K7112−1999)が955kg/m3以上965kg/m3以下、メルトフローレート(JIS K7210−1999、コードT)が0.40g/10分以上1.0g/10分以下であり、実質的に添加剤を含まないことを特徴とする大型高純度薬品容器用のポリエチレン樹脂組成物が提案されているが、重合触媒成分由来の金属成分の影響に対する改良が十分というわけでなく、必ずしも満足出来る高純度薬品容器を得られるということではない。 Patent Document 6 (Japanese Patent Application Laid-Open No. 2008-179799) discloses a polyethylene resin composition produced using a Ziegler catalyst by a multistage polymerization method comprising at least a low molecular weight component and a syntactic component, and the low molecular weight component, the melt flow rate (JIS K7210-1999, code D) is 3 g / 10 min or more 50 g / 10 minutes or less, the density (JIS K7112-1999) is ethylene or less 960 kg / m 3 or more 974kg / m 3 alone A polymer or a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms, wherein a mass fraction of the high molecular weight component to the polyethylene resin composition is 0.40 or more and 0.46 or less, the polyethylene resin composition, density (JIS K7112-1999) is 955 kg / m 3 or more 965 kg / m 3 or less The melt flow rate (JIS K7210-1999, code T) is 0.40 g / 10 min or more and 1.0 g / 10 min or less, and is substantially free of additives. The polyethylene resin composition is proposed, but the improvement to the influence of the metal component derived from the polymerization catalyst component is not sufficient, and it is not necessarily possible to obtain a satisfactory high-purity chemical container.
特許文献7(特開2010−242077号公報)には、直鎖状ポリエチレンであって、エチレン単独重合体又はエチレン単位と1又は2種以上の炭素数3〜20のα−オレフィン単位とからなる共重合体であり、密度が940〜975kg/m3であり、温度190℃、2.16kg荷重におけるメルトフローレートが0.1〜20g/10分であり、GPCにより求められるMw/Mnが、3.0〜7.0であり、GPCで得られる分子量分布曲線から得られる分子量1,000以下の成分の占有率が、1.0重量%以下であり、GPCで得られる分子量分布曲線から得られる分子量100万以上の成分の占有率が、0.5重量%以下であり、示差走査型熱量計による昇温測定において得られる吸熱曲線の融点ピークが一つであり、80℃におけるノルマルヘプタン抽出分の量が1.0重量%以下であり、エタノール抽出による炭素数18、及び20の炭化水素成分量が100ppm以下であることを特徴とする高純度薬品容器用ポリエチレンが提案されているが、重合触媒成分由来の金属成分の影響に対する改良が十分というわけでなく、Mw/Mnが小さいため成形性が必ずしも良好とは言えず、満足出来る高純度薬品容器を得られるということではない。 Patent Document 7 (Japanese Patent Laid-Open No. 2010-242077) is a linear polyethylene comprising an ethylene homopolymer or an ethylene unit and one or two or more α-olefin units having 3 to 20 carbon atoms. It is a copolymer, has a density of 940 to 975 kg / m 3 , a melt flow rate of 0.1 to 20 g / 10 min at a temperature of 190 ° C. and a load of 2.16 kg, and Mw / Mn determined by GPC is It is 3.0 to 7.0, and the occupancy ratio of the component having a molecular weight of 1,000 or less obtained from the molecular weight distribution curve obtained by GPC is 1.0% by weight or less, and obtained from the molecular weight distribution curve obtained by GPC. The occupancy ratio of the component having a molecular weight of 1 million or more is 0.5% by weight or less, and there is one melting point peak of the endothermic curve obtained in the temperature rise measurement by the differential scanning calorimeter, A polyethylene for high-purity chemical containers has been proposed, wherein the amount of normal heptane extracted from is 1.0 wt% or less, and the amount of hydrocarbon components having 18 and 20 carbon atoms by ethanol extraction is 100 ppm or less. However, the improvement to the influence of the metal component derived from the polymerization catalyst component is not sufficient, and because Mw / Mn is small, the moldability is not necessarily good, and a satisfactory high-purity chemical container can be obtained. Absent.
本発明の目的は、保存貯蔵している内容物へのポリエチレン樹脂由来の微粒子や重合触媒成分由来の金属溶出成分が少なく、かつ成形時の耐ドローダウン性や吐出性等の成形性に優れ、しかもESCR/クリーン性のバランスに優れた高純度薬品容器用ポリエチレン樹脂及び該ポリエチレン樹脂を成形した高純度薬品容器を提供することにある。特に、大型の容器に適し、かつ充填された薬液に対して微粒子成分の溶出量が小さく、長期間に渡って微粒子の溶出量が小さい容器用ポリエチレンを提供することにある。 The purpose of the present invention is that there are few metal elution components derived from polyethylene resin-derived fine particles and polymerization catalyst components in the contents stored and stored, and excellent in moldability such as drawdown resistance and dischargeability during molding, And it is providing the high purity chemical container which shape | molded the polyethylene resin for high purity chemical containers excellent in the balance of ESCR / cleanness, and this polyethylene resin. In particular, an object of the present invention is to provide a polyethylene for a container that is suitable for a large container and has a small amount of fine particle components eluted from a filled chemical solution and a small amount of fine particles eluted over a long period of time.
本発明者らは、上記課題を解決するために鋭意検討した結果、密度、メルトフローレート、ゲルパーミエーション・クロマトグラフィー(GPC)により求められる分子量等の特性、含まれるTiやAlの含有量等が特定の性状を有するポリエチレンを使用することにより、ポリエチレン由来の微粒子や重合触媒成分由来の金属溶出成分が少なく、成形性、ESCRに優れた、大型高純度薬品容器が得られることを見出し、本発明に至った。 As a result of intensive studies to solve the above problems, the present inventors have found characteristics such as density, melt flow rate, molecular weight required by gel permeation chromatography (GPC), content of contained Ti and Al, etc. Found that by using polyethylene having a specific property, a large-sized high-purity chemical container excellent in moldability and ESCR can be obtained with few polyethylene-derived fine particles and metal-eluting components derived from polymerization catalyst components. Invented.
即ち、本発明の第1の発明によれば、下記の成分(A)を30〜70重量%、及び成分(B)を70〜30重量%含有し、下記の(1)〜(6)、(8)〜(10)の特性を有することを特徴とする高純度薬品容器用ポリエチレンが提供される。
成分(A):HLMFRが0.5〜2g/10分、密度が0.941〜0.945g/cm 3 であるエチレン系重合体。
成分(B):温度190℃、荷重2.16kgで測定されるメルトフローレート(MFR)が10〜20g/10分、密度が0.965〜0.969g/cm 3 であるエチレン系重合体。
特性(1)密度が0.940〜0.960g/cm3である
特性(2)温度190℃、荷重21.6kgで測定されるメルトフローレート(HLMFR)が5〜15g/10分である
特性(3)ゲルパーミエーション・クロマトグラフィー(GPC)により測定され、ポリエチレン全体の検出面積に対する分子量10,000以下の成分の検出面積の割合が14.0%以下である
特性(4)GPCにより測定され、ポリエチレン全体の検出面積に対する分子量1,000,000以上の成分の検出面積の割合が7.0%以下である
特性(5)Tiの含有量がポリエチレン全体に対して1.5重量ppm以下である
特性(6)Alの含有量がポリエチレン全体に対して3.0重量ppm以下である
特性(8)ゲルパーミエーション・クロマトグラフィー(GPC)により求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が7.0を超え15.0以下である
特性(9)フルノッチクリープ試験による80℃、1.9MPaにおける破断時間(FNCT)が100時間以上である
特性(10)曲げ弾性率が1200MPa以上である
That is, according to 1st invention of this invention, 30-70 weight% of the following components (A) and 70-30 weight% of components (B) are contained, and the following (1)- (6), A polyethylene for high-purity chemical containers characterized by having the characteristics (8) to (10) is provided.
Component (A): an ethylene polymer having an HLMFR of 0.5 to 2 g / 10 min and a density of 0.941 to 0.945 g / cm 3 .
Component (B): an ethylene polymer having a melt flow rate (MFR) of 10 to 20 g / 10 minutes measured at a temperature of 190 ° C. and a load of 2.16 kg, and a density of 0.965 to 0.969 g / cm 3 .
Characteristic (1) Characteristic having a density of 0.940-0.960 g / cm 3 (2) Characteristic having a melt flow rate (HLMFR) measured at a temperature of 190 ° C. and a load of 21.6 kg of 5-15 g / 10 minutes (3) Measured by gel permeation chromatography (GPC), and the ratio of the detection area of the component having a molecular weight of 10,000 or less to the detection area of the whole polyethylene is 14.0% or less (4) Measured by GPC The ratio of the detection area of the component having a molecular weight of 1,000,000 or more to the detection area of the whole polyethylene is 7.0% or less.
Characteristic (5) The Ti content is 1.5 ppm by weight or less with respect to the whole polyethylene.
Characteristic (6) Al content is 3.0 ppm by weight or less with respect to the whole polyethylene
Characteristic (8) The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) determined by gel permeation chromatography (GPC) is more than 7.0 and 15.0 or less.
Characteristic (9) Fracture time (FNCT) at 80 ° C. and 1.9 MPa by full notch creep test is 100 hours or more
Property (10) Flexural modulus is 1200 MPa or more
本発明の第2の発明によれば、第1の発明において、更に下記の特性(7)を満たすことを特徴とする高純度薬品容器用ポリエチレンが提供される。
特性(7)灰分が15重量ppm以下である
According to a second aspect of the present invention, in the first invention, the high purity chemicals container polyethylene is provided, characterized by further satisfying the following characteristics (7).
Characteristic (7) Ash content is 15 ppm by weight or less
また、本発明の第3の発明によれば、第1又は第2の発明のポリエチレンが、重合触媒の存在下、少なくとも二基の重合反応器を組み合わせた多段重合により重合されることを特徴とする高純度薬品容器用ポリエチレンの製造方法が提供される。
According to the third invention of the present invention, the polyethylene of the first or second invention is polymerized by multistage polymerization combining at least two polymerization reactors in the presence of a polymerization catalyst. A method for producing polyethylene for high-purity chemical containers is provided.
また、本発明の第4の発明によれば、第3の発明において、前記ポリエチレンの重合触媒は、一般式Mg(OR2)mX2 2−m(式中、R2はアルキル、アリール又はシクロアルキル基を示し、X2はハロゲン原子を示し、mは1又は2である)で表される化合物及び一般式Ti(OR3)nX3 4−n(式中、R3はアルキル、アリール又はシクロアルキル基を示し、X3はハロゲン原子を示し、nは1、2又は3である)で表される化合物を含む均一な炭化水素溶液を、一般式AlR1 lX1 3−l(式中、R1はアルキル、アリール又はシクロアルキル基を示し、X1はハロゲン原子を示し、lは1≦l≦2の数を示す)で表される有機ハロゲン化アルミニウム化合物で処理して得られる炭化水素不溶性固体触媒と有機アルミニウム化合物とを含む触媒であることを特徴とする高純度薬品容器用ポリエチレンの製造方法が提供される。
According to a fourth invention of the present invention, in the third invention, the polymerization catalyst for polyethylene is represented by the general formula Mg (OR 2 ) m X 2 2-m (wherein R 2 is alkyl, aryl or A cycloalkyl group, X 2 represents a halogen atom, m is 1 or 2, and a general formula Ti (OR 3 ) n X 3 4-n (wherein R 3 is alkyl, A homogeneous hydrocarbon solution containing a compound represented by the general formula AlR 1 l X 1 3-l: an aryl or cycloalkyl group, X 3 represents a halogen atom, and n is 1, 2 or 3. (Wherein R 1 represents an alkyl, aryl, or cycloalkyl group, X 1 represents a halogen atom, and l represents a number of 1 ≦ l ≦ 2). Obtained hydrocarbon-insoluble solid catalyst Process for producing a high purity chemical container polyethylene which is a catalyst containing an organoaluminum compound.
また、本発明の第5の発明によれば、第1又は第2のポリエチレンを成形してなることを特徴とする高純度薬品容器が提供される。
According to a fifth aspect of the present invention, there is provided a high-purity chemical container formed by molding the first or second polyethylene.
本発明のポリエチレンは、ポリエチレン樹脂由来の微粒子や重合触媒成分由来の金属溶出成分が少なく、かつ成形時の耐ドローダウン性や吐出性等の成形性に優れ、しかもESCRに優れているので、高純度薬品容器用ポリエチレン樹脂とすることができ、添加剤を加えなくてもESCR/クリーン性のバランスに優れた高純度薬品容器を成形することができる。また、特に、大型の容器に適し、かつ充填された薬液に対して微粒子成分の溶出量が小さく、長期間に渡って微粒子の溶出量が小さい大型高純度薬品容器を提供することができる。 The polyethylene of the present invention has few metal elution components derived from polyethylene resin-derived fine particles and polymerization catalyst components, is excellent in moldability such as draw-down resistance during molding and dischargeability, and is excellent in ESCR. A polyethylene resin for a pure chemical container can be obtained, and a high-purity chemical container having an excellent ESCR / clean balance can be formed without adding an additive. In particular, it is possible to provide a large-sized high-purity chemical container that is suitable for a large container and has a small elution amount of fine particle components with respect to a filled chemical solution and a small amount of fine particle elution over a long period of time.
本発明のポリエチレンは、高純度薬品容器に適した材料であり、特に大型容器に適したものであり、好ましくは内容積が20〜1000L、更に好ましくは100〜200Lの中空容器に適する。また、高純度薬品容器とは、半導体製造プロセス等で使用される不純物の少ない薬品を入れるための容器をいう。
本発明の高純度薬品容器用ポリエチレンは、エチレン単独重合体又はエチレンと他のα−オレフィンとの共重合体からなり、α−オレフィンとしては、炭素数3〜20のα−オレフィン、例えば、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン等が挙げられ、好ましくは1−ブテン、1−ヘキセンが挙げられ、更に好ましくは1−ブテンが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
The polyethylene of the present invention is a material suitable for a high-purity chemical container, particularly suitable for a large container, and is preferably suitable for a hollow container having an internal volume of 20 to 1000 L, more preferably 100 to 200 L. A high-purity chemical container refers to a container for containing chemicals with few impurities used in a semiconductor manufacturing process or the like.
The polyethylene for high-purity chemical containers of the present invention comprises an ethylene homopolymer or a copolymer of ethylene and another α-olefin, and the α-olefin is an α-olefin having 3 to 20 carbon atoms, such as propylene. 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, etc. Includes 1-butene and 1-hexene, more preferably 1-butene. These may be used alone or in combination of two or more.
本発明のポリエチレンは、チーグラー型触媒、メタロセン触媒等の高活性触媒により重合して得られるが、高活性チーグラー型触媒による重合が好ましい。チーグラー型触媒における固体触媒成分の例としては、三塩化チタン、三塩化バナジウム、四塩化チタン又はチタンのハロアルコラートをマグネシウム化合物に担持した触媒成分、マグネシウム化合物とチタンの化合物の共沈殿物又は共晶体などからなる触媒成分等が挙げられる。この中では、マグネシウム、チタンを含む固体触媒成分が好ましく、該固体触媒成分と有機アルミニウム化合物とを組み合わせてなる触媒系が好ましい。 The polyethylene of the present invention can be obtained by polymerizing with a highly active catalyst such as a Ziegler type catalyst or a metallocene catalyst. Polymerization with a highly active Ziegler type catalyst is preferred. Examples of solid catalyst components in Ziegler type catalysts include titanium trichloride, vanadium trichloride, titanium tetrachloride or a catalyst component in which a halo alcoholate of titanium is supported on a magnesium compound, a coprecipitate or eutectic of a magnesium compound and a titanium compound And the like, and the like. In this, the solid catalyst component containing magnesium and titanium is preferable, and the catalyst system formed by combining the solid catalyst component and the organoaluminum compound is preferable.
更に、本発明のポリエチレンの重合触媒としては、一般式Mg(OR2)mX2 2−m(式中、R2はアルキル、アリール又はシクロアルキル基を示し、X2はハロゲン原子を示し、mは1又は2である)で表される化合物及び一般式Ti(OR3)nX3 4−n(式中、R3はアルキル、アリール又はシクロアルキル基を示し、X3はハロゲン原子を示し、nは1、2又は3である)で表される化合物を含む均一な炭化水素溶液を、一般式AlR1 lX1 3−l(式中、R1はアルキル、アリール又はシクロアルキル基を示し、X1はハロゲン原子を示し、lは1≦l≦2の数を示す)で表される有機ハロゲン化アルミニウム化合物で処理して得られる炭化水素不溶性固体触媒と有機アルミニウム化合物とを含む触媒であることが好ましく、更にm=2かつn=3であることが好ましい。 Furthermore, as a polymerization catalyst for polyethylene of the present invention, general formula Mg (OR 2 ) m X 2 2-m (wherein R 2 represents an alkyl, aryl or cycloalkyl group, X 2 represents a halogen atom, m is 1 or 2) and the general formula Ti (OR 3 ) n X 3 4-n (wherein R 3 represents an alkyl, aryl or cycloalkyl group, and X 3 represents a halogen atom) A homogeneous hydrocarbon solution containing a compound represented by the general formula AlR 1 l X 1 3-l , wherein R 1 is an alkyl, aryl or cycloalkyl group X 1 represents a halogen atom, and l represents a number of 1 ≦ l ≦ 2, and includes a hydrocarbon-insoluble solid catalyst obtained by treatment with an organic aluminum halide compound and an organoaluminum compound. With catalyst Rukoto is preferred, it is preferable that further m = 2 and n = 3.
上記重合触媒系を用いたポリエチレン製造における重合方法は、スラリー重合法、気相重合法、溶液重合法等を例示することが出来る。中でも、炭素数が4〜10の重合溶媒、例えば、イソブタン、イソペンタン、ノルマルヘキサン、ノルマルヘプタン等を用いるスラリー重合法が好ましく、この重合方法による多段重合法を採用するのが好ましい。
上記の重合方法により得られたエチレン重合体は、溶媒中に溶け込んだ分子量が低いポリエチレン(ワックス)を除去することが好ましい。ワックスを除去する方法としては、遠心分離機による除去、溶媒による洗浄による除去等が挙げられる。ワックスを除去することにより、成形加工時のワックス由来による成形機の汚れを抑えることが出来るだけでなく、成形された製品からのワックスの溶出等を抑えることも出来る。
Examples of the polymerization method in the production of polyethylene using the polymerization catalyst system include a slurry polymerization method, a gas phase polymerization method, and a solution polymerization method. Among these, a slurry polymerization method using a polymerization solvent having 4 to 10 carbon atoms, for example, isobutane, isopentane, normal hexane, normal heptane, or the like is preferable, and a multistage polymerization method based on this polymerization method is preferably employed.
The ethylene polymer obtained by the above polymerization method preferably removes polyethylene (wax) having a low molecular weight dissolved in a solvent. Examples of the method for removing the wax include removal by a centrifugal separator, removal by washing with a solvent, and the like. By removing the wax, not only the contamination of the molding machine due to the wax during the molding process can be suppressed, but also the elution of the wax from the molded product can be suppressed.
以下、本発明のポリエチレンの特性を説明する。 Hereinafter, the characteristics of the polyethylene of the present invention will be described.
特性(1)密度:
本発明のポリエチレンの密度は、0.940〜0.960g/cm3、好ましくは0.945〜0.955g/cm3、より好ましくは0.950〜0.955g/cm3である。密度が0.940g/cm3未満では、成形容器からの充填内溶液への溶出ポリマー成分が増加し、内溶液のクリーン性を低下させると共に剛性が低下する。また、密度が0.960g/cm3を超えると、容器の耐衝撃性が低下すると共にESCRが低下する。
密度は、JIS−K6922−1,2:1997年に準じて測定することができる。
密度は、エチレンと共重合させるコモノマーの種類や量により変化させることにより、所望のものを得ることができる。
Characteristic (1) Density:
The density of the polyethylene of the present invention is 0.940 to 0.960 g / cm 3 , preferably 0.945 to 0.955 g / cm 3 , more preferably 0.950 to 0.955 g / cm 3 . When the density is less than 0.940 g / cm 3 , the polymer component eluted from the molded container into the filled solution increases, and the cleanness of the inner solution is lowered and the rigidity is lowered. On the other hand, if the density exceeds 0.960 g / cm 3 , the impact resistance of the container is lowered and the ESCR is lowered.
The density can be measured according to JIS-K6922-1, 2: 1997.
A desired density can be obtained by changing the density depending on the kind and amount of the comonomer copolymerized with ethylene.
特性(2)温度190℃、荷重21.6kgで測定されるメルトフローレート(HLMFR):
本発明のポリエチレンのHLMFRは、5〜15g/10分、好ましくは6〜13g/10分、より好ましくは7〜11g/10分である。HLMFRが、5g/10分未満では流動性が低下し、吐出性能が劣り容器の生産性へ支障をきたす。また、15g/10分を超えると耐ドローダウン性が低下し、容器成形性が悪化すると共にESCRが低下する。
HLMFRは、JIS−K6922−2:1997年に準拠して測定することができる。HLMFRは、エチレン重合温度や連鎖移動剤の使用等により調整することができ、所望のものを得ることができる。即ち、エチレンとα−オレフィンとの重合温度を上げることにより、分子量を下げた結果として、HLMFRを大きくすることができ、重合温度を下げることにより、分子量を上げた結果として、HLMFRを小さくすることができる。また、エチレンとα−オレフィンとの共重合反応において、共存させる水素量(連鎖移動剤量)を増加させることにより、分子量を下げた結果として、HLMFRを大きくすることができ、共存させる水素量(連鎖移動剤量)を減少させることにより、分子量を上げた結果として、HLMFRを小さくすることができる。
Characteristics (2) Melt flow rate (HLMFR) measured at a temperature of 190 ° C. and a load of 21.6 kg:
The HLMFR of the polyethylene of the present invention is 5 to 15 g / 10 minutes, preferably 6 to 13 g / 10 minutes, and more preferably 7 to 11 g / 10 minutes. When the HLMFR is less than 5 g / 10 min, the fluidity is lowered, the discharge performance is inferior, and the productivity of the container is hindered. On the other hand, if it exceeds 15 g / 10 minutes, the drawdown resistance is lowered, the container moldability is deteriorated, and the ESCR is lowered.
HLMFR can be measured according to JIS-K6922-2: 1997. HLMFR can be adjusted by the ethylene polymerization temperature, the use of a chain transfer agent, or the like, and a desired product can be obtained. That is, by increasing the polymerization temperature of ethylene and α-olefin, the HLMFR can be increased as a result of decreasing the molecular weight, and as a result of increasing the molecular weight by decreasing the polymerization temperature, the HLMFR can be decreased. Can do. Further, in the copolymerization reaction of ethylene and α-olefin, the amount of hydrogen to be coexisted (the amount of chain transfer agent) can be increased, and as a result of decreasing the molecular weight, HLMFR can be increased and the amount of hydrogen to coexist ( By reducing the amount of chain transfer agent, the HLMFR can be reduced as a result of increasing the molecular weight.
特性(3)ゲルパーミエーション・クロマトグラフィー(GPC)により測定され、ポリエチレン全体の検出面積に対する分子量10,000以下の成分の検出面積の割合:
本発明のポリエチレンは、GPCにより測定され、ポリエチレン全体の検出面積に対する分子量10,000以下の成分の検出面積の割合が14.0%以下であり、好ましくは13.5%以下、更に好ましくは13.3%以下である。当該割合が14.0%を超えると、成形品への微粒子の溶出量が多くなり、高純度薬品容器としての性能が低下する傾向がある。
当該割合は、ゲルパーミエーションクロマトグラフィー(GPC)により、以下の方法で求めることができる。
即ち、下記条件のゲルパーミエーションクロマトグラフィー(GPC)により測定できる。
装置:WATERS社製150C
カラム:昭和電工社製AD80M/Sを3本
測定温度:140℃
濃度:1mg/1ml
溶媒:o−ジクロロベンゼン
なお、分子量の計算及びカラムの較正は、以下の方法に準拠して行なう。
GPCクロマトデータは、1点/秒の頻度でコンピュータに取り込み、森定雄著・共立出版社発行の「サイズ排除クロマトグラフィー」第4章の記載に従ってデータ処理を行なう。
当該割合は、触媒の種類、助触媒の種類、重合温度、重合反応器内の滞留時間、重合反応器の数などで調整でき、また、仕上げ時の押出機の温度、圧力、剪段速度などにより調整可能であるが、重合によって得られた重合体を遠心分離機による除去又は溶媒による洗浄による除去を行なうことが好ましい。
Characteristic (3) Ratio of the detection area of a component having a molecular weight of 10,000 or less to the detection area of the whole polyethylene, measured by gel permeation chromatography (GPC):
The polyethylene of the present invention is measured by GPC, and the ratio of the detection area of the component having a molecular weight of 10,000 or less to the detection area of the whole polyethylene is 14.0% or less, preferably 13.5% or less, more preferably 13 .3% or less. When the ratio exceeds 14.0%, the amount of fine particles eluted into the molded product increases, and the performance as a high-purity chemical container tends to decrease.
The said ratio can be calculated | required with the following method by gel permeation chromatography (GPC).
That is, it can be measured by gel permeation chromatography (GPC) under the following conditions.
Apparatus: WATERS 150C
Column: 3 AD80M / S manufactured by Showa Denko KK Measurement temperature: 140 ° C
Concentration: 1 mg / 1 ml
Solvent: o-dichlorobenzene Calculation of molecular weight and column calibration are performed according to the following method.
GPC chromatographic data is taken into a computer at a frequency of 1 point / second, and data processing is performed according to the description in Chapter 4 of “Size Exclusion Chromatography” published by Sadao Mori and Kyoritsu Publishing Co., Ltd.
The ratio can be adjusted by the type of catalyst, the type of cocatalyst, the polymerization temperature, the residence time in the polymerization reactor, the number of polymerization reactors, etc. However, it is preferable to remove the polymer obtained by polymerization using a centrifuge or washing with a solvent.
特性(4)GPCにより測定され、ポリエチレン全体の検出面積に対する分子量1,000,000以上の成分の検出面積の割合:
本発明のポリエチレンは、GPCにより測定され、ポリエチレン全体の検出面積に対する分子量1,000,000以上の成分の検出面積の割合が7.0%以下であり、好ましくは5.0%以下、更に好ましくは4.0%以下である。当該割合が7.0%を超えると、成形品への樹脂未溶融成分が多くなり、内表面に肌荒れが発生し、内表面面積が増加することから結果的に微粒子の溶出量が多くなり、高純度薬品容器としての性能が低下する傾向がある。
当該割合は、上記のGPCによる分子量の測定方法により求めることができる。
当該割合は、触媒の種類、助触媒の種類、重合温度、重合反応器内の滞留時間、重合反応器の数などで調整でき、また、仕上げ時の押出機の温度、圧力、剪段速度などにより調整可能である
Characteristic (4) Ratio of detection area of components having a molecular weight of 1,000,000 or more with respect to the detection area of the whole polyethylene measured by GPC:
The polyethylene of the present invention is measured by GPC, and the ratio of the detection area of the component having a molecular weight of 1,000,000 or more to the detection area of the whole polyethylene is 7.0% or less, preferably 5.0% or less, more preferably Is 4.0% or less. When the ratio exceeds 7.0%, the resin unmelted component in the molded product increases, the inner surface becomes rough, and the inner surface area increases, resulting in an increase in the amount of fine particles eluted. The performance as a high purity chemical container tends to be lowered.
The said ratio can be calculated | required with the measuring method of molecular weight by said GPC.
The ratio can be adjusted by the type of catalyst, the type of cocatalyst, the polymerization temperature, the residence time in the polymerization reactor, the number of polymerization reactors, etc. Can be adjusted by
前記ポリエチレンは、更に下記の特性(5)を満たすことが好ましい。
特性(5)Tiの含有量:
本発明のポリエチレンは、Tiの含有量がポリエチレン全体に対して1.5重量ppm以下が好ましく、更に好ましくは1.0重量ppm以下、好適には0.9重量ppm以下である。当該割合が1.0重量ppmを超えると、成形品へのTiの溶出量が多くなり、高純度薬品容器としての性能が低下する傾向がある。
Tiの含有量は、石英製ビーカーに試料約0.5gを採取し、これに2mlの硫酸を添加し加熱して試料を炭化後、加熱しながら、無色〜淡黄色の透明な溶液が得られるまで、「加熱、放冷、硝酸添加」を繰り返した。冷却後、純水により50mlに定容、更に10倍に希釈して、ICP−MS(Inductively Coupled Plasma - Mass Spectrometry。誘導結合プラズマ質量分析法)により目的の金属元素を測定し、試料中濃度に換算することにより求めることができる。
当該割合は、触媒の種類、助触媒の種類などで調整可能である。触媒としては、活性が高いものでないと本発明の要件を達成することが難しく、上述のマグネシウム、チタンを含む固体触媒成分と有機アルミニウム化合物とを組み合わせてなる触媒系が好ましい。
The polyethylene preferably further satisfies the following property (5).
Characteristic (5) Ti content:
In the polyethylene of the present invention, the Ti content is preferably 1.5 ppm by weight or less, more preferably 1.0 ppm by weight or less, and preferably 0.9 ppm by weight or less based on the whole polyethylene. If the ratio exceeds 1.0 ppm by weight, the amount of Ti eluted into the molded product increases, and the performance as a high-purity chemical container tends to decrease.
The content of Ti is about 0.5 g of a sample collected in a quartz beaker, 2 ml of sulfuric acid is added to the sample and heated to carbonize the sample, and then a colorless to pale yellow transparent solution is obtained while heating. Until "heating, allowing to cool, adding nitric acid" was repeated. After cooling, the volume is adjusted to 50 ml with pure water, further diluted 10 times, and the target metal element is measured by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) to obtain the concentration in the sample. It can be obtained by conversion.
The ratio can be adjusted by the type of catalyst, the type of promoter, and the like. As the catalyst, it is difficult to achieve the requirements of the present invention unless the activity is high, and a catalyst system comprising a combination of the above-described solid catalyst component containing magnesium and titanium and an organoaluminum compound is preferable.
前記ポリエチレンは、更に下記の特性(6)を満たすことが好ましい。
特性(6)Alの含有量:
本発明のポリエチレンは、Alの含有量がポリエチレン全体に対して3.0重量ppm以下が好ましく、更に好ましくは1.0重量ppm以下、好適には0.85重量ppm以下である。当該割合が3.0重量ppmを超えると、成形品へのAlの溶出量が多くなり、高純度薬品容器としての性能が低下する傾向がある。
Alの含有量は、石英製ビーカーに試料約0.5gを採取し、これに2mlの硫酸を添加し加熱して試料を炭化後、加熱しながら、無色〜淡黄色の透明な溶液が得られるまで、「加熱、放冷、硝酸添加」を繰り返した。冷却後、純水により50mlに定容、更に10倍に希釈して、ICP−MS(Inductively Coupled Plasma - Mass Spectrometry。誘導結合プラズマ質量分析法)により目的の金属元素を測定し、試料中濃度に換算することにより求めることができる。
当該割合は、触媒の種類、助触媒の種類などで調整可能である。触媒としては、活性が高いものでないと本発明の要件を達成することが難しく、上述のマグネシウム、チタンを含む固体触媒成分と有機アルミニウム化合物とを組み合わせてなる触媒系が好ましい。
The polyethylene preferably further satisfies the following property (6).
Characteristic (6) Al content:
In the polyethylene of the present invention, the Al content is preferably 3.0 ppm by weight or less, more preferably 1.0 ppm by weight or less, and preferably 0.85 ppm by weight or less based on the whole polyethylene. If the ratio exceeds 3.0 ppm by weight, the amount of Al eluted into the molded product increases, and the performance as a high-purity chemical container tends to decrease.
About 0.5 g of sample is collected in a quartz beaker, 2 ml of sulfuric acid is added and heated to carbonize the sample, and a colorless to pale yellow transparent solution is obtained while heating the sample. Until "heating, allowing to cool, adding nitric acid" was repeated. After cooling, the volume is adjusted to 50 ml with pure water, further diluted 10 times, and the target metal element is measured by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) to obtain the concentration in the sample. It can be obtained by conversion.
The ratio can be adjusted by the type of catalyst, the type of promoter, and the like. As the catalyst, it is difficult to achieve the requirements of the present invention unless the activity is high, and a catalyst system comprising a combination of the above-described solid catalyst component containing magnesium and titanium and an organoaluminum compound is preferable.
前記ポリエチレンは、更に下記の特性(7)を満たすことが好ましい。
特性(7)灰分が15重量ppm以下が好ましく、更に好ましくは10重量ppm以下、好適には5ppm以下である。
灰分が15重量ppmを超えると、成形品の容器から灰分由来の成分が内溶液へ溶出し、内溶液のクリーン性を低下させる恐れがあり、高純度薬品容器としての性能が低下する傾向がある。
灰分は、JIS K2272−1985に準拠し求めることができる。
灰分は、触媒の種類、助触媒の種類などで調整可能である。触媒としては、活性が高いものでないと、この要件を達成することが難しく、上述のマグネシウム、チタンを含む固体触媒成分と有機アルミニウム化合物とを組み合わせてなる触媒系が好ましい。
The polyethylene preferably further satisfies the following property (7).
Characteristic (7) Ash content is preferably 15 ppm by weight or less, more preferably 10 ppm by weight or less, and preferably 5 ppm or less.
When the ash content exceeds 15 ppm by weight, components derived from the ash content are eluted from the container of the molded product into the inner solution, which may reduce the cleanliness of the inner solution, and the performance as a high-purity chemical container tends to decrease. .
Ash content can be calculated | required based on JISK2272-1985.
The ash content can be adjusted by the type of catalyst, the type of promoter, and the like. As the catalyst, it is difficult to achieve this requirement unless the activity is high, and a catalyst system formed by combining the above-described solid catalyst component containing magnesium and titanium and an organoaluminum compound is preferable.
前記ポリエチレンは、更に下記の特性(8)〜(10)を満たすことが好ましい。
特性(8)ゲルパーミエーション・クロマトグラフィー(GPC)により求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn):
GPCにより求められるMw/Mnは、7.0を超え15.0以下、好ましくは9〜13、より好ましくは10〜12である。
ゲルパーミエーションクロマトグラフィー(GPC)による分子量、重量平均分子量Mw、数平均分子量Mnの測定は、以下の方法で行なうことができる。
即ち、下記条件のゲルパーミエーションクロマトグラフィー(GPC)により測定できる。
装置:WATERS社製150C
カラム:昭和電工社製AD80M/Sを3本
測定温度:140℃
濃度:1mg/1ml
溶媒:o−ジクロロベンゼン
なお、分子量の計算及びカラムの較正は、以下の方法に準拠して行なう。
GPCクロマトデータは、1点/秒の頻度でコンピュータに取り込み、森定雄著・共立出版社発行の「サイズ排除クロマトグラフィー」第4章の記載に従ってデータ処理を行ない、Mw、Mn値を計算する。
Mw/Mnは、触媒の種類、助触媒の種類、重合温度、重合反応器内の滞留時間、重合反応器の数などで調整でき、また、押出機の温度、圧力、剪段速度などにより調整可能であり、好ましくは高分子量成分と低分子量成分の混合割合を調整することにより増減することができる。
エチレン系重合体のMw/Mnは、触媒の種類の影響を受け易く、一般にフィリプス触媒によれば分子量分布が広く、メタロセン触媒によれば分子量分布が狭く、チーグラー触媒によればその中間的な分子量分布を有する重合体となる。
The polyethylene preferably further satisfies the following characteristics (8) to (10).
Characteristic (8) Ratio (Mw / Mn) of weight average molecular weight (Mw) and number average molecular weight (Mn) determined by gel permeation chromatography (GPC):
Mw / Mn calculated | required by GPC exceeds 7.0 and is 15.0 or less, Preferably it is 9-13, More preferably, it is 10-12.
The molecular weight, weight average molecular weight Mw, and number average molecular weight Mn can be measured by gel permeation chromatography (GPC) by the following method.
That is, it can be measured by gel permeation chromatography (GPC) under the following conditions.
Apparatus: WATERS 150C
Column: 3 AD80M / S manufactured by Showa Denko KK Measurement temperature: 140 ° C
Concentration: 1 mg / 1 ml
Solvent: o-dichlorobenzene Calculation of molecular weight and column calibration are performed according to the following method.
GPC chromatographic data is taken into a computer at a frequency of 1 point / second, data processing is performed according to the description in Chapter 4 of “Size Exclusion Chromatography” published by Sadao Mori and Kyoritsu Publishing Co., and Mw and Mn values are calculated.
Mw / Mn can be adjusted by the type of catalyst, the type of cocatalyst, the polymerization temperature, the residence time in the polymerization reactor, the number of polymerization reactors, etc. It can also be adjusted by the temperature, pressure, and cutting speed of the extruder. Preferably, it can be increased or decreased by adjusting the mixing ratio of the high molecular weight component and the low molecular weight component.
The Mw / Mn of the ethylene polymer is easily affected by the type of catalyst. In general, the molecular weight distribution is wide according to the Phillips catalyst, the molecular weight distribution is narrow according to the metallocene catalyst, and the intermediate molecular weight according to the Ziegler catalyst. A polymer having a distribution is obtained.
特性(9)フルノッチクリープ試験による80℃、1.9MPaにおける破断時間(FNCT):
本発明のポリエチレンは、フルノッチクリープ試験による80℃、1.9MPaにおける破断時間(FNCT)が50時間以上であることが好ましく、更に好ましくは100時間以上である。FNCTが50時間未満では、製品としての耐久性が低く、実用上、クラックが入りやすく容器としての性能を満たさないため、高純度薬品容器としての性能が低下する傾向がある。
FNCTは、ISO DIS 16770に準拠した全ノッチ付クリープ試験(FNCT、80℃、1.9MPa)により測定することができる。ここで、ISO DIS 16770に準拠した全ノッチ付クリープ試験(FNCT)は、長期機械的物性の評価であって、試料としては、6mm×6mm×11mmの大きさの角柱の、全周囲にカミソリ刃にて1mmのノッチが付けられ、4mm×4mmの大きさの断面を有した試験片を用意し、80℃の純水中で、1.9MPaに相当する引張応力を検体に与え、検体が破断するまでの時間を計測した値である。
FNCTの破断時間は、ポリエチレンの高分子量の成分であるエチレン系重合体の、分子量、密度、及び配合量により調整することができ、具体的には、分子量の高分子量化、密度の低密度化、及び配合量の増量により、上記FNCTの破断時間を向上させることができる。
Characteristic (9) Fracture time at 80 ° C. and 1.9 MPa (FNCT) by full notch creep test:
The polyethylene of the present invention preferably has a breaking time (FNCT) at 80 ° C. and 1.9 MPa by a full notch creep test of 50 hours or more, more preferably 100 hours or more. When the FNCT is less than 50 hours, the durability as a product is low, and cracks easily occur in practice, and the performance as a container is not satisfied. Therefore, the performance as a high-purity chemical container tends to decrease.
FNCT can be measured by a full notched creep test (FNCT, 80 ° C., 1.9 MPa) in accordance with ISO DIS 16770. Here, the all notched creep test (FNCT) based on ISO DIS 16770 is an evaluation of long-term mechanical properties, and the sample is a razor blade on the entire circumference of a 6 mm × 6 mm × 11 mm prism. Prepare a test piece with a 1 mm notch and a cross section of 4 mm × 4 mm, and give the specimen a tensile stress corresponding to 1.9 MPa in pure water at 80 ° C. It is a value obtained by measuring the time until breakage.
The break time of FNCT can be adjusted by the molecular weight, density, and blending amount of the ethylene polymer, which is a high molecular weight component of polyethylene. Specifically, the molecular weight is increased and the density is decreased. By increasing the blending amount, the breaking time of the FNCT can be improved.
特性(10)曲げ弾性率:
本発明のポリエチレンは、曲げ弾性率が1200MPa以上であることが好ましく、更に好ましくは、1250MPa以上である。曲げ弾性率が1200MPa未満では、製品としての剛性が低く、実用上、内液充填時の変形が起こりやすく、容器としての性能を満たさないため、高純度薬品容器としての性能を満たさない。高純度薬品容器としての性能が低下する傾向がある。
曲げ弾性率は、試験片として210℃で射出成形した4×10×80mmの板状体を用い、JIS−K6922−2:1997年に準拠して測定される値である。
曲げ弾性率は、ポリエチレンの分子量及び密度を増減させることにより調節することができ、分子量又は密度を増加させると、曲げ弾性率を上げることができる。
Characteristic (10) Flexural modulus:
The polyethylene of the present invention preferably has a flexural modulus of 1200 MPa or more, more preferably 1250 MPa or more. When the flexural modulus is less than 1200 MPa, the rigidity as a product is low, and the deformation at the time of filling with the internal liquid tends to occur practically, and the performance as a container is not satisfied. Therefore, the performance as a high-purity chemical container is not satisfied. The performance as a high purity chemical container tends to be lowered.
The flexural modulus is a value measured according to JIS-K6922-2: 1997, using a 4 × 10 × 80 mm plate-like body injection-molded at 210 ° C. as a test piece.
The flexural modulus can be adjusted by increasing or decreasing the molecular weight and density of polyethylene, and the flexural modulus can be increased by increasing the molecular weight or density.
本発明のポリエチレンは、複数種類のエチレン系重合体の組成物で構成することができ、下記の成分(A)が30〜70重量%、好ましくは40〜60重量%以下であり、下記の成分(B)が70〜30重量%、好ましくは60〜40重量%である。
成分(A):HLMFRが0.5〜2g/10分、密度が0.941〜0.945g/cm3のエチレン系重合体
成分(B):温度190℃・荷重2.16Kgにおけるメルトフローレート(MFR)が10〜20g/10分、密度が0.965〜0.969g/cm3のエチレン系重合体
本発明のポリエチレンは、上記の成分及び配合割合の組成物とすることにより、耐久性及び剛性(曲げ弾性率)がともに改善された性状を有することができ、高純度薬品容器として好ましい。
The polyethylene of the present invention can be composed of a composition of a plurality of types of ethylene polymers, and the following component (A) is 30 to 70% by weight, preferably 40 to 60% by weight or less. (B) is 70 to 30% by weight, preferably 60 to 40% by weight.
Component (A): Ethylene polymer having an HLMFR of 0.5-2 g / 10 min and a density of 0.941-0.945 g / cm 3 Component (B): Melt flow rate at a temperature of 190 ° C. and a load of 2.16 Kg (MFR) 10 to 20 g / 10 min, density of 0.965 to 0.969 g / cm 3 ethylene polymer The polyethylene of the present invention is durable by using the composition of the above components and blending ratio. And rigidity (flexural modulus) can be improved, which is preferable as a high-purity chemical container.
本発明のポリエチレンに含まれるポリエチレン系重合体は、エチレンのみの単独重合、あるいはエチレンとα−オレフィンとの共重合により製造することができる。本発明のポリエチレンに含まれるポリエチレン系重合体は、通常の一段重合で重合して得ることもできるが、条件を変えて重合した成分を混合したり、逐次多段重合による組成物として製造することもできる。 The polyethylene polymer contained in the polyethylene of the present invention can be produced by homopolymerization of ethylene alone or copolymerization of ethylene and α-olefin. The polyethylene-based polymer contained in the polyethylene of the present invention can be obtained by polymerizing by ordinary one-stage polymerization, but the polymerized components can be mixed under different conditions or can be produced as a composition by sequential multi-stage polymerization. it can.
本発明のポリエチレンは、前記成分(A)のエチレン系重合体と成分(B)のエチレン系重合体とを混合して得ることができる。また、樹脂の均一性などの理由から、成分(A)のエチレン系重合体と成分(B)のエチレン系重合体を連続的に重合(逐次多段重合法)して得られたものが好ましく、例えば直列に接続した複数の反応器でエチレン及びα−オレフィンを順次連続的に重合して得ることができる。
本発明において、前記ポリエチレンの成分(A)及び成分(B)が、重合触媒の存在下、少なくとも二基の重合反応器を組み合わせた多段重合により、少なくとも一方の重合反応器でエチレン単独重合体が重合され、少なくとも他の重合反応器でエチレンと炭素数が3〜20のα−オレフィンとのエチレン共重合体が重合されることが好ましい。
The polyethylene of the present invention can be obtained by mixing the ethylene polymer of component (A) and the ethylene polymer of component (B). Also, for reasons such as the uniformity of the resin, those obtained by continuously polymerizing the ethylene polymer of component (A) and the ethylene polymer of component (B) (sequential multistage polymerization method) are preferable, For example, ethylene and α-olefin can be sequentially and continuously polymerized in a plurality of reactors connected in series.
In the present invention, the ethylene homopolymer is produced in at least one polymerization reactor by multistage polymerization in which the polyethylene component (A) and the component (B) are combined with at least two polymerization reactors in the presence of a polymerization catalyst. It is preferable that an ethylene copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms is polymerized at least in another polymerization reactor.
また、本発明の成分(A)と成分(B)とからなる組成物は、成分(A)及び成分(B)を別々に重合した後に混合したものでもよい。更に、成分(A)及び成分(B)のエチレン系重合体のそれぞれは複数の成分により構成することが可能である。該エチレン系重合体は、1種類の触媒を用いて多段重合反応器にて順次連続的に重合された重合体でもよく、複数種類の触媒を用いて単段又は多段重合反応器にて製造された重合体でもよいし、1種類又は複数種類の触媒を用いて重合された重合体を混合したものでもよい。 Moreover, the composition which consists of a component (A) and a component (B) of this invention may mix after mixing a component (A) and a component (B) separately. Furthermore, each of the ethylene polymer of component (A) and component (B) can be composed of a plurality of components. The ethylene polymer may be a polymer successively polymerized in a multistage polymerization reactor using one type of catalyst, and may be produced in a single stage or multistage polymerization reactor using a plurality of types of catalysts. A polymer obtained by polymerizing using one kind or plural kinds of catalysts may be used.
本発明の高純度薬品容器用ポリエチレンは、ブロー成形、射出成形、押出成形、回転成形等の公知の成形方法により容器状に成形することにより高純度薬品容器とすることができる。特に、クリーンルーム内に設置したブロー成形機を使用し、フィルターで微粒子を取り除いたエアーをブローエアーに用いたブロー成形方法は、クリーンな容器を製造するのに好ましい。容器形状及び容器の容量は、特に限定はないが、好ましくは、20〜1,000L、更に好ましくは100〜200Lである。 The polyethylene for high-purity chemical containers of the present invention can be made into a high-purity chemical container by molding into a container shape by a known molding method such as blow molding, injection molding, extrusion molding, or rotational molding. In particular, a blow molding method using a blow molding machine installed in a clean room and using air from which fine particles have been removed by a filter as blow air is preferable for producing a clean container. The container shape and the capacity of the container are not particularly limited, but are preferably 20 to 1,000 L, more preferably 100 to 200 L.
以下に、本発明を実施例で説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、実施例、比較例の試験方法は、以下の通りである。
(1)密度:JIS−K6922−1,2:1997年に準じて測定した。
(2)HLMFR:JIS−K6922−2:1997年に準拠して測定した。
(3)MFR:JIS−K6922−2:1997年に準拠して測定した。
(4)ゲルパーミエーション・クロマトグラフィー(GPC)により求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn):分子量、重量平均分子量Mw、数平均分子量Mnの測定は、以下の方法で行なった。即ち、下記条件のゲルパーミエーションクロマトグラフィー(GPC)により測定した。
装置:WATERS社製150C
カラム:昭和電工社製AD80M/Sを3本
測定温度:140℃
濃度:1mg/1ml
溶媒:o−ジクロロベンゼン
なお、分子量の計算及びカラムの較正は、以下の方法に準拠して行なった。
GPCクロマトデータは、1点/秒の頻度でコンピュータに取り込み、森定雄著・共立出版社発行の「サイズ排除クロマトグラフィー」第4章の記載に従ってデータ処理を行ない、Mw、Mn値を計算した。
(5)GPCにより測定され、ポリエチレン全体の検出面積に対する分子量10,000以下の成分の検出面積の割合:上記のGPCによる分子量の測定方法により求めた。
(6)GPCにより測定され、ポリエチレン全体の検出面積に対する分子量1,000,000以上の成分の検出面積の割合:上記のGPCによる分子量の測定方法により求めた。
(7)Tiの含有量:石英製ビーカーに試料約0.5gを採取し、これに2mlの硫酸を添加し加熱して試料を炭化後、加熱しながら、無色〜淡黄色の透明な溶液が得られるまで、「加熱、放冷、硝酸添加」を繰り返した。冷却後、純水により50mlに定容、更に10倍に希釈して、ICP−MS(Inductively Coupled Plasma - Mass Spectrometry。誘導結合プラズマ質量分析法)により目的の金属元素を測定し、試料中濃度に換算した。
(8)Alの含有量::石英製ビーカーに試料約0.5gを採取し、これに2mlの硫酸を添加し加熱して試料を炭化後、加熱しながら、無色〜淡黄色の透明な溶液が得られるまで、「加熱、放冷、硝酸添加」を繰り返した。冷却後、純水により50mlに定容、更に10倍に希釈して、ICP−MS(Inductively Coupled Plasma - Mass Spectrometry。誘導結合プラズマ質量分析法)により目的の金属元素を測定し、試料中濃度に換算した。
(9)灰分:JIS K2272−1985に準拠し測定した。
(10)フルノッチクリープ試験による80℃、1.9MPaにおける破断時間(FNCT):ISO DIS 16770に準拠した全ノッチ付クリープ試験(FNCT、80℃、1.9MPa)により測定した。
(11)曲げ弾性率:試験片として210℃で射出成形した4×10×80mmの板状体を用い、JIS−K6922−2:1997年に準拠して測定した。
以上
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In addition, the test method of an Example and a comparative example is as follows.
(1) Density: Measured according to JIS-K6922-1, 1997.
(2) HLMFR: Measured according to JIS-K6922-2: 1997.
(3) MFR: Measured according to JIS-K6922-2: 1997.
(4) Ratio of weight average molecular weight (Mw) and number average molecular weight (Mn) determined by gel permeation chromatography (GPC) (Mw / Mn): measurement of molecular weight, weight average molecular weight Mw, number average molecular weight Mn The following method was used. That is, it measured by the gel permeation chromatography (GPC) of the following conditions.
Apparatus: WATERS 150C
Column: 3 AD80M / S manufactured by Showa Denko KK Measurement temperature: 140 ° C
Concentration: 1 mg / 1 ml
Solvent: o-dichlorobenzene Calculation of molecular weight and column calibration were performed according to the following method.
GPC chromatographic data was loaded into a computer at a frequency of 1 point / second, and data processing was performed according to the description in Chapter 4 of “Size Exclusion Chromatography” published by Sadao Mori and Kyoritsu Publishing Co., and Mw and Mn values were calculated.
(5) Ratio of the detection area of the component having a molecular weight of 10,000 or less to the detection area of the whole polyethylene measured by GPC: It was determined by the molecular weight measurement method by GPC.
(6) Ratio of the detection area of components having a molecular weight of 1,000,000 or more to the detection area of the whole polyethylene measured by GPC: It was determined by the molecular weight measurement method using GPC.
(7) Ti content: About 0.5 g of a sample is collected in a quartz beaker, 2 ml of sulfuric acid is added to the sample and heated to carbonize the sample, and then a colorless to pale yellow transparent solution is heated. “Heating, allowing to cool, adding nitric acid” was repeated until it was obtained. After cooling, the volume is adjusted to 50 ml with pure water, further diluted 10 times, and the target metal element is measured by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) to obtain the concentration in the sample. Converted.
(8) Al content :: About 0.5 g of a sample was collected in a quartz beaker, 2 ml of sulfuric acid was added thereto and heated to carbonize the sample, and then heated to a colorless to pale yellow transparent solution. Was repeated until “heated, allowed to cool, and added nitric acid”. After cooling, the volume is adjusted to 50 ml with pure water, further diluted 10 times, and the target metal element is measured by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) to obtain the concentration in the sample. Converted.
(9) Ash content: Measured according to JIS K2272-1985.
(10) Fracture time (FNCT) at 80 ° C. and 1.9 MPa by full notch creep test: Measured by a full notched creep test (FNCT, 80 ° C., 1.9 MPa) in accordance with ISO DIS 16770.
(11) Flexural Modulus: using a plate-like body 4 × 10 × 80 mm was injection molded at 210 ° C. As test pieces, JIS-K6922-2: was measured in accordance with 1997.
that's all
(12)大型ブロー成形性:
(i)吐出量、モーター負荷:小型多層ブロー成形機であるタハラ社製TP-5を用い、温度200℃、スクリュー回転数40rpm、ダイス径18mm、コア径15mmでの1時間あたりの吐出量及び、樹脂圧力を測定した。吐出量が15kg/hr以上でありかつ樹脂圧力が25MPa以下であるものを「〇」、それ以外のものを「×」とした。
(ii)ドローダウン率:吐出性と同一条件にて、パリソン長が12cmと60cmに達する時間を測定し、下記の計算式により、ドローダウン率を算出した。
ドローダウン率=(パリソン長が60cmに達する時間)/(パリソン長が12cmに達する時間)
ドローダウン率が4.5以上であるものを「〇」、それ以外のものを「×」とした。
(12) Large blow moldability:
(I) Discharge amount, motor load: Discharge amount per hour at a temperature of 200 ° C., a screw rotation speed of 40 rpm, a die diameter of 18 mm, and a core diameter of 15 mm, using a TP-5 manufactured by Tahara, a small multilayer blow molding machine The resin pressure was measured. The case where the discharge amount was 15 kg / hr or more and the resin pressure was 25 MPa or less was designated as “◯”, and the others were designated as “X”.
(Ii) Drawdown rate: Under the same conditions as the dischargeability, the time for the parison length to reach 12 cm and 60 cm was measured, and the drawdown rate was calculated by the following formula.
Drawdown rate = (time for the parison length to reach 60 cm) / (time for the parison length to reach 12 cm)
Those with a drawdown rate of 4.5 or more were marked with “◯” and those with a drawdown rate of “x”.
(13)成形品の評価
(iii)クリーン性−微粒子溶出性:上記ブロー成形した内容積500ccボトルをクリーンルーム内で安水(三菱化学社製電子工業用ELアンモニア水;29%アンモニア水溶液)にて5回洗浄後、容器に安水を充填し3ヶ月間放置後に0.2μm以上の微粒子の数をリオン社製KL−25型液体微粒子カウンターで測定した。微粒子が100ケ/ml以下であるものを「〇」、それ以外のものを「×」とした。
(iv)クリーン性−金属溶出性:上記ブロー成形した内容積500ccボトルをクリーンルーム内で安水にて5回洗浄後、容器に安水を充填し3ヶ月間放置後にTi、Alの濃度測定を行った。金属溶出量が10重量ppb以下であるものを「〇」、それ以外のものを「×」とした。
(13) Evaluation of molded product (iii) Cleanness-fine particle elution: The blow-molded internal volume 500 cc bottle is used in a clean room with water (EL ammonia water for electronic industry manufactured by Mitsubishi Chemical; 29% ammonia aqueous solution). After washing 5 times, the container was filled with water and allowed to stand for 3 months, and then the number of fine particles of 0.2 μm or more was measured with a KL-25 type liquid fine particle counter manufactured by Lion. The case where the number of fine particles was 100 / ml or less was designated as “◯”, and the case where the fine particles were other than “×”.
(Iv) Cleanness-metal elution: After the above blow molded 500 cc bottle is washed 5 times with water in a clean room, the container is filled with water and left for 3 months, and then the Ti and Al concentrations are measured. went. The case where the metal elution amount was 10 weight ppb or less was designated as “◯”, and the others were designated as “x”.
実施例1
(A)固体触媒の調製
Mg(OEt)2の575gとTi(OBu)3Clの755gとn−C4H9OHの185gとを150℃で6時間混合して均一化し、冷却後ノルマルヘキサンを所定量加えて均一溶液にした。次いで、所定温度にてエチルアルミニウムセスキクロライドを2285g滴下し1時間攪拌した。更に、ノルマルヘキサンにて洗浄を繰り返して固体触媒1100gを得た。
(B)エチレンの重合
上記固体触媒を用いて、0.6m3の反応器を2基直列に接続した装置を用いて連続重合を行った。第1重合槽には、ノルマルヘキサン70kg/時、トリエチルアルミニウム1.4g/時、上記固体触媒成分を0.67g/時、エチレンを31kg/時、及び水素を連続的に供給し、重合温度90℃、気相中の水素を対エチレン濃度比で1.1モル/モルに保って連続重合を行った。第1重合槽で得られたポリマーの190℃、2.16kg荷重でのMFRは、15g/分であった。第2重合槽には第1重合槽の重合体スラリーを連続的に供給すると共に、ノルマルヘキサン47kg/時、エチレン31kg/時を連続的に供給し、重合温度を80℃、気相中の水素を対エチレン濃度で0.08モル/モル、ブテンを対エチレン濃度で0.023モル/モルに保って第2段目の重合を行った。得られた重合スラリーは遠心分離器にて固液分離を行い、乾燥工程を経て、添加剤を一切使用せずに40mmφ押出機でペレツト化し、物性測定を行った。物性測定の結果を表1に示す。
(C)容器の成形
上記で得られたポリエチレン樹脂を小型多層ブロー成形機であるタハラ社製TP-5を用い、温度200℃、スクリュー回転数40rpmでピンチオフ長さが底部直径の95%になるように適宜ダイコアを選択しながら、500ccボトルを成形した。ブロー成形性の評価結果及び成形品の評価結果を表1に示す。
Example 1
(A) Preparation of solid catalyst 575 g of Mg (OEt) 2 , 755 g of Ti (OBu) 3 Cl and 185 g of n-C 4 H 9 OH were mixed at 150 ° C. for 6 hours to homogenize, and after cooling, normal hexane Was added to make a uniform solution. Next, 2285 g of ethylaluminum sesquichloride was dropped at a predetermined temperature and stirred for 1 hour. Furthermore, washing with normal hexane was repeated to obtain 1100 g of a solid catalyst.
(B) Polymerization of ethylene Using the solid catalyst, continuous polymerization was performed using an apparatus in which two 0.6 m 3 reactors were connected in series. The first polymerization tank was continuously supplied with normal hexane 70 kg / hour, triethylaluminum 1.4 g / hour, the solid catalyst component 0.67 g / hour, ethylene 31 kg / hour, and hydrogen continuously. Continuous polymerization was carried out while maintaining hydrogen in the gas phase at 1.1 ° C./mol in terms of ethylene concentration ratio. The MFR of the polymer obtained in the first polymerization tank at 190 ° C. under a load of 2.16 kg was 15 g / min. The polymer slurry of the first polymerization tank is continuously supplied to the second polymerization tank, and 47 kg / hour of normal hexane and 31 kg / hour of ethylene are continuously supplied, the polymerization temperature is 80 ° C., and hydrogen in the gas phase Was maintained at 0.08 mol / mol with respect to ethylene and butene was maintained at 0.023 mol / mol with respect to ethylene to carry out the second stage polymerization. The obtained polymerization slurry was subjected to solid-liquid separation with a centrifuge , passed through a drying step, pelleted with a 40 mmφ extruder without using any additives, and measured for physical properties. The results of physical property measurement are shown in Table 1.
(C) Molding of container The polyethylene resin obtained above is TP-5 manufactured by Tahara, a small multilayer blow molding machine, and the pinch-off length is 95% of the bottom diameter at a temperature of 200 ° C. and a screw rotation speed of 40 rpm. Thus, a 500 cc bottle was molded while appropriately selecting a die core. Table 1 shows the evaluation results of the blow moldability and the evaluation results of the molded product.
比較例1
市販の高密度ポリエチレン(HLMFR=7g/10分、密度=0.954g/cm3)を使用し、実施例1と同様にして、そのブロー成形容器を得た。樹脂の物性と容器の評価結果を表1に示す。
Comparative Example 1
A commercially available high-density polyethylene (HLMFR = 7 g / 10 min, density = 0.554 g / cm 3 ) was used and the blow molded container was obtained in the same manner as in Example 1. Table 1 shows the physical properties of the resin and the evaluation results of the container.
比較例2
実施例1の(B)エチレンの重合において、1段目の重合条件として、水素を対エチレンの濃度で2.1モル/モルとし、2段目の重合条件として、水素を対エチレン濃度で 0.12モル/モル、ブテンを対エチレン濃度で0.02モル/モルとした以外は実施例1と同様にして、ポリエチレン樹脂とそのブロー成形容器を得た。樹脂の物性と容器の評価結果を表1に示す。
比較例3
特開平11−80257号公報の実施例1に準じて、ポリエチレン樹脂を製造し、実施例1と同様にして、そのブロー成形容器を得た。樹脂の物性と容器の評価結果を表1に示す。
Comparative Example 2
In the polymerization of ethylene in Example 1 (B), as the first stage polymerization conditions, hydrogen was 2.1 mol / mol in terms of ethylene, and as the second stage polymerization conditions, hydrogen was 0 in terms of ethylene concentration. A polyethylene resin and its blow-molded container were obtained in the same manner as in Example 1 except that 12 mol / mol and butene were used in an ethylene concentration of 0.02 mol / mol. Table 1 shows the physical properties of the resin and the evaluation results of the container.
Comparative Example 3
According to Example 1 of JP-A-11-80257, a polyethylene resin was produced, and a blow molded container was obtained in the same manner as Example 1. Table 1 shows the physical properties of the resin and the evaluation results of the container.
表1から明らかなように、密度、メルトフローレート、分子量等の特性が本発明の要件を有するポリエチレンからの容器は、大型ブロー成形性に優れ、容器の剛性、FNCT、クリーン性に優れていた(実施例1)。一方、GPCにより測定される分子量10,000以下の成分の面積割合、GPCにより測定される分子量1,000,000以上の成分の面積割合、Ti含有量、Al含有量が本発明の要件を外れると、成形品の微粒子溶出性及び金属溶出性が大きくなった(比較例1)。また、HLMFRが本発明の要件を外れると、大型ブロー成形性が低下する結果であった(比較例2)。 As is apparent from Table 1, containers made of polyethylene having properties such as density, melt flow rate, and molecular weight satisfying the requirements of the present invention were excellent in large blow moldability and excellent in rigidity, FNCT, and cleanliness of the container. (Example 1). On the other hand, the area ratio of components having a molecular weight of 10,000 or less measured by GPC, the area ratio of components having a molecular weight of 1,000,000 or more, Ti content, and Al content measured by GPC deviate from the requirements of the present invention. And the fine particle elution property and metal elution property of a molded article became large (comparative example 1). Moreover, when HLMFR deviated from the requirement of the present invention, it was a result that large blow moldability deteriorated (Comparative Example 2).
本発明によれば、ポリエチレン樹脂由来の微粒子や重合触媒成分由来の金属溶出成分が少なく、かつ成形時の耐ドローダウン性や吐出性等の成形性に優れ、しかも耐久性に優れているので、高純度薬品容器用ポリエチレン樹脂とすることができ、耐久性/クリーン性のバランスに優れた高純度薬品容器を成形することができる。また、特に、大型の容器に適し、かつ充填された薬液に対して微粒子成分の溶出量が小さく、長期間に渡って微粒子の溶出量が小さい大型高純度薬品容器を提供することができるため、産業上大いに有用である。 According to the present invention, since there are few metal elution components derived from polyethylene resin-derived fine particles and polymerization catalyst components, and excellent in moldability such as drawdown resistance and dischargeability during molding, and excellent in durability, It can be used as a polyethylene resin for high-purity chemical containers, and a high-purity chemical container excellent in durability / cleanness balance can be formed. In particular, since it is suitable for a large container and can provide a large-sized high-purity chemical container with a small amount of fine particle components eluted with respect to a filled chemical solution and a small amount of fine particle elution over a long period of time, It is very useful in industry.
Claims (5)
成分(A):HLMFRが0.5〜2g/10分、密度が0.941〜0.945g/cm 3 であるエチレン系重合体。
成分(B):温度190℃、荷重2.16kgで測定されるメルトフローレート(MFR)が10〜20g/10分、密度が0.965〜0.969g/cm 3 であるエチレン系重合体。
特性(1)密度が0.940〜0.960g/cm3である
特性(2)温度190℃、荷重21.6kgで測定されるメルトフローレート(HLMFR)が5〜15g/10分である
特性(3)ゲルパーミエーション・クロマトグラフィー(GPC)により測定され、ポリエチレン全体の検出面積に対する分子量10,000以下の成分の検出面積の割合が14.0%以下である
特性(4)GPCにより測定され、ポリエチレン全体の検出面積に対する分子量1,000,000以上の成分の検出面積の割合が7.0%以下である
特性(5)Tiの含有量がポリエチレン全体に対して1.5重量ppm以下である
特性(6)Alの含有量がポリエチレン全体に対して3.0重量ppm以下である
特性(8)ゲルパーミエーション・クロマトグラフィー(GPC)により求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が7.0を超え15.0以下である
特性(9)フルノッチクリープ試験による80℃、1.9MPaにおける破断時間(FNCT)が100時間以上である
特性(10)曲げ弾性率が1200MPa以上である It contains 30 to 70% by weight of the following component (A) and 70 to 30% by weight of component (B), and has the following characteristics (1) to (6) and (8) to (10). Characteristic polyethylene for high-purity chemical containers.
Component (A): an ethylene polymer having an HLMFR of 0.5 to 2 g / 10 min and a density of 0.941 to 0.945 g / cm 3 .
Component (B): an ethylene polymer having a melt flow rate (MFR) of 10 to 20 g / 10 minutes measured at a temperature of 190 ° C. and a load of 2.16 kg, and a density of 0.965 to 0.969 g / cm 3 .
Characteristic (1) Characteristic having a density of 0.940-0.960 g / cm 3 (2) Characteristic having a melt flow rate (HLMFR) measured at a temperature of 190 ° C. and a load of 21.6 kg of 5-15 g / 10 minutes (3) Measured by gel permeation chromatography (GPC), and the ratio of the detection area of the component having a molecular weight of 10,000 or less to the detection area of the whole polyethylene is 14.0% or less (4) Measured by GPC The ratio of the detection area of the component having a molecular weight of 1,000,000 or more to the detection area of the whole polyethylene is 7.0% or less.
Characteristic (5) The Ti content is 1.5 ppm by weight or less with respect to the whole polyethylene.
Characteristic (6) Al content is 3.0 ppm by weight or less with respect to the whole polyethylene
Characteristic (8) The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) determined by gel permeation chromatography (GPC) is more than 7.0 and 15.0 or less.
Characteristic (9) Fracture time (FNCT) at 80 ° C. and 1.9 MPa by full notch creep test is 100 hours or more
Property (10) Flexural modulus is 1200 MPa or more
特性(7)灰分が15重量ppm以下であるCharacteristic (7) Ash content is 15 ppm by weight or less
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014062382A JP6206286B2 (en) | 2014-03-25 | 2014-03-25 | Polyethylene for large high-purity chemical containers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014062382A JP6206286B2 (en) | 2014-03-25 | 2014-03-25 | Polyethylene for large high-purity chemical containers |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2015183130A JP2015183130A (en) | 2015-10-22 |
JP2015183130A5 JP2015183130A5 (en) | 2016-07-21 |
JP6206286B2 true JP6206286B2 (en) | 2017-10-04 |
Family
ID=54350047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014062382A Active JP6206286B2 (en) | 2014-03-25 | 2014-03-25 | Polyethylene for large high-purity chemical containers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6206286B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108884195B (en) * | 2016-01-28 | 2021-06-11 | 三井化学株式会社 | Butene polymer, resin composition, and molded article |
JP7056304B2 (en) * | 2017-03-30 | 2022-04-19 | 日本ポリエチレン株式会社 | Polyethylene for high-purity chemical containers and high-purity chemical containers |
KR102455268B1 (en) * | 2017-07-18 | 2022-10-17 | 후지필름 가부시키가이샤 | Container, method for manufacturing container, and drug container |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3743787B2 (en) * | 1997-09-03 | 2006-02-08 | 東ソー株式会社 | Polyethylene resin for high-purity chemical containers and high-purity chemical containers comprising the same |
JPH1180449A (en) * | 1997-09-10 | 1999-03-26 | Tosoh Corp | Polyethylene resin for large-sized vessel for highly pure chemical and vessel |
JP2003096133A (en) * | 2001-09-21 | 2003-04-03 | Japan Polychem Corp | Polyethylene resin for high-purity chemical container |
JP2004300297A (en) * | 2003-03-31 | 2004-10-28 | Mitsui Chemicals Inc | Polyethylene-based resin for fuel tank and fuel tank using the same |
JP2006299062A (en) * | 2005-04-20 | 2006-11-02 | Nippon Polyethylene Kk | Polyethylene resin for container to store sulfuric acid and container made of the same |
JP5204967B2 (en) * | 2006-11-08 | 2013-06-05 | 日本ポリエチレン株式会社 | Polyethylene resin for injection molded plastic fuel tank and injection molded fuel tank using the same |
JP5688320B2 (en) * | 2010-04-06 | 2015-03-25 | 日本ポリエチレン株式会社 | Polyethylene resin molding material for container lid |
-
2014
- 2014-03-25 JP JP2014062382A patent/JP6206286B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015183130A (en) | 2015-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3074464B1 (en) | Process for producing high density polyethylene composition having high environmental stress crack resistance from post consumer plastic and articles made of said composition | |
US7737220B2 (en) | High density homopolymer blends | |
US10023706B2 (en) | Rotomolded articles | |
CN112384539B (en) | Process for preparing multimodal high density polyethylene | |
KR102449245B1 (en) | Multimodal Polyethylene Container | |
KR20190079657A (en) | Process for producing polyolefin film composition and film produced therefrom | |
EP2970646B1 (en) | Polypropylene impact copolymers with low haze | |
EA032505B1 (en) | Multimodal polymer | |
CN117801414A (en) | Polymer composition with improved impact strength | |
JP6998766B2 (en) | Low haze polyethylene polymer composition | |
WO2014096104A1 (en) | Polyethylene blend with improved escr | |
JP6206286B2 (en) | Polyethylene for large high-purity chemical containers | |
EP3710528A1 (en) | Polyethylene resin and caps or closures made therefrom | |
JP5630974B2 (en) | Polyethylene resin composition, method for molding the resin composition, and blow bottle | |
JP7056304B2 (en) | Polyethylene for high-purity chemical containers and high-purity chemical containers | |
JP2006299062A (en) | Polyethylene resin for container to store sulfuric acid and container made of the same | |
JP2000129044A (en) | Vessel made of polyethylene for high-purity chemicals | |
KR101840126B1 (en) | The polyethylene resin with excellent chemical resistance for medium blow molding | |
JP2005533898A (en) | Containers made from multimodal ethylene polymer | |
JP2000129045A (en) | Clean vessel made of polyethylene | |
JP4023897B2 (en) | A clean polyethylene container | |
JP6252311B2 (en) | Polyethylene for containers and molded body comprising the same | |
KR102545979B1 (en) | Polymer compositions for blow molding applications | |
JP3929149B2 (en) | Blow molded product with excellent mechanical strength | |
JPH11292933A (en) | Container for highly pure chemical |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160606 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160606 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170405 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170418 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170821 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6206286 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |